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The records acquired from Electrocardiogram (ECG) are extensively used to predict heart 

disease. Therefore, the ECG signal is considered essential for evaluating medical data. 

However, it turns out to be a preliminary device that facilitates the observation of patients' 

health information. The peak values are an essential peak for providing reliable health 

conditions. Tracing the ECG signals is treated as the least complex technique for automatic 

prediction. The VLSI advancements show a significant impact on biomedical signal 

processing. The advancements rely on the circuit's functionality at high speed and it is 

modelled to consume lesser power and area. Specifically, for ECG signal denoising, digital 

signals like IIR and FIR filters are adopted in most real-time applications where FIR is 

widely used compared to IIR filters due to the higher-order performance and stability. 

Consequently, this research is investigated in a suitable testing environment to measure the 

model performance to discover the most delicate steps to address the challenges in the ECG 

signals. The features obtained through wavelet transform are then redefined and used as 

input for the classification algorithm and compare and evaluate various assessment metrics, 

including accuracy, precision, recall, and F-measure, against other methodologies. 
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1. INTRODUCTION

Generally, ECG is the process of electrical activity 

recording those outcomes with heart rate at a specific time 

frame. It is used to document information regarding structure 

of the heart that materializes triggered by depolarization of 

heart cardiac contractions synchronized with heartbeats [1, 2]. 

Also, it is composed of electrodes that are placed in various 

places over the individuals' skin. ECG signals are extensively 

utilized to predict heart illness, characterized by valleys and 

six peaks [3]. The valleys and peaks are generally labelled with 

𝑃, 𝑄, 𝑅, 𝑆, 𝑇, 𝑎𝑛𝑑 𝑈  symbols, as depicted in Figure 1. ECG 

signal is a bio-electrical non-stationary signal composed of 

essential clinical information [4]. In general, clinical data is 

based on the measurement of rhythm and rate of every single 

heartbeat, position and size of the heart chambers. Cardiac 

conduction system and pharmacological effects, occurrence of 

cardiac muscle cell presence and implanted pacemaker 

operational efficiency are the significant observations from the 

ECG signals [5]. Accurate ECG signal measurement is 

necessary carefully by the specialized cardiologists to predict 

the life-threatening arrhythmias [6]. However, the automatic 

cardiac disorder classification via the computerized analysis 

can offer diagnostic and objective outcomes and preserve both 

the cardiologists' effort and time. Nonetheless, the information 

pieces are exposed to damage by various kinds of noise, 

leading to a wandering baseline [7]. Subsequently, the 

wandering baseline leads to the repetition of indecorous screen 

patterns [8]. It happens to owe to the electrode malfunction 

like patients’ movement, bad minimizing electromagnetic 

interference with electrodes and inappropriate optimizing 

electrode sites with electronic device feedback and noise 

coupled from other electronic devices of high frequencies [9]. 

ECG signals also pose noise, changing waveforms that help 

observe inappropriate clinical measures and misleading 

factors. Therefore, the investigators have to adopt denoising 

algorithms for attaining the transparent ECG signal, which 

intends to enhance the signal-to-noise ratio [10, 11]. There are 

diverse techniques for removing noise from ECG signals in 

linear and non-linear contexts like a noise reduction and signal 

enhancement using median filters, advanced averaging, 

Fourier transforms, adaptive filters, and wavelet transforms 

[12, 13]. Subsequently, improving the processing algorithm to 

enhance the ECG signal quality is suggested. ECG denoising 

techniques also pose certain downsides as it avoids noise and 

eliminates high-frequency non-stationary signal components 

vital during waveform detection. Hence, the superior needs to 

produce a readily clear and observable signal that preserves 

the original waveform characteristic devoid of distortion. 

Recently, EMD has been initiated as an essential approach for 
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non-linear and non-stationary signal processing. EMD serves 

as an alternative to those techniques. However, this EMD does 

not fulfil the requirements of specific real-time applications 

[14, 15].  

 

 
 

Figure 1. Partition representations of ECG signal and 

segments  

 

The existing model often misclassifies the signals with 

minor noises unless trained with a proper filtering process. The 

existing models turn to be biased towards the prediction of 

signals, with reduced sensitivity towards critical events like 

ventricular fibrillation. Some existing approaches are not 

suitable for real-time or edge devices with constrained 

processing power and battery life. The proposed NN, FIR and 

IIR filters perform distinct but complementary roles while 

dealing with ECG signal processing. The proposed filter 

models are adopted in pre-processing to improve the input 

signal to give quality outcomes and to eliminate artifacts or 

noise. The proposed FIR filter intends to preserve the 

waveform shape which is a complex task w.r.t ECG signals 

where morphologies like T, P, and QES waves are involved. 

The FIR filter model relies on the present and past inputs to 

maintain stability. Similarly, IIR filters needs lesser 

coefficients than FIR filters to enhance the performance. This 

filter considers both present and past inputs. These filters are 

employed to deal with real-time monitoring because of the 

lower computational cost. The proposed NN classifier is used 

for performing the higher-level processing tasks like feature 

extraction, classification and ECG signal interpretations. The 

proposed classifier model categorizes the beats as abnormal 

and normal, and predicts the T, QRS, and P wave boundaries. 

The classifier is capable of learning features from the partially 

noise data. The NN model helps in fine-tuning of individual 

variability. The novelty of the proposed model relies on the 

cleaning of raw ECG signals and helps in predicting the 

waveform components. The major research contributions are 

discussed below: 
 

1.1 Research contributions 
 

(1) This work describes the effectual computational 

approaches for analyzing and enhancing and offers a clear 

outline regarding the advancements of VLSI circuits over 

ECG signal processing. ECG signals are acquired from the 

available online resources, and the data source is composed of 

ECG signal data: testing and training data. The information is 

sourced from downloadable materials from the ECG MIT-BIH 

dataset.  

(2) The dataset includes essential information regarding 

ECG signals, and it is used for further processing using the 

workspace in SIMULINK. The signals are denoised with the 

proposed improved IIR filter coefficients. The input consists 

of extracted features to the wavelet transform, and the 

effective classification is realized with the classifier model 

using neural networks.  

(3) NN does not require any human intervention as it holds 

nested layers in passing the data via various conceptual 

hierarchies, which eventually has the competency of learning 

its own error. It can also handle an enormous volume of raw 

ECG signals by facilitating to deal of advanced data 

challenges. However, NN works well will provision more 

data. When compared to other learning approaches, the 

proposed NN reaches a higher level where huge samples do 

not influence the performance.  

(4) The evaluate metrics like accuracy, precision, F-

measure, and recall, we compare them against current 

techniques. The model strikes a better balance than the 

existing methods. 

(5) Also, an ablation study if provided to examine various 

effects of signal processing components. The study helps to 

evaluate the combined and individual contributions using 1) 

NN without class imbalance and denoising; 2) NN without 

denoising; 3) NN with balanced class distribution; 4) NN with 

denoising, and 5) NN with class distribution skew. The model 

is designed to enhance the effectiveness of NN over ECG data. 

The study is organized as follows: Section 2 presents a 

thorough examination of various methodologies modelled by 

the investigators. In section 3, the problem statement of the 

work is demonstrated and paves the way for further 

enhancements. The ECG signal enhancements are achieved 

with FIR and IIR filter designs and the analysis of the ECG 

signal interference. Then, feature extraction and classification 

are performed to attain better prediction accuracy.  

 

 

2. RELATED WORKS 

 

Bae et al. [16] provide a detailed analysis of EMD-based 

filtering approaches. The investigators present diverse 

approaches for experimental purposes, and ECG signal 

classification is done effectually. These investigations involve 

pre-processing, feature extraction, and noise reduction and 

classification [17]. Researcher discusses three diverse 

denoising approaches: EMD-based noise reduction 

approaches, EMD-based partial reconstruction, and extracting 

inferences for adaptive filtering. Based on the changing noise 

amplitudes, these novel approaches intend to perform effective 

noise reduction methods provided ECG signal under a specific 

frequency ( 48 𝐻𝑧 − 51 𝐻𝑧 ). However, these approaches 

summarize the EMD enhancements method, which adopts the 

signal dependency property and is an adaptive technique [18]. 

Subsequently, these investigations show improved 

performance in diminishing removing noise with wavelets. 

This system's performance enhancement is generally coupled 

with two diverse conditions: a) there exist no constraints that 

the signal magnitude needs to be superior to the noisy signal, 

and b) lesser SNR [19-21] (Table 1). 

Mukherjee and Ghosh [22] anticipate a novel approach for 

ECG signal improvement. This approach is based on the entire 

ensemble EMD with adaptive noise and higher-order 

statistical processing using mixed interval thresholds. 

Subsequently, the ECG signal is decomposed into the IMF 

components set with the EMD technique. IMFs attained are 
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partitioned into three diverse groups: noiseless relevant, higher 

frequency noisy and lower frequency noise IMFs [23]. The 

novel derived criterion categorizes these approach groups 

based on the fourth-order cumulant. Therefore, the ECG signal 

is reconstructed by merging the threshold IMFs and reserved 

refined lower frequency appropriate IMFs. The author 

anticipates a new method for ECG denoising: DWT and EMD 

integration [24]. The anticipated performance of the 

windowing in Empirical Mode Decomposition to diminish the 

interference produced by the preliminary IMF is entirely 

avoided. However, the ECG signal attained varies in the DWT 

domain with the adaptive soft thresholding approach to 

diminish the noise [25]. However, the ECG signal is 

reconstructed in a superior time resolution of essential DWT 

properties evaluated to the EMD technique for energy 

conservation during the noise presence. Therefore, this work 

attempts to preserve the QRS complex to provide a clear ECG 

signal [26]. Martis et al. [27] utilized the EMD approach to 

enhance the noise filtering performance by reducing mode-

mixing near the IMF's scales. However, the investigator 

performs experiments to model filtering ECG signals 

technique that relies focusing on lower IMF scales, including 

High-frequency noise. Comparing EEMD filtering 

performance and the existing EMD approach is highlighted in 

this work. Nonetheless, Wiener filter application is utilized to 

evaluate the filtering functionality with EEMD, which is 

another noise filtering approach. But the model fails to fulfil 

the requirements [28, 29]. This study concentrates on 

modelling a model for improving ECG signal accuracy by 

noise reduction using IIR and FIR filter comparison to handle 

these issues [30]. The ECG signal goes through several stages, 

including noise reduction, feature extraction, and 

classification, all aimed at enhancing prediction accuracy. This 

process allows for a comparison of the latest and most 

effective methods available. 

 

Table 1. Comparative analysis of state-of-the-art methods for ECG filtering and prediction 

 

References 
Dataset and 

Methods 
Approach Outcomes Constraints  

[16] 

AFIB dataset 

with SVM 

classifier model 

Gives a wider analysis of various existing learning 

approaches in healthcare applications. 

89.6% 

accuracy 

1) Only a certain piece of work was 

reviewed that which concentrates on 

ML applications on ECG signals 

based on heart disease classification. 

[19] 

AFL-203m 

dataset with 

ANN 

A novel deep learning framework is introduced for the 

detection and localization of myocardial infarctions 

using ECG data. 

92% 

accuracy 

1) No interpretability framework has 

been implemented for ML models in 

detecting myocardial infarctions. 

[20] MIT-BIH 

Offers a comprehensive evaluation of multiple deep 

learning techniques used for the prediction and 

classification of five distinct types of heart diseases 

from ECG signals. 

82% 

accuracy 

1) Covers interpretable models briefly 

and restrictively. 

[21] 
SPH and MLP 

classifier 

Highlights the importance and role of interpretability in 

deep learning models, particularly in healthcare-related 

applications. 

86% 

accuracy 

1) Emphasizes the role of feature 

relevance in explaining diverse 

machine learning models. 

2) Presents a restricted evaluation of 

various interpretation approaches. 

[23] 

Linear SVM 

with MIT-BIH 

dataset 

Presents a concise yet informative overview of existing 

machine learning (ML) methodologies relevant to 

healthcare diagnostics.  

83% 

accuracy 

The analysis omits the use of 

interpretable models for heart disease 

classification from ECG data. 

[25] NSR samples 

Explores the key challenges in evaluating and 

implementing ML models, especially within real-world 

healthcare settings. 

90% 

accuracy 

Highlights how interpretable AI 

affects society at large 

Provides minimal insight into 

healthcare approaches, particularly 

those related to ECG-driven heart 

disease classification. 

[26] 
SVTA samples 

with TERMA 

Provides an in-depth discussion on the quality and 

reliability of machine learning approaches in clinical 

decision-making. 

37% 

accuracy 

Examines the application of ML 

methods in classifying heart disease 

from ECG data. 

 

 

3. PROBLEM STATEMENT 

 

This section outlines the problem statement related to the 

origin of the proposed model. This work concentrates on the 

prevailing FIR filter design constraints based on the broader 

literature study. However, various researchers recommended 

diverse variations and intended to provide the FIR filtering 

architecture. The advancements of the VLSI techniques give 

hope to making this architectural design an efficient one. This 

investigation intends to address various constraints of FIR 

filters along with the focus of the anticipated model to 

overcome the drawbacks of the prevailing FIR filters. Some 

general FIR filtering architectures are: 1) multipliers are 

consuming component. The multipliers are lesser efficient 

hardware than FIR filtering architecture with less effective 

design. 2) Also, adder design plays a substantial role in 

providing superior FIR filter architecture. 3) a productive 

pipelining process plays an effectual role in providing efficient 

FIR filter-based hardware. The solution is to address these 

constraints of FIR filter design using the IIR filters with the 

measure of coefficient values. The variables extracted from the 

IIF coefficients are provided as the input to the identifying key 

features process. Here, Wavelet decomposition-based feature 

extraction is done, and the most influencing features used as 

input to the classifier model, i.e., neural networks. Some 

essential metrics are computed to show the model's 

significance.  
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4. ECG ENHANCEMENT 

 

Various approaches are discussed for the noise removal 

process from the ECG signal. This work provides a broader 

analysis of the filters for low and high frequencies., i.e., 

FIR/IIR filters. The filtering approaches are commonly 

applied in signal processing and executed in diverse ECG 

signal analyses. However, filtering approaches improve the 

ECG signals, managed and implemented using FIR/IIR filters. 

Here, both these filters remove the noise over the ECG signals. 

Moreover, certain intrinsic noise agglutinant of the ECG 

signals is removed using the proposed approaches. However, 

ECG signal filtering is determined to be contextual. It is 

executed when the desired data remains ambiguous and needs 

further execution. However, the filtering process is considered 

an essential issue where the data needs to be disposed of and 

filtered. Later the denoised signals are provided to the feature 

extraction phase and map the wavelet based on time and 

frequency. It is determined to be technique for analyzing time-

varying signals. The WT is appropriately utilized specifically 

for denoising as the wavelets show similarity with the energy 

spectrum, and QRS complexes are focused around low 

frequencies (See Figure 2). Finally, classification is done for 

prediction purposes. 

 

 
 

Figure 2. The representation of synthetic ECG signal with 

interference (Power Line of 50 Hz) 

 

4.1 FIR filter 

 

The digital filters are analog-to-digital converters and 

perform the vice-versa process (digital-to-analog). The LTI 

filter produces the filter coefficients specify the designing 

filters using impulse response. The linear filter coefficients 

convolution with input sequences provides the output as in Eq. 

(1): 

 

𝑌 = 𝑓 ∗ 𝑥 (1) 

 

Impulse response specified by function f, input signal is 

denoted by x, and output signal y resulting from convolution. 

Convolution of input signal with filter as in Eq. (2): 

 

𝑌[𝑛] = 𝑥[𝑛] ∗ 𝑓[𝑛] 

= ∑ 𝑥[𝑘]𝑓[𝑛 − 𝑘] = ∑ 𝑓[𝑘]𝑥[𝑛 − 𝑘]

𝑘𝑘

 (2) 

 

Here, 𝑌[𝑛]  specifies the filter output, 𝑥[𝑛] represents the 

digital input (filter), 𝑓[𝑘] specifies the impulse response, and 

∗  represents convolution operators. The summation is 

provided by 𝑘, representing the impulse response (filter). The 

filter with finite value is known as the FIR filter. The digital 

filter class with the current and historical input data and none 

of the prior filter output to attain the present output value is 

known as the FIR filter. It is termed as FIR filter 

implementation. FIR filter operation is the time-domain 

smoothing via moving average. The low-pass (FIR) with the 

window design approach is quite simple and produces the filter 

output with superior performance. The passband/stopband 

deviations are equal approximately. However, it is general to 

attain pass band deviation is extremely smaller than stop band 

deviation. These parameters are not controlled independently 

in the window design. This, it is essential to design the filter in 

the passband to fulfil the stopband requirements. The ripple is 

not uniform and diminishes when it moves away from the 

transition band. The filter shows features like the passband 

specification 𝜑𝑝  frequency, 𝜔𝑠  stopband frequency and 

transfer function (desired). The filter class (special) that fulfils 

the criteria is the equi-ripple FIR filter. This design reduces the 

maximal deviation from the transfer function. It poses 

approximation error with weighting among the actual and 

desired filter response in passband and stopband regions to 

reduce the maximal error. Therefore, the outcome possesses a 

stopband and passband ripple specifications 𝐻𝑑(𝜔) specifies 

the filters’ frequency response, 𝑤(𝜔)  defines the weighted 

frequency response characteristic. The designer can select the 

relative error size in diverse spectral bands. This is represented 

by Eq. (3). 

 

𝐻(𝜔) = 𝑒−𝑗𝜔(𝑀−1)/2𝑒𝑗(𝑝/2)𝐿𝐻∗(𝜔) (3) 

 

Approximating error with weighted approach can be 

visualized as: 

 

𝐸(𝜔) = 𝑊(𝜔)[𝐻𝑑(𝜔) − 𝐻∗(𝜔)] (4) 

 

𝐸(𝜔) = 𝑊(𝜔)[𝐻𝑑(𝜔) − 𝑃(𝜔)𝑄(𝜔)] (5) 

 

The 𝑄(𝑤) represents the frequency function, 

 

𝐸(𝜔) = 𝑊(𝜔)𝑄(𝜔)[𝐻𝑑(𝜔)/𝑄(𝜔) − 𝑃(𝜔)] (6) 

 

Therefore, the approximation predicts reducing maximal 

error through coefficient adjustment 𝐸(𝜔)  measure. The 

approximation formula is provided in Eq. (7): 

 
|𝐸(𝜔)| = min[max |𝐸(𝜔)|] (7) 

 

FIR filter coefficients are produced with SIMULINK tool. 

The filter response accuracy relies on the filter coefficients. 

The filter (ideal) needs the filter tap weights is not probable to 

execute over the hardware. The approach to handle this 

problem is coefficient round off. It reduces the hardware 

utilization, therefore diminishing the hardware utilization. The 

depreciation of filter coefficients influences the filter 

performance, specifically when the numbers of tabs are 

significantly higher.  

 

4.2 Low-pass serial and parallel FIR  
 

The architectural view of the serial FIR filter needs one 

multiplier, one adder, and one delaying unit. Therefore, it is a 
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superior option when considering hardware efficiency. 

However, the FIR filter is done via the architecture, with 

reduced device throughput and slower performance. Similarly, 

the parallel FIR low-pass filter intends to parallel process data, 

rather than processing it. It provides superior throughput. All 

adders are associated with the prior adder output. The result is 

attained from the sum of adders output and output terminal. It 

provides the valid output, and the delay is affected by key 

delay factors. It is hugely greater than or equal to the product 

sum and accumulator delays pretends to handle the high 

necessary delay. Here, the adders are connected with the bran 

tree and add data-parallel indeed of serial. It is so 

advantageous evaluated to the prior design and it diminishes 

the Critical delay considerations for FIR filter.  

 

4.3 Analysis with IIR filter 

 

Recursive filter implementation where the output is not 

associated with prior input. However, it is related to the 

preceding output. Two diverse design approaches are based on 

the IIR filter: indirect and direct. It is used to model IIR filters 

by restricting the zero distribution and pole of the transfer 

function. Similarly, indirect technique is based on analog filter 

prototype model to calibrate every filter coefficient based on 

the requirements. Then, Analog filtering techniques are 

mapped from the 𝑆 → 𝑍  analog domain via the Laplace 

transform via transforming from S-domain to Z-domain yields 

a digital filter for processing digital signals (Tables 2-4). 
 

Table 2. FIR parameter 

 

Filter 

Order 

Pass Band Edge 

Frequency (Hz) 

Maximal Pass 

Band Ripple 

(dB) 

Minimum Stop 

Band Attenuation 

(dB) 

2 0.4 2 3 

 

Table 3. IIR filter parameters 

 

Filter Order 
Pass Band Edge 

Frequency (Hz) 

Maximal Pass 

Band Ripple 

(dB) 

Minimum Stop 

Band 

Attenuation (dB) 

2 0.1 2 3 

 

Table 4. HPF parameters 

 

Filter 

Order 

Pass Band Edge 

Frequency (Hz) 

Maximal Pass 

Band Ripple 

(dB) 

Minimum Stop 

Band Attenuation 

(dB) 

2 0.4 3 2 

 

By the frequency domain analysis relies on the present 

information gathered during capturing ECG signals, it is 

identified that noise significantly affects the signal on the 

attained ECG signal, i.e., Signal baseline shift caused set 

breathing frequency, as 0~1 𝐻𝑧.  The successive noise 

influence over the ECG signals is power line interference due 

to 220𝑉, 50/60 𝐻𝑧 AC grid infrastructure. Two filters need to 

be constructed to avoid the noise interference across two 

frequency ranges. Filters out low-frequency noise 0 𝑡𝑜 1 𝐻𝑧 

baseline drift, and the filters out high frequencies, it suppresses 

roughly interference (50 Hz frequency). The digital angular 

frequency (Z-domain) is expressed as in Eq. (8): 

 

𝛺 =
1

𝑓𝑎𝑑

∗ 𝑓𝑠 ∗ 2𝜋𝑛, 𝑛 = 0, 1,2, …. (8) 

Here, fad denotes the ADC sampling frequency, while fs 

represents the signal frequency. Frequency 𝑓𝑐 = 50/60 has to 

be avoided when 𝑓𝑎𝑑 = 480, 𝛺𝑐  ≈ 𝑛𝜋/5 (𝑛 = 0,1, … ,9) . 

Then, Notches are designed at 𝛺𝑐 ≈ nπ/5 (n = 0, 1, ..., 9) to 

reject 50/60 Hz interference. Additionally, the zeros need 

consideration in 0 𝐻𝑧 𝑎𝑛𝑑
50

60
𝐻𝑧  at the point (1,0) in the 

complex plane. A zero and a pole are strategically placed at 

(1,0) to prevent frequency overlap. Poles at the origin (0,0) or 

on the real axis like (1,0) can provide a stable transfer function. 

For stability, poles are typically placed within the unit circle 

in the transfer function, as shown in Eq. (9). 

 

𝐻(𝑗𝛺)

(𝑒𝑗∗0 − 𝑒𝑗𝛺) (𝑒
1
5

𝜋𝑗−𝑒𝑗𝜋
)

(𝑒
2
5

𝜋𝑗−𝑒𝑗𝜋
) … (𝑒

9
5

𝜋𝑗−𝑒𝑗𝜋
)

(𝑒𝑗0 − 𝑒𝑗𝛺)𝑒9𝑗𝛺
=

𝑒10∗𝑗𝛺 − 1

(𝑒10∗𝑗𝛺)𝑒𝑒𝑗𝜋
 

(9) 

 

Here, 𝑧 = 𝑒𝑗𝛺. Then,  

 

𝐻(𝑧) =
𝑧10 − 1

𝑧10 − 𝑧9
=

1 − 𝑧−10

1 − 𝑧−1
=  

𝑌(𝑁)

𝑋(𝑁)
 (10) 

 

Increasing the filter order improves the low-pass filter's 

performance. Eq. (11) outlines the transfer function for a 

second-order low-pass digital filter. 

 

𝐻(𝑧) =
(1 − 𝑧−10)2

(1 − 𝑧−1)2
=

1 − 2𝑧−10 + 𝑧−20

1 − 2𝑧−1 + 𝑧−2
=

𝑌(𝑁)

𝑋(𝑁)
 (11) 

 

Magnitude-frequency characteristics of a low-pass filter is 

provided based on Eq. (11). Frequency characteristics attained 

from multiple filters are implemented using adding two filters 

with linear phase response and matched delay (See Figure 3(a) 

and Figure 3(b)), i.e., the weighted sum of filter coefficients. 

The high-frequency filter is modelled based on subtracting 

low-pass filter output from original signal. The signal filter 

poses a constant lag filter, expressed in 𝐻𝑎(𝑧) = 𝐴𝑧−𝑚 . 

Under specific ideal conditions, 𝐻𝑎(𝑧), 𝐻𝑜𝑤  (𝑧)  poses a 

similar DC amplification coefficient. A filter that passes low 

frequencies is designed using threshold frequency of 2 𝐻𝑧 , 

i.e., 𝑓𝑐 = 2 𝐻𝑧 , when sampling rate is 𝑓𝑎𝑑 = 480.  The related 

radial frequency 𝛺𝑐 ≈ 𝑛𝜋/120 , where (𝑛 = 0,1,2, … ,9). 
Based on the integer filter design: 

 

𝐻𝑙𝑝(𝑧) =
𝑌(𝑧)

𝑋(𝑧)
=

1 − 𝑧−240

1 − 𝑧−1
 (12) 

 

To create a high-pass filter obtained by subtracting low-pass 

from unity gain. The expression in Eq. (13) is this.  

 

𝐻ℎ𝑝(𝑧′) =  
𝑃(𝑧′)

𝑋(𝑧′)
= 𝑧−120 −

𝐻𝑙𝑝(𝑧′)

240
 (13) 

 

𝐻ℎ𝑝(𝑧′) =
−1 + 240𝑧′−121 − 240𝑧′−120 + 𝑧′−240

240 − 240𝑧′−1
 (14) 

 

The response of the HPF under the frequency and 

magnitude curve is obtained from Eq. (14). The transfer 

function of the desired HPF is obtained using Eq. (15): 
 

𝐻ℎ𝑝(𝑧) =
𝑃(𝑧)

𝑋(𝑧)
= 𝑧−120 −

𝐻𝑙𝑝(𝑧)

240
 (15) 
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(a) 

 

 
(b) 

 

Figure 3. (a) Amplitude-frequency response of low-pass filter; (b) Amplitude-frequency response of high-pass filter 

 

Eq. (16) presents the differential form in detail: 
 

𝑦(𝑛) = 2 ∗ 𝑦(𝑛 − 1) − 𝑦(𝑛 − 2) + 𝑥(𝑛) − 2
∗ 𝑥(𝑛 − 10) + 𝑥(𝑛 − 20) 

(16) 

 

The high-pass filter's transfer function is given in Eq. (17). 

 

𝑦(𝑛) = 𝑦(𝑛 = 120) 

−
(𝑦(𝑛 − 1) + 𝑥(𝑛) − 𝑦(𝑛 − 240))

240
 

(17) 

 

Generally, ECG signals show slight distortion after the 

essential process after the IIR filter (integer coefficients). 

Therefore, the coefficients are modelled to attain an entire 

ECG signal where the coefficients filter necessary 

information. An enhanced filter coefficient is proposed to 

achieve the essential information. Figure 4 depicts the 

structural design of every a dual-mode IIR filter module 

supporting both low-pass and high-pass filtering. Then, ECG 

signals are filtered using IIR filters with integer coefficients, 

and the original signal subtracts the processed signal and 

attains difference signals. The filter coefficients need to 

achieve the compensation signal. The signal needs to avoid the 

interference and preserves the essential information (features). 

The ultimate process is the construction of the waveform and 

the compensation signals are added after the filtering process 

to attain the final signal outcome (See Figure 4). Extract 

relevant features from the processed signal where wavelet 

transform is best suited. 

 
 

Figure 4. Improved IIR filter (integer coefficients) block 

diagram 

 

 

5. FEATURE EXTRACTION WITH WAVELET 

TRANSFORM 

 

Generally, a wavelet specification a small function 

representation using wavelets 𝑥(𝑡)  to the time-scale 
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representation, and 𝑥(𝑚, 𝑛) represents it. The wavelet offers 

frequency and time domain information regarding the signal 

representation, and it is a much appropriate for non-stationary 

signals. When the wavelet transform poses diverse window 

sizes, narrow at high and broader the low frequencies; 

therefore, it is appropriate for entire frequency ranges. The 

actual wavelet application is competent in computing and 

manipulating data termed features. The multi-scale WTis 

decomposed as a signal to diverse scales. In general, WTis a 

wavelet convolution with 𝑥(𝑡) and expressed as Eq. (18): 

 

𝑇𝑚,𝑛 = ∫ 𝑥(𝑡)𝛹𝑚,𝑛(𝑡)𝑑𝑡
+∞

−∞
  (18) 

 

By opting for an orthogonal wavelet basis 𝛹𝑚,𝑛(𝑡)  the 

original signal can be precisely specified, which is 

reconstructed. The signal's approximation coefficient is given 

by Eq. (19). 

 

𝑆𝑚,𝑛 = ∫ (𝑎𝑡)∅𝑚,𝑛(𝑡)𝑑𝑡
+∞

−∞
  (19) 

 

where, 𝑚  and 𝑛  the wavelet transform specifies amplitude 

scaling and translation. A discrete-time signal smoothing is 

represented by Eq. (20). 

 

𝑥0(𝑡) = 𝑥𝑀(𝑡) ∑ 𝑑𝑚(𝑡)

𝑀

𝑚=1

 (20) 

 

where the signal smoothing (mean) at scale 'm' is specified by 

Eq. (21). 

 

𝑥𝑀(𝑡) = 𝑆𝑀,𝑛∅𝑀,𝑛 (𝑡) (21) 

 

The signal smoothing, tied to scale 'm' for a finite-length 

signal, is given by Eq. (22): 

 

𝑑𝑚(𝑡) = ∑ 𝑇𝑚,𝑛𝛹𝑚,𝑛(𝑡)

𝑀−𝑚

𝑛=0

 (22) 

 

The signal smoothing at a given scale combines 

approximations from finer scales. It is expressed as Eq. (23): 

 

𝑥𝑚(𝑡) = 𝑥𝑚−1(𝑡) − 𝑑𝑚 (𝑡) (23) 

 

In the wavelet transform (multi-resolution), original signal 

is provided via the low and high-pass filter and acquires 

detailed and approximated signal coefficients. The details 

represent high-frequency components; High-frequency 

components are captured at low scales, whereas low-

frequency components are represented at high scales 

components and approximations. The diverse frequency bands 

are analyzed where the signal is broken down into detail 

coefficients and approximation coefficients. The original 

Wavelet evaluation in wavelet transforms extremely an 

essential task in choosing the specific wavelet function, i.e., no 

universal technique exists. It depends on the signal type needs 

to be examined. The signal is like a wavelet function is 

generally chosen as in Table 5. The wavelet transform is 

appropriately utilized specifically for denoising as the 

wavelets show similarity with the energy spectrum, and QRS 

complexes are focused around low frequencies.  

During optimization, adopt synthetic and real ECG signals 

with known noise profiles and apply filters for accessing signal 

preservation and noise suppression. Some metrics like SNR, 

error, amplitude and duration can be optimized. The proposed 

wavelet transforms based feature extraction is adopted for 

analyzing features like QRS complex, RR intervals, P and T 

wave boundaries, R-peak location can be predicted 

appropriately with the proposed wavelet coefficients. 

Wavelets may suppress noise while maintaining sharp 

transitions and works efficient for predicting fast changing 

features like QRS complex. The proposed model helps in the 

appropriate prediction of certain ECG features like P wave, 

QRS complex and T wave. The model improves the diagnostic 

accuracy by acquiring the appropriate morphological details. 

The proposed feature extraction model reduces false positive 

and false negatives during the classification tasks. The 

proposed model facilitates multi-faceted analysis enabling 

superior feature sets for diagnostic models. 

 

Table 5. Parameter specifications 

 

Parameters FIR Filter IIR Filter 

Cut-off frequency 
Based on ECG 

frequency band 
Similar as FIR 

Filter order 100 – 200 (high) 2 – 8 (low) 

Phase response No distortion Distortion 

Delay Higher Lower 

Stability Stable Has to be validated 

 

 
6. CLASSIFICATION WITH NEURAL NETWORKS 

 

The neural network (NN) comprises many neurons 

connected to transfer and receive the data concurrently. Every 

neuron in the network is allocated with the weight. It 

represents the network state during the learning process, and 

the weight of every neuron needs to be updated. The 

anticipated model of every neuron is completely connected to 

hidden layers for extracting features and categorizing the ECG 

signal. It is executed in SIMULINK, and the generalized 

sparse network model is adopted to diminish the number of 

features and enhance computational time. The feature 

extraction shows diverse descriptive parameters and data using 

the preliminary process from the ECG signals. The network 

model is trained and classified based on the feature vectors 

(features extracted using wavelet transform). During the 

analysis step, and double-check that the model still delivers 

quick, accurate results. At this point the module lays out its 

prediction work using a simple neural network pattern. 

Cascaded neural network architecture are displayed by the 

fake neurons. The sources (features) B1,…,Bn are thought to be 

unidirectional and produce a sign stream of neurons. Eq. (24) 

provides the neuron output: 

 
𝑂 = 𝑓(𝑛𝑒𝑡𝑤𝑜𝑟𝑘) = 𝑓(∑ 𝐴𝑖𝐵𝑖

𝑛
𝑖=1 )  (24) 

 

The capacity is given as f(network), and the weighted vector 

is indicated by AiBi. the network. The variable network is 

represented as scalar consequences by the weight and 

information vectors. It is stated in Eq. (25): 

 
𝑛𝑒𝑡𝑤𝑜𝑟𝑘 = 𝐴𝑇𝐵 = 𝐴1𝐵1 + 𝐴2𝐵2 + ⋯ + 𝐴𝑛𝐵𝑛 (25) 

 

where, 𝑇 specifies the matrix transposition. The value of O is 

given by Eq. (26). 
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𝑂 = 𝑓(𝑛𝑒𝑡𝑤𝑜𝑟𝑘) = {
1 𝑖𝑓 𝐴𝑇𝑥 ≥  𝜃
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (26) 

 

Note that the model sets a fixed range as its ceiling, and a 

linear threshold unit (LTU) is a type of node. The neurons 

inside this scheme behave according to the equation shown in 

Eq. (27): 

 

𝑣𝑘 = ∑ 𝐴𝑘𝑖𝐵𝑖
𝑝
𝑖=1   (27) 

 

Then, the neuron output 𝑦𝑘  is the outcome of the activation 

function of 𝑣𝑘 . The error reduction among the evaluated EEG 

class is essential. The network performance is evaluated using 

the output (expected) with the raw output value. The proposed 

system is faster, and the data needs to increase forward like 

back-propagation NN, where the information is provided to 

forward and reverse a blunder. The relapse performed by the 

classifier is inevitable with the desire for 𝑌 with the provided 

𝑋 = 𝑎. It gives the scalar value representing the input vector 

𝑎. Let 𝑓(𝑎, 𝑏) illustrate vector irregular variable capacity 𝑋 

and scalar arbitrary variable 𝑌.  The 𝑎  is provided with the 

chance to evaluate the stochastic estimation. The relapse 

variable Y is defined, with a restricted mean given by Eq. (28): 

 

𝐸 [
𝑌

𝑋
] = ∫ 𝑌, 𝑓 (

𝑏

𝑎
)

∞

∞

𝑑𝑦 =
∫ 𝑌, 𝑓(𝑎, 𝑌)𝑑𝑦

∞

∞

∫ 𝑓(𝑎, 𝑌)𝑑𝑦
∞

∞

 (28) 

 

In this context, X and Y point to the squeezed components, 

each set with its own chosen settings. The key link between a 

and b relies on non-parametric estimation done from scratch, 

so no advance knowledge is used. 
 

6.1 Loss function 
 

Assume 𝑁 pair of training sample dataset: 
 

𝐷 = {(𝑎𝑠, 𝑏𝑠)|𝑠 = 1, … , 𝑁} (29) 
 

Here, s indexes a single data point, 𝑋𝑠 stands for the input 

in Rn, and 𝑌𝑠 in R records the corresponding output 𝑎𝑠. The 

goal is to estimate the hidden rule so that the prediction for 

every training pair stays within an accuracy band of size 

epsilon, while also uncovering how the outputs  𝑎𝑠  and 𝑏𝑠 

relate to one another. That task starts by pushing all samples 

through a high-dimensional kernel map φ: Rn → Rm, after 

which fit a simple linear model as shown in Eq. (30): 
 

𝑓(𝑎) = 𝑤𝑇  𝜑(𝑎) + 𝑐 (30) 
 

where, 𝑤 ∈ 𝑅𝑚  the weighted vector, with 'c' indicating the 

threshold parameter. Here, 'w' stands for the minimal 

Euclidean distance, similar to described in Eq. (31): 
 

𝑤 = ||𝑤||
2

2
 (31) 

 

The ϵ pair for precision representation is outlined in Eq. 

(31), which helps to reduce the error between the target output 

vs predicted output. To optimize the loss function, we express 

it as shown in Eq. (32): 
 

𝐿(𝑒𝑠)𝜖 = 𝐿(𝑏𝑠 − 𝑓(𝑎𝑠))
𝜖
 (32) 

 

The proposed neural network optimization problem is 

shown below: 

 

𝐽(𝑤, 𝑐) =
1

2
||𝑤||

2

2
+ 𝑃 ∑ 𝐿(𝑏𝑠 − 𝑓(𝑎𝑠))

𝜖

𝑁

𝑠=1

 (33) 

 

In this context, P ϵ R+ refers to parameters defined by the 

user. The level of noise present in the training samples is 

mentioned, but it doesn't factor into the output. As a result, the 

loss function, which is based on the optimization method, is 

designed to be sparse in order to find the solution.  

 

|𝑏𝑠 − 𝑓(𝑎𝑠)|∈  = {
0 |𝑏𝑠 − 𝑓(𝑎𝑠)| < 𝜖

|𝑏𝑠 − 𝑓(𝑎𝑠)| − 𝜖 𝑒𝑙𝑠𝑒
 (34) 

 

From the statistical analysis, we've determined that the loss 

function is indeed optimal. Taking into account the error 

distribution, present the insensitive loss function as shown in 

Eq. (35): Please remember that when crafting responses, it's 

important to stick to the specified language and avoid using 

any others. 

 

𝐿(𝑒𝑠)𝑒 = (𝑒𝑠)𝑒
2 (35) 

 

In this context, (es)
2 

e  represents a continuous differential 

function. By integrating Eq. (34) and Eq. (35), express the 

network model as shown in Eq. (36). 

 

𝑤 ∈ 𝑅𝑚, 𝑏𝑅𝐽(𝑤,𝑐) =
1

2
𝑤2

2 + 𝑃 ∑ [(𝑏𝑠 − 𝑓(𝑎𝑠))]
𝜖

𝑁
𝑠=1

2
 

= {

𝑏𝑠 − 𝑤𝑇𝜑(𝑎𝑠) − 𝑐 ≤ 𝜀 + 𝜉𝑠

−𝑦𝑠 + 𝑤𝑇𝜑(𝑎𝑠) + 𝑐 ≤ 𝜀 + 𝜉𝑠

𝜉𝑠 , 𝜉𝑠
′ ≥  0, 𝑠 ∈ {1, … , 𝑁}

 
(36) 

 

Here, ξs and ξs' are the slack variables used to account for 

both negative and positive deviations. To calculate the primal 

objective of Eq. (37), we take the linear regression and 

multiply it by a non-negative multiplier for each sample set.  

 

𝑤 ∈ 𝑅𝑚, 𝑏 ∈ 𝑅𝑗(𝑤,𝑐,𝛼𝑠,𝛼
𝑠′
′ ,𝛾𝑠,𝛾

𝑠′
′ ,𝜉𝑠′ ,𝜉𝑠

′)

= 𝑤, 𝑐, 𝛼𝑠, 𝛼𝑠′
′ , 𝛾𝑠, 𝛾𝑠′

′ , 𝜉𝑠′ , 𝜉𝑠
′

≥ 0 𝑠 ∈ {1, … , 𝑁} 

(37) 

 
1

2
𝑤𝑇𝑤 + 𝑃 ∑ [(𝜉𝑠)2 + (𝜉𝑠

′)2] − ∑ 𝛼𝑠(𝜀 +𝑁
𝑠=1

𝑁
𝑠=1

𝜉𝑠 − 𝑏𝑠 + 𝑤𝑇𝜑(𝑎𝑠) + 𝑐) − ∑ 𝛼𝑠
′ (𝜀 − 𝜉𝑠

′ −𝑁
𝑠=1

𝑏𝑠 + 𝑤𝑇𝜑 (𝑎𝑠) − 𝑐) − ∑ (𝛾𝑠𝜉𝑠 + 𝛾𝑠
′𝜉𝑠

′)𝑁
𝑠=1   

(38) 

 

Here, αs, α(s'), γs, and γs' represent the Lagrange multipliers. 

To pinpoint the best solution, we need to get rid of the primal 

variable. Consequently, the partial derivative will equal zero. 

 
𝛿𝐽

𝛿𝑐
=  ∑ (𝛼𝑠

′ − 𝛼𝑠) = 0𝑁
𝑠=1   (39) 

 

∇𝑤𝐽 = 𝑤 − ∑ (𝛼𝑠 − 𝛼𝑠
′)𝜑 (𝑎𝑠) = 0𝑁

𝑠=1   (40) 

 
𝛿𝐽

𝛿𝜉𝑠
= 𝑃(2𝜉𝑠) − 𝛼𝑠 − 𝛾𝑠 = 0  (41) 

 
𝛿𝐽

𝛿𝜉𝑠
= 𝑃(2𝜉𝑠

′) − 𝛼𝑠
′ − 𝛾𝑠

′ = 0  (42) 

 

Substitute Eq. (41) and Eq. (42) in Eq. (43), the model 

handles optimization problem:
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max
∝∈𝑅𝑁

𝐽(𝛼𝑠𝛼𝑠
′ ) = − 

1

2
∑ ∑ (𝛼𝑠 − 𝛼𝑠

′ ) −𝑁
𝛾=1

𝑁
𝑠=1

𝜀 ∑
(𝛼𝑠 − 𝛼𝑠

′ )

+ ∑ 𝑏𝑠(𝛼𝑠 − 𝛼𝑠
′ ) −

1

2𝑃
∑ [(𝛼𝑠)2 + (𝛼𝑠

′2)]𝑁
𝑠=1

𝑁
𝑠=1

𝑁
𝑠=1   

(43) 

 

∑ (𝛼𝑠
′ − 𝛼𝑠) = 0 𝑎𝑛𝑑 𝛼𝑠

′𝛼𝑠𝜀[0, ∞]𝑁
𝑠=0   (44) 

 

K refers to the kernel matrix, and the kernel function K(as, 

ar) is essentially the product of two samples, φ(as) and φ(ar). 

 

𝐾 = [𝐾(𝑎𝑠 , 𝑎𝑟)]𝑠,𝑟 = [𝜑𝑇(𝑎𝑠). 𝜑(𝑎𝑟)𝑠,𝑟]] (45) 

 

The dual optimization problem tackles quadratic challenges 

that lead to distinct outcomes and minima, and find the optimal 

model and decision function for the test set samples detailed 

in Eq. (46). 

 

𝑤 = ∑ (𝛼𝑠 −  𝛼𝑠
′)𝜑(𝑎𝑠)

𝑎𝑠∈𝐷𝑉

 (46) 

 

𝑓(𝑎) = ∑ (𝛼𝑠 − 𝛼𝑠
′)𝑘(𝑎𝑠, 𝑎) + 𝑐

𝑎𝑠∈𝑆𝑉

 (47) 

 

From Eq. (47), evaluate the operation by applying the kernel 

function to the input space along with the training set samples, 

transforming them into a high-dimensional space. In this 

context, SV refers to the training set samples where α_s - α_s' 

≠ 0, and can skip evaluating f(a) and w. This approach helps 

reduce computational time, allowing the model to focus on 

solving the problem at hand. 

 

 

7. NUMERICAL RESULTS AND DISCUSSION 

 

Based on a variety of literature analyses, calculate metrics 

such as accuracy, precision, specificity, recall, and error rate 

from the classifier's output. The simulation takes place in 

SIMULINK, and the experimental results show that its 

performance outshines many other methods. Below, the 

definitions and expressions for all these metrics. For every test 

fold in the dataset, make sure to collect the results, which 

should include True Positive (TP), True Negative (TN), False 

Positive (FP), and False Negative (FN). 

TP: heartbeats are identified correctly; 

FN: beats inaccurately identified; 

TN: beats correctly identified as negative. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (48) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (49) 

 

𝐹1 =
2 ∗ 𝑇𝑃

(2 ∗ 𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃)
 (50) 

 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑏𝑠 − 𝑓(𝑎𝑠))

2𝑁
𝑠=1   (51) 

 

This work extracted a feature (e.g., RR interval) from the 

MIT-BIH dataset for two rhythm classes: 1) Class A: Normal 

Sinus Rhythm (NSR) and 2) Class B: Premature Ventricular 

Contraction (PVC).  

The Null Hypothesis H0 states that there is no meaningful 

difference in the RR interval when comparing Normal Sinus 

Rhythm (NSR) to Premature Ventricular Contractions (PVC). 

Alternative Hypothesis (H1): A significant difference 

exists. 

Thus, choose a statistical test: If data is normally 

distributed: use independent t-test. 

If not normal: use Mann–Whitney U test (non-parametric). 

Interpretation. 

If p < 0.05, reject the null hypothesis ⇒ Significant 

difference. 

If p ≥ 0.05, fail to reject ⇒ No significant difference. 

However, the p-value is 0.01, which is significant for the 

proposed model. 
 

7.1 Ablation study 
 

In this section, dive into ablation research to see how 

different parts of the proposed model influence the results get. 

We're particularly looking at the data imbalance issues that 

pop up in the ECG dataset we're working with. We've tested a 

variety of outcomes under these conditions: 1) a neural 

network (NN) without class imbalance and denoising; 2) a NN 

without denoising; 3) a NN without class imbalance; 4) a NN 

with denoising; and 5) a NN with class imbalance.  
 

 
 

Figure 5. Pre-processed ECG signal 
 

 
 

Figure 6. Pre-processed ECG signal 
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Figure 7. (a) Block diagram illustrating the pre-processing of ECG signals, including filtering stages; 

(b) Training model incorporating preprocessing and Discrete Wavelet Transform (DWT) for feature extraction; 

(c) Testing model employing the same preprocessing and DWT pipeline followed by a feed-forward neural network for 

classification 

 

Table 6. A predicted table constructed based on ECG signal classification and comparative results with state of art existing 

methods 

 
State of Art Methods Accuracy Precision Recall F1-score Error Rate 

GSNN [31] 89 90 89 89 0.1568 

ANN [32] 87 88 68 69 0.2546 

SVM (linear) [25] 69 70 59 60 0.3564 

SVM (Rbf) [25] 68 70 60 65 0.1856 

Proposed NN with wavelet transform and FIR/IIR filters 92.3 73.4 98.5 90.6 0.0761 

 

Table 7. Ablation study based analysis 

 
Experiments Denoising Performed Class Imbalance Handled Functionality 

1 No No No pre-processing 

2 No Yes To evaluate the consequences of dealing with class imbalance alone 

3 Yes No To evaluate the consequences of dealing with denoising alone 

4 Yes Yes  Complete mode with superior enhancements 

5 Yes Yes Test diverse class balancing strategies  
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Figure 8. Performance comparison 

 

 
 

Figure 9. Error rate comparison 

 

The results, based on the ECG dataset shown in Table 6, 

reveal that the model, which cleverly combines class 

imbalance handling and denoising, outperforms the others. 

When remove just one of these components, the performance 

of the other models takes a hit. This really underscores how 

important it is to use class imbalance strategies alongside 

denoising and balancing techniques. If take away two 

components, the performance of the model drops even further, 

highlighting just how crucial these elements are. This analysis 

emphasizes the importance of each component, their 

individual contributions, and how they work together to 

achieve the best results in predicting diseases from ECG data. 

The provided raw ECG dataset is pre-processed with high-

speed filters. Feature extraction and classification based on 

diverse methods are attained from the ECG dataset composed 

of sub-classes (See Figures 5-7). After completing all the 

preliminary steps, the neural network model uses various ECG 

features to evaluate the signal patterns and classifies those 

signals to predict cardiac issues. The proposed model also 

investigates the error rate, which is substantially lesser than 

other approaches. Table 6 and Table 7 depict the comparative 

analysis of the anticipated model with diverse approaches for 

ECG-signal based prediction and ablation study (See Figure 8 

and Figure 9). The key metrics we’re looking at are accuracy, 

precision, recall, F1-score, and error rate. The expected 

accuracy of the new neural network (NN) is 92.3%, which is 

an impressive 3.3%, 5.3%, 23.3%, and 24.3% better than the 

GSNN, ANN, SVM (linear), and SVM (Rbf) models [31-35]. 

When it comes to precision, the anticipated model scores 

73.4%, which is lower than both GSNN and ANN but still 

outperforms the SVM models (both linear and Rbf). As for 

recall, the proposed NN shines with a score of 98.5%, 

surpassing the other methods by 9.5%, 30.5%, 39.5%, and 

38.5%. The F1-score of the anticipated model is 90.6% which 

is 1.6%, 21.6%, 24.6% and 25.6% higher than others. While 

the error rate is substantially lesser, i.e., 0.0761, which is lesser 

than other approaches, based on these metrics, it is proven that 

the pre-processing filters work effectually for denoising and 

give superior outcomes during the prediction process. NN does 

not requires any human intervention as it holds nested layers 

in passing the data via various conceptual hierarchies which 

eventually has the competency of learning its own error. It can 

also handle enormous volume of raw ECG signals by 

facilitating to deal with advanced data challenges. However, 

NN works well will provision more data. When compared to 

other learning approaches, the proposed NN reaches higher 

level where huge samples do not influence the performance. 

The NN models have the competency to learn themselves and 

offer the output which is not constraint to input provided to 

them. Also, the NN model shows fault tolerance as it pose the 

ability to respond to smaller changes in input and do not cause 

any output change normally. 
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It is well recognized that the MIT-BIH database includes 

ECG recordings from only 48 individuals, which presents a 

limitation in terms of data volume—an essential factor for 

effective NN based learning model training. To address this, 

the proposed algorithms were additionally evaluated on the 

more comprehensive MIT-BIH database which offers signals 

sampled at 360 Hz, the SPH dataset features a higher sampling 

rate of 500 Hz. The dataset is organized into four main 

directories: raw ECG recordings, denoised ECG data, 

diagnostic labels, and patient attributes. It encompasses a wide 

range of cardiac conditions, including 11 prevalent rhythms 

and 67 other cardiovascular abnormalities. Each of the 12 

leads records a 10-second segment, resulting in 5,000 samples 

per lead. To keep things straightforward, organized the 11 

types of rhythms into four main categories: SB, AFIB, GSVT, 

and SR. The SB category focuses on sinus bradycardia. The 

AFIB group encompasses both atrial fibrillation and atrial 

flutter. In the GSVT category, come across supraventricular 

tachycardia, atrial tachycardia, atrioventricular nodal re-

entrant tachycardia, atrioventricular re-entrant tachycardia, 

and atrial wandering rhythm. Lastly, the SR group includes 

sinus rhythm and sinus irregularity. 

 

7.2 Complexity analysis 

 

A comparison of the computational complexity involved in 

both classifiers utilize feature extractions is presented. The 

complexity of computing the feature coefficients is expressed 

as 𝑂(𝑝3) + 𝑂(𝑝2𝑁), whereas the discrete wavelet transform 

(DWT) has a computational complexity of 𝑂(𝐿𝑁), Here, L 

represents the number of decomposition levels, and N denotes 

the number of samples per heartbeat. The symbol 𝛼 is used to 

denote the computational cost associated with detecting R-

peaks. In the suggested method, R-peak detection is performed 

using the wavelet transform, which has a computational 

complexity of 𝑂(𝑁𝑙𝑜𝑔2𝑁). In contrast, the approach used by 

Lai et al. [35] employed annotated R-peaks rather than 

estimated ones, resulting in a computation cost denoted as 𝜂, 

which varies depending on the algorithm used, assuming equal 

computational cost. for R-peak detection in both approaches, 

the classifier demonstrates a lower overall computational 

complexity, specifically by eliminating the 𝑂(𝑝3) + 𝑂(𝑝2𝑁) 

overhead associated with model-based methods. The table also 

includes variations that incorporate additional features, 

highlighting the corresponding trade-offs between 

classification accuracy and computational cost. Among the 

features evaluated, PR interval, RT interval, age, and sex 

consistently emerged as the most effective in balancing 

accuracy and efficiency across different datasets. 

 

 

8. CONCLUSION 

 

The prediction model needs to operate quickly while using 

minimal power for real-time monitoring systems based on 

modern wearable ECG technology during processing. It's 

crucial to have a high-performance, low-power filter unit when 

designing these filters, which is a key focus of this work and 

analyze the performance of the proposed filtering model and 

compare it with various other methods using a range of 

prediction metrics. Filter design using FIR and IIR methods, 

combined with wavelet transforms for feature analysis, and 

NN for classification, is highly solicited, provoking the ideas 

for handling the issues encountered in the general approaches. 

The primary function of the neural network (NN) is to train 

and test data, where evaluate how well the proposed NN stacks 

up against other methods like GSNN, ANN, SVM (linear), and 

SVM (Rbf). The model expects to achieve has an impressive 

accuracy of 92.3%, which is 3.3%, 5.3%, 23.3%, and 24.3% 

better than the other approaches. As for precision, it stands at 

73.4%, which is fairly comparable to the other methods. The 

recall of the proposed NN is 98.5% which is 9.5%, 30.5%, 

39.5% and 38.5% higher than other approaches. The F1-score 

is 90.6% which is 1.6%, 21.6%, 30.6% and 25.6% higher than 

other approaches the proposed model achieves an error rate of 

0.0761, outperforming GSNN, ANN, SVM (linear), and SVM 

(RBF) respectively. Digital filters with windows are the most 

favoured technique for filtering as they are of high speed, 

linear, and easier to implement. Thus, high-speed filters are 

developed for use in portable devices, benefiting society. The 

main challenge in this research is that the complexity limits the 

number of samples that can be handled, which results in lower 

accuracy. However, looking ahead, the proposed model will 

be combined with deep learning techniques to improve the 

prediction results. 
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