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Facial Expression Recognition (FER) is crucial for accurately interpreting human emotions 

in human-computer interactions. However, FER remains challenging due to many 

variations, such as facial expressions, head poses, and illumination. Spatial attention 

mechanisms in Convolutional Neural Networks (CNNs) help address these challenges by 

enhancing feature extraction, directing focus to crucial facial regions while suppressing 

irrelevant information. However, traditional spatial attention modules, which apply average 

and max pooling followed by a convolutional layer, may have limited capacity to capture 

complex spatial dependencies, leading to suboptimal feature representation in FER tasks. 

YOLOv5 was selected from among various YOLO series because of its ability to deliver 

high accuracy object detection and classification, its lightweight architecture, and overall 

efficiency to overcome these limitations, we propose YOLO-OSAM, an enhanced version 

of YOLOv5 designed to refine feature learning for FER. Our approach introduces (1) a 

fusion layer that integrates attention mechanisms to ensure robust feature extraction across 

varying facial expressions and (2) an enhance spatial attention mechanism incorporated into 

the YOLOv5 architecture to capture fine-grained facial details. In this paper, the proposed 

attention mechanism module separately applies max and average pooling to generate feature 

maps, which are refined through three convolutional layers with batch normalization and 

Leaky ReLU activation. These processed maps are then concatenated and further optimized 

using additional convolutional blocks and SoftMax activation, with residual connections 

enhancing feature representation. Finally, we integrate this enhanced attention mechanism 

into the YOLOv5 neck, improving feature extraction and refinement. Experimental results 

demonstrate that YOLO-OSAM achieves 79.7%, 41.7%, and 98.1% accuracy on the RAF-

DB (basic), RAF-DB (compound), and CK+ datasets, respectively—outperforming the 

original YOLOv5 by 1.3%, 0.8%, and 1.6%. Additionally, YOLO-OSAM surpasses 

baseline models such as VGG16, YOLOv3, and YOLOv5, highlighting its effectiveness in 

enhancing FER through improved spatial attention and feature extraction. 
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1. INTRODUCTION

Facial expressions are critical non-verbal communication 

methods that convey emotions and facilitate understanding 

during interactions. Consequently, some organizations and 

employers have adopted Facial Expression Recognition (FER) 

technology to analyze emotions, providing valuable insights 

into employees’ emotional responses and enhancing their 

understanding and interactions [1]. Six primary facial 

emotions were identified to categorize facial movements into 

the following motor units: anger, disgust, fear, happiness, 

sadness, and surprise [2]. FER technology includes basic and 

advanced techniques, with the latter utilizing deep learning. 

Deep learning approaches outperform traditional methods by 

directly learning from input images, eliminating the need for 

costly pre-processing and feature extraction [3, 4]. This feature 

makes deep networks suitable for handling complex, large-

input or output space problems, such as image and speech 

recognition. For instance, Convolutional Neural Networks 

(CNNs) [5] are well-suited for computer vision tasks [6]; 

Faster R-CNNs [7] and single-shot multi-box detectors [8, 9] 

are effective in object detection; VGG-Net [9] and GoogLeNet 

[10] are renowned architectures for image classification.

These models have been pivotal in advancing computer vision

and pattern recognition [11, 12].  Zhu et al. [13] used a CNN to

reconstruct frontal-view images from canonical-view images

based on the consistency and clarity of the face images,

minimizing reconstruction loss error.

Kahou et al. [14] introduced You Only Look Once (YOLO), 

and YOLOv5 has outpaced YOLOv4 in real-world 

applications, object detection speed, owing to algorithm 

advancements. It provides four network configurations 
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(YOLOv5x, YOLOv5l, YOLOv5m, and YOLOv5s) to suit 

different object detection requirements by adjusting the width 

and depth of the feature extraction [15]. This led to the 

proposal of a network with an attention mechanism for 

automatic FER. The network comprises four components: 

feature extraction, attention, reconstruction, and classification. 

The attention mechanism lets the network focus on important 

features, improving the model’s efficiency. Combining 

features with attention mechanisms can improve the attention 

models and yield better results. To enhance small-scale defect 

detection, a new fusion layer was introduced in YOLOv5 

[16]—this layer integrates shallow features, critical for 

identifying subtle defects, and generates high-resolution 

feature maps. By emphasizing minor details and reducing 

background interference, the fusion layer improves 

localization precision and multi-scale detection. However, the 

method relies heavily on sufficient training data and struggles 

with misclassification when defect types have similar visual 

features, highlighting the need for further dataset 

augmentation and refinement. Zhu et al. [17] improved the 

YOLOv5 framework by incorporating a new fusion layer to 

address challenges in detecting small-scale from images. The 

original YOLOv5 struggled with capturing shallow features 

essential for detecting small objects. The new fusion layer 

generates high-resolution feature maps, enhancing the model's 

sensitivity to subtle features of small objects. By integrating 

shallow features from the backbone network into the fusion 

layers, the approach reduces feature loss and improves 

localization accuracy. However, the method has limitations, 

including its reliance on sufficient training data and a precision, 

which leaves room for improvement.  

Attention mechanisms can identify salient regions and focus 

on features relevant to emotions, resulting in a more efficient 

representation of facial expressions [18]. Spatial attention 

mechanisms that can be embedded into end-to-end training 

and automatically determine the Region of Interest without 

manually cropping the image were developed by imitating 

human visual attention [19]. Woo et al. [20] lacked efficient 

feature selection, often overlooking relevant spatial and 

channel information. Conversely, the spatial attention 

mechanism allows the model to focus on key regions by 

redistributing weights across locations in the image. This 

process involves identifying critical areas to improve the 

prediction accuracy for those areas, such as objects or 

landmarks. Sun et al. [21] designed a shallow CNN and 

applied attention mapping to a fully connected layer. Marrero 

Fernandez et al. [22] created a dual-branch network that 

simultaneously extracts features and generates an attention 

map. However, traditional single-attention mechanisms used 

only for high-level features are inadequate for handling major 

pose, illumination, and occlusion variations. Thus, improving 

the emotional relevance of the features while controlling the 

model’s complexity is crucial. Maximum (Max) and Average 

Pooling are used in deep neural networks, particularly in the 

spatial attention mechanism. Max Pooling selects the 

maximum values from each neighbouring region, allowing the 

extraction of the most important image features, such as edges 

or highlights, which helps improve the model’s ability to focus 

on critical areas [23], whereas Average Pooling calculates the 

average values in each region, giving a general idea of the 

spatial distribution of signals. This helps to enhance the 

contextual information available in the image [24]. Max and 

Average Pooling treat each part of the image separately. 

Therefore, they may not adequately capture the contextual 

relationships between different parts, affecting the 

performance in tasks requiring an understanding of complex 

contexts. Pooling substantially reduces the data size, possibly 

leading to a loss of some structural information related to the 

shape or pattern in the image, particularly in the early stages 

of the network. Owing to the varying sizes of face images, 

recognizing facial expressions from such face images using 

object detection techniques, such as YOLO  version, that use 

uniform-sized images as input presents challenges. 

Consequently, large faces may be segmented into different 

parts, causing the misidentification of a single expression as 

multiple expressions. Additionally, images returned by the 

proposed method often lack contrast, appearing grey and 

blurred, with faces blending into the background and 

aggregating, affecting the detection of smaller faces. 

Pretrained models, data augmentation, and post-processing 

techniques have been recommended to address these issues 

[25]. The Convolutional Block Attention Module (CBAM) 

addresses this limitation by enhancing essential features and 

suppressing irrelevant ones. CBAM is an advanced attention 

model used in deep neural networks to improve performance 

in image analysis and feature extraction. CBAM combines two 

attention mechanisms—channel and spatial. This combination 

allows the model to focus on the most important features and 

regions in an image. The channel attention mechanism 

compresses features across channels, generating weights for 

each channel based on its relevance to the input image. This 

enables the model to identify the crucial channels for each 

image, thereby improving prediction accuracy. This 

mechanism extracts information from channels and analyses 

their relative importance for a task [26]. Even with its 

lightweight features, CBAM faces the challenge of incurring 

computational overhead through channel and spatial attention 

modules, which potentially causes concern for real-world 

applications. 

Despite the advancement of attention-based techniques such 

as CBAM for improving feature exploitation in deep neural 

networks, they are not yet used in practical one-shot detection 

systems for FER. Most available models either overfit to large-

scale datasets or do not capture subtle facial features. Besides, 

many of these models were developed for object detection or 

classification, and are not optimized for emotion-specific 

spatial cues. This presents an opportunity to design a 

lightweight attention mechanism tailored for FER, especially 

in one-stage detectors like YOLOv5. To address this, we 

propose YOLO-OSAM, which augments spatial attention with 

a repetition-optimized CBL (Convolution-BatchNorm-

LeakyReLU) module, providing efficient computation 

enhancements. This study enhances YOLOv5 detection and 

classification methods by incorporating attention mechanisms, 

which are commonly employed to extract more nuanced 

information from input objects. The input objects were images 

from the Real-world Affective Faces Database (RAF-DB), 

Cohn-Kanade (Ck+) dataset, Drowsiness dataset, and SC6-Net 

dataset. The proposed method adaptively locates the crucial 

regions and focuses on emotionally related features by 

introducing a spatial attention mechanism into the YOLOv5 

model. We aimed to enable the detection and classification 

method to focus on the regions of interest in images, enhancing 

its performance in face detection. The main contributions of 

this study can be summarised as follows: 

(1) An auxiliary branch is introduced into the feature-fusion 

layer to enhance multiscale facial detection, allowing for a 

more comprehensive capture of facial details. 
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(2) Attention modules are integrated into each linear layer’s 

backbone to selectively amplify essential features, optimizing 

the information for facial emotion recognition before fusion. 

(3) A spatial attention mechanism that applies a three-layer 

convolutional structure with residual connections to refined 

feature maps is developed, leveraging pooled features from 

Max and Average Pooling layers. 

 

 

2. METHODS 

 

FER is a fundamental component of human-computer 

interaction that allows systems to recognise and respond to 

human emotions. This section briefly introduces the YOLO 

detection method, which is based on deep learning and spatial 

attention mechanisms. Additionally, the improvements made 

to YOLOv5 and spatial attention mechanisms are discussed. 

 

2.1 YOLOv5 method 

 

The YOLOv5 architecture comprises three main sections: 

the backbone, neck, and head. In this study, CSPDarknet53 is 

used as the backbone for YOLOv5, and it incorporates the 

focus, CBL, CSP1, and SPP layers. The backbone—

CSPDarknet53—consists of feature extraction layers such as 

convolutional, pooling, and other operations for feature map 

extraction and selection. It converts the input image into a set 

of feature maps that are then used by subsequent layers  [27]. 

The architecture begins with the focus module, which divides 

the 4×4 input image  into smaller 2×2 regions and 

independently extracts features from each region. The CBL 

module comprises convolution, batch normalization [28], and 

LeakyReLU [29] activation functions . Subsequently, the 

cross-stage partial network unit [30] was used. However, there 

were two types: CSP1_X in the backbone and CSP2_X in the 

neck network, where X represents the number of remaining 

units. An SPP module was added at the end of the backbone to 

enhance the architecture's performance, improving its ability 

to handle objects of different scales and aspect ratios. The 

second section in YOLOv5 is the neck layer, which combines 

the layer feature maps from different levels to minimize 

information loss. This involves the FPN [31] and PANet [32]. 

The FPN allows for the transmission of solid semantic features 

from higher to lower feature maps. Conversely, the PANet 

structure transmits robust localization features to move from 

lower to higher feature maps. The neck also contains a 

CSP2_X and the Concept module. The last section of the 

YOLOv5 is the head, which is responsible for making 

predictions, i.e., creating bounding box predictions and the 

associated class probabilities [33]. 

 

2.2 Spatial attention mechanism 

 

A spatial attention module is a component of deep-learning 

models that improves their ability to focus on the most relevant 

parts of an image. This module helps the network concentrate 

on critical features by highlighting important spatial regions, 

thereby enhancing the performance of the model in FER tasks 

[34]. The spatial attention was calculated by taking the 

Average and Max Pooling values along the channel axis and 

combining them to create a concise feature descriptor [35, 36]. 

This method effectively identifies critical areas on the 

concatenated feature descriptor. A convolution layer was 

applied to generate a spatial attention map—MS ∈ RH×W. The 

attention map MS assigns weights to different spatial regions, 

indicating the importance of each region. Regions with higher 

weights are considered more relevant for the task, and spatial 

attention is calculated as in Eq. (1) [18]. 

 

MS = σ(f 7×7([AvgPool(F); MaxPool(F)])) (1) 

 

where, F is the input feature map, σ represents the sigmoid 

activation function, and f7×7 represents a convolution operation 

with a 7×7 kernel. 

 

2.3 Improve YOLOV5 and spatial attention 

 

The YOLOv5s architecture was enhanced with new features 

to improve face detection and classification. First, a feature 

fusion layer was added to obtain additional information 

regarding the larger bounding box surrounding the face. This 

component captures more feature information for multiple 

face detection metrics, thereby enhancing the model’s ability 

to extract features and make more accurate predictions. The 

features from the backbone network were derived from the 

first CSP1_1 unit, which is connected to the CBL unit. This 

unit is related to CSP1_3 and undergoes pooling, upsampling, 

and concatenation with CSP2_1, followed by a second 

convolutional unit to prevent information loss in more 

prominent faces. Second, attention modules were integrated 

into the backbone of each linear layer. These modules 

emphasize features critical for facial emotion classification, 

optimally preparing them for further processing in the neck 

layers. Figure 1 illustrates the improvement of YOLOv5 with 

the attention model, where the newly added modules are 

highlighted as rectangles. 

 

2.3.1 Improve YOLOv5 

Added a new fusion layer to the neck network to enhance 

YOLOv5s performance in detecting more prominent objects, 

generating a larger feature map with width/2 × height/2 × 3 

dimensions. Combining the original network with fused 

feature maps achieved this enhancement, and they were then 

up-sampled and combined into four layers. These feature maps 

measured width/2 × height/2 × 3, width/4 × height/4 × 3, 

width/8 × height/8 × 3, and width/16 × height/16 × 3, 

corresponding to four scales derived from the backbone 

network. The network uses four channels, each with different 

feature map sizes enhancing its effectiveness. Thus, the head 

comprises four detection heads and locates and classifies the 

feature information output from the neck, providing 

classification probabilities, confidence scores, bounding boxes, 

and other relevant information for each detected target. 

LeakyReLU enables the network to learn intricate patterns and 

relationships in the data by maintaining a slightly positive 

slope for negative inputs. LeakyReLU enables gradient flow 

through negative inputs; nonetheless, it must maintain 

uniformity during training. Adjusting the learning rate and 

periodically evaluating the neural network can help identify the 

optimal configuration ratio for this activation function to 

address this challenge, as indicated in Eq. (2).  Batch 

normalisation enhances the back-propagation of gradients, 

prevents gradient attenuation, and preserves emotional feature 

information, as defined in Eq. (3). Inspired by residual 

networks, where (x) denotes the input, μ(mu) indicates the 

mini-batch mean, σ(sigma) represents the standard deviation 

(a measure of the variance in the input), and γ(gamma) and 

β(beta) are parameters for nonormalizingnd shifting values, 
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respectively. 

 

Leaky ReLU (x) = {
x        if x > 0
ax     if x ≤ 0

  (2) 

 

where, σx is a small positive constant. 

 

Bn (x) = γ(σx − μ) + β (3) 

 

2.3.2 Improve spatial attention 

Attention modules were added to the output of the backbone 

layers to enhance facial information in the images. Specifically, 

spatial attention modules were implemented to enhance the 

FER accuracy. These modules assign higher weights to 

emotion-rich facial regions and iteratively partition the face 

into blocks, enabling targeted processing for FER tasks. This 

is particularly beneficial in complex models, where the spatial 

attention module can adapt to changing backgrounds, 

providing a more robust deep learning network across diverse 

environments. Without this module, the feature extraction 

module may capture irrelevant information from the entire 

image, resulting in less representative information. The spatial 

attention mechanism was improved by applying a 3 × 3 CBL 

module layer (repeated thrice) to the outputs of the Max and 

Average Pooling layers to produce a focused facial attention 

map corresponding to the Region of Interest. This was 

achieved by connecting channels and combining elements 

generated from the feature map to simulate a residual block 

structure. The final feature map was obtained by applying a 

SoftMax activation function to the combined feature map. 

Figure 2 illustrates the proposed spatial attention module. It 

takes a feature map (F) and does average-pooling and max-

pooling on it in parallel, the pooling method captures spatial 

context. The pooled features are concatenated and refined 

through several CBL (Convolutional, BatchNorm, Leaky 

ReLU) layers to increase the accuracy of the spatial 

information. A SoftMax function, which generates a spatial 

attention map, is also included in the model along with the 

feature map. These two models operate together to highlight 

important areas within the feature map. This module improves 

the model's ability to focus on relevant spatial details, 

enhancing performance in tasks like object detection or image 

segmentation. 

 

 
 

Figure 1. YOLO-OSAM model architecture for the improvement of YOLOv5s with the attention model 

 

 
 

Figure 2. The proposed spatial attention mechanism, a model responsible for achieving optimal features 

 

The input is an intermediate feature map, denoted as F ∈
RC×H×W , with dimensions C×H×W. C is the number of 

channels, and H and W are the height and width of the feature 

map. The spatial attention module applies Average and Max 

Pooling to obtain two independent 2D maps, which are then 

processed thrice by 3×3 CBL layers to further expand the 
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receptive fields and effectively use the contextual information 

of each map: 

 

Mi = (3 ×  CBL (MAX Pooling (F))) (4) 

 

Ni = (3CBL(AveargePooling(F))) (5) 

 

Next, the outputs of the 2D spatial attention map Mi, Ni are 

concatenated to obtain attention map Si, which is subsequently 

input into a CBL module and evaluated by a SoftMax 

activation function to generate attention maps A: 

 

Si = concat (Mi, Ni) (6) 

 

A = Softmax(CBL(Si)) (7) 

 

Finally, map A is multiplied by the input feature map F to 

enhance the representability of the feature map, resulting in the 

channel attention map TSPatial ∈ RC×1×1. 

 

Tspatial = A × F (8) 

 

Thus, the spatial attention module can attract different types 

of attention and identify important features more accurately by 

focusing on local and global perceptions. 

 

 

3. DATASET 
 

This section describes the application of two datasets to the 

improved YOLO-OSAM method: RAF-DB (basic and 

compound) of real facial expressions and CK+ laboratory 

facial expressions. These datasets are used to train and 

evaluate deep learning models, with 70% of the data used for 

training, 10% for validation, and 20% for testing, Although the 

70-10-20 data split is not the most conventional choice, it has 

been successfully employed in several prior studies in the 

fields of emotion recognition and object detection [2]. In our 

case, this configuration allowed for a relatively large test set 

to ensure reliable evaluation, while preserving enough data for 

training and validation for comparing the results. 

This CK+ database [37, 38] It is the smallest among the 

laboratory datasets. The image data represent the facial 

expressions of individuals aged 18–50 years, with a 

distribution of 69% female and 31% male participants from 

various nationalities. The dataset includes seven facial 

expressions: surprise: 249, fear: 75, disgust: 177, happiness: 

207, sadness: 84, anger: 135, and contempt: 54. 

The RAF-DB-basic dataset initially consisted of 15,339 

facial images collected from real scenes. This extensive 

dataset offers excellent generalizability and robustness. It 

includes single-expression labels: surprise: 1619, fear: 355, 

disgust: 877, happiness: 5957, sadness: 2460, anger: 867, and 

neutral: 3204. 

The RAF-DB-compound dataset [39] is derived from the 

RAF-DB basic scenes contains 3,954 facial images, The 

distribution of these emotions is: happily surprised: 697, 

happily disgusted: 266, sadly fearful: 129, sadly angry: 163, 

sadly surprised: 86, sadly disgusted: 738, fearfully angry: 150, 

fearfully surprised: 560, angrily surprised: 176, angrily 

disgusted: 841, and disgusted and surprised: 148. 

The FER2013 [40] is an emotion category through 

crowdsourcing that builds upon. The quality of emotion-

recognition tasks is improved by correcting the labelling errors. 

It consists of 35,887 facial images grouped into eight emotions: 

anger, disgust, fear, happiness, neutrality, sadness, surprise, 

and contempt.  

 

3.1 Experiment 

 

YOLO-OSAM experiments evaluated the FER model by 

comparing its accuracy and mean Average Precision (mAP) 

using a score threshold of 0.5. Accuracy is the percentage of 

correct predictions, which is determined by dividing the 

number of correctly classified samples by the total number of 

samples (Eq. (9)). Regarding precision, the accuracy of 

positive predictions was calculated as the ratio of correctly 

predicted positive instances to the total number of true 

positives and false positives (Eq. (10)). In addition, recall, 

sometimes called the sensitivity or true-positive rate, assesses 

a model’s capacity to accurately identify pertinent instances. 

It is determined by dividing the number of true positives 

(correctly forecasted positive cases) by the sum of true 

positives and false negatives, where false negatives represent 

positive cases incorrectly classified as negative (Eq. (11)) [41]. 

Moreover, we calculated the mAP across all classes. Thus, 

average precision, which has evolved, is not equal to the 

average Precision (P), as expressed in Equation 12. Therefore, 

the average precision can be understood as the area under the 

precision-recall curve. mAP@0.5 refers to the mAP at the IoU 

threshold of 0.5. Early stopping for the optimal model halts the 

training process when errors in the validation dataset increase, 

preventing overfitting, which would otherwise be evident in 

the training dataset. 

 

Accuracy =
n correct

ntotal
  (9) 

 

where, n correct is the number of correctly classified samples. 

 

Precision (P) =
True Postive (TP)

True Postive (TP)+False Postive (FP)
  (10) 

 

Recall (R) =  
True Postive (TP)

True Postive (TP)+False Negtive (FN)
  (11) 

 

mAP =  
1

Nc
∑ P(t)∆R(t)

N

t=i

 (12) 

 

where, P, R, and Nc represent the precision, recall rate, and 

number of classes, respectively. 
 

 

4. RESULTS AND DISCUSSION 

 

4.1 Training setting 
 

The NVIDIA GeForce 4080 RTX GPU with 12GB of 

memory and 64GB of computer memory was used for training. 

The Stochastic Gradient Descent (SGD) optimiser was applied 

to RAF-DB-basic and RAF-DB-compound. However, the 

Adam optimiser was applied to the CK+ dataset. The 

momentum was set at 0.937, with a batch size of 32 and an 

initial learning rate of 0.001. The model was trained for 500 

epochs using early stopping to determine the optimal number. 

The code is publicly available at https://github.com/Ahmed-

Oday/YOLOv5-Spatial-Attention-Mechanism.git. 
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4.2 Comparison of experiment results 

 

Table 1 compares the performances of VGG-16, YOLO 

series, and the YOLO-OSAM proposed method across the 

RAF-DB-basic, RAF-DB-compound, CK+, and FER2013 

datasets. These results highlight the robustness and 

effectiveness of the YOLO-OSAM method, particularly on 

complex datasets, where it consistently ranked as a top 

performer across all evaluated metrics. 

 

Table 1. Comparison with related methods 

 
Model Dataset F1-Score(%) mAP0.5 (%) Accuracy (%) Opt. Epoch 

VGG-16 

RAF-DB-basic 74.08 78.50 70 [42] 63 

RAF-DB-compound 28.04 30 31 76 

CK+  95.98 96.20 95.10 [43] 40 

FER2013 64.9 67.3 65.2 73 

YOLOv3 

RAF-DB-basic 69.66 73 [24] 73.10 101 

RAF-DB-compound 36.71 33 30 120 

CK+ 80.57 96.80 99 [24] 94 

FER2013 69.35 68.4 70.3 112 

YOLOv5 

RAF-DB-basic 80.70 86.10 78.40 278 

RAF-DB-compound 45.04 46.20 40.90 298 

CK+ 93.73 99.4 96.50 500 

FER2013 73.05 70.13 72.24 137 

YOLOv6 

RAF-DB-basic 79.14 79.20 78.20 146 

RAF-DB-compound 37.14 40.10 39.20 188 

CK+ 94.57 96.10 96.40 144 

FER2013 70.85 69.5 68.4 116 

YOLOv7 

RAF-DB-basic 77.73 81.20 79.20 183 

RAF-DB-compound 36.43 40.10 39.10 201 

CK+ 95.03 97.10 96.60 198 

FER2013 73.6 71.2 70  

YOLOv8 

RAF-DB-basic 80.78 83.10 78.60 286 

RAF-DB-compound 41.82 43.20 40.20 173 

CK+ 94.67 97.20 97.60 185 

FER2013 74.6 72.5 73.6 169 

YOLOv9 

RAF-DB-basic 79.18 82.10 77.20 215 

RAF-DB-compound 40.33 40.40 40.20 200 

CK+ 93.72 98.50 97.60 206 

FER2013 73.8 71.7 72.5 157 

YOLOv10 

RAF-DB-basic 80.57 84.10 78.60 149 

RAF-DB-compound 36.57 40.90 39.70 100 

CK+ 94.01% 94.20 94.90 164 

FER2013 72.5 69.7 73.1 140 

YOLOv11 

RAF-DB-basic 80.67% 84.80% 79.10 267 

RAF-DB-compound 43.17% 44.20% 40.40 228 

CK+ 96.69% 98.70% 97.90 211 

FER2013 74.3 71.5 73.7 180 

YOLOv12 

RAF-DB-basic 80.10% 82.30% 78.90 193 

RAF-DB-compound 37.64% 35.20% 38 165 

CK+ 95.88% 96.90% 96.80 201 

FER2013 71.8 74.7 72.5 143 

YOLO-OSAM (propose) 

RAF-DB-basic 81.26% 85.70% 79.70 347 

RAF-DB-compound 45.70% 45.90% 41.70 301 

CK+ 97.64% 99.50% 98.10 483 

FER2013 78.2 76.4 75.4 217 

 

4.3 Effectiveness of the proposed spatial attention on the 

CK+ dataset 

 

The evaluation of different spatial attention mechanisms on 

the CK+ datasets focused on metrics such as precision, recall, 

mAP50 (mAP at 50% IoU), and accuracy to assess the 

effectiveness of each method in detecting and classifying 

facial expressions accurately. in the CK+ dataset, Table 2 

compares the performance of YOLOv5 models with standard 

spatial attention, the proposed spatial attention, and 

the baseline of CSPDarknet-53, with and without the spatial 

attention mechanism, across different versions of CNN. The 

proposed spatial attention restored perfect precision and recall 

scores, demonstrating its effectiveness in enhancing the 

model's performance. To assess the statistical significance of 

the performance improvements achieved by the proposed 

YOLO-OSAM module, independent samples t-tests were 

conducted across the CK+ datasets. The difference is 

statistically significant in Table 3. 

 

4.4 Analysis of experimental results CK+ dataset 

 

4.4.1 Comparison of CBL modules in the spatial attention 

mechanism in different models 

We conducted experiments to study the effect of the 

repeated number of CBL (CBL=0, 1, 2, 3, and 4) on OSAM in 

three models based on the CK training dataset. Table 4 

presents the analysis of the three models—CNN, CSPDarknet-
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53 (baseline), and YOLOv5—across different configurations 

of the CBL parameter.  In addition, it provides the average 

performance of these models and analyses the stability of the 

CBL values (0, 1, 2, 3, and 4). This indicates consistent 

performance with minimal variation. However, CBL of 0 and 

4 had greater variability, suggesting lower stability. 

 

4.4.2 Experiments on spatial attention mechanism at different 

locations 

We demonstrated the importance of the location of OSAM 

in the model. Two models were assessed: the CSPDarknet53 

model and its variant. The results are presented in Table 5, 

where CSPDarknet53-embedding indicates the location of the 

spatial attention mechanism applied after each CSP1 unit in 

CSPDarknet53 (backbone). CSPDarknet53-last represents the 

spatial attention mechanism applied after SPP at the end of 

CSPDarknet53 (backbone). The comparison reveals that 

CSPDarknet53-last outperforms CSPDarknet53-imbedding in 

accuracy. 

The second model is YOLOv5, where YOLOv5-Neck 

represents the location of OSAM at the end of the neck, 

specifically applied to every branch from the neck to the head 

unit after CSP2_1. YOLO-OSAM, in contrast, applies the 

spatial attention mechanism at the end of the backbone, 

implying that it was applied from every branch from the 

backbone to the neck unit Figure 1. Table 6 presents the results, 

revealing that YOLO-OSAM outperforms YOLOv5-Neck. 

 

Table 2. Effectiveness in the Ck+ dataset 

 
Model F1-Score (%) Map (%) Accuracy (%) 

CSPDarkNet53 79.43 91.2 76.8 

CSPDarkNet53 + Spatial AM [18] 65.02 85.9 72.4 

CSPDarkNet53 + OSAM 69.74 85.9 81.7 

CSPDarkNet53 + CBAM (Channel AM + OSAM) 96.58 98 91.7 

CSPDarkNet53 + CBAM (Channel AM + Spatial AM) [20] 95.47 98.4 91.7 

AlexNet [44] N/A N/A 98.38 

AlexNet [44] + Spatial AM [18] 97.64 97.7 97.4 

AlexNet [44] + OSAM 98.4 98.4 98.4 

AlexNet [44] + CBAM (Channel AM + OSAM) 98.4 98.4 98.4 

AlexNet [44]+ CBAM (Channel AM + Spatial AM) [20] 96.64 96.9 96.4 

Detection 

YOLOv5 [17] (w/o adding a layer) 93.73 99.4 96.5 

YOLOv5 [17] + Spatial AM [18] 95.46 99.1 96.5 

YOLOv5 [17] + OSAM 97.59 99.5 96.1 

YOLOv5 [17]+ CBAM (Channel AM + OSAM) 91.74 99.2 97.5 

YOLOv5 [17] + CBAM (Channel AM + Spatial AM) [20] 96.34 99.2 93.1 

Improve YOLOv5 (adding a layer) 97.09 99.4 95.2 

Improve YOLOv5 + Spatial AM [18] 87.90 97.3 90.5 

Improve YOLOv5 + OSAM 97.64 99.5 98.1 

Improve YOLOv5 + CBAM (Channel AM + OSAM) [20] 98.73 99.5 99.5 

Improve YOLOv5+ CBAM (Channel AM + Spatial AM) [20] 88.85 96.2 88.4 

 

Table 3.  Statistical comparison of baseline models vs. YOLO-OSAM models using an independent samples t-test 

 

Dataset Round 
Baseline CSPdarknet-53 YOLO-OSAM 

T-Value P-Value 
Mean (%) STD (%) Mean (%) STD (%) 

CK+ 10 76.8 8.26 86.33 6.84 2.81 0.01 

 

Table 4. Most stable CBL analysis 

 
Model CBL=0 CBL=1 CBL=2 CBL=3 CBL=4 

AlexNet [44] 97.8 98.2 97.9 98.4 95.9 

CSPDarknet-53 98.1 94.1 91.7 98.2 94.4 

YOLOv5 [17] 90.1 96.4 96.5 95.7 95.7 

 

Table 5. Comparison of the location of the spatial attention 

mechanism in CSPDARKNET53(train dataset) 

 
CSPDarknet53–CK-Location Accuracy mAP 

CSPDarknet53-embedding 88% 96.7% 

CSPDarknet53-last 93% 97.4% 

 
Table 6. Comparison of the location of the spatial attention 

mechanism in YOLOv5 (train dataset) 

 
YOLOV5–CK-Location Accuracy mAP 

Improve-YOLOV5-Neck 0.627 0.893 

Improve-YOLO-OSAM 0.981 0.992 

 

5. CONCLUSIONS 
 

This study improves a real-world FER system for computer 

interaction and vision, using an improved YOLOv5 with an 

attention mechanism. First, a new fusion layer was added to 

YOLOv5, generating YOLO-OSAM predictive heads. These 

heads minimised the effects of face size variations and 

enhanced the detection of small faces. Second, spatial 

attention units were added to each output branch of the 

backbone to highlight the information that contributed to the 

extraction of more features. Finally, the performances of deep 

learning models were compared, and the effects of the spatial 

attention mechanism and its location were evaluated using the 

RAF-DB-basic, RAF-DB-compound, and CK+ datasets. 
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Regarding the RAF-DB-basic dataset, the spatial attention 

mechanism slightly improved accuracy (79.7%) compared 

with standard spatial attention, indicating minor advancements 

in feature extraction and classification accuracy. On the more 

complex RAF-DB-compound dataset, spatial attention 

mechanisms performed similarly in terms of the mAP50 and 

accuracy metrics, suggesting that the YOLO-OSAM 

mechanism is beneficial for more challenging tasks. 

Furthermore, the CK+ dataset results highlighted a significant 

advantage of YOLO-OSAM, with a substantial increase in 

accuracy (98.1%) compared to the standard approach (96.5%), 

demonstrating its superior ability to handle datasets with clear 

and distinct features. These findings suggest that the custom 

spatial attention mechanism offers considerable benefits for 

tasks with well-defined features; however, its impact on more 

complex datasets is less pronounced, suggesting the need for 

further optimisation or alternative methods to tackle such 

challenging tasks. 
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