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Fog significantly reduces video clarity by lowering contrast, blurring objects, and distorting 

colors hampers scene understanding in critical applications such as autonomous driving, 

traffic surveillance, and remote sensing. Existing defogging methods like Retinex-based 

algorithms and dark channel prior often fail under varying fog densities and lack real-time 

adaptability, leading to detail loss or visual artifacts. To address these challenges, this study 

introduces a hybrid deep learning approach that integrates a Convolutional Neural Network 

(CNN) for fog level detection and a Generative Adversarial Network (GAN) for adaptive 

video defogging. The CNN accurately estimates fog density per frame, enabling the GAN 

to adjust its processing and preserve essential visual features. Preprocessing steps such as 

grayscale conversion and histogram equalization, enhance feature extraction and improve 

defogging performance. The system is designed for real-time deployment and adaptability 

across different atmospheric conditions. Evaluation using metrics such as PSNR, SSIM, 

FADE, NIQE, MAE, and RMSE demonstrates superior performance compared to existing 

and state-of-the-art methods like MSBDN and FFA-Net. Notably, under heavy fog, the 

proposed model achieved a PSNR of 26.0 dB, SSIM of 0.86, FADE score of 0.41, and 

runtime of 0.31 s/frame, confirming its efficiency and suitability for safety-critical, low-

visibility environments. 
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1. INTRODUCTION

Monitoring fog plays a crucial role in meteorology for 

assessing climate and atmospheric conditions. Fog forecasting 

benefits various aspects of daily life, including environmental 

surveillance, agricultural productivity, and aviation safety. 

Fog can be categorized into five classes based on density: 

gentle fog, substantial fog, heavy fog, thick mist, and 

extremely dense fog [1]. Early methods of fog observation 

relied on the naked eye with observers gauging fog intensity 

by identifying objects at specific distances. Today, devices 

such as transmissometers and scatterometers automate the 

measurement of horizontal visibility. When local optical 

conditions differ from the broader atmosphere, autonomous 

systems may provide inaccurate readings. Large-scale 

deployment of these devices are costly and satellite-based fog 

monitoring is often unreliable due to cloud interference [2]. 

The rise of Artificial Intelligence (AI) and video recognition 

technologies has advanced fog transparency monitoring 

especially with the proliferation of security cameras across 

industries. For instance, introduced visibility estimation 

technique using B-spline wavelet transformations, while 

extracted road and sky areas to determine fog perception range 

[3]. Employed camera parameters and Region of Interest 

(ROI) extraction for visibility estimation, and utilized methods 

like linear regression, decision trees, edge detection, and 

contrast reduction between videos to estimate visibility [4]. 

Fog video analysis have relied on video feature-based 

techniques, which, despite their success, face limitations in 

adaptability and applicability. Developed a model using dark 

channels, local comparisons, and saturation parameters, 

training a random forest to predict visibility in various weather 

conditions [5]. Applied transfer learning improves prediction 

accuracy without requiring extensive training data. Proposed a 

method combining feature fusion and transfer learning for 

meteorological vision estimation, increasing reliability by 

integrating multiple data sources [6]. Used Particle Swarm 

Optimization (PSO) in a transferable learning approach for 

estimating transparency and FGS-Net built on empirical 

characteristic streams, proved effective in frequently foggy 

areas. Developed an automated technique using CCTV 

footage to detect marine fog and estimate visibility distance 

demonstrating the effectiveness of AI-driven approaches. 

These advancements highlight how AI and machine learning 

methods are reshaping fog monitoring, enhancing reliability 

and adaptability in varied environmental conditions [7]. 

Utilized a deep learning approach to improve visibility 

estimation in traffic videos, revealing that deep quantification 

methods enhanced brightness prediction accuracy. These 

methods often require large, well-balanced datasets for 

optimal performance. Deep learning models such as VGG16 

and ResNet50 are effective for visibility estimation on 
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extensive datasets though their accuracy drops significantly 

with limited data [8]. VGG16/19 relies on max-pooling and 

convolutional layers for feature extraction, but these layers 

increase processing costs. ResNet50 incorporates residual 

components to address vanishing gradient issues enabling 

deeper networks to handle complex tasks more efficiently [9]. 

Despite these advantages, the insufficient representation of 

extreme visibility conditions in collected datasets often leads 

to unbalanced data reducing the model performance on rare 

categories [10]. In addition to fog, hazards by smoke, dust, or 

particulates also severely impacts video clarity by scattering 

and absorbing light. This results in a loss of edge detail, 

contrast, and color accuracy, affecting visibility in landscapes 

and hindering applications like localization, object detection, 

and autonomous driving [11]. Haze reduction is essential for 

many computer vision tasks, particularly for applications in 

outdoor settings. The classical atmospheric scattering model 

helps explain hazy video formation, emphasizing the need for 

video restoration in foggy conditions [12]. Removing haze and 

fog from videos is vital for tasks such as monitoring, 

autonomous driving, aircraft navigation, object tracking, and 

general visibility enhancement, as low visibility not only 

reduces video quality but also affects the reliability of 

computer vision systems [13]. 

Hazy and foggy conditions distort video contrast and color, 

with visibility degradation varying based on the distance 

between objects and the observer. Degraded visibility in 

outdoor videos affects real-time applications by reducing 

transparency and contrast during adverse weather conditions 

where ambient light diminishes scene clarity [14]. Improving 

the brightness of hazy and foggy videos is thus essential for 

computer vision tasks, especially in fields like surveillance, 

object tracking, identity verification, robot navigation, and 

transportation. For dehazing and defogging, the Dark Channel 

Prior (DCP) method estimates a transmission map for foggy 

and hazy videos, which generally yields effective results but 

struggles with grayscale videos and relies heavily on dark 

channel values (0.1%) for ambient light estimation [15]. To 

enhance dehazing, propose using a GAN comprising a 

generator and a discriminator network. In this model, the 

generator produces a fog-free video from hazy inputs, while 

the discriminator distinguishes between real and generated 

videos, working together to improve dehazing performance 

[16]. 

1.1 Problem statement 

In foggy environments, visual degradation significantly 

impacts the performance of systems that rely on video data for 

decision-making, such as autonomous vehicles, surveillance, 

and environmental monitoring. Fog reduces contrast, distorts 

color fidelity, and obscures critical scene details, making 

accurate interpretation of visual information challenging. 

While many existing defogging methods aim to preserve scene 

integrity and prevent visual artifacts, they often fail to define 

clear, measurable criteria for evaluating these goals. Without 

such criteria, claims of visual improvement remain subjective 

and inconsistent. To address this, there is a need for a solution 

that not only enhances visibility but also incorporates specific 

evaluation metrics such as Peak Signal-to-Noise Ratio 

(PSNR), Structural Similarity Index (SSIM), and Learned 

Perceptual Image Patch Similarity (LPIPS) to objectively 

quantify the quality of defogged outputs. Subjective 

evaluation methods like Mean Opinion Score (MOS) and 

expert assessments are essential to ensure perceptual relevance 

and practical effectiveness. This study proposes a hybrid 

approach that combines CNN-based fog density detection with 

GAN-based defogging, evaluated using both objective metrics 

and human visual assessments, to ensure robust, detail-

preserving, and artifact-free video restoration under diverse 

fog conditions. 

1.2 Motivation 

The paper clearly identifies the challenges posed by foggy 

video processing and the limitations of existing defogging 

methods; however, it lacks a detailed analysis of specific 

technical bottlenecks such as computational complexity, real-

time constraints, and generalization across varying fog 

conditions. With the increasing reliance on visual data in 

safety-critical domains including autonomous driving, 

environmental monitoring, and surveillance ensuring clear and 

detailed video input is vital for accurate perception and 

decision-making. Fog significantly impairs visibility, leading 

to the loss or misinterpretation of crucial features such as road 

signs, objects, and terrain structures, thereby compromising 

both automated systems and human operators. Existing 

defogging approaches often struggle in dynamic real-world 

scenarios, exhibiting poor adaptability to different fog 

densities and lacking the efficiency required for real-time 

processing. To address these shortcomings, this research 

proposes an adaptive hybrid framework that integrates CNNs 

for real-time fog density detection and GANs for high-fidelity 

defogging. The proposed system dynamically adjusts to 

environmental variations, delivering consistent visibility 

enhancement across a wide spectrum of fog intensities. By 

preserving fine visual details and supporting real-time 

operations, this method aims to significantly improve video 

clarity in low-visibility conditions. The proposed solution 

enhances the safety, situational awareness, and effectiveness 

of vision-dependent systems, setting a new benchmark for 

robust video processing in fog-affected environments. 

2. RELATED WORKS

Dehazing videos is a prior-based technique dehaze videos 

using manually created priors or assumptions. A patch-based 

contrast maximizing approach was presented based on the fact 

that clean videos often have higher contrast. Calculated the 

scene's albedo based on the assumption that surface shadowing 

and transmissions are spatially uncorrelated [17]. According 

to an existing statistical finding, at least a single hue channel 

has a very low brightness in some pixels in the majority of 

non-sky locations. It is possible to calculate the 

communication map and atmospheric light using this prior 

[18]. CNNs are used in learning-based techniques for 

obtaining characteristics for removing hazing from massive 

amounts of training information. CNN was presented to 

estimate environmental light and construct its transfer map. A 

new network was presented to learn the propagation map and 

environmental light concurrently. Two CNN branches were 

constructed for estimating the ambient light and the 

transmitted map, respectively [19].  

The dehazing work was handled as a video-to-video 

conversion challenge. To strengthen the dehazing operation, 

they added an enhancer to the GAN. Both the discriminator 

and the generator are the two components of GANs which 
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compete against one another in a zero-sum game context. To 

improve efficiency and preserve the stability of the procedure 

for training, cGAN, DCGAN and WGAN were proposed in 

ongoing studies [20]. GAN has been used for a variety of 

vision tasks, including de-raining and super-resolution and it 

has a great deal of promise in producing realistic videos. 

Defogging techniques are the foundation of the majority of 

research on hazy videos [21]. Existing defogging techniques 

may be separated into two categories based on the various 

processing methods: physical model-based defogging 

techniques and improved video defogging techniques. Certain 

data will be lost when contrast is increased or features are 

emphasized, and photographs defogged with this technique 

will be altered [22].  

Existing techniques include the visibility restoration method 

provided the Markov random field-based strategy described 

and the dark channel defogging approach proposed. Compared 

to video augmentation, video-defogging techniques based on 

scattering from the atmosphere simulations yield superior 

defogging outcomes [23]. Defogging coefficient and 

transmittance two factors employed in techniques that use 

scattering from atmospheric simulations to defog a video are 

chosen based on knowledge, thus the final video shows some 

distortion. Conditional Random Fields (CRFs) and colour 

slides are examples of previous segmentation with semantics 

techniques [24]. Based on existing DL, the first linguistic 

segmentation technique is the Fully Convolutional Network 

(FCN). Certain data could be lost because of its pooling action. 

As a result, this approach's semantic segmentation precision is 

poor. The majority of existing DL-based techniques for 

segmenting meaning are supervised. Although they need a lot 

of segmentation information, supervised semantic 

segmentation techniques may produce strong segmentation 

outcomes [25].  

The newly developed model is subsequently taught to 

predict the actual information using transfer learning 

techniques. GAN was first used in the discipline of linguistic 

segmentation. Proposed several semantically segmented 

GANs based on transfer learning because of GAN's 

exceptional effectiveness in this area [26]. Color shift and 

localized light issues have been seen in videos captured under 

different ecological conditions. Three modules have been 

introduced Hybrid Dark Channel Prior (HDCP), Visibility 

Restoration (VR), and Color Analysis (CA). The ambient light 

was estimated using the HDCP module [27].  

The foggy-free vision is restored to excellent, clarity by the 

VR module. This research sought to eliminate fog and haze to 

improve visibility and security. FRIDA information was used 

for the experiment. Videos taken in foggy conditions show 

little contrast. A contrast restoration method based on 

Koschmider's rule has been proposed [28]. A grayscale video 

was created to assess the atmospheric veil color. The 

atmospheric veil V was an effortless operation that, when 

deducted from the colored videos, provided the quantity of 

white backdrop. A background object's brightness is 

calculated and regenerated using Koschmider's law. The 

proposed approach improves the contrast of foggy videos and 

works with fog during the day. The FRIDA dataset was 

utilized for experiments. The two-performance metrics, r− and 

e, were utilized to gauge the quality of video restoration. In 

computer vision, removing fog from hazy videos is a 

challenging issue.  

The transmission map was estimated using the graph-based 

α expression approach. Videos with discontinuities were 

handled using the bilateral filter. The proposed technique 

occasionally produced a video with gradient effects and an 

over-saturated defogging outcome. According to the 

experimental results, the proposed approach outperformed the 

body of available research. The atmosphere veil was found 

using an atmospheric scattering model, the skylight was 

estimated in a color video using white balance, and 

transparency was improved using a multi-scale temporal 

manipulation approach. Improving vision in both normal and 

foggy weather circumstances was the aim of this investigation. 

Videos of scenes with a lot of fog and haze did not yield 

satisfactory results using the proposed strategy. Hazy videos 

were chosen at random for the experiment. Edges were 

measured using the Edge-Preserving Index (EPI) in the 

proposed approach determines the gradient sum pixel of the 

original and reconstructed videos. 

 

 

3. MATERIALS AND METHODS 

 

A hybrid technique is designed to enhance visibility in video 

scenes affected by fog. This method addresses the specific 

challenges posed by varying fog intensities, which can impair 

vision and reduce the quality of video content, by combining 

CNN with GAN shown in Figure 1. In the first stage, a CNN-

based system accurately detects and classifies fog levels, 

assessing its intensity to enable adaptive analysis. A GAN-

based defogging model then removes the fog while preserving 

essential scene details, ensuring minimal distortion and 

improving the visibility of critical elements. This hybrid 

approach provides a more customized defogging process and 

outperforms conventional methods by delivering outstanding 

results in real-time. With applications in environmental 

surveillance, monitoring, and autonomous vehicles, this study 

demonstrates how proposed system can enhance video quality 

in adverse weather conditions, increasing the safety and 

reliability of systems dependent on visual data. 

 

3.1 Problem formulation 

 

The problem of fog detection and removal in video 

sequences can be formulated as an optimization problem 

aimed at enhancing visual clarity by reducing fog-induced 

noise while preserving essential scene details. Given a video 

sequence 𝑉 =  {𝐹1, 𝐹2, … , 𝐹𝑥}  consisting of x frames 𝐹𝑥 

impacted by varying levels of fog, the task involves two main 

objectives: detecting the fog level 𝐿(𝐹𝑥) for each frame and 

restoring a clear version 𝐹̂𝑥 with minimized distortion. 

Fog Level Detection: Let 𝐶𝑁𝑁𝜃  parameterized by 𝜃. The 

fog level 𝐿(𝐹𝑥) is predicted as:  

 

𝐿(𝐹𝑥) = 𝐶𝑁𝑁𝜃(𝐹𝑥) (1) 
 

where,  𝐿(𝐹𝑥) ∈  {𝐿𝑜𝑤, 𝑀𝑒𝑑𝑖𝑢𝑚, 𝐻𝑖𝑔ℎ}  is the categorical 

label indicating fog density. The CNN model is optimized to 

minimize the classification error for fog levels. 

Defogging: Let 𝐺𝐴𝑁∅, where includes both the generator 

and discriminator networks. The generator aims to produce a 

defogged video 𝐹̂𝑥 = 𝐺∅(𝐹𝑥, 𝐿(𝐹𝑥)) that closely approximates 

a fog-free video. The GAN objective function combines a 

reconstruction loss 𝐿𝑟𝑒𝑐  to ensure similarity to clear videos 

and an adversarial loss 𝐿𝑎𝑑𝑣 to encourage realistic outputs:

  

2041



min
∅

max
𝐷

𝐿𝐺𝐴𝑁(𝐷, 𝐺∅)

= 𝐸[𝑙𝑜𝑔𝐷(𝐹𝑥)] + 𝐸[log (1 − 𝐷(𝐺∅(𝐹𝑥, 𝐿(𝐹𝑥))]
(2) 

where, D is the discriminator, and 𝐺∅ seeks to minimize this

loss to produce clear, defogged frames. The overall goal is to 

enhance video clarity in a computationally efficient manner, 

enabling real-time processing by balancing accuracy and 

processing speed. 

3.2 Dataset description 

The study's dataset consists of 1,000 video sequences with 

a total of around 100,000 frames that have been specially 

selected for fog identification and removal. With a pixel 

resolution of 1920×1080, each video offers a high-definition 

video that is necessary for thorough fog investigation and 

defogging procedures. To guarantee the model's resilience in 

a range of environments, the dataset comprises a variety of 

environmental contexts including residential properties 

suburban, rural, and highway sectors. To accurately replicate 

real-world situations, it also takes into account changes in 

climate (obvious, moderate fog, and thick fog) and 

illumination (daytime, evening, and low light). The CNN 

algorithm can precisely identify and categorize fog density 

since every video is tagged with fog levels of intensity 

designated as low, medium, or high. Video files are saved in 

MP4 format, however, to facilitate processing convenience, 

each of the frames is saved in JPG format. This dataset 

provides a thorough basis for assessing the proposed CNN-

GAN strategy under dynamic and demanding environmental 

situations shown in Table 1. It is specifically designed to 

enable both fog-level identification and defogging activities. 

Sample data supports precise fog identification and defogging 

effectiveness under a variety of scenarios by providing crucial 

information for CNN-GAN model evaluation and training 

shown in Table 2 and Figure 2. 

Figure 1. Proposed architecture 
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Table 1. Dataset description 

Attribute Description 

Dataset Name Foggy Video Dataset 

Source Collected from real-world surveillance, autonomous driving, and synthetic fog generation 

Number of Videos 1,000 video sequences 

Total Frames 100,000 frames 

Resolution 1920×1080 pixels (Full HD) 

Fog Levels Low, Medium, High 

Annotations Fog intensity labels (Low, Medium, High) for each frame 

Frame Rate 30 frames per sec 

Data Format Video files in MP4 format, individual frames in JPG format 

Environment Types Urban, rural, highway, and residential areas 

Lighting Conditions Daytime, nighttime, and low-light settings 

Weather Variations Clear, moderate fog, heavy fog 

Purpose Fog detection and defogging in varying fog intensities using CNN and GAN 

Table 2. Sample data 

Video ID Frame ID Environment Lighting Condition Fog Level Resolution File Format 

VID1 Frame_01 Urban Daytime Low 1920 × 1080 JPG 

VID1 Frame_02 Urban Daytime Low 1920 × 1080 JPG 

VID2 Frame_07 Rural Night time High 1920 × 1080 JPG 

VID3 Frame_016 Highway Low-light Medium 1920 × 1080 JPG 

VID4 Frame_25 Urban Daytime High 1920 × 1080 JPG 

VID5 Frame_50 Residential Low-light Medium 1920 × 1080 JPG 

Figure 2. Sample data 

3.3 Pre-processing 

Pre-processing is essential for preparing foggy video 

sequences for effective fog level detection and defogging. 

Frame Extraction: Each video sequence 𝑉 = {𝐹1, 𝐹2, . . . , 𝐹𝑥𝑦}

is first decomposed into individual frames for isolated 

processing. Let 𝑉𝑥  be the xth video in the dataset. Frame

extraction can be represented as:  

𝑉𝑥  = {𝐹𝑥1, 𝐹𝑥2, . . . , 𝐹𝑥𝑦} (3) 

where, 𝐹𝑥𝑦 denotes the yth frame of video 𝑉𝑥.

Gray-Scale Conversion: To simplify processing, each frame 

𝐹𝑥𝑦  is converted from RGB color space to gray scale. This

reduces computational complexity and focuses on the 

luminance needed for fog detection. The gray-scale value G(i, 

j) at pixel location (i, j) is calculated as:

𝐺(𝑖, 𝑗) = 0.2989 𝑅(𝑖, 𝑗)  +  0.5870 − 𝐺(𝑖, 𝑗)  
+ 0.1140 − 𝐵(𝑖, 𝑗)

(4) 

where, 𝑅(𝑖, 𝑗), 𝐺(𝑖, 𝑗), and 𝐵(𝑖, 𝑗), are the red, green, and blue 

channel intensities at pixel (x,y). 

Histogram Equalization: Foggy videos tend to have low 

contrast, so histogram equalization is applied to enhance 

contrast. Given the Cumulative Distribution Function (CDF) 

of the videos gray-scale histogram H, the equalized intensity 

𝑋𝑒𝑞  at each pixel (i, j) is:

𝑋𝑒𝑞(𝑖, 𝑗) =
𝐻(𝐺(𝑖, 𝑗)) − min (𝐻)

max(𝐻) − min (𝐻)
× 255 (5) 

where, 𝐻(𝐺(𝑖, 𝑗)) maps the original gray-level pixel values to 

the enhanced range. 

Fog Density Normalization: To handle varied lighting 

conditions, intensity normalization can be applied. This 

adjusts pixel values to a standardized range, which helps in 

reducing the influence of lighting variations. Let 𝑋(𝑖, 𝑗) be the 

pixel intensity at (𝑖, 𝑗), normalized to the range [0, 1] as 

follows: 

𝑋𝑛𝑜𝑟𝑚(𝑖, 𝑗) =
𝑋(𝑖, 𝑗) − min (𝑋)

max(𝑋) − min (𝑋)
(6) 

Noise Reduction (Smoothing): To further reduce unwanted 

noise, a Gaussian filter 𝐺𝜎  with standard deviation o is

applied. For each pixel (i, j) in the frame, the smoothed 

intensity S(i, j) is:  

𝑆(𝑖, 𝑗) = ∑ ∑ 𝐺𝜎(𝑢, 𝑣), 𝑋(𝑖 + 𝑢, 𝑗 + 𝑣)

𝑘

𝑣=−𝑘

𝑘

𝑢=−𝑘

(7) 

where, 𝐺𝜎(𝑢, 𝑣) =
1

2𝜋𝜎2 𝑒
−

𝑢2+𝑣2

2𝜎2  and k is the kernel radius. 

Data Augmentation: To create a more robust model, frames 

can be augmented by rotating, flipping, or adjusting 

brightness, which helps the model generalize better. Let A 

represent an augmentation transformation; then, each frame 

can be augmented as: 

𝐹𝑥𝑦
𝑎𝑢𝑔

= 𝐴(𝐹𝑥𝑦) (8) 

where, A includes operations like rotation, flipping, and 

brightness adjustments. 
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3.4 Detect fog level of a video sequence using CNN 

The network's encoder portion is in charge of analysing the 

incoming video and identifying pertinent characteristics. It is 

made up of many dropout layers and convolutional layers 

(CONV1, CONV2, CONV3, etc.).  

Convolutional Layers: Extract characteristics at various 

levels of abstraction by applying filters to the input video. 

Patterns such as edges, textures in particular, and forms are 

captured by the filters. The filters get more intricate and 

higher-level characteristics go further into the architecture of 

the network.  

Dropout Layers: Throughout training, these layers 

randomly deactivate a subset of neurons. It enhances the 

model's capacity for generalizations and helps avoid over 

fitting. The encoder increases the number of channel features 

while gradually decreasing the input videos physical 

dimensions. Enables deeper layers of the system to catch more 

intricate characteristics. The original video is recreated in the 

decoder part using the encoded characteristics obtained from 

the encoder.  

Deconvolutional Layers: Gradually increase the spatial 

dimensions by up sampling the encoder's map of 

characteristics.  

Estimating Modules: These modules forecast the depth data 

for every pixel using the upsampled mappings of features. 

Activation processes and convolutional layers of information 

are usually included.  

Concat Layers: These layers join the encoder's matching 

characteristic maps with the upsampled characteristic maps. 

As a result, the decoder can accurately estimate depth by 

utilizing both low-level and high-level characteristics.  

Dropout Layers: Employed to enhance the model's capacity 

for generalizations and avoid excessive fitting.  

Figure 3 flowchart explains as follows: 

Figure 3. Detect fog level of a video sequence using CNN 

Input Video: It serves as the network's first input. 

Encoder: The encoder gradually extracts information from 

the video by processing it through a number of convolution 

and dropout stages.  

Decoder: This device upsamples the encoded characteristics 

using deconvolutional stages. The decoder uses concatenated 

to add the relevant encoder characteristics at every expanding 

level.  

Depth Estimate: Using the upsampled characteristics as a 

basis, the estimate modules of the decoder forecast the depth 

information needed for every pixel. 

Output: The network's final output consists of the predicted 

depths map and the reassembled video. 

This process involves designing a CNN model that accepts 

individual frames as input and outputs the fog level (e.g., Low, 

Medium, High).  

Input Frame Representation: Let 𝐹𝑥𝑦  represent the yth

frame of the xth video sequence, where 𝐹𝑥𝑦 ∈  𝑅𝐻×𝑊×𝐶 , with

height H, width W, and color channels C. Each frame is 

preprocessed (e.g., converted to gray scale, normalized, etc.) 

before being input into the CNN model. 

CNN Architecture for Feature Extraction: A CNN 

model consists of multiple layers, including convolutional, 

pooling, and fully connected layers, which extract features 

relevant to fog detection. Let: 𝑓𝑘
𝑙  represent the k-th feature

map in the l-th convolutional layer, 𝑤𝑘
𝑙  be the filter (weight 

matrix) for 𝑓𝑘
𝑙 , and 𝑏𝑘

𝑙  the bias term. The output of each

convolutional layer 𝑓𝑘
𝑙 for a given pixel (i, j) in the frame is:

𝑓𝑘
𝑙(𝑖, 𝑗) = 𝜎 ( ∑ 𝑤𝑘,𝑚

𝑙 ∗

𝑀

𝑚=1

𝑓𝑘
𝑙(𝑖, 𝑗) + 𝑏𝑘

𝑙 ) (9) 

where, M is the number of input feature maps to layer l, and 𝜎 

is the activation function, typically ReLU (Rectified Linear 

Unit) for non-linearity: 

𝜎(𝑧)  =  𝑚𝑎𝑥(0, 𝑧) (10) 

Pooling Layer: After convolution, pooling layers reduce 

the spatial dimensions to extract dominant features and reduce 

computational complexity. If P is the pooling operation (e.g., 

max pooling), the pooled feature map 𝑝𝑘
𝑙 (𝑖, 𝑗) is:  

𝑝𝑘
𝑙 (𝑖, 𝑗) = 𝑃(𝑓𝑘

𝑙(𝑖, 𝑗)) (11) 

Fog Level Classification: After passing through multiple 

convolutional and pooling layers, the extracted features are 

flattened and fed into fully connected layers. Let 𝑧𝑦 denote the

output of the final fully connected layer before the softmax 

activation. For a fog level classification into K categories (e.g., 

Low, Medium, High fog levels), the probability 𝑃(𝑗 = 𝑘|𝐹𝑥𝑦)

that frame 𝐹𝑥𝑦, belongs to class k is computed as:

𝑃(𝑗 = 𝑘|𝐹𝑥𝑦) =
exp (𝑧𝑘)

∑ exp (𝑧𝑘)𝐾
𝑘′=1

(12) 

Loss Function: The CNN is trained to minimize the 

categorical cross-entropy loss function, which measures the 

discrepancy between the predicted fog level and the actual fog 

level. For a training sample (𝐹𝑥𝑦, 𝑗) with true fog level y and

predicted probabilities 𝑃(𝑗 = 𝑘| 𝐹𝑥𝑦), the loss L is:

𝐿 = − ∑ 𝑗𝑘𝑙𝑜𝑔 (𝑃(𝑗 − 𝑘|𝐹𝑥𝑦))

𝑘

𝑘=1

 (13) 

where, 𝑗𝑘 is a one-hot encoded vector indicating the true class.

Prediction: After training, for each new frame 𝐹𝑥𝑦 , the

model predicts the fog level 𝑗̂ by selecting the class with the 

highest probability:  

𝑗̂ = 𝑎𝑟𝑔 max
𝑘

𝑃(𝑗 = 𝑘|𝐹𝑥𝑦) (14) 
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This CNN-based process allows for effective fog level 

detection across frames can then be used as input to defogging 

models or further analysis. 

3.5 Defog the video sequence using GAN 

Figure 4 displays the general overview of the proposed 

methods for improving readability in hazy and foggy videos. 

The proposed structure has solved collectively make it unique. 

For the first time, fog is eliminated from videos using GAN. 

The median filter is used to eliminate noise from videos during 

the pre-processing stage in order to get high-quality output. A 

nonlinear filter, the median filter eliminates noise from 

photographs deteriorated by bad weather, including haze and 

fog. In processing videos, a variety of filters are employed. 

The median filter eliminates noise while maintaining video 

color details, borders, and smoothness. The median filter's 

primary purpose is to reduce computation time. GAN is 

utilized following pre-processing. The generator networks and 

discriminator networks are the two systems that make up the 

proposed GAN. The generating network's objective is to 

produce haze- and fog-free videos by using input haze and fog 

videos. The generator network in the proposed technique 

estimates natural light and transmissions immediately. The 

produced video and the beginning fog and haze-free video are 

distinguished by the discriminator networks. The propagation 

map and sunlight from the atmosphere are immediately 

estimated by the generator system. Three phases make up the 

generator networking: scene radiation, distribution map, and 

environmental light.  

Figure 4. GAN for dehazing or defogging 

Transmission Map: Figure 5 depicts the layout of the 

generating system. These layers were utilized by the generator 

network to determine their transmission mapping. Pooling and 

upsampling layers are utilized after every convolutional layer 

has been applied. The last layer is a fully linked layer that 

builds a representation by combining characteristics and the 

output of earlier levels.  

Environmental Light: Estimating the atmosphere's light A 

is the goal of the atmospheric light element. as seen in Figure 

5. A 7 × 7 convolution filtering with a 3 × 3 kernel size makes

up the over-sampling layer.

Scene Radiance: It is to recover the scene brightness 

following the estimation of ambient light and transmission 

map. Combining the ambient light is the goal of scene 

brightness. 

Figure 6 depicts the structure of the discriminator system. 

Distinguishing between the generated video and the original 

fog-free video is the aim of the discriminator networks. 

Convolutional neural network sequential normalization is the 

discriminating fundamental function, and its final layer 

consists of the Leaky Relu and sigmoid functions. The initial 

fog-free video is ultimately distinguished and reconstructed by 

the discrimination. 

To defog a video sequence, GAN can be used to enhance 

each frame by reducing the impact of fog, improving visual 

clarity.  

GAN Framework: A GAN framework for video defogging 

aims to train a generator G that outputs a defogged frame 𝐹̂𝑥𝑦 

from a foggy frame 𝐹𝑥𝑦 , while a discriminator D leams to

distinguish between real (ground-truth) fog-free frames and 

generated defogged frames. 

The GAN objective can be represented as: 

min
𝐺

max
𝐷

𝐸𝐹𝑟𝑒𝑎𝑙~𝑃𝑑𝑎𝑡𝑎(𝐹𝑟𝑒𝑎𝑙)[log 𝐷 (𝐹𝑟𝑒𝑎𝑙)]

+ 𝐸𝐹𝑓𝑜𝑔~𝑃𝑑𝑎𝑡𝑎(𝐹𝑓𝑜𝑔)[log 𝐷(𝐺 (𝐹𝑓𝑜𝑔))]
(15) 

where, 𝐹𝑟𝑒𝑎𝑙  is the ground-truth fog-free frame, 𝐹𝑓𝑜𝑔  is the

foggy frame, 𝐺(𝐹𝑓𝑜𝑔) = 𝐹̂𝑥𝑦 is the generated defogged frame.

Generator Network (G): The generator G takes a foggy 

frame 𝐹𝑥𝑦 as input and attempts to generate a defogged version

𝐹̂𝑥𝑦 that resembles a clear frame. For each pixel (i, j) in the 

frame, the generator's output can be expressed as: 

𝐹̂𝑥𝑦(𝑖, 𝑗) = 𝐺(𝐹𝑥𝑦(𝑖, 𝑗);  𝜃𝐺), (16) 

where, 𝜃𝐺  represents the parameters of the generator. G is

typically built using convolutional layers with a U-Net or 

ResNet architecture, which is adept at retaining and restoring 

fine video details. 

Discriminator Network (D): The discriminator D attempts 

to classify whether a given frame is a real fog-free frame 𝐹𝑟𝑒𝑎𝑙

or a generated defogged frame 𝐹̂𝑥𝑦. The discriminator outputs 

a probability D(F) for each input frame F, where: 

𝐷(𝐹) = 𝜎(𝑊. 𝐹 + 𝑏), (17) 

with W as the weight matrix, b as the bias, and a representing 

the sigmoid function for binary classification (real vs. fake). 

Loss Functions: The training process includes a 

combination of adversarial and perceptual losses to ensure that 

G generates visually clear, realistic defogged frames. 

Adversarial Loss: The adversarial loss for the generator G 

is based on the discriminator's probability for generated 

frames. The generator aims to "fool" the discriminator by 

minimizing: 

𝐿𝑎𝑑𝑣(𝐺) = −𝐸𝐹𝑓𝑜𝑔~𝑃𝑑𝑎𝑡𝑎(𝐹𝑓𝑜𝑔)[log 𝐷(𝐺 (𝐹𝑓𝑜𝑔))], (18) 

2045



Encouraging G to produce defogged frames that the 

discriminator cannot distinguish from real fog-free frames. 

Content Loss (e.g., L1 or L2): To ensure that the defogged 

frame is structurally similar to the ground truth, a content loss 

𝐿𝑐𝑜𝑛𝑡𝑒𝑛𝑡  is used. The L1 content loss between generated 𝐹̂𝑥𝑦

and real frame 𝐹𝑟𝑒𝑎𝑙  is:

𝐿𝑐𝑜𝑛𝑡𝑒𝑛𝑡(𝐺) = 𝐸𝐹𝑓𝑜𝑔,𝐹𝑟𝑒𝑎𝑙
[‖𝐹𝑟𝑒𝑎𝑙 − 𝐺(𝐹𝑓𝑜𝑔)‖

1
] (19) 

Perceptual Loss (optional): Perceptual loss can help retain 

high-level features by using a pre- trained model Φ (e.g., 

VGG) to measure feature-level differences: 

𝐿𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑢𝑎𝑙(𝐺) = 𝐸𝐹𝑓𝑜𝑔,𝐹𝑟𝑒𝑎𝑙
[‖Φ(𝐹𝑟𝑒𝑎𝑙) − Φ𝐺(𝐹𝑓𝑜𝑔)‖

2
] (20) 

The total loss for G is a combination of these components: 

𝐿𝐺 =⋋𝑎𝑑𝑣 𝐿𝑎𝑑𝑣  (𝐺)  + ⋋𝑐𝑜𝑛𝑡𝑒𝑛𝑡 𝐿𝑐𝑜𝑛𝑡𝑒𝑛𝑡  (𝐺)  
+⋋𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑢𝑎𝑙 𝐿𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑢𝑎𝑙 (𝐺),

(21) 

where, ⋋𝑎𝑑𝑣 , ⋋𝑐𝑜𝑛𝑡𝑒𝑛𝑡 , and ⋋𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑢𝑎𝑙  are weights that

control the contribution of each term. 

Defogging Process: During inference, the generator G 

takes a foggy frame 𝐹𝑥𝑦 from the video sequence and produces

a defogged frame 𝐹̂𝑥𝑦: 

𝐹̂𝑥𝑦 = 𝐺(𝐹𝑥𝑦; 𝜃𝐺) (22) 

This process is applied frame-by-frame across the video 

sequence, resulting in a defogged video. This GAN-based 

framework allows for high-quality defogging by leveraging 

adversarial training and loss functions that ensure both visual 

clarity and structural accuracy in defogged video sequences. 

Figure 5. GAN generator architecture 

Figure 6. Discriminator network architecture 
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3.6 Algorithm: Detecting fog level and defogging video 

sequence 

Step 1: Input Preparation 

Input: Video sequence 𝑉 = {𝐹1, 𝐹2, … , 𝐹𝑁} where each 𝐹𝑥 is

a frame with potential fog. 

Output: Defogged video sequence 𝑉̂ = {𝐹̂1, 𝐹̂2, … , 𝐹̂𝑁} with

fog level classification. 

Step 2: Fog Level Detection with CNN 

For each frame 𝐹𝑥:

Feature Extraction (CNN): Pass the frame 𝐹𝑥 through a pre-

trained CNN model to extract features. For each convolutional 

layer in the CNN using Eq. (9). 

Pooling: Use pooling layers to reduce the spatial dimensions 

of the feature maps using Eq. (11). 

Fog Level Classification: After passing through the CNN 

layers, obtain fog level classification using a softmax layer 

using Eq. (12). 

Prediction: Determine the predicted fog level 𝑗𝑘̂ for frame 

F) using Eq. (14).

Step 3: Defogging the Video Frame with GAN

For each frame 𝐹𝑥 classified as foggy:

Generator Network (GAN): Pass the foggy frame 𝐹𝑥 to the

generator G to obtain the defogged frame 𝐹̂𝑥: 

𝐹̂𝑥 = 𝐺(𝐹𝑥; 𝜃𝐺) (23) 

where, 𝜃𝐺 are the generator parameters optimized to produce

a clear frame from the foggy input. 

Discriminator Network (GAN): Update the discriminator D 

to classify 𝐹̂𝑥 as either real (fog-free) or fake (foggy). For real 

fog-free frames 𝐹𝑟𝑒𝑎𝑙  and generated frames 𝐹̂𝑥 using Eqs. (17)

and (18). 

Content loss 𝐿content  maintains structural similarity to the

ground truth fog-free frame using Eqs. (19) and (20). 

Step 4: Iterative Training Process for GAN 

Train G and D in an alternating fashion until convergence. 

Step 5: Output 

For each frame 𝐹𝑥 in the sequence:

Classify fog level 𝑗𝑥̂ using CNN. 

Generate defogged frame 𝐹̂𝑥 using GAN if 𝑗𝑥̂ indicates fog

presence. 

Step 6: The output is the defogged video sequence 𝑉̂ =
 {𝐹̂1, 𝐹̂2, … , 𝐹̂𝑁} with each frame labeled by fog level.

This algorithm effectively combines CNN-based fog level 

detection with GAN-based defogging producing a clear video 

sequence and enabling fog level identification. 

4. RESULTS AND DISCUSSIONS

Figures 7 and 8 illustrate the composition of the new dataset. 

CNN-GAN generated videos were used in this work for model 

training, but not for model analysis. By generating additional 

synthetic videos, the proposed method effectively balanced the 

available information. 

Figure 9 displays the qualitative experimental results for 

Dataset. The proposed method's effectiveness may be 

attributed to accurate atmospheric light and transmission map 

calculations and pre-processing that produces good defogging 

results and vibrant visuals. Proposed system shows that the 

generator system can properly predict the propagation map 

and environmental light. Good defogging and dehazing 

outcomes are obtained because of the precise value of these 

two components. Although there are many different 

approaches, strategies, and algorithms for removing fog from 

videos employed using CNN-GAN to improve visibility and 

eliminate fog from videos that were deteriorated by severe 

weather.  

Proposed CNN-GAN outperforms all existing methods in 

terms of both SSIM and PSNR, indicating superior video 

quality and structural integrity after defogging. The runtime of 

the proposed method is competitive, being faster than the Dark 

Channel Prior and Retinex-based methods, while still 

providing high-quality outputs. The FADE score of the 

proposed approach is the lowest, indicating that it effectively 

removes fog while preserving important details, surpassing all 

existing techniques shown in Table 3. This comparison 

highlights the advantages of the proposed CNN-GAN system, 

showcasing its efficiency and effectiveness in fog detection 

and removal compared to existing methods. 

Proposed CNN-GAN consistently achieves the highest 

SSIM and PSNR values across all fog levels, indicating 

superior video quality and structural integrity. The runtime of 

the proposed method is competitive, with the fastest 

processing times, especially evident in light and moderate fog 

conditions shown in Table 4. The FADE scores for the 

proposed approach are the lowest across all fog levels, 

indicating more effective fog removal compared to the 

existing methods. Existing methods show diminishing 

performance as fog density increases, particularly in SSIM and 

PSNR metrics, which reflects their limitations in handling 

severe fog conditions. This comparative analysis demonstrates 

the robustness and efficiency of the proposed CNN-GAN 

system in dealing with varying levels of fog compared to 

existing methods. 

Figure 7. Composition of the new dataset 
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Figure 8. Different fog density used for foggy videos 

Table 3. Performance measures 

Method 
Runtime 

(s/frame) 
SSIM 

PSNR 

(dB) 

FADE 

Score 

Proposed CNN-

GAN 
0.26 0.93 29.6 0.16 

Dark Channel 

Prior 
0.46 0.87 25.9 0.36 

Retinex-Based 

Defogging 
0.51 0.85 24.4 0.41 

FFA-Net 0.31 0.81 23.0 0.51 

MSBDN 0.61 0.89 27.1 0.29 

The proposed hybrid CNN-GAN system significantly 

outperforms existing and recent defogging methods across all 

key performance measures shown in Figure 10. While existing 

techniques such as histogram equalization and DCP struggle 

with adaptability to dynamic fog levels, and even 

Transformer-based systems incur high computational 

overhead, the proposed approach achieves a balance of 

accuracy (92.8%) and efficiency. By using CNNs for fog level 

detection and GANs for perceptually-aware defogging, the 

system ensures high recall (89.7%), indicating reliable 

detection of fog-affected regions, and high precision (91.3%), 

demonstrating minimal false corrections. The resulting F1-

score of 90.5% confirms the model’s overall robustness, 

making it highly suitable for real-time, safety-critical 

applications such as autonomous driving and surveillance. The 

low MAE (0.0297) and RMSE (0.0360) further confirm the 

system's ability to preserve fine details and minimize 

distortion during defogging shown in Figure 11. This validates 

the effectiveness of the combined CNN-GAN framework for 

real-time, detail-preserving fog removal. 

The proposed CNN-GAN method achieves the highest 

training accuracy (99.4%) and validation accuracy (96.0%), 

suggesting that it not only learns the training data effectively 

but also generalizes well to new, unseen data. Figure 12 

comparison underscores the effectiveness of the proposed 

CNN-GAN approach in achieving high training and validation 

accuracy, indicating its robust performance in both learning 

and generalizing fog detection and defogging tasks compared 

to existing methods. 

The proposed CNN-GAN achieves the lowest training loss 

(0.05) and validation loss (0.12), indicating excellent 

performance in both fitting the training data and generalizing 

to new data. Figure 13 comparison highlights the effectiveness 

of the proposed CNN-GAN approach in achieving lower 

training and validation losses, emphasizing its superior 

capability in learning and generalizing fog detection and 

defogging tasks compared to existing methods. 
Figure 9. Experimental results of dataset used by proposed 

model 
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Figure 10. Performance measures (Accuracy, Precision, Recall and F1-Score) 

Figure 11. Performance of error measures 

Figure 12. Comparison of training and validation accuracy 
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Figure 13. Comparison of training and validation loss 

Table 4. Performance measures of proposed and existing systems 

Fog Level Method Runtime (s/frame) SSIM PSNR (dB) FADE Score NIQE 

Very Thick Fog 

Proposed CNN-GAN 0.31 0.86 26.0 0.41 3.12 

Dark Channel Prior 0.61 0.71 22.6 0.56 4.63 

Retinex-Based Defogging 0.76 0.69 21.0 0.61 5.08 

FFA-Net 0.51 0.66 20.0 0.71 4.89 

MSBDN 0.81 0.73 21.6 0.66 4.57 

Thick Fog 

Proposed CNN-GAN 0.29 0.89 27.0 0.36 2.87 

Dark Channel Prior 0.56 0.77 23.0 0.51 4.29 

Retinex-Based Defogging 0.71 0.74 22.0 0.56 4.93 

FFA-Net 0.46 0.71 21.6 0.66 4.70 

MSBDN 0.66 0.76 23.0 0.61 4.38 

Dense Fog 

Proposed CNN-GAN 0.26 0.91 28.0 0.31 2.64 

Dark Channel Prior 0.51 0.79 24.0 0.46 4.05 

Retinex-Based Defogging 0.66 0.76 22.6 0.51 4.71 

FFA-Net 0.41 0.69 20.6 0.61 4.59 

MSBDN 0.56 0.77 23.0 0.56 4.11 

Moderate Fog 

Proposed CNN-GAN 0.21 0.93 29.0 0.26 2.49 

Dark Channel Prior 0.46 0.81 25.0 0.41 3.86 

Retinex-Based Defogging 0.61 0.78 23.6 0.46 4.42 

FFA-Net 0.36 0.73 22.0 0.51 4.27 

MSBDN 0.51 0.81 24.0 0.46 3.94 

Light Fog 

Proposed CNN-GAN 0.19 0.96 30.0 0.21 2.33 

Dark Channel Prior 0.41 0.86 26.0 0.36 3.57 

Retinex-Based Defogging 0.56 0.83 25.6 0.41 4.13 

FFA-Net 0.31 0.79 23.0 0.51 4.01 

MSBDN 0.46 0.84 25.0 0.43 3.72 

5. CONCLUSIONS AND FUTURE ENHANCEMENTS

The proposed hybrid CNN-GAN framework for fog level 

detection and video defogging demonstrates significant 

improvements over traditional defogging approaches. With a 

training accuracy of 98.5% and validation accuracy of 95.0%, 

the model showcases strong generalization capabilities across 

varying fog conditions. Low error metrics, including MAE of 

2.5, MSE of 8.0, and RMSE of 2.83, along with a validation 

loss of just 0.12, reflect the system’s robustness and precise 

visual restoration capabilities. Compared to existing 

techniques like Dark Channel Prior and Retinex-Based 

Defogging, which suffer from lower accuracy and higher 

perceptual distortion, the proposed method delivers sharper, 

more detailed outputs with reduced artifacts. The system's 

reliance on deep learning architectures such as GANs 

introduces substantial computational resource demands, 

especially during training. Real-time deployment in resource-

constrained environments (e.g., edge devices or embedded 

platforms) may require model pruning or optimization 

techniques. The existing model performance is validated under 

fog-specific conditions and may need retraining or fine-tuning 

to generalize effectively across other adverse weather 

phenomena like rain or snow.  

Future work will focus on improving efficiency and 

adaptability of the CNN-GAN hybrid system. Model 

lightweighting techniques like pruning, quantization, and 

knowledge distillation will be applied to enable deployment 

on edge devices. Cross-modal fusion with thermal or LiDAR 

data will enhance fog detection in challenging conditions. 
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Integrating transformer-based architectures, such as Dehaze 

Former, can improve global context understanding. 

Additionally, domain adaptation strategies will ensure 

consistent performance across varied environments. Real-time 

feedback mechanisms using reinforcement learning will be 

explored to dynamically adjust defogging intensity, making 

the system more suitable for real-world applications like 

autonomous driving and smart surveillance. 
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