
A Hybrid Clustering Approach: Segmentation and Classification of Brain Tumour Utilizing 

SVM and CNN Methods 

Mahendrakan Kantharimuthu1* , Malathi Marichamy2

1 Department of ECE, Hindusthan Institute of Technology, Coimbatore 641032, India 
2 Department of EE-VLSI, Rajalakshmi Institute of Technology, Chennai 600124, India 

Corresponding Author Email: dr.mahendrakan.k@hit.edu.in

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license 

(http://creativecommons.org/licenses/by/4.0/). 

https://doi.org/10.18280/ts.420437 ABSTRACT 

Received: 14 December 2024 

Revised: 12 April 2025 

Accepted: 18 June 2025 

Available online: 14 August 2025 

Gliomas are the most prevalent and destructive kind of tumour which cause extremely short 

life expectancy in the highest grade. The gliomas type of tumour is assessed using medical 

imaging modalities like Magnetic Resonance Imaging (MRI) technique. In clinical aspects, 

segmentation methods need a longer time. To increase the patients’ lifetime, it is necessary 

to perform segmentation, recognition, and removal of the affected tumour portion from the 

MRI images. The proposed system utilises a hybrid clustering technique called the KIFCM 

Technique. The complex structure, blurred boundaries, and external noise in brain tumours 

make MRI image segmentation essential for improving accuracy and segmentation stability. 

Therefore, the hybrid clustering method is proposed. The acquired MRI brain images 

undergo pre-processing using Otsu’s thresholding, followed by hybrid clustering. Further, 

the segmented portions undergo feature extraction using PCA and DWT to minimise 

complexity and enhance the performance. The efficiency of the suggested method is 

compared to that of remaining frameworks for segmentation and classification. The 

proposed approach provides effective and quick segmentation, yielding 90% accuracy in 

distinguishing normal and abnormal brain MRI tissue. 
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1. INTRODUCTION

The important and complicated structure of the human 

anatomy is the brain. Billions of cells work cohesively to 

perform a task, making its function complex. When there is a 

blunt dissection of the brain cells, leading to an anomalous 

collection of cells inside or around the brain, it leads to brain 

tumour. This group of anomalous cells bothers the regular 

activities of the brain and abolishes the healthy tissues. The 

two categories of brain tumours are categorized into two types 

benign or low grade (Grade I & II) and malignant or high grade 

(Grade III & IV). Benign tumours are non-cancerous, which 

grows gradually and does not spread in the tissues because it 

is less destructive [1]. 

To detect the abnormalities accurately, MRI is widely 

recognized as a superior imaging tool that captures precise and 

detailed organs from inside of the body [2, 3]. The different 

types of MRI, like the high field MRI, which helps us capture 

the good images, and the low field MRI to capture low field 

category MRI images. MRI imaging technique helps 

physicians to visualize the hairline cracks and tear in muscles, 

certain soft tissue, and ligaments that occur during injuries. 

MRI is a progressive medical imaging technique that provides 

detailed information about human soft-tissue anatomy. In the 

process of automatically segmenting brain tumours, abnormal 

tissues can be distinguished from normal structures such as 

white matter (WM), gray matter (GM) and cerebrospinal fluid 

(CSF) [4, 5]. When comparing MRI with other methods, it 

uses appropriate Radiofrequency and gradient pulses with 

suitable relaxation timing to produce different image 

components. The techniques are quite relevant to produce 

constant high-quality images. 

The life expectancy of the tumour patients is only two years 

in the case of LGG and HGG glioma tumours. Several imaging 

techniques were utilized, such as MRI, CT, Positron emission 

tomography (PET), and single-photon emission tomography 

(SPECT). To diagnose and treat glioma, the MRI is the more 

proper imaging practice. Because the MRI imaging technique 

provides high resolution while capturing soft tissues, multi-

parameter computation, arbitrary direction adjustments, 

noninvasive imaging, etc. Various Imaging types provide 

exhaustive information on images and designate the 

characteristics of tumour [6]. It is a challenging problem to 

partition the tumour portion accurately due to the shape, 

location, appearance, and dimensions of gliomas that can 

change from patient to patient. The second region is gliomas 

surrounded by invading tissues, making the boundary blurred. 

The segmentation is becoming complex due to imaging 

distortion due to imaging devices and the capturing methods. 

2. RELATED WORK

The extensive literature relates various segmentation 

algorithms and classifier for extracting the tumour area from 

MRI brain images. The implemented method uses a 
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convolutional neural network [7]. The article uses 

preprocessing for intensity and patch normalization. The 

training process comprises 3*3 small kernels to acquire a 

feature map. Hence the feature map is coupled with a 

preceding layer through the kernel weights. It is tuned using 

the backpropagation algorithm to enhance specific input 

features during the training phase. The research work uses a 

convolutional neural network because it is easy to train CNN 

layers and less prone to overfitting. The described work uses a 

deep neural network classifier to classify a 66 brain MRI 

dataset into four tumour types, employing Wavelet Transform 

and PCA for feature extraction [8].  

The author employs a modified deep convolutional neural 

network to categorize the abnormal tissues of the brain region. 

The complexity of Deep Convolutional Neural Networks 

(DCNNs) increases due to the greater number of layers 

between input and output. The computational complexity of 

DCNN was reduced by decreasing the number of parameters 

[9]. A simple assignment process helps to find the weight of 

this fully connected layer. 

The proposed work uses fuzzy C-means and a watershed 

algorithm to extract tumour from MRI brain images. The 

algorithm employs an initial centroid selection derived from 

histogram calculations. The watershed algorithm uses atlas-

based marker detection to eliminate over-segmentation [10]. 

Before performing the segmentation process, there are three 

fundamental processes: preprocessing to remove noise, skull 

removal, and contrast enhancement. Finally, the performance 

of these segmentation algorithms was compared. 

The author offers a new technology for the early detection 

of brain tumours from the histopathology specimen. The 

segmentation of the wound from the histopathology image was 

difficult because of its complex nature. Convolutional Neural 

Network (CNN) is an innovative method to automatically 

perform nucleus segmentation by preserving the shape of an 

image. The next step was CNN modeling, which has to be 

performed by using features from the learned representation. 

Less computational time is needed to select the number of 

nuclei in an image and develop a method to classify the 

multiclass brain tumour. The author used SVM and ANN for 

brain tumour classification. 

Texture-related features are extracted from the SROI region 

and a genetic algorithm is used to select the optimal features 

from the dataset. DWT and Bayesian Neural Network methods 

are employed to classify tumours using Magnetic Resonance 

Spectroscopy. Removal of noise from the MRS signal is 

performed at the preprocessing stage using DWT. The 

suggested method uses a Bayesian-based neural network to 

classify the tumour types. 

The implemented technique helps to identify the tumour in 

an earlier stage. The accurateness of the tumour classification 

is enhanced by proper selection of features, which reduces the 

redundancy and increases the classification efficiency [11]. 

The proposed technique combines the two methods, namely 

rough tolerance set and freely algorithm, which helps to 

identify the suitable features from the collection of many 

features like intensity, shape, and textures. Based on the 

appropriate feature selection, the classification is made. 

The author uses the 2D-DWT. The different co-efficient are 

extracted using wavelet, PCA and linear discriminant study to 

help identify the suitable features for classification of 

abnormal [12]. The selected features are used by K-nearest 

Neighbor and SVM to categorize the abnormality. The 

proposed technique based on compressed sensing MRI to 

capture the brain images. The author proposed exponential 

wavelet shrinkage [13]. The implemented method provides 

better results than the iterative shrinkage thresholding 

algorithm. 

Through this detailed review, it is understood that K-means 

and fuzzy c means were the conventional algorithms to 

segment the tumour portion for the MRI brain image. K-means 

algorithms perform poorly in segmentation with noise and 

artifacts, whereas Fuzzy C-means segmentation, offering more 

valuable information for detecting malignant tumours, entails 

a longer processing time. Hence, the proposed research work 

implements a new methodology called hybrid clustering using 

MATLAB. The disadvantages of above above-discussed 

algorithm have been overcome by merging the above two 

algorithm, called hybrid clustering is used for our research 

work. Next, the segmentation portion is classified as normal or 

abnormal. It has been implemented using CNN and SVM. 

The following Table 1 presents an overview of the ablation 

study which incorporates K-means, KIFCM, and FCM. 

KIFCM outperforms FCM and K-means in terms of noise 

presence, blurred boundary preservation, and tumor 

segmentation boundary delineation. 

 

Table 1. Comparison of K-means, FCM and KIFCM 

 
S. No. Method Accuracy (%) PSNR (dB) MSE Noise Handling Boundary Preservation Computation Time (secs) 

1 K-means 70 21.618 447.9185 Poor Moderate 5.1513 

2 FCM 80 21.186 494.7511 Moderate Good 5.3962 

3 KIFCM 80 21.186 494.7511 Excellent Excellent 5.1511 

 

 

3. RESEARCH METHODOLOGY 

 

The brain tumour is in different sizes and shapes; it is hard 

to perform segmentation because MRI images have 

information at multiple scales due to their broader structure. 

Hence, to capture the information at various levels, 

decomposition of the images into different frequency bands 

was done using DWT. MRI images are a huge dimensional 

dataset; hence, it takes more values to represent the voxel in 

the spatial dimension. Dimensionality reduction using DWT-

based PCA reduces the computation time further and helps to 

avoid overfitting. It is more effective in denoising MRI 

images, which enhances the robustness of feature extraction. 

The proposed model uses multiscale feature extraction, 

dimensionality reduction, noise robustness, and hybrid 

clustering to capture subtle variations in tissue 

characterization, allowing for more accurate segmentation 

results. 

The proposed methodology uses a CNN and SVM-based 

architecture to identify the tumour from an MRI brain image. 

The implemented technique comprises the following steps for 

brain tumour classification. The suggested work is depicted in 

the overview provided in Figure 1. 

Step 1: Data set collection and preprocessing. 

Step 2: Segmentation of tumour is achieved by hybrid 

clustering. 
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Step 3: Utilize DWT and PCA for feature extraction to 

reduce dimensionality. 

Step 4: CNN and SVM based classification and analyse the 

performance of the two classifiers. 

 

 
 

Figure 1. Process flow diagram 

 

3.1 Data set and preprocessing 

 

The 2020 BRATS training dataset contains 399 multi-

modality MRI scans, including 293 from glioblastoma 

(GBM/HGG) and 76 from lower grade glioma (LGG), along 

with their respective ground truth segmentations for 

evaluation.  

The image size is 512×512 pixels with a dimension of 

0.49×0.49 mm². Data augmentation and random 

transformations are used to reduce overfitting of the neural 

network in the training phase. 80% used for training, while the 

rest 20% for testing. The data augmentation technique is 

employed to provide robustness, preserve spatial features from 

MRI brain images, and increase the precision and reliability of 

the detection process. Rotating operations is a common data 

augmentation technique used in brain tumour segmentation. 

Rotating operations are applied to the input images during 

each epoch of training. It helps the CNN model learn features 

that are relevant to such transformations. Additional training 

samples are generated using random flipping along with the 

original dataset. The CNN and SVM models are trained using 

the augmented dataset, which helps the models become more 

robust and reduce overfitting. Additionally, it helps to increase 

the generalization capabilities of the CNN and SVM models. 

Dropout layers are used before the fully connected layer to 

reduce overfitting 

With respect to the class imbalance present in the BRATS 

dataset, which has a significantly higher number of HGG cases 

than LGG cases (293 vs. 76), we covered this gap with strong 

data augmentation, like rotating and flipping to increase the 

amount of LGG samples in the training set. With the 

application of these augmentations in dynamic epochs, the 

model was able to further improve generalization, mitigating 

overfitting. While we did not actively apply weighting loss 

functions or oversampling, the augmenting approach provided 

passive albeit effectively balanced, inputs. For class imbalance 

with the aim of reinforcing segmentation performance in both 

types of tumors, further methods like class-weighted loss and 

synthetic over-sampling (e.g., SMOTE) will be explored in 

later work. 
 

3.2 Image binarization 

 

Binarization, a fundamental image processing step, involves 

converting a grayscale image into a binary image. The two 

possible values for each pixel, often zero and one as in the 

equation, are called a binary image (I) (I :(x, y) → (0,1)). 

Binarization refers to the fundamental process within an image 

that helps separate the foreground object from the background, 

as shown in Figure 2. 

 

 
 

Figure 2. Convolutional neural network 

 

The proposed research work uses Otsu’s based thresholding 

method. The main goal of this method is to find the optimal 

threshold value. 

This approach involves grouping pixels into two 

corresponding classes, C1 and C2, based on a bimodal 

histogram, aiming to select thresholds that minimize intraclass 

variance using a weighted equation for each cluster. 

 

𝜎2 𝑤(𝑡) = q1 (t) 𝜎1
2(t) + q2 (t) 𝜎2

2(𝑡) (1) 

 

where, 

The weight qi is the probability for each class. 

It can be considered as follows 

 

q1 (t) = ∑ 𝑃𝑖
𝑡
𝑖=1  

q2 (t) = ∑ 𝑃𝑖
𝑙
𝑖=𝑡+1  

μ1(t) = ∑
iP(i )

q1(t)

t
i=1  

μ2 (t)= ∑
i P(i)

q2(t)

l
i=t+1  

 

The distinct class variance is specified by 

 

σ1
2(t) = ∑  [i − μ1(t)]2t

i=1
Pi

q1 (t)
 

σ2
2(t) = ∑  [i − μ2(t)]2t 

i=l+1
Pi

q2 (t)
 

 

After the variance is computed, the procedure is terminated 

 

σb
2(t) = σ − σw

2 (t)= q1 (t) - q2 (t)[μ1(t) -μ2(t)] 2 (2) 

 

The technique is employed to minimize intra-class variance 

while maximizing between-class variance. 
 

3.3 Image segmentation 
 

The process of dividing the entire image into smaller 

regions is called segmentation. It is necessary to segment the 

features in an image since distinct features require focus and 

clustering falls under simple unsupervised learning. Grouping 

of pixels with similar intensity is known as clustering, which 

is done without any training images. Hybrid segmentation 

refers to the process of integrating two segmentation 

algorithms.  
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The purpose of combining various algorithms is to eliminate 

the shortcomings of two dissimilar methods and to improve 

the good segmentation results. The result is shown in the 

Figure 3. The combination of fuzzy C-means with K-means is 

called the KIFCM technique, which is used for accurate 

tumour detection from MRI images [14]. By integrating Fuzzy 

C-Means and K-Means, the KIFCM technique improves 

tumor detection accuracy in MRI images due to the 

shortcomings of each method. It increases segmentation 

precision and decreases computational time. Careful 

segmentation design considerations are necessary to ensure 

quality segmentation results. 

 

 
 

Figure 3. Segmentation results (a) Input image (b) Otsu’s 

threshold image (c) Segmentation of tumour 

 

3.4 Feature extraction 

 

The computational complexity of processing large dataset 

was reduced by feature reduction.  

The extracted features, including intensity and texture-

based ones such as contrast, energy, and entropy, aid in 

classifying MRI brain images into dissimilar regions like GM, 

WM, CSF, and tumour. 

 

3.5 Discrete wavelet transform 

 

The different frequencies of an image were analyzed with 

the help of a wavelet. DWT is one of the tools for feature 

extraction. Wavelet helps in localizing frequency information 

important for classification, with spatial frequency 

components acquired from LL and HL sub-bands, which 

describe image texture features. The statistical features are 

obtained using gray level co-occurrences matrix (GLCM). The 

statistical features are obtained using GLCM and also gray-

level spatial dependence matrix (GLSDM). The proposed 

research work uses GLCM to extract features like contrast; 

correlation, energy, homogeneity, entropy, and variance were 

obtained from LL and HL sub bands of the first four levels of 

wavelet decomposition. 

 

3.6 Principal component analysis 

 

The main use of PCA is dimensionality reduction. Feature 

extraction can be performed on both the training MR image 

and testing MR image. During testing and training phase, 

feature extraction can be done. During the training phase, the 

features are removed from each training MR image [15]. The 

training image 1 can be represented by and the pixel resulting 

is M*N (M rows and N columns).  

The PCA algorithm reduces the dimensionality of feature 

vectors for both training and test images. It computes the 

Euclidean distance similarities among the reduced feature 

vectors of test and training images for classification. 

The MRI image [16] is correctly classified if i =j; otherwise, 

i it is misclassified. 

MRI images are multiscale, and they hold information that 

can be retrieved by DWT in frequency bands as images are 

decomposed. Because of the high dimensionality of MRI data, 

computation time, overfitting, and noise, PCA is employed 

post-DWT to enhance these attributes. Although DWT ensures 

the frequency components that are non-linear and relevant to 

the tumor are preserved, which is why PCA isn’t a problem. 

Then DWT ensures that the most informative features based 

on variance are retained. Unlike t-SNE or Autoencoders, PCA 

does not require training, works well with DWT, is more 

efficient, and is not time-consuming. This leads to the 

preservation of vital tumor characteristics, which leads to 

improved segmentation accuracy. 

 

 

4. RESULTS AND DISCUSSION 

 

4.1 Convolutional neural network 

 

The suggested approach goes through the MRI brain image, 

one pixel at a time, using a sliding window that covers the 

whole image. Each pixel gets classified based on its 

surrounding N×N neighborhood, and then it's fed into a CNN 

architecture. The implementation model selects kernel sizes of 

11×11×7 and 3×3 pixels, respectively, and a window of 65×65 

pixels. Each pathway utilizes 3×3 max-pooling kernel with a 

stride of 3 and two convolutional layers with ReLU activation. 

The large, medium, and tiny pathways generate 128, 96, and 

64 feature maps, respectively. Window features are obtained 

by employing numerous maps at various scales, distinguishing 

three tumour types [17] for classification. Concatenation is 

performed on a scale features in a convolutional layer using a 

3×3 kernel and ReLU activation, followed by 2×2 max-

pooling kernel operation with a stride of 2. Subsequently, the 

concatenated features are given into a fully connected stage for 

classification, incorporating dropout layers to mitigate 

overfitting and utilizing SoftMax activation in the final layer 

[18]. 

 

4.2 Initialization 

 

Xavier initialization helps to obtain convergence. It also 

helps to maintain the activation, and the gradients are retained 

in controlled levels, then the back-propagated gradients help 

to disappear or explore. 
 

4.3 Activation function 
 

It can change the data rectifier linear units (ReLU), defined 

as F(x)=max (0, x). The ReLU helps to obtain better outcomes 

than conventional activation functions like sigmoid or 

hyperbolic tangent functions. The introduction of a constant 0 

can improve the gradient flow and subsequent adjustments of 

weights. These restrictions can be overcome using a variant 

called Leaky rectifier linear unit (LReLU), which is capable of 

providing an insignificant slope on the negative part of the 

function. 

 

F(x) = max(0,x)+αmin(0,x) (3) 

 

Here, α is the leakiness parameter we use softmax in the last 

FC layer. Max pooling helps reduce the computational load of 

each stage by aggregating spatial features within the feature 

maps. 
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4.4 Regularization 

 

The overfitting in CNN [19, 20] can be reduced with the 

help of regularization. The FC layer uses dropout, which helps 

to remove node with probability of P in the network. It also 

used in various networks and produces a form of bagging, 

because every network has been trained with a portion of the 

training data. 

 

4.5 Data enrichment 

 

To reduce overfitting and enhance the generalization 

performance on unseen data, it is crucial to integrate 

augmentation and normalization techniques into the pre-

processing of MRI brain tumour segmentation. This 

integration enhances the reliability and accuracy of 

segmentation. The normalization process standardizes the 

pixel intensities across MRI images with techniques such as 

Z-score regularization or min-max scaling. This 

standardization ensures that the range of values is consistent 

across various images. Consistent pixel values help maintain 

the stability of the training process by preventing extreme 

pixel values from dominating the optimization process. This, 

in turn, provides more stable convergence during training. 

Data augmentation increases the dataset by creating modified 

versions of existing images using rotations. By exposing the 

model to a larger range of variations present in MRI images, 

augmentation helps prevent the model from memorizing 

specific patterns during training. Instead, the model learns to 

identify essential features across augmented samples, reducing 

its susceptibility to overfitting. Overall, integrating 

normalization and augmentation techniques into pre-

processing significantly improves the reliability and accuracy 

of MRI brain tumour segmentation by enhancing 

generalization performance on unseen data. 

 

4.6 SVM classifier 

 

SVM is a good classifier for image recognition, function 

approximation, and data classification. Various linear and 

nonlinear architectures, such as linear discriminant analysis, 

multi-layer perceptrons, K nearest neighbours, and least 

square minimum distance (LMSD), have been developed to 

classify abnormal portions of an image. SVM offers the best 

classification result out of all those nonlinear classifiers. Two 

fundamental procedures are involved in SVM classification: 

testing and training. 

A SVM locates the optimal unscrambling hyperplane 

amidst members of a specific class within a high-dimensional 

feature space. 

 

K(xi, xj) = (xi
T xj+1)p P≥ 0 (4) 

 

One of the simplest SVM is linear SVM, in which the output 

patterns are linearly discernible. It can be expressed by 

 

F(X)= WT +bx (5) 

 

In the linear case, every training sample Xi provides the 

output function 

 

Yi= ±1 for f(xi) ≥ 0 and Yi= 1 for f(xi) ≤ 0 (6) 

 

Due to that the hyperplane separates the two different 

classes of samples 

 

F(x)= WT +bx (7) 

 

After the completion of the segmentation process, it is 

essential to classify the segmented image using classifiers such 

as SVM and CNN. SVM is a linear classifier that is mostly 

used in classification problems. Unlike SVM, CNN is 

nonlinear and is most suitable for visual image recognition. 

The following Tables 1 and 2 provide various lists of extracted 

features for non-cancerous and cancerous brains. 

C*-Contrast; C-Correlation; E*-Energy; H-Homogeneity; 

M-Mean; SD-Standard Deviation; E-Entropy; V-Variance; R 

-RMS; S-Smoothness; S*-Skewness; K-Kurtosis. 

Images of the brain tumour at each step are shown, and a 

comparative relation of the classifier SVM and CNN is 

performed with the parameters: accuracy, time, PSNR and 

MSE. The SVM classifier produced the best result compared 

to the CNN classifier. 

The features extracted for benign and malignant MRI brain 

tumour. This is shown in Tables 2 and 3, which help to analyze 

each and every feature of cancerous and non-cancerous cells 

in an effective way. Before the classification of the brain cells 

it is necessary to identify the texture of abnormal portions. The 

proposed work uses CNN and an SVM classifier to analyze the 

abnormal portions. For which it is compulsory to train the 

network by giving large number of data sets. Once the system 

is trained properly, we need to check whether the test data is 

normal or abnormal. Table 4 compares the two classifiers in 

terms of accuracy, time, PSNR, and MSE. 

 

Table 2. Benign tumour images with the values of parameters extracted using feature extraction 

 
S. No Input Image C* C E * H M SD E R V S S* K 

1. 

 

0.208 0.199 0.762 0.935 0.03 0.089 3.173 0.893 0.008 0.920 0.469 7.328 

2. 

 

0.271 0.093 0.768 0.933 0.02 0.089 3.269 0.089 0.008 0.897 0.886 7.956 

3. 

 

0.244 0.100 0.740 0.926 0.003 0.089 3.579 0.089 0.008 0.923 0.633 6.273 

4. 

 

0.216 0.138 0.754 0.932 0.002 0.089 3.315 0.089 0.008 0.903 0.312 6.232 

5. 

 

0.225 0.099 0.769 0.936 0.002 0.089 3.518 0.089 0.008 0.885 0.441 6.767 
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Table 3. Malignant tumour images with the values of parameters extracted using feature extraction 

 
S. No Input Image C* C E * H M SD E R V S S* K 

1. 

 

0.305 0.142 0.786 0.937 0.006 0.089 3.205 0.089 0.008 0.959 1.104 12.240 

2. 

 

0.227 0.132 0.743 0.929 0.004 0.089 3.604 0.089 0.008 0.940 0.521 5.997 

3. 

 

0.243 0.093 0.761 0.932 0.003 0.089 3.371 0.089 0.008 0.931 0.635 7.350 

4. 

 

0.265 0.132 0.767 0.934 0.004 0.089 3.063 0.089 0.008 0.944 0.953 12.168 

5. 

 

0.243 0.107 0.731 0.924 0.004 0.089 3.548 0.089 0.008 0.944 0.620 6.523 

 

Table 4. Performance analysis table 

 

S. No Types of Tumour Image Classifier Accuracy In % PSNR (db) 
MSE 

(No.of bits/pixel) 
Time (secs) 

1. Benign 

 

SVM 70 21.618 447.9185 5.1513 

CNN 60 21.584 451.4868 16.645 

2. Benign 

 

SVM 60 22.145 396.7803 5.1700 

CNN 40 22.001 384.6298 16.622 

3. Benign 

 

SVM 50 21.368 474.4520 13.510 

CNN 30 21.220 470.2738 19.990 

4. Malignant 

 

SVM 80 21.186 494.7511 5.3962 

CNN 50 21.387 472.4432 16.674 

5. Malignant 

 

SVM 70 21.370 474.3339 5.1511 

CNN 40 21.209 492.2409 16.599 

6. Malignant 

 

SVM 60 21.125 501.7942 5.2337 

CNN 60 20.880 530.9734 16.701 

 

In this study, SVM was implemented with GLCM features 

while training CNN with raw MRI images. This disparity in 

representation affects performance, considering GLCM as 

structured input templates gives an advantage to SVM. Given 

the behavior intended to be demonstrated with these model 

configurations. In future work, the work aims to carry out an 

ablation study where both SVM and CNN are assessed under 

the same feature extraction methodology, be it raw pixels 

being used or GLCM, to more rigorously validate the 

performance differences between the two.  

To understand the impact of performance distinction 

between SVM and CNN, we analyzed the accuracy, PSNR, 

and MSE values through paired t-tests. The results proved that 

SVM had a statistically significant improvement in accuracy 

compared to CNN (p = 0.0121). However, the differences in 

PSNR (p = 0.2257) and MSE (p = 0.8075) metrics were not 

statistically significant. This suggests that SVM having better 

accuracy is most probably not because of chance. 

 

 

5. VALIDATION 

 

The research work compares MRI brain tumour 

segmentation using various methods such as Random Forest, 

Decision Tree, U-Net, and Seg-Net. The performance of 

segmentation relies on handcrafted features like intensity and 

texture features. However, SVM struggles with capturing 

complex spatial relationships and variations in MRI brain 

images compared to deep learning methods. Random Forest, 

along with other segmentation processes, provides ensemble 

learning approaches that build multiple decision trees during 

training, yet it faces challenges in capturing spatial 

dependencies effectively. Decision Tree, when employed for 

MRI brain tumour segmentation with a single tree, struggles 

to capture complex patterns. Another well-known deep 

learning architecture is U-Net, which has a symmetric 

expanding path for accurate localization and a controlling path 

to capture context.  

The skip connections of the U-Net help retain high-

resolution features, resulting in superior performance 

compared to conventional CNNs, albeit achieved with a 

smaller dataset. Comparatively, CNN-based methods for MRI 

brain tumour segmentation require larger datasets. However, 

the SVM method outperforms with fewer datasets. The choice 

of the method depends on various factors such as 

computational resources, data availability, and the specific 

requirements of the segmentation task. The proposed research 

work used in BRATS 2020 dataset. The SVM model 

outperforms for smaller datasets with less computational 

power and provides clear decision boundaries. However, the 

CNN model requires a larger dataset for training and higher 

computational resources. The practical deployment aspects are 

very important. Steps taken to increase performance allowed 

us to add a discussion on the model interpretability issues 

(particularly with SVMs) and propose later using XAI 

approaches, like SHAP, to support trust by clinicians. On the 
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other hand, our system demonstrates low-latency inference on 

mid-level GPUs, thus, real-time segmentation is achievable. 

Figure 4 shows a bar chart. 

 

 
 

Figure 4. Bar chart 

 

 

6. CONCLUSION 

 

The computed result provides the segmented image of a 

brain tumour and identifies the type of tumour. Identifying 

tumours is verified with the patient scan image, which 

produces the same result as per doctor diagnosis. The 

classifiers (SVM and CNN) are compared with the following 

parameters: accuracy, PSNR, MSE, and time. SVM classifier 

produces high accuracy and gets executed in short period when 

compared to CNN classifier. Thus, CNN is nonlinear, whereas  

SVM functions as a linear classifier, while CNN excels with 

large datasets, contrasting SVM's widespread use in 

classification tasks. While CNN enhances model complexity 

through additional layers, SVM cannot achieve the same level 

of complexity. Additionally, CNN exhibits slower training 

speeds with large datasets. The SVM classifier is optimal for 

classifying brain tumours in smaller datasets, requiring less 

execution time. As a linear classifier with lower model 

complexity, it is well-suited for such tasks. The proposed 

research work achieves a commendable accuracy of 

approximately 90% on the BRATS 2020 dataset. As compared 

to more recent benchmarks, Vision Transformers (ViTs) have 

a marked improvement over traditional CNNs and SVMs since 

they outperform them in accuracy as they capture long range 

dependencies more efficiently. Notably, the computational 

power demand of ViTs leads to increased inference times, 

restricting their use in real-time medical contexts. Similarly, 

nnU-Net provides highly accurate segmentation but takes 

longer to process. In comparison, our model (SVM) retains a 

competitive accuracy while maintaining significantly lower 

computational cost, making it more appropriate for real-time, 

clinical environments. 
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NOMENCLATURE 

 

MRI Magnetic Resonance Imaging 

SVM Support Vector Machine 

CNN Convolutional Neural Network 

PET Positron emission tomography 

SPECT Single Photon Emission Tomography 

FLAIR Fluid Attenuated Inversion Recovery 

GM Gray matter 

WM White Matter 

CSF Cerebrospinal fluid 

DCNN Deep Convolutional Neural Network 

ANN Artificial Neural network 

DWT Discrete Wavelet Transform 

MRS Magnetic Resonance Spectroscopy 

PCA Principal Component Analysis 

KIFCM K- means Integrated with Fuzzy C means 

GLCM Gray level co-occurrences matrix 

GLSDM Gray level Spatial Dependence matrix 

LMSD Least Square Minimum Distance 

PSNR Peak signal to Noise Ratio 

MSE Mean square Error 
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