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This study focuses on designing a pupil ellipse detector for wearable eye trackers. 

The detector uses both a traditional method producing pupil patches in different resolutions 

and a learning model segmenting these patches. Therefore, the frequency is increased as the 

input size of the learning model will be reduced according to the structure of the received 

image. This novel approach in the pupil detection field was named as Retro-Oriented Mind 

(ROM). The study also presents metrics measuring the segmentation accuracy and a 

correction mechanism improving ellipse parameters if metric scores are not acceptable. 

The combination of novel metrics and correction mechanisms was named as Pupil Ellipse 

Trend Analysis (PETA). Using ROM and PETA, the proposed study has achieved an 

accuracy of over 90% and a frequency of more than 120 Hz (from about 30 Hz) in analyses 

of LPW and Dikablis datasets. These measurements reveal the potential of the study to be 

used for both medical and general purposes. Code and details: https://github.com/Serif-

NNR/rom-peta-pupil-detection. 
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1. INTRODUCTION

Eye tracking systems serve two primary purposes: (i) 

detecting the subject’s gaze in the external environment, and 

(ii) understanding the effects of the area the subject observes

on oneself. Both functions render eye tracking applicable

across various domains, which can be categorized into three

main areas: subject analysis, object analysis, and device

control. Subject analysis provides valuable insights into the

user's biological, psychological, educational, and experiential

contexts whereas object analysis allows to evaluate the object

with which the subject interacts. On the other hand, device

control enables triggering and execution of predefined actions

through certain eye behaviors.

Except for applications handled in relatively up-to-date 

reviews [1-8], numerous studies have been presented in recent 

years. For instance, Wang et al. trained a gaze-guided attention 

network with X-Ray images that both reduces the dataset 

preparation time and enhances classification accuracy with 

specific configurations [9]. In addition, Sun et al. achieved 

high accuracy in identifying perpetrators and distinguishing 

innocents in eye movement analysis [10]. Issever et al. [11] 

measured the cognitive load of computer programmers 

according to their demographic and professional features when 

solving some object-oriented code tasks. Alternatively, 

Vinuela-Navarro et al. [12] investigated the effects of post-

COVID-19 conditions (PCC) with saccades, fixation, and 

pupil responses. The participants with PCC are prone to longer 

latencies in some saccadic paradigms, weaker fixation stability 

and closer eye positions for vergence. In another application, 

Xu et al. [13] designed a wheelchair controlled by eye 

movements and based on a learning model for individuals with 

ALS disease [13]. Despite limitations, these applications offer 

promising models for the future, where eye movements could 

serve as auxiliary or co-control mechanisms rather than main 

control interfaces. Furthermore, control applications such as 

surgical robot control [14] and bedridden patients show the 

impact of tracking eye movements [15]. 

The pupil, a fundamental feature in the field of eye tracking, 

forms the cornerstone for designing studies in this domain. 

This process serves as the foundation for critical eye tracking 

functions such as gaze point producing, fixation detection, 

blink detection, and angular velocity calculating; it deeply 

affects the system performance and accuracy [16]. Also, our 

experience suggests that smoothing-like filters may not be 

beneficial for the correction of inaccurate pupil data due to 

effects on accurate data, especially true saccades. Therefore, 

the selection of a pupil detector operating within a desired or 

acceptable error rate is crucial [8, 17]. Moreover, system 

performance is another critical factor to bear in mind. Certain 

fields, such as medical diagnosis and real-time device control, 

necessitate high-speed tracking to fulfill their objectives. 

Conversely, others must prioritize low resource consumption 

on mobile applications with limited resources. In such 

scenarios, the choice of a pupil detector should be guided by 

factors like accuracy rate, computation time, and latency 

duration required for the task at hand. Addressing these 

concerns, this study proposes a novel hybrid pupil detection 

approach with real-time functionality. It not only simplifies the 

decision-making process when choosing between various 
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pupil detectors, each with different trade-offs between real-

time capability and accuracy, but also offers a solution that can 

mitigate this complexity. 

 

1.1 Literature review 

 

Researchers have explored various methods for pupil 

detection [18-21], classified into two categories: i) traditional 

methods, and ii) machine learning models. 

 

1.1.1 Traditional Methods 

Traditional methods can also be divided into three 

categories: amplitude-based, edge-based, and hybrid 

amplitude-edge methods. Amplitude-based traditional 

approaches encompass various techniques. For example, 

Morimoto et al. detected the pupil by subtracting bring and 

dark areas from each other via corneal reflections [22]. 

Navaneethan and Nandhagopal applied morphology closing 

operations on binarized images [23]. Glabbur et al. [24] 

utilized a region-coloring approach based on connected 

components, merging similar regions to identify the pupil. 

Abbasi and Khosravi [25] tracked the pupil with a genetic 

algorithm after simple thresholding operation. Bonteanu et al. 

[26] designed a binarization process based on the first negative 

slope of cumulative distribution function of grayscale images. 

Afterwards, they used Convex Hull operation to derive pupil 

parameters. In addition, Wan et al. [27] proposed a horizontal 

weighted Haar-like feature less effected by blinking, 

eyelashes, and eyelids. Timm and Barth [28] devised a 

gradient based algorithm, described and evaluated in the study 

by Krause and Essig [29]. In this study, the image resolution 

is reduced, and a coarse pupil position is attempted to be 

determined. Subsequently, the approximate pupil area on the 

original resolution is extracted, and fine detection is 

performed. Manuri et al. [30] improved the Starburst 

algorithm by applying some pre-processing operations and the 

ray tracking method for fine-tuning of pupil segmentation. 

Among these methods, Wan et al.'s [27] study stands out as 

one of the most successful in the amplitude-based traditional 

category. 

In edge-based approaches, researchers have explored 

diverse techniques for pupil detection (PD). For instance, ElSe 

focuses on selecting pupil curves among edges detected by 

Canny detector [19]. In another research, PuRe, combines 

curves among edges detected by Canny detector after some 

morphological operations [31]. Additionally, PuRe calculates 

accurate metrics according to integrity of generated ellipse. 

PuReST is an optimization method designed that defines a 

ROI to be used in the next detection cycle of the PuRe [32]. 

Furthermore, Susitha and Subban [33] utilizes Sobel based 

method to remove eyelids. Indeed, edges are scored based on 

their connections with other edges, with the pupil selected 

based on the highest score. Li et al. [34] selected a possible 

pupil ellipse among curves found by Canny detector. This 

selection requires eyeball information to select suitable pupil 

curves for their geometrical structure according to the center 

point of the eyeball. Among these edge-based studies, Li et 

al.'s [34] work is highlighted as one of the most successful in 

the traditional category. 

In hybrid traditional approaches, researchers have explored 

methods that combine amplitude-based and edge-based 

techniques to detect the pupil. For instance, ExCuSe selects 

curves found by Canny detector in most darker areas and fits 

a suitable ellipse [19]. Alshemmary [35] use gamma 

correction, smoothing operations, and binary thresholding, 

followed by the Hough transform to detect pupil and iris areas. 

Bonteanu et al. [26] converted the image to its binary version, 

and they fitted ellipses using Convex Hull and evaluated them 

according to the integrity and ellipticity of each ellipse. If the 

evaluation outcome is insufficient, the same image is subjected 

to binarization with a lower threshold value. Kassner et al. [36] 

found the curves with the Canny detector in the region with 

low amplitudes. Lastly, they defined the ellipse parameter with 

or without a combination of pre-ellipse parameters fitted to 

these curves. Notably, one of the most successful studies in the 

hybrid traditional method category was by Bonteanu et al. 

[26]. 

In brief, amplitude-based methods assume that the pupil is 

the darkest area in the image, edge-based methods select the 

most elliptical region as the pupil, and hybrid methods 

combine both amplitude and edge information. The point to 

note here is that the reasons of the inaccurate results produced 

by methods using edge information cannot be foreseen. 

Underlying this lies the ability of things that can move over 

time, such as shadows, eyelids, eyelashes, and reflections, to 

instantaneously form elliptical shapes. Also, considering the 

possibility of the eye camera moving, these things don't even 

need to be moving. Amplitude information, on the other hand, 

offers precision by eliminating areas darker than the pupil 

before the experiment or configuring the method based on a 

relevant subject to obtain accurate pupil information. 

 

1.1.2 Machine learning models 

Learning models offer a versatile approach in PD, extending 

beyond merely finding the pupil to encompass the detection of 

various eye features, including the eyeball, iris, gaze vector, 

eye corner points, sclera, and eyelid.  While learning models 

can be trained to perform the specific task of PD by directly 

calculating the center point coordinates or segmenting the 

pupil region, the latter is more common. Because the size of 

the pupil ellipse is a crucial factor in certain subject analysis 

studies [37, 38]. Additionally, since a learning model may 

utilize both amplitude and edge information, precautions may 

not be taken in the initialization step of the approach to avoid 

inaccurate results. Indeed, there's a trade-off between 

traditional methods and learning models, balancing accuracy 

against computation time. While traditional methods run real-

time with some localization lacks, learning models predict 

accurate with longer execution times. 

One of the most popular learning models, Fuhl et al. [39] 

designed the Pistol model between ResNet-18 and ResNet-34 

to detect pupil, iris, eyelids, and other eye features such as eye 

opening, gaze vector and eyeball. Chinsatit and Saitoh [40] 

classified images as open, near open and closed with AlexNet, 

then detected pupil center points with a ConvNet trained 

separately for each class. Lee et al. [41] suggested a fixed-

sized patch with 9 cells pointing to the pupil area for remote 

trackers. The median cell should have the lowest amplitude 

average in this design to be able to contain the pupil segmented 

with ResNet. Chen et al. [42] trained a model named PCR-Net 

to detect pupil center and radius via 7 points placed between 

two eye corners. Gou et al. [43] developed an encoder-decoder 

network named Multiscale Attention Link for remote trackers 

to obtain pupil center points. Alternatively, Shi et al. [44] 

proposed the LVCF model containing V-Net for segmentation 

and LSTM for tracking. Wang et al. [45] predicted pupil center 

point and pupil radius instead of ellipse parameters, using Res-

Net and Vision Transformers. Many studies also use UNet for 
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segmentation with different hyperparameter optimizations and 

dataset preferences [7, 8, 46-48].  

However, these models often require a large number of 

accurately labeled pupil images. This situation can pose 

challenges in terms of both training durations and labeling 

costs. Considering the dataset quality is not sufficient, a 

suitable model cannot be obtained. Although transfer learning 

is employed to overcome this problem, this approach may not 

entirely solve the relevant issue. In response to this negativity, 

Guo et al. [49] proposed a segmentation framework using 

Swin Transformers. Here, images were randomly masked with 

patches to achieve higher success with a smaller training set. 

Afterwards, segmentation was made with a network that 

combines Swin-Transformer blocks and UNet. Maquiling et 

al. [50] and Niu et al. [51] generated synthetic images based 

on light and reflection intensities using a Gaussian 

distribution, testing them with VR-based real images. They 

also leveraged the Segment Anything Model (SAM) for 

notable results with VR images, showcasing SAM’s potential 

in eye region annotation and segmentation [52].  

Some other studies applied various processing methods 

directly to segmentation maps of a learning model. These 

methods were generally like operations applied in traditional 

methods, presenting a rather unconventional way of enhancing 

model outputs using traditional techniques. As an example, 

study within this scope, Kim and Lee [53] selected the most 

elliptical area segmented by DeepLab v3+ as the pupil and 

used a type of interpolation for ellipse parameters with low 

segmentation map information using next and previous 

parameters. Gowroju and Kumar [48] proposed to use 

morphological processing to the segmentation map of UNet to 

perform a fine-tuning. Moreover, researchers aimed for faster 

performance by adopting regression-based methods instead of 

larger deep learning models. For example, Gou et al. [54] used 

shape augmented cascade regression model initialized with 

synthetic eye images to find pupil center point. Xiang et al. 

[55] suggested a classification and regression-based model to 

calculate pupil center point for scale mapped images 

addressing different resolution concerns.  

An innovative approach in PD diverges from existing 

studies, focusing on cropping-based models. Some researchers 

have employed cropping to enhance the accuracy of models, 

while others have utilized it for faster inference times. For the 

accuracy of the model, PupilNet tries to select 24×24 patches 

containing pupil area on 16 times down-scaled images with a 

CNN model, and detect pupil center point with the second 

CNN36. Alternatively, Antonioli et al. [56] trained two UNets 

(just for pupils) to find a fix-sized pupil patch that is smaller 

2.67× than the original image, and to segment the pupil area 

on the selected patch. For inference time, Vera-Olmos and 

Malpica [57] presented two encoder-decoder networks to 

select fix-sized patch that is 17× lower than the original image, 

and segment it. Byrne et al. [58] combined a cropping 

approach with pretrained UNet based on ResNet34 encoder for 

synthetic images, presenting Leyes method. The proposed 

fixed-size cropping method can be performed in two ways: the 

first is with respect to the image center, and the second is based 

on the result from the PuRe method. According to their 

algorithms, if the accuracy value of PuRe is sufficient, 

cropping is applied, and the cropped area is given to the model. 

Then if the model output indicates that the pupil is close to the 

edges, the model is re-predicted based on a crop of the same 

size around the relevant region. On the other hand, in the case 

of PuRe accuracy is not sufficient, cropping is done centrally. 

Additionally, their synthetic image generation approach 

operates based on a Gaussian distribution, creating content 

based on light and reflection intensity. 

According to the comparisons they have shared, studies like 

Fuhl et al. [39] present remarkable approaches thanks to their 

performances.  

In the literature described above, the most recent studies, 

published at the end of 2023 and in the first half of 2024, 

include [42, 43, 50, 52, 58-63]. These studies reveal that 

current PD methods focus on three main directions. The first 

direction aims to reduce resource requirements and increase 

system frequency by attempting to minimize input dimensions 

in various ways. The second direction measures performance 

in pupil detection by employing different models, model 

components, and training methods (e.g., synthetic images) 

developed in the field of image processing. The third direction 

primarily focuses on increasing the frequency in tracking 

methods. Additionally, the differences between the most 

recent studies in literature and the method proposed in this 

study will be addressed in the discussion section. 

On the other hand, it is important to note that we have 

refrained from disclosing the accuracy metrics attained in 

studies addressed in literature. This is because some built-in 

datasets yield impressive accuracy even when subjected to a 

simple traditional method [7]. Additionally, general datasets 

analyzed in these studies may contain considerably erroneous 

annotations [64, 65]. Consequently, there's a need for a 

comprehensive benchmark in PD studies, possibly using a 

dataset designed and validated by researchers and 

professionals from diverse domains such as engineering and 

medicine. 

 

1.2 Motivation and contributions 

 

LEyes stands out as the pioneering study combining a 

learning model with a traditional method [58]. It employs 

PuRe as an edge-based traditional method and UNet as the 

learning model, although its strategy isn't solely patch-based. 

Generally, this combination was specially used to expedite the 

training of synthetic images with diverse sensor specifications, 

eye appearances, and environmental conditions. However, the 

study doesn't thoroughly investigate the impact of the 

traditional method on the learning model. Also, the images 

were processed with the central cropping or an edge-based 

method which is relatively difficult to predict the potential for 

erroneous output. Eventually, fixed-size cropping may result 

in the obtained image not consisting solely of the pupil, but 

rather containing various other objects. Therefore, fixed-size 

cropping may not be the most effective way to expedite the 

inference process. 

This study focuses on developing a real-time and accurate 

pupil ellipse detection pipeline for wearable eye tracking 

systems, addressing challenges and limitations observed in 

existing approaches. To achieve this goal, a hybrid approach 

named Retro-Oriented Mind (ROM) combines a novel method 

in traditional category and learning model. The traditional 

method aims to find a dynamically determined rectangle patch 

potentially containing the pupil, while the learning model 

segments the pupil region within the patch. Thus, by reducing 

the input size of the learning model through a traditional 

method, ROM benefits from both real-time and accurate 

property as in a traditional method and a learning model, 

respectively. Also, ROM prioritizes an amplitude-based 

traditional method, allowing for error pre-detection and 
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adjustment of environmental conditions. Essentially, ROM 

minimizes the trade-off between frequency and accuracy by 

combining traditional and state-of-the-art approaches. In other 

words, the first mechanism of ROM truncates or prunes the 

problem domain and purify it from unnecessary information 

as much as possible, and the second mechanism fine-tunes the 

process to achieve precise localization. 

Another objective of the study is to introduce a new concept 

named Pupil Ellipse Trend Analysis (PETA). PETA is the way 

to measure detection accuracy for outputs of the learning 

model and to correct pupil ellipse parameters using previously 

parameters if detection accuracy metrics are insufficient. By 

using PETA as a post-processing step, it is desired to prevent 

especially inaccurate jumping data which may be observed 

because of a high relative angular velocity, deficient pupil 

information, unwanted shakes of the eye camera, and wrong 

detection maps. 

As the contributions we present: 

• We introduce a new concept ROM that combines 

traditional methods and learning models based on PD domain 

knowledge and causality. Also, unlike many existing studies, 

we don't directly utilize UNet as the learning model for ROM. 

Instead, we compare the performance of existing segmentation 

models, selecting the most suitable one. 

• Although amplitude-based traditional methods have 

roughly less attention compared to others, they are the only 

category of methods that allow for definitive precautions to 

counter factors that may negatively affect detection accuracy. 

However, ensuring that the pupil is the darkest area in the 

images may not always be feasible. In this study, unlike other 

similar studies, the proposed amplitude-based traditional 

method in the scope of ROM does not assume the pupil to be 

the darkest amplitude. It combines amplitude, size, and 

position information to enable successful rough detection even 

when this darkest area criterion is not met. Thus, it also aims 

to enhance the effectiveness of accuracy-boosting precautions 

that can be taken before the session. 

• Unlike previous studies with fixed input sizes, we enable 

encoder-decoder architectures in ROM to work with different 

image sizes using our proposed patching process. Uniquely 

qualifying the patching for real-time operation, we also 

arrange learning model parameters for real-time performance 

in accordance with the average patch size of the proposed 

traditional method. 

• Introducing the PETA concept, we propose two new 

accuracy metrics and evaluate the model outputs with these 

metrics. Unlike past studies using various morphological 

methods on segmentation maps [48], we evaluate metrics 

directly from segmentation maps. We also design a procedure 

to improve inaccurate results by evaluating segmentation 

output with these metrics, addressing the common issue of 

jumping data in PD.  

• We introduce an automatic configuration mechanism to be 

used defining traditional method settings. Thereby, we foresee 

that unsuitable configurations such as so high or low 

thresholds that can be defined by users may be prevented using 

this mechanism. In contrast to our work, previous auto-

configuration selection techniques in PD remained at the 

sensor level and were not addressed at the application level 

[66]. 

The organization of this paper is outlined as follows: 

Section 2 elucidates the design of ROM and PETA 

components, while Section 4 provides an analysis of the 

proposed study based on the initialization and setup steps 

detailed in Section 3. Section 5 offers a comparison between 

our detector and other study, and Section 6 presents in an in-

depth discussion of the findings and implications. Lastly, 

Section 7 addresses a conclusion of the study. 

 

 

2. METHODOLOGY 

 

The system's architecture comprises three key components: 

i) the traditional method, ii) the learning model within the 

scope of ROM, and lastly iii) PETA step. The traditional 

method process requires a grayscale input image and a 

configuration (thresholding etc.) to be used in finding pupil 

patches and exports a patch that will be in reduced resolution 

compared to the input image. Subsequently, learning model 

receives the patch and uses it to segment pupil area within the 

patch. Next, fitting an ellipse to segmentation map is 

actualized here. The PETA component comes into play by 

calculating accuracy metrics using the ellipse parameters and 

potentially making corrections if necessary. For an illustrative 

depiction of this architecture, given Figure 1, which represents 

the system as a top-level activity within an SADT (Structured 

Analysis and Design Technique) diagram [67]. 

 

 

 
 

Figure 1. The general structure of the present study as a top-

level activity of SADT diagram and the visualized result 

according to the pupil patch received from the traditional 

method and ellipse parameters calculated by the model step 

 

It's essential to acknowledge that manually determining the 

traditional method configuration may lead to the patch 

containing insufficient or no pupil region when the image 

contains a pupil. This negatively impacts detection accuracy.  

To address this issue, an optional mechanism has been added 

to the system. This mechanism works at a desired time interval 

(e.g., every second) in a separated thread. It takes the input 

image which it receives at the end of the time interval and 

actively seeks to identify the traditional method configuration 

that optimally suits the given image. Thus, it tries to provide 

reliable and precise results. 
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2.1 Traditional method 

 

The causes of inaccurate results in amplitude-based 

traditional methods are more predictable compared to edge-

based and edge-amplitude-hybrid traditional methods. 

Consequently, amplitude-based traditional methods may allow 

the user to define configuration or initialization settings in a 

more controlled manner. Believing in the potential success of 

amplitude-based methods when used correctly, we propose an 

amplitude-based method for the traditional method part of the 

study. The proposed method has three sequential subparts:  

(i) Finding Minima Pixel Sequences: The lowest 

amplitudes are obtained in each row for the x-axis and in each 

column for the y-axis. They are collected in a sequence form 

as given in the expression below. Iij denotes pixel values of a 

received image. Since the sequences were created using all 

rows or columns of the image, each index of these sequences 

corresponds to a coordinate point, and the sequences include 

high-variance noise. 

 

𝑆𝑟𝑜𝑤 =

[
 
 
 
 
𝑚𝑖𝑛(𝐼1,1, 𝐼1,2, ⋯ , 𝐼1𝑗)

𝑚𝑖𝑛(𝐼2,1, 𝐼2,2, ⋯ , 𝐼2𝑗)

⋮
𝑚𝑖𝑛(𝐼𝑖,1, 𝐼𝑖,2, ⋯ , 𝐼𝑖𝑗) ]

 
 
 
 

, 

𝑆𝑐𝑜𝑙 =

[
 
 
 
 
𝑚𝑖𝑛(𝐼1,1, 𝐼2,1, ⋯ , 𝐼𝑖1)

𝑚𝑖𝑛⁡(𝐼1,2, 𝐼2,2, ⋯ , 𝐼𝑖2)

⋮
𝑚𝑖𝑛⁡(𝐼1,𝑗 , 𝐼2,𝑗 , ⋯ , 𝐼𝑖𝑗)]

 
 
 
 

⁡⁡ 

(1) 

 

(ii) Noise Reduction: To mitigate the noise present in the 

minima sequences, the Savitzky-Golay (SG) method was 

applied as a smoothing filter [68]. The filter fits a local 

polynomial to a window of adjacent data points and then uses 

the coefficients of this polynomial to compute the smoothed 

value at the center of the window. Filtered output of ith sample 

𝑆̂𝑖  is calculated by a weighted summation of input signal 

neighbors. The coefficients 𝐶𝑗 ⁡are determined by solving the 

least squares polynomial fitting problem for each window. In 

SG method, window length parameter (2L+1) is individually 

set to 20% of the length of each sequence. 

 

𝑆̂𝑖 = ∑ 𝐶𝑗 × 𝑆𝑖+𝑗

𝐿

𝑗=−𝐿

 (2) 

 

(iii) Patch Selection: Patch selection is carried out using the 

smoothed sequences. The configuration settings to be taken 

from the user or to be defined by auto traditional method 

configuration mechanisms are used in this step. Three 

parameters, each associated with a function taking a sequence 

as input, govern this step: THM for thresholding, PFX (Pupil 

Founder X) for the x-axis sequence, and PFY (Pupil Founder 

Y) for the y-axis sequence.  

 

Table 1. THM functions to be used for the selection of 

threshold value. A value calculated by a THM function is 

used for sequences of x and y pair of an input image 
 

TH1(S)=max(S)-std(S) TH2(S)=(MMM×0.66)+min(S) 

TH3(S)=max(avg(S), MPM/2) TH4(S) = avg (S) 

TH5(S)=min(avg(S), MPM /2) TH6(S)=(MMM×0.33)+min(S) 

TH7(S)=(avg(S)+min(S))/2 TH8(S)=min(S)+std(S) 

where MPM = max(S)+min(S), MMM = max(S)–min(S) 

By using a function from THM function list in Table 1, 

threshold values are defined dynamically for each denoised 

minima sequence. THM functions and equations taking a 

sequence shown as S are the below, roughly from highest to 

lower amplitude values. 

Following the smoothing of the minima sequences, the 

process continues with the application of PFX and PFY to the 

x-axis and y-axis sequences, respectively. There are a total of 

five distinct functions, collectively referred to as Pupil 

Founder (PF) functions, which can be chosen for PFX or PFY. 

𝐺𝑘  expression is intended for use in relevant functions can be 

calculated as follows: 
 

𝐺𝑘 = {𝑠𝑖|⁡𝑠𝑖 < 𝜏, 𝑠𝑖+1 < 𝜏, . . . . , 𝑠𝑖+𝑛 < 𝜏} (3) 
 

where, 𝐺𝑘  represents the grouping of consecutive sequence 

elements, and 𝑠𝑖 , 𝑠𝑖+1 , …, 𝑠𝑖+𝑛 are the elements of the 

sequence. The condition, s<τ is applied to each element in the 

group, ensuring that they are all smaller than the threshold 

value τ. 

1- Median First (MF): It selects the part closest to the 

middle index under the threshold of the sequence on the 

relevant axis. It can be calculated as in Eq. (4): 
 

𝑃𝑀𝐹 =⁡argmink(min⁡(|𝐺𝑖 − 𝑀|, |𝐺𝑖+1

− 𝑀|, . . . , |𝐺𝑖+𝑛 − 𝑀|)) 
(4) 

 

where, M represents the median index of the S array. 

Accordingly, MF is useful when the objective is to position the 

pupil near the center of the sequence along the relevant axis. 

This option can be particularly useful in places where the 

experimental procedure is well-defined, such as laboratory 

environments. 
 

2- Max Depth (MD): MD chooses the segment with the 

lowest amplitude value from the parts under the threshold on 

the relevant axis. The equation is given in Eq. (5) and it is 

particularly useful when the pupil is known to exhibit the 

darkest amplitude. This option carries the potential of 

obtaining a patch size smaller than expected by preventing the 

inclusion of other small objects besides the pupil in the patch 

scope in experimental or in-house environments. 

 

𝑃𝑀𝐷 = argmax𝑘|𝑚𝑖𝑛(𝐺𝑘) − ⁡𝜏| (5) 
 

3- Max Length (ML): ML selects the segment with the 

highest number of elements among those below the threshold 

on the axis in use. This function given in Eq. (6) is suitable 

when the pupil is known to be larger than other dark areas. 
 

𝑃𝑀𝐿 = argmaxk(|𝐺𝑘|) (6) 
 

4- Max of Length and Depth Product (LD): LD assigns a 

score to the parts under the threshold on the axis it is used and 

selects the part with the highest score. Score to be calculated 

with the expression is the product of the number of elements 

of the part and its absolute distance from the threshold level of 

the lowest amplitude. Hereby, this function given in Eq. (7) 

can be used when the pupil is known to be darker or larger.  

Thus, it can ensure that the dark but small areas outside the 

pupil and the areas that are not as dark as the pupil but occupy 

a large area are not included in the patch. 
 

𝑃𝐿𝐷 = argmaxk(|𝐺𝑘| ∗ | 𝑚𝑖𝑛(𝐺𝑘) − ⁡𝜏|) (7) 
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Figure 2. A denoised minima sequences for x-axis and different patches selected by PF functions 
(Basically, these functions try to select one segment between parts under the threshold value) 

 

 
 

Figure 3. An example of the selected patch with randomly 

defined configurations 

 

5- First and End (FE): FE selects the entire area between 

the first and last indices under the threshold in the axis on 

which it is used. The equation given in Eq. (8) is beneficial in 

cases where perceiving the pupil based on amplitude 

information alone is challenging and may result in an enlarged 

patch size. In general, this should be the last alternative to be 

chosen, indicating the need for pre-experimental preparation 

for other options to work effectively. However, in an 

environment where pupil in-formation is adequately detected, 

it still has the potential to produce results like the previous 

functions. 

 

𝑃𝐹𝐸 = {𝑠𝑛 , 𝑠𝑛+1, ⋯ , 𝑠𝑚} (8) 

 

where, 𝑛 = min{𝑗⁡|𝑠𝑗 < ⁡𝜏} ⁡and⁡𝑚 = 𝑚𝑎𝑥{𝑗⁡|𝑠𝑗 < ⁡𝜏}}. 

These selections except for LD have been shown via an 

example minima sequence in Figure 2. Additionally, groups 

G, which remain below the threshold, can also be observed in 

the relevant example interpretation. To complement these 

descriptions, a visualization in accordance with the result of 

the traditional method was given in Figure 3. Blue and green 

lines show the thresholds for x and y axis, respectively. Blue 

and green lines indicate the minima sequences for this image. 

Top and right edges represent zero values for these graphs and 

distance from the relevant edge visualize the value of sequence 

indexes. The turquoise rectangle is the output of the traditional 

method, defined with minima sequences represented as blue 

and green curves. Eventually, this rectangle is sent to the 

learning model step. 

2.2 Learning model 

 

In the learning model segment, an extensive comparison has 

been conducted among various segmentation models, 

including Unet [69], UNet++ [70], SegNet-VGG-19 [71, 72], 

TransUNet [73], DeepLabv3-ResNet-50 [74, 75], DeepLabv3-

MobileNet-L [74, 76], PPMobi-leSeg-Tiny [77], CCSGD-

ResNet-34 [78] and EGEUNet [79]. 

In pupil detection, UNet is a commonly used model in the 

literature [69], while UNet++ can create a more 

comprehensive map by using skip connections [70]. Similarly, 

TransUNet, by utilizing transformer architecture, can generate 

a much more comprehensive and sharp-edged map compared 

to Unet [73]. DeepLab, with the power of atrous and atrous 

spatial pyramid pooling, has the potential to produce precise 

results [74]. Although SegNet shows similarities to UNet, it 

can produce results at lower inference times thanks to its 

pooling indices [71]. PPMobileSeg, with its pixel-level 

segmentation capabilities, can yield accurate results, 

especially in cases with insufficient pupil information [71]. On 

the other hand, CCSGD operates as a very recent medical 

image processing approach, designed to work successfully 

with low parameter counts based on shallow features [78]. As 

for EGEUNet, it is a relatively recent model potentially 

applicable to detecting relatively small medical objects [79].  

The performance assessment encompassed evaluating 

prediction time and memory consumption on GPU and CPU 

for both full resolution and the average resolution of the results 

obtained from the traditional method. In addition, the models 

with satisfactory dice scores have been fine-tuned and brought 

to a level that can operate in real-time at the average resolution 

of the traditional method by decreasing their parameters in 

various ways. In the study, fine-tuned model names are 

indicated by the suffix “-S”.  

According to the average patch size that will be addressed 

in the Experimental Result section, we have changed model 

structure as in the below: UNet-S has 3 layers with channels 

(32,64), (64,128), (128,256) with double convolution. Double 

convolutions with channel (1,32) are performed before and 

after from layers. UNet++-S has 3 layers with a channel size 

as (32,64,128,256). TransUNet-S has 128 hidden size, 128 

MLP dimensions, 2 heads with channel 128 and 2 layers for 

the transformer architecture. Also 16 patch size, decoder 

channels as (64,64,64,64), skip channels as (512, 256, 64, 32), 

number of layers (1,1,1) for ResNet and number of skips 3 

were performed. SegNet-VGG-19-S has a four VGG stages.  
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Figure 4. General backbone of the present pupil detector pipeline without PETA and automatic traditional configuration 

mechanism 

 

Each stages have 6 VGG fea-tures. While first two stages 

take the features from beginning of the VGG and last stages 

take from the end. CCSGD-ResNet-34-S has three layers for 

its UNet block with (128,128,128), (128,64,128), (128,64,128) 

and a ResNet blocks without last 2 layers. PPMobileSeg-S has 

channels (8,8,8,16,32), embedding dimensions (16,32), the 

number of heads 2, and ½ or ¼ MobileNetV3 blocks’ channel 

size compared with its tiny configuration.  

The final step within the learning model section involves the 

fitting of an ellipse into the segmentation map. For this 

purpose, a method, operating in a least-squares manner, is 

employed to determine the optimal ellipse placement [80]. 

With reference to find an optimal ellipse, this implicit 

equalization is solved using a point set to be used to fit the 

ellipse: 
 

𝑎1𝑥
2 + 𝑎2𝑥𝑦 + 𝑎3𝑦

2 + 𝑎4𝑥 + 𝑎5𝑦 + 𝑎6 = 0 (9) 
 

Using these coefficients shown as ai, ellipse parameters can 

be calculated. For example, center point equalization can be 

given as in the following: 

 

(𝑥, 𝑦) = (
2𝑎3𝑎4 − 𝑎2𝑎5

𝑎2
2 − 4𝑎1𝑎3

,
2𝑎1𝑎5 − 𝑎2𝑎4

𝑎2
2 − 4𝑎1𝑎3

) (10) 

The largest ellipse derived from the output of this method is 

selected and used as the pupil ellipse parameter, thereby 

finalizing the learning model's contribution to the overall pupil 

detection process. Ultimately, the calculated ellipse 

parameters and the segmentation map are sent to the PETA 

step. 

Additionally, the auto traditional configuration mechanism 

involves running the selected learning model for the entire 

image and then finding the traditional method parameters that 

best represent the pupil parameters obtained with entire image 

seg-mentation. Eq. (14) in the Experimental Results section is 

employed for the selection of the configuration that represents 

the pupil area in the smallest size and pupil including rate. 

With the determination of the ellipse parameters, the main 

structure for detecting the pupil in the study is completed. The 

processes from the traditional method to the learning model 

can generally be summarized as shown in Figure 4. 

 

2.3 PETA 

 

PETA approach involves two operations. The first operation 

computes metrics designed to assess the outputs generated by 

the learning model, while the second operation focuses on the 

development of a correction method to rectify pupil ellipse 
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parameters, should the need arise, based on the metrics. Two 

metrics named entropy and intensity have been proposed for 

metrics of PETA. In order to calculate the entropy, a Sobel 

edge filter is applied to the segmentation map area only within 

the pupil ellipse area. To handle the limited area over the 

model output, map (M) is masked with ellipse parameters (E) 

as: 

 

𝑀̂ = 𝑀⁡ ⊙ E (11) 

 

After that, gradient (G) is calculated for x and y axes of 𝑀̂, 

using Sobel edge detector. Next, the sum of the gradient 

amplitudes 𝐺𝑖,𝑗obtained at the output of the filter is divided by 

the total number of pixels, and entropy metric 𝑀𝐸𝑛𝑡 is 

calculated as in Eq. (12). 

 

𝑀𝐸𝑛𝑡 =
1

𝑁
(∑𝐺𝑖,𝑗

𝑖,𝑗

) (12) 

 

In this respect, the entropy metric can indicate integrity or 

precision within the segmentation map from which the ellipse 

is generated. To calculate the intensity 𝑀𝐼𝑛𝑡 , the pixel 

amplitudes of the segmentation map within only the pupil 

ellipse area are average of 𝑀̂. Therefore, intensity metric can 

refer to the magnitude of the prediction probability in the 

segmentation map area from which the ellipse was generated. 

Using these metrics, an inference has been expressed as 

follows: 

• Low Entropy, Low Intensity: The prediction is considered 

good. The eye may be in the half-closed position or even if the 

segmentation result is of low probability, it may still better 

compared to the alternatives. 

• Low Entropy, High Intensity: The prediction is considered 

very well, and the eye is in the open position. 

• High Entropy, Low Intensity: The prediction is deemed 

very poor. 

• High Entropy, High Intensity: The prediction is considered 

good, and the eye is open, but it can be said that there are 

various obstacles or reflections on the pupil. 

 

 
 

Figure 5. The visualization of Entropy and Intensity concepts 
(Pupil regions in a segmentation map are shown with white color. Pink 

ellipses represent the fitted parameters using pupil regions) 

 

The visual representation of the above inferences is 

provided in Figure 5. According to this figure, when the 

entropy metric is low to medium and intensity is high, it 

indicates successful segmentation. On the other hand, the 

segmentation map can vary depending on the subject's eye 

appearance and environmental conditions. Therefore, the 

entropy-intensity values that will distinguish segmentation as 

successful and unsuccessful will also be specific to each 

experimental session. To dynamically determine this range 

and differentiate a successful segmentation, a formula is used 

based on the last 120 entropy and intensity values (or those 

within the about last 1 second, to be defined according to the 

system frequency) with newly calculated values. The 

comparison simply attempts to detect anomalies in entropy 

and intensity by using variance. In this way, entropy anomalies 

that suddenly rise too much or intensity anomalies that 

suddenly falls too much can be detected. Accordingly, the 

pupil ellipse is considered successful if 𝑀𝐸𝑛𝑡 > 𝑚𝑎𝑥(𝐿𝐸𝑛𝑡) +
𝑣𝑎𝑟(𝐿𝐸𝑛𝑡)  and 𝑀𝐼𝑛𝑡 < 𝑚𝑖𝑛(𝐿𝐼𝑛𝑡) + 𝑣𝑎𝑟(𝐿𝐼𝑛𝑡) and 

unsuccessful if it is false. 𝐿𝐸𝑛𝑡 ⁡and 𝐿𝐼𝑛𝑡 ⁡refer to last 120 data 

points for entropy and intensity metrics, respectively. 

In the PETA correction step, the last successful ellipse 

parameter is used instead of the pupil ellipse marked as 

unsuccessful. However, a condition has been set for this use, 

and any ellipse parameters that do not meet this condition are 

not corrected with the previous successful one. The relevant 

condition is that the difference between the unsuccessful 

ellipse center point and the last successful ellipse center point 

is greater than 19 pixels. The threshold value of 19 pixels is 

the upper band value obtained according to the preparation 

procedures of the LPW dataset [81]. The threshold value is 

grounded in the following assumptions and reasoning: 

(i) Eyeball Area Within Camera Detection: It is assumed 

that the area of the eyeball can fit within the area that the eye 

camera can detect. For example, if the image collected by the 

eye camera is 320×240 pixels, the eyeball is expressed with 

roughly 240×240 pixels.  

(ii) Maximum Angular Velocity of the Human Eye: A human 

eye can have a maximum angular velocity of 700 degrees per 

second [82]. Since this is a peak value allowed to only 25 

degrees of visual angle, we decreased it as maximum 500 

degrees for LPW dataset [83].  

(iii) Frame Rate of LPW Dataset: LPW dataset is 120 Hz. 

Therefore, the maximum angular velocity that a human eye 

can achieve between two frames is 4,166 degrees (500/120).   

(iv) Upper Coordinate Distance: In a 2D image, the largest 

difference in pixel coordinates resulting from a change in 

eyeball angle between two frames occurs when the geometry 

forms an isosceles triangle, as illustrated in Figure 6. 

Consequently, we computed a maximum shift of 8,723 pixels 

for an angular change of 4,166 degrees. 

(v) Upper Band Threshold Values: Upon identifying that the 

maximum distance between two center points differed by 

approximately 9 pixels, we applied the widely accepted 5-

pixel margin of error as per the literature for each center point. 

When we account for this 10-pixel permissible error difference 

(adding 5 pixels to each center point), the value utilized in our 

study was became 19 pixels for the upper bound. The relevant 

equalization rounded to nearest can be seen in the below. 

𝜔𝑚𝑎𝑥 , 𝑓𝑐𝑎𝑚 , 𝑟𝑒𝑦𝑒 , 𝐸[𝜀]⁡parameters denote 500, 120, 120, 5 

values, respectively. 

 

𝑇ℎ𝑟𝑢𝑝𝑝 = ⌊√2𝑟𝑒𝑦𝑒
2 (1 − cos (

𝜔𝑚𝑎𝑥

𝑓𝑐𝑎𝑚
)) + 2𝐸[𝜀] + 0.5⌋ (13) 

 

The upper band threshold value, denoted as 𝑇ℎ𝑟𝑢𝑝𝑝 ⁡provide 

a solution to the problem of jumping data, especially during 

blinking or in cases where insufficient pupil information 

occurs due to any obstacle. However, the value of 19 pixels is 

not applied to pupil ellipse parameters that are marked as 

successfully/normal according to entropy and intensity values. 

In this way, if it is assumed that the segmentation is fulfilled 

successfully according to the metrics, the difference between 

the calculated and annotated pupil ellipses is prevented in 
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cases such as the movement of the eye camera or the 

displacement of the pupil center point when the eye is 

reopened. 

 

 
 

Figure 6. PETA upper bound threshold value representation 

between two consecutive center points for LPW dataset. The 

value is about 9 pixels, however we defined it as 19 pixels 

together with 5-pixel errors 

 

 

3. EXPERIMENTAL SETUP 

 

The development and analyses in this study were conducted 

using Python v3.10 and PyTorch v1.13 on a laptop with a 

NVIDIA RTX 3050 GPU 4GB, an AMD Ryzen 7 5800H CPU 

and 16 GB RAM. Two datasets, annotated by Fuhl et al. [84], 

were chosen for this research: the LPW dataset for training and 

testing purposes and the Dikablis dataset for validation. Both 

datasets were prepared with conventional head mounted eye 

trackers under the IR illumination and with real subjects in 

different user and environment conditions. LPW was 

constructed using recordings from 22 participants of various 

nationalities, each with different eye-region characteristics 

(e.g., make-up, contact lenses, glasses), captured under a wide 

range of everyday indoor and outdoor illumination conditions 

[81]. Thereby, the training dataset contains considerable real-

world diversity, as it includes recordings from multiple 

participants, environments, usage and luminance conditions., 

according to the inherent variability of the LPW. While LPW 

was generated with 66 sessions from 22 subjects and with an 

eye camera running at 120Hz [81], Dikablis contains various 

videos, collected at 25 Hz, where the information about which 

user belongs to which session is unknown. Dikablis is a 

combined dataset consisting of data from ElSe, ExCuSe, 

PupilNET, and a driving study, collected from 30 participants 

[19, 21, 85]. These datasets were specifically designed to 

include challenging real-world examples, featuring low 

contrast, difficult lighting conditions, reflections, and cases 

where the pupil is not clearly visible. The data was gathered 

across various daily life activities, including both indoor and 

outdoor scenarios, driving, reading, walking, and more. 

Overall, the most noticeable difference between these two sets 

lies in the frequency of eye camera and the amount of 

illumination. In LPW, the eye region is generally well-

illuminated, while Dikablis exhibits insufficient illumination. 

Additionally, both sets predominantly feature content where 

the pupil is visible. In other words, there are minimal obstacles 

between the pupil and the camera, resulting in either no or very 

rare occurrences of blinking during a session. Furthermore, 

there is often a slight pupil reflection and distinct dark areas 

aside from the pupil, with this condition being more prevalent 

in Dikablis. Therefore, Dikablis proves to be a more 

challenging dataset for methods relying on the amplitude 

information. Also, resolutions are 640×480 and 384×288 

pixels for LPW and Dikablis respectively. 

Because of time and physical resource concerns in the 

study, both dataset resolutions were reduced to 320×240 from 

640×480 and 384×288 pixels. Additionally, due to the same 

concerns, samples that are only below of 100 MB in Dikablis 

set were used. However, it's worth noting that samples from 

participants and video pairs with identifiers 1-9, 20-12, 22-7, 

22-8, 22-9, 23-3, 23-5, 24-11, 24-5, 24-8, and video pairs of 

the T series were excluded from the validation set since there 

were no corresponding annotation files available in the 

Dikablis dataset. Consequently, 286 videos from Dikablis 

were analyzed. 

In the training process, videos belonging to the first 5 

participants in LPW dataset were allocated for test set, while 

all videos from the other participants were used for training 

set. This approach ensured that each sample and participant 

were exclusively used within only one set. Each training was 

completed with Adam optimizer with learning rate 1e-3, 

ReduceRLOnPlateau with patience of 2, dice scoring as loss 

function and shuffled epochs with batch size of 1 [86]. 

Augmentation techniques such as horizontal and vertical flips, 

random rotation, and transpose were applied to the training set, 

while only horizontal flips were used for the test set. Training 

was monitored based on dice scores at the end of each epoch, 

and the process was stopped if there were no changes in dice 

scores for both the training and test sets over the last 6 epochs. 

In measurement of pupil detection accuracy, a 5-pixel error 

rate was performed to accept the results as successful. In the 

process of assessing learning models between each other, we 

used an LPW variation created at 3 Hz for shorter training 

durations, not the entire LPW dataset. In other words, the 

LPW-3Hz set was created by taking the first of every 40 

consecutive images. Additionally, LPW variations with 

different fixed resolutions have been generated for training of 

the selected learning model. These variations included 

resolutions of ×2 (320×120px), ×4 (160×120px), ×6 

(107×120px), ×9 (107×80px), ×16 (80×60px), ×25 (64×48px), 

with each set obtained by cropping the original images to 

encompass the entire pupil areas. Furthermore, a variation 

named LPW-AV containing all images from these variations 

has been generated. However, the model with AV was trained 

for only 15 epochs due to its time consumption. For 

visualization purposes, example samples from the LPW×4 set 

and LPW×16 set are displayed in Figure 7.  

 

 

 
 

 

Figure 7. Example samples from LPW variation: full 

resolution, ×4 and ×16, respectively 
Source: subject=1, video=1, image=1 

 

As size of these datasets, 130,856 images for each LPW 

variation are handled without masks- total size for all 

variations (LPW-AV) is 915,992 images. Also 320,200 
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images have been used in Dikablis set without masks. 

Additionally, LPW-3Hz contains about 3,271 images without 

masks. Thereby, total size of datasets used in this study were 

generated with 1,239,463 images. 

 

 

4. EXPERIMENTAL RESULTS 

 

The analysis of the present traditional method for LPW 

dataset are given in Table 2 with details. The table presents 

average measurements in terms of patch size, contained pupil 

area (CPA) and success. Patch size is the ratio of the generated 

patch resolution to the original image resolution. Contained 

pupil area indicates the percentage of the pupil is present in the 

generated patch. In this analysis, we assume that the ellipse 

can be fitted if at least 40% of the pupil area is in the patch. 

Success is obtained according to this assumption. A patch was 

considered successful if it contained at least 40% of the pupil 

area and unsuccessful otherwise.   

Consequently, the success value represents the ratio of 

successful detections to the total number of detections. To 

show the maximum positive effects of the traditional method, 

the PFX, PFY, and THM functions used were selected 

manually. For this, all sessions were analyzed with each 

function combination and the functions that would give the 

best performance were selected by the authors. Basically, the 

following equalization has been calculated for all 

combinations and configurations, with the highest score has 

been selected for each different LPW session. Also in the auto 

configuration mechanism, the same regime was processed to 

find traditional configurations for the segmentation map 

generated using full image received every once in a certain 

period. 
 

𝑆𝑐𝑜𝑟𝑒 = (100 − 𝑃𝑎𝑡𝑐ℎ⁡𝑆𝑖𝑧𝑒) ∗ 𝐶𝑃𝐴 (14) 
 

On average, the patch resolution was 7.66 times smaller 

(13.05% of original resolution) than the original image 

resolution, containing 95.51% of the total pupil area, and 

achieving a patch generation success rate of 99.23%. 

However, in the next analyses, we will use the average patch 

size as 6×, not 7.66×, for ease of calculation. In addition, the 

Cumulative Distribution Function (CDF) curve of the average 

pupil patch percentages calculated on a video basis is given in 

Figure 8. 

Accordingly, although the average patch percentage value 

is 13.05% and the average magnification factor is 7.66×, 

within the scope of the CDF, half of the videos have been 

reduced to a percentage of 7.58% or smaller. Thus, for half of 

the videos, the magnification factor is equal to or greater than 

13.2×. On the other hand, the probability related to the 

intuitive 20% pupil size applied when determining the window 

size of the Savitzky-Golay filter is also shown in the graph. 

According to this, a 20% window size on each axis results in 

a patch that is 4% of the total image. Accordingly, in 23% of 

the images analyzed within the scope of LPW, a patch size of 

4% or smaller, and thus a magnification factor of 25× or larger, 

has been achieved. The maximum and minimum 

magnification factors obtained within the scope of LPW are 

46.9× and 2.2×, respectively. However, the accumulation in 

the distribution generally occurs at patch sizes of 2% and 8%, 

where the graph accelerates rapidly. 

 

Table 2. The results of the traditional method according to parameters selected manually for each session of LPW 
 

Subject  Video  PFX  PFY  THM  Patch Size (%)   CPA(%)  Success (%)  Subject  Video  PFX  PFY  THM  Patch S. (%)  CPA (%)  Success (%) 

1 1 FE FE TH7 14.51 90.88 100.0 12 1 LD ML TH7 6.89 93.66 99.4 

1 4 FE MF TH7 11.14 95.66 100.0 12 2 ML LD TH7 3.44 91.83 100.0 

1 9 MF MD TH7 3.07 93.08 100.0 12 9 MF FE TH7 6.58 94.10 100.0 

2 4 ML ML TH7 4.19 99.58 100.0 13 1 MF FE TH5 12.77 99.32 100.0 

2 10 MD ML TH7 7.65 100.00 100.0 13 2 ML ML TH7 7.56 94.38 100.0 

2 13 ML ML TH7 2.39 99.72 100.0 13 9 MD ML TH1 22.22 99.96 99.9 

3 16 MD MF TH1 44.19 95.38 92.5 14 10 FE FE TH7 18.69 92.31 100.0 

3 19 FE ML TH4 35.67 95.40 100.0 14 17 MF FE TH3 27.68 99.54 99.3 

3 21 MF FE TH6 8.45 95.56 100.0 14 22 FE FE TH7 17.61 90.81 100.0 

4 1 FE ML TH5 31.27 99.54 100.0 15 1 ML ML TH7 5.88 97.08 100.0 

4 2 MF ML TH7 3.99 92.16 99.5 15 2 ML ML TH7 7.09 99.08 100.0 

4 12 FE ML TH7 17.51 94.29 99.7 15 7 ML ML TH7 5.29 98.61 100.0 

5 6 MD FE TH7 5.88 94.38 100.0 16 1 ML ML TH7 4.81 99.83 100.0 

5 10 ML MD TH5 14.45 97.54 100.0 16 2 ML ML TH7 3.87 99.94 100.0 

5 11 LD MD TH6 7.58 99.50 100.0 16 13 ML ML TH7 4.44 100.00 100.0 

6 2 MD ML TH7 4.22 95.77 100.0 17 3 MF ML TH4 22.08 99.68 100.0 

6 5 MF ML TH7 3.76 96.72 99.8 17 5 MF ML TH6 17.43 99.02 99.5 

6 13 MD MD TH7 3.86 98.68 100.0 17 12 FE MF TH4 44.55 99.17 100.0 

7 15 FE FE TH6 26.53 97.70 95.6 18 2 MF FE TH7 5.62 91.46 100.0 

7 18 FE MD TH7 5.29 96.61 100.0 18 7 MF ML TH7 8.98 95.19 100.0 

7 21 FE MD TH7 10.46 99.97 100.0 18 11 FE ML TH5 21.73 100.00 100.0 

8 2 MF ML TH7 3.09 94.88 100.0 19 2 ML ML TH7 5.47 83.10 100.0 

8 7 LD ML TH7 8.42 95.54 100.0 19 3 ML ML TH7 3.39 75.79 100.0 

8 9 FE FE TH5 19.73 99.56 100.0 19 6 MF ML TH4 15.58 99.39 99.4 

9 16 ML ML TH7 8.44 96.81 100.0 20 3 MF LD TH7 2.82 91.04 100.0 

9 17 ML ML TH8 3.09 96.58 100.0 20 4 ML ML TH7 5.72 95.19 100.0 

9 18 ML ML TH8 3.65 97.53 100.0 20 7 FE ML TH8 3.23 93.32 100.0 

10 1 MF ML TH7 4.48 97.08 100.0 21 4 LD MD TH7 3.26 96.84 100.0 

10 8 MF ML TH7 8.47 96.28 100.0 21 11 MD ML TH7 4.34 91.64 100.0 

10 11 FE FE TH3 46.00 99.76 99.9 21 12 FE ML TH8 2.13 83.12 100.0 

11 2 FE FE TH7 12.16 92.98 100.0 22 1 MF MF TH1 34.80 92.34 91.3 

11 7 MF ML TH7 10.34 92.44 100.0 22 2 MF MF TH1 43.98 94.58 91.3 

11 13 MF ML TH4 30.66 99.06 100.0 22 17 MF FE TH2 36.84 86.16 82.6 
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The examination of the selected learning models within the 

scope of the study is presented in Table 3. Generally, the 

models produced similar dice scores for the LPW-3Hz dataset. 

The source of this similarity is that the LPW dataset contains 

pupil information that can be well detected by a learning 

model. On the other hand, small differences in scores 

distinguish the models from each other. This difference arises 

from cases that are relatively less common in the LPW dataset. 

Examples of such cases include blinking, strong reflections, 

and a large angle of the gaze vector relative to the eye camera. 

Therefore, small improvements in scores indicate that the 

model is more robust in inadequate pupil information. Hence, 

UNet++, UNet++-S, TransUNet, and TransUNet-S models are 

the best-performing models in terms of both dice and test dice 

scores. Therefore, it can be said that any of these four models 

can be used for pupil detection. 

Another goal of this study is to aim for a real-time (at 120 

Hz and above) and less resource-consuming system. GPU 

performances in terms of inference time and memory 

requirements for both original resolution (320×240px) and the 

resolution of the average patch size (107×120px). According 

to the measurements, UNet-S, UNet++-S, SegNet-VGG-S and 

CCSGD-RN-34-S perform shortest inference time, while 

UNet-S, SegNet-VGG-S, TransUNet-S, all PPMobileSeg 

models, and EGEUnet require less resource area. 

The learning model part of the study will be run in GPU. 

However, investigating models on only CPU may put an 

insight off related to sufficiency of models for devices with 

less capacity such as mobile phones. CPU analysis includes 

similar measurements like the GPU analysis. The relevant 

performance metrics are shown in Table 3. Accordingly, 

CCSGD-RN-34, CCSGD-RN-34-S, EGEUNet and all 

PPMobileSeg models perform fairly successfully results while 

compared to others. 

In the stage of the learning model phase of the ROM 

concept, the UNet++-S model was selected after reviewing the 

relevant analyses. This selection was made because the 

UNet++-S model has produced successful Dice scores and 

stands out in terms of resource requirements. This model can 

operate in approximately 6 milliseconds on a GPU using pupil 

patches and requires 340 MB of space, achieving 95.6% 

success in training and 86% in testing. Consequently, the 

UNet++-S model has been used in all other analyses as the   

learning model. However, it can be said that the CCSGD-RN-

34-S model is more prominent in CPU usage due to the 

balance between speed and performance. 

Table 4 provides training sessions of the UNet++-S model 

with different LPW variations and their corresponding test 

measurements. According to this, there is a significant 

correlation between the resolution in the training set and the 

test dice score of UNet++-S. In general, as the difference 

between the resolution in the training set and the test input 

resolution increased, the dice score decreased. On the other 

hand, LPW-AV has been able to produce successful results in 

all variations since it was trained with all training variations. 

Additionally, training UNet++-S with all variations (LPW-

AV) has also increased the test dice score of each variation 

except x6. The inability to significantly increase the x6 test 

dice score may be related to the fact that the training with 

LPW-AV was limited to 15 epochs. However, this situation 

was not considered, and the UNet++-S model trained with 

LPW-AV was used in the continuation of the study.   

Table 3. Inference time, consumed memory, and dice metrics for selected learning models trained with 3Hz LPW 

 

Model and Device 
Inference Time (ms) Memory (GB) 

Param (M) 
LPW-3Hz 

Full ×6 Full ×6 Dice Loss Test Dice 

UNet [87] 
GPU 28.42 7.13 1.71 0.38 

17.2 0.95 0.032 0.842 
CPU 521.38 91.25 1.58 0.26 

UNet-S 
GPU 11.05 4.25 0.93 0.17 

1.9 0.954 0.029 0.843 
CPU 204.69 27.94 0.89 0.14 

UNet++ [88] 
GPU 39.77 10.35 2.64 0.51 

9.1 0.958 0.025 0.868 
CPU 681 102.53 2.3 0.37 

UNet++-S 
GPU 25.41 5.75 1.88 0.34 

2.2 0.956 0.027 0.86 
CPU 391.63 56.48 1.68 0.24 

SegNet- 

VGG-S 

GPU 15.06 3.16 1.13 0.2 
0.3 0.933 0.047 0.763 

CPU 234.65 28.71 1.13 0.19 

Trans 

UNet [89] 

GPU 42.46 26.24 2.07 0.46 
105.1 0.954 0.028 0.876 

CPU 948.19 225.96 1.8 0.37 

Trans 

UNet-S 

GPU 14.74 8.09 0.88 0.19 
3.2 0.952 0.03 0.867 

CPU 199.14 38.72 0.82 0.16 

DeepLabv3- 

RN-50 [90] 

GPU 25.34 13.8 1.85 0.38 
39.6 0.943 0.053 0.838 

CPU 440.27 96.36 1.54 0.27 

DeepLabv3- 

MNv3-L [90] 

GPU 11.72 11.07 0.39 0.07 
11 0.902 0.104 0.78 

CPU 64.39 20.36 0.33 0.06 

PPMobile 

Seg-Tiny [91] 

GPU 20.36 19.72 0.25 0.04 
0.6 0.899 0.106 0.778 

CPU 43.34 17.69 0.27 0.04 

PPMobile 

Seg-S [91] 

GPU 19.98 19.66 0.1 0.01 
0.1 0.889 0.111 0.764 

CPU 21.22 15.51 0.1 0.01 

CCSGD- 

RN-34 [92] 

GPU 11.73 9.8 0.8 0.2 
22 0.943 0.035 0.872 

CPU 102.57 30.88 0.6 0.1 

CCSGD- 

RN-34-S 

GPU 5.76 5.24 0.4 0.08 
1.4 0.946 0.033 0.868 

CPU 47.47 11.88 0.3 0.06 

EGE 

UNet [93] 

GPU 15.12 15.27 0.1 0.01 
0.05 0.93 0.042 0.808 

CPU 31.96 17.85 0.1 0.02 
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Figure 8. Cumulative distribution function for average pupil patch percent of the traditional method 

 

Table 4. UNet++-S model training with different variations of the LPW dataset to display the effect of the input size to the 

accuracy 

 
UNet++-S 

Dataset  

Variation 
LPW-Full LPW-2× LPW-4× LPW-6× LPW-9× LPW-16× 

LPW-

25× 
LPW-AV 

Dice 0.962 0.96 0.961 0.961 0.96 0.961 0.96 0.963 

Loss 0.019 0.02 0.019 0.019 0.019 0.019 0.019 0.018 

Test Dice-×1 0.892 0.855 0.798 0.776 0.684 0.553 0.427 0.896 

Test Dice-×2 0.878 0.894 0.834 0.883 0.799 0.726 0.643 0.901 

Test Dice-×4 0.775 0.81 0.903 0.785 0.865 0.833 0.728 0.906 

Test Dice-×6 0.778 0.873 0.816 0.909 0.817 0.816 0.739 0.899 

Test Dice-×9 0.625 0.75 0.863 0.836 0.896 0.889 0.827 0.908 

Test Dice-×16 0.353 0.6 0.799 0.832 0.881 0.898 0.854 0.909 

Test Dice-×25 0.077 0.416 0.597 0.775 0.767 0.854 0.893 0.909 

Avg Test Dice 0.625 0.742 0.801 0.828 0.815 0.795 0.730 0.904 

 

In the next analysis, the impact of the study components on 

accuracy was assessed, and relevant measurements are 

presented in Table 5. While L and D refer to LPW and Dikablis 

datasets, LM and TM refer to the learning model and 

traditional method, respectively. AUTO denotes the automatic 

traditional method configuration mechanism. In addition, 

measurements were made for two alternatives of AUTO that 

run every 100ms and 333ms. The results were calculated based 

on a 5-pixel error and average ellipse parameter error. Ellipse 

error consists of pixel errors in center point (x, y), size (major, 

minor) and angle error, respectively. During the analysis, it 

was seen that the traditional method's patch area may not be at 

a sufficient level for the learning model and ellipse fitting 

operations. Therefore, the patch taken from the traditional 

model was analyzed by expanding it to 20px from the bottom 

and left, and 10px from the top and right edges for LPW. If an 

edge does not have enough space to be expanded, the 

corresponding edge is expanded to the maximum possible 

space. As a result of LPW analyses, the extended traditional 

model patch has a resolution of 19.50% compared to the 

original image, corresponding to an average resolution of ×5 

for the learning model. For Dikablis, average patch size was 

10.27% and CPA amount was 94.60%, by using traditional 

configurations in accordance with scores of each combination. 

In measurements made with LPW for the average patch size to 

be similar, the patch area was expanded by 30 pixels from the 

bottom and 22 pixels from the left in the vertical direction. 

Therefore, the results were approximately taken as having ×5 

resolution for Dikablis as well. Furthermore, since the 

Dikablis dataset’s preparation frequency of 25 Hz, the upper 

band value was set at 52 pixels for the Dikablis, according to 

the calculation explained in Eq. (13). 

Also, in the analysis of the LPW and Dikablis datasets, three 

procedures were applied. Firstly, no binarization operation 

was applied to the segmentation maps when the results were 

obtained. In other words, the maps obtained from the model 

were used directly for the analysis. Secondly, the model 

trained with LPW-AV was used in all analyses, including ones 

without traditional method. Normally, one might consider 

using the model trained with LPW-Full for the analyses 

without the traditional method because LPW-AV was 

generated for models predicting in accordance with different 

input resolutions. However, as shown in Figure 9, we 

discovered that LPW-AV has a data augmentation effect. 

Training the model with different resolutions, even though it 

operates at a fixed resolution, results in a significant 

improvement in accuracy. In the figure, four performance 

metrics are shown. Accuracy represents successful detections 
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based on a 5-px error value. Center error is the average error 

between the estimated and annotated ellipse center 

coordinates. Size error is presented as the product of the 

average errors in width and height between the estimated and 

annotated ellipses. Angle error represents the average angular 

errors between the estimated and annotated ellipses. Lastly, if 

the width or height values of the ellipse parameters calculated 

in Dikablis are smaller than 5 pixels, the previously calculated 

ellipse was used. With the use of the 5-px size regime, the 

UNet++-S trained with LPW-AV achieved an accuracy rate of 

92.53%, while in the case where it was not used, the accuracy 

rate was 92.47%. Although the success difference is quite low, 

a size-dependent adjustment in models trained with different 

resolutions, such as LPW-AV, may have the potential to 

increase success to a certain extent. 

 

 

Table 5. Accuracy metrics for the combination of the study components 

 

LM TM PETA AUTO L-5px (%) D-5px (%) 
L-Ellipse Error 

(Average) 

D-Ellipse Error 

(Average) 

🗸 ✗ ✗ ✗ 96.18 92.53 
(1.35, 1.30), 

(1.25, 1.53), 6.65 

(4.64, 2.60), 

(2.97, 3.43), 13.67 

🗸 ✗ 🗸 ✗ 96.23 92.56 
(1.32, 1.28), 

(1.24, 1.52), 6.63 

(4.60, 2.58), 

(2.96, 3.42), 13.66 

🗸 🗸 ✗ ✗ 95.11 92.60 
(2.18, 2.03), 

(1.64, 2.16), 8.03 

(4.64, 2.96), 

(2.52, 3.41), 13.44 

🗸 🗸 ✗ 100 ms 93.41 92.19 
(3.29, 2.61), 

(1.86, 2.64), 8.76 

(5.91, 3.27), 

(2.60, 3.44), 13.87 

🗸 🗸 ✗ 333 ms 91.67 91.34 
(4.64, 3.53), 

(2.29, 3.33), 9.82 

(6.54, 3.71), 

(2.74, 3.64), 14.42 

🗸 🗸 🗸 ✗ 95.15 92.71 
(2.10, 1.99), 

(1.63, 2.15), 8.02 

(4.51, 2.89), 

(2.50, 3.38), 13.40 

🗸 🗸 🗸 100 ms 93.66 92.30 
(3.10, 2.48), 

(1.81, 2.56), 8.61 

(5.76, 3.19), 

(2.57, 3.41), 13.81 

🗸 🗸 🗸 333 ms 92.01 91.38 
(4.44, 3.39), 

(2.19, 3.20), 9.56 

(6.43, 3.70), 

(2.73, 3.62), 14.39 

 
 

Figure 9. Comparison of models trained with LPW-Full and 

LPW-AV. Accordingly, LPW-AV, containing different 

resolution of same images 

 

Table 6. Average GPU pred. times of UNet++-S for input 

resolutions at different subsampling rates in millisec 

 
×1(Full) ×2 ×4 ×5 ×6 ×9 ×16 ×25 

25.41 13.25 7.51 6.12 5.75 5.62 5.09 4.90 

 

Consequently, according to Table 5, over 92% was achieved 

for both LPW and Dikablis datasets. In a situation where 

traditional model configurations were determined manually, 

only a 1% 5-px loss of accuracy was observed compared to a 

flow where only the learning model was used, for LPW 

dataset. Furthermore, it is observed that the automatic 

configuration mechanism has relatively little impact on 

accuracy. The patch size obtained is the same as the patch rate 

obtained from AUTO, but the success rate obtained from 

AUTO may be 2.5% lower.  Especially, the fact that success 

does not significantly decrease with the use of this mechanism 

was crucial for the usability of this mechanism. Thereby this 

situation may reduce the need for the user to adjust on the 

traditional method. 

Table 6 presents the prediction time of the UNet++-S model 

at different resolutions. Specifically, the selected model 

exhibits runtimes of 25.41 milliseconds at full resolution, 5.57 

milliseconds with the average patch size (×6), and 6.12 

milliseconds with the extended average patch size (×5).  

 

Table 7. Average GPU execution times of the study sub-

components except for the learning model in millisec 

 

Code 
Sub-

Component 

Time 

(ms) 
Code 

Sub-

Component 

Time 

(ms) 

S1 

Finding 

minima 

sequences 

0.10 S6 

Fitting ellipse 

to a map with 

x5 resolution 

0.04 

S2 

Smoothing 

with 

Savitzky-

Golay filter 

0.72 S7 

Selecting 

traditional 

configuration 

automatically 

8.88 

S3 

Selecting 

patch with 

PFX, PFY, 

THM 

functions 

0.12 S8  

Converting 

matrix to 

tensor for 

images with 

x5 

0.04 

S4 

Calculating 

entropy & 

intensity 

0.25 S9  

Converting 

tensor to 

matrix for 

images with 

x5 

0.01 

S5 

Detecting 

edges with 

Sobel filter 

for 10% area 

0.13  
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Figure 10. Execution times of the pipeline working with two 

threads for detection and auto configuration processes 

 

Table 8. Worst case in performance changes of auto-

configuration mechanism and its comparison with ROM and 

ROM-PETA model 

 

Model 
Time 

(ms) 
FPS 

Accuracy 

(%) 

ROM (R) 6.5 153 92.60 

ROM – PETA (RP) 7.5 133 92.71 

AUTO (R) – 10 Hz 7.4 135 92.19 

AUTO (RP) – 10 Hz 8.4 119 92.30 

AUTO (R) – 3 Hz 6.7 149 91.34 

AUTO (RP) – 3 Hz 7.7 130 91.38 

 

Table 7 displays the GPU execution times for various 

subcomponents used in the study. Apart from these, the 

running time of some mathematical operations and control 

expressions that will require less computing power has been 

ignored. Figure 10 provides a graphical representation of the 

execution times for the proposed pipeline on the GPU. 

Notably, the pupil detection process requires approximately 

7.5 milliseconds, while the auto-configuration mechanism, 

which operates on a separate thread, requires 35 milliseconds. 

Consequently, it can be inferred that pupil detection can be 

performed at a rate exceeding 120 Hz. 

Table 8 presents the worst-case runtimes of the auto-

configuration mechanism under two variants: ROM-only (R) 

and ROM combined with PETA (RP). As noted in Table 7, the 

automatic selection of traditional method parameters typically 

completes within 8.88 ms. Since this selection process occurs 

on the CPU while segmentation is executed on the GPU, 

parallelism ensures that the auto-configuration mechanism 

introduces minimal latency to the overall detection process. 

However, when auto-configuration is not executed during the 

segmentation but only after segmentation and by processing 

only a few parts of the selection in each frame, its frequency 

affects inference time and FPS. For example, an AUTO-10Hz 

setting implies one selection operation every 100 ms, whereas 

AUTO-3Hz corresponds to a 333 ms interval. Under this 

scheduling, auto-configuration introduces an average latency 

of approximately 0.9 ms per frame at 10 Hz and about 0.1 ms 

at 3 Hz. Moreover, the less frequently traditional parameters 

are recalculated, the more the performance tends to degrade. 

As shown in the table for the Dikablis dataset, reducing the 

auto-configuration frequency from 10 Hz to 3 Hz results in 

roughly a 1% drop in accuracy. Nonetheless, using the 10 Hz 

variant leads to only a modest decrease in core performance, 

approximately 0.40% - which may be considered an 

acceptable trade-off for maintaining high responsiveness. 

 

 

5. COMPARISON 

 

In this section, the performance of the proposed traditional 

method and learning model in the ROM-PETA concept is 

compared with previous studies. For this purpose, the 

comparison incorporates learning models such as LeNet-5, 

along with findings from recent studies [87, 94, 95]. Other 

potentially successful edge-based and amplitude-edge based 

methods could not be included as their code has not been 

shared before in a public repository. Also, Pistol has not been 

analyzed since, along with the pupil, it can make many other 

detections such as iris and sclera. Additionally, the analyses 

include segmentation models trained with LPW-3Hz and seen 

to be successful in Experiment section. These models were 

trained according to the standards specified in the 

Experimental Setup section with LPW-Full.  

In the comparison, LEyes' model initially trained with 

EDS2019 synthetic images yielded unexpectedly negative 

results, with 69.20% accuracy for a 5px error. To further 

explore the potential success of Leyes in pupil detection on 

real images, the model was retrained on LPW. Our Experiment 

section findings indicate that an encoder-decoder model 

trained with fixed resolutions may not accurately detect inputs 

of different resolutions. Therefore, training LEyes with LPW-

Full (320×240), as desired to work at a resolution of 128×128, 

may not accurately reflect the model's performance. Following 

these considerations, a new variation of LPW has been created 

with a resolution of 128×128, with the pupil position located 

at the center of the cropped area. Except for resolutions, the 

regime specified in the Experimental Setup section was 

applied during training. The PuRe and central cropping 

approach, as applied in LEyes' evaluation, were followed as 

mentioned in the study published by Byrne at al. [58]. It's 

noteworthy that another contribution of LEyes is its ability to 

generate successful results from a small number of synthetic 

images created based on parameters determined considering 

environmental conditions and imaging sensor characteristics 

during an experimental session. The unexpected result with the 

EDS2019 model might be due to differences in these 

parameters. Therefore, due to the differences in dynamics 

between LPW and Dikablis, we didn’t use LEyes' synthetic 

image generation approach when retraining and directly 

trained the model with the new LPW variation. 

The comparison results were presented in Figure 11. There 

are two different analyses: full map and binary map. In full 

map, segmentation map received the relevant model was used 

to analyses directly. In binary map, values less than 126 in the 

segmentation map have been set to 0, while values greater than 

or equal to 126 have been set to 255. Additionally, there are 

two different versions of LEyes. In the original LEyes 

analysis, as mentioned in the literature, the model can make 

predictions twice for a single image. Suggested by us, LEyes-

×1 produces single prediction, and if the calculated ellipse 

center is too close to the edges of the patch, it does not make a 

second prediction. Models prefixed with "ours" were all been 

trained with LPW-AV, while models other than LEyes were 

trained with LPW-Full. Since the potential for success 

improvement with LPW-AV was presented in Figure 9, this 

complicates the comparison between "ours" models and those 

trained with LPW-Full. However, LPW-AV is currently the 

only alternative for making predictions with variable patches 

and is a necessity for our proposed models. Therefore, LPW-

AV was not used in models not designed to work with variable 

resolutions. Also, in the Dikablis dataset with 320,200 images, 

while the LEyes model made 107,907 repetitions in the full 

map, it made 73,539 repetitions in the binary map. The LEyes 

model works alone in 8.17 milliseconds, while PuRe works in 

3.2 milliseconds. Therefore, the inference time of LEyes was 

calculated considering both the prediction times of PuRe and 

the model, as well as the number of repetitions it made on 
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average. 

The results reveal that the choice between using a full or 

binary map is model-dependent. Although the full map is more 

efficient in some models, especially in our study and LEyes, 

using the binary map is a better choice when making 

predictions. Additionally, both our study and the LEyes 

models work much more efficiently compared to a directly 

used segmentation model. This indicates that a learning model 

with a traditional method can operate more successfully with 

less unnecessary information. Additionally, it can be argued 

that it may not be necessary for the LEyes model to make 

repetitions in predictions.  

Thus, with a slightly shorter inference time, an increase of 

approximately 17 FPS has been achieved. However, for better 

results in the repetition-free version of LEyes, using the binary 

map might be more favorable. In the comparison between our 

study and LEyes, it is observed that LEyes works slightly more 

accurately. This level of accuracy holds true for center error, 

size error, and angle error for the repetitive version of LEyes. 

 

 
(a) 

 

 
 

(b) 
 

Figure 11. Comparison of our study and selected studies based on full or binary segmentation maps 
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On the other hand, our proposed study operates at almost 

twice the speed. Especially in slightly more controlled 

experimental environments, it can be said that the small 

success difference between our study and LEyes will 

completely close. However, our approximately two times 

faster prediction speed will remain constant. In the case where 

PETA metrics and the correction approach are added to our 

study, predictions can still be made at over 120 FPS, while 

performance metrics have improved only slightly. 

Additionally, our automatic configuration mechanism 

operates at almost similar levels of success. Thus, it has the 

potential to eliminate the need for users to make manual 

settings. When examining the only traditional method in our 

comparison, as expected, it operates very fast but is much less 

successful compared to learning models. In general, learning 

models, on the contrary, are more accurate but slower. This 

situation more clearly demonstrates the trade-off between 

learning models and traditional methods. 
 

 

6. DISCUSSION 
 

Although their advantages, amplitude-based methods may 

fail due to pupil-like dark regions or reflections from objects 

between the camera and eye. Success in edge-based methods 

depends on maintaining the pupil's elliptical form; ghosting 

and varying eye-closing can lead to detection errors. Hybrid 

methods can fail if amplitude and shape information don't 

complement each other. While ROM uses amplitude-based 

techniques, it reduces errors from darker non-pupil regions 

through user-defined functions as seen in Figures 12(a)-(c). 

However, issues from objects like glasses reflections remain 

(e.g. Figure 12(e)). Moreover, since the pupil is searched 

within a restricted area, ROM can be more robust than edge-

based methods during blinks when pupil shape information 

decreases, reducing the occurrence of jumping data. On the 

other hand, this capability may lead to fewer errors in images 

where amplitude or ellipticity is dominant (e.g., Figures 12(b)-

(c)), such as in hybrid models. This is because the pupil is not 

solely searched in the darkest region, and when searching for 

the pupil within a dark area of the image, the process relies not 

only on shape information but also on the combined 

consistency of both features. 

Pupil shape information can degrade under conditions like 

blinking and ghosting (secondary reflections), negatively 

impacting edge-based methods. While deep learning models 

also rely on shape cues, ROM’s traditional method can be 

more robust in such cases due to its constrained pupil search 

region. As shown in Figure 12(c), Figure 12 (f), Figure 12(g), 

Figure 12(h), even with significant shape loss, the detected 

pupil remains close to the plausible pupil area. Since the next 

detection is found in the selected ROI, it highlights ROM’s 

advantage in mitigating the jumping data issue, especially 

when combined with the proposed amplitude-based error 

prevention strategy, outperforming edge-reliant approaches. 

The definition of the Savitzky-Golay filter as a parabola is 

due to the characteristic embedding of the pupil area, which is 

typically oval or rectangular in the curve. However, the 

window size has been intuitively determined by the study 

authors and represents the average size of the pupil in the eye 

region. According to this intuition, for a ratio of 20% on each 

axis, the pupil area corresponds to approximately 4% of the 

image. In the experiments conducted, it was observed that 

lower determined ratios could not correct the noise, while 

higher ratios reduced the pupil information in the curve. 

Nevertheless, to achieve a better definition, it may be 

considered to calculate the average pupil area information for 

the Savitzky-Golay window size using dataset annotations. 

The average patch size of the traditional method proposed 

within the scope of ROM is 13.05%. However, according to 

the CDF curve (in Figure 8), the average patch percentage for 

half of the LPW is equal to or less than 7.58% (approximately 

×13.2). This suggests that the traditional method can produce 

much smaller patches for more controlled experimental 

procedures. As a result, the learning model can operate 

approximately 1ms faster (based on an ×16 magnification 

factor) and the system frequency can be increased to 184 FPS. 

Furthermore, by ensuring that the learning model deals with 

significantly less extraneous information, it can be used solely 

for localization processes. 

Literature includes several datasets for pupil detection, such 

as CASIA, IITD, MMU, and UUTD [7]. However, MMU (995 

images) and UUTD (1120 images) datasets are small and do 

not reflect natural eye-tracking sessions. They contain well-

illuminated images with limited variation in eye openness, 

restricting model evaluation. CASIA was collected in a 

controlled and remote iris imaging setup, making it unsuitable 

for wearable systems. Therefore, LPW, with 130,856 images 

from 66 uncontrolled session videos, offers a more challenging 

training environment.  
 

 
                 (a)                                           (b)                                            (c)                                           (d) 

 

 
                  (e)                                            (f)                                           (g)                                           (h)   

 

Figure 12. Example images where ROM fails and detects successfully 
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Dikablis (a subset of TEyeD) is larger (320, 200 images), 

collected from a different eye tracker, and more challenging 

regarding illumination. Hence, training on LPW was validated 

with Dikablis. The recent and popular OpenEDS dataset was 

developed for eye tracking in VR systems. Although suitable 

for evaluating the proposed method's performance in VR [84], 

OpenEDS was not included since our amplitude-based 

approach would require additional procedures to avoid pupil 

searches in dark regions caused by VR headsets. Based on this, 

we haven’t analyzed VR images in the current scope of the 

study [96, 97]. 

When determining dataset variations for LPW, image 

resolutions were not set uniformly but were instead prepared 

in accordance with the CDF curve and the intuitively defined 

4% pupil size information. Accordingly, variations start from 

the lowest magnification factor of ×2 and end at the intuitive 

value related to the average pupil size, which is ×25, as given 

in the CDF graph. Intermediate resolution variations are not 

created at equal intervals but are instead based on regions of 

accumulation in the CDF. Therefore, variations with 

resolutions of ×25, ×16, ×9, and ×6 are prepared for areas with 

high accumulation. Those with resolutions of ×4, ×2, and the 

original are referenced for areas with less accumulation. 

However, for a more comprehensive solution, resolution 

variations can be diversified, and more frequent resolution 

choices can be made even in areas with less accumulation. 

Unlike edge-based methods and learning models, 

amplitude-based traditional methods in the literature can 

enable the implementation of pre-experimental precautions to 

enhance computational accuracy. These precautions are 

generally associated with the removal of regions darker than 

the pupil from the eye area. However, this may not always be 

possible, and there may be dark areas in the eye region that 

cannot be removed. Therefore, in such cases, it should not be 

expected that traditional methods using amplitude information 

will work accurately. The amplitude-based traditional method 

proposed in the ROM concept of this study does not operate 

on the assumption that the pupil is the darkest region. Instead, 

it allows the experimental operator to determine the 

relationship between the pupil and other dark areas and 

operates according to PF function selections. PF functions 

provide a pre-experimental precaution alternative that is more 

advantageous than other amplitude-based traditional methods 

by evaluating the darkness, length, and position information of 

the pupil simultaneously. On the other hand, the First and End 

function, which ensures the selection of all dark areas, can be 

used to maximize the likelihood of the pupil being included 

within the patch, even in extreme situations where pre-

experimental precautions cannot be taken. In this regard, the 

proposed amplitude-based traditional method can inspire 

measures regarding pupil selection criteria in other methods 

that operate with traditional processes. 

While training and comparing the learning models in the 

study, certain regulations were implemented to reduce the 

training duration on the fixed hyperparameters and the data 

set. For a more accurate analysis, training processes can be 

designed with the all the data set (not with 3 Hz set), cross-

validation and hyperparameter optimizations. However, due to 

our temporal and physical resources, the relevant regulation 

had to be implemented. Also, the proposed model was tested 

at 320×240 resolution, commonly used in eye tracking. 

Evaluating its performance at different resolutions is important 

for robustness, and we consider this a direction for future 

work. On the other hand, training the proposed UNet++-S 

entirely on an unseen dataset (non-IR and structurally different 

from pupil data) is considered future work, as it would further 

strengthen the model’s claims of generalizability. 

In the literature, pupil detection successes are often reported 

using metrics such as center error and accuracy based on a 5-

pixel error. These metrics may be inadequate for comparing 

models, as the mean value is insufficient to define a stochastic 

process producing ellipse parameters. Therefore, the 

comparison section includes not only performance metrics 

based on ellipse center points but also size and angle errors. 

Sharing these metrics in future studies might better reflect the 

performance that studies can offer. On the other hand, sharing 

size and angle errors is crucial for understanding the success 

of a segmentation model working with pupil patches. This is 

because, in cases where the patches created are small-sized 

and well-centered by the pupil, the success of the segmentation 

model may not be apparent. To better understand the 

performance of the segmentation model, average size error and 

the average size of the created patches can serve as good 

indicators. 

With the operation of the ROM concept, a learning model 

with a traditional method can operate more efficiently with 

less unnecessary information. This is especially prominent in 

the field of remote eye tracking, as direct pupil information 

cannot be obtained by capturing the entire scene. Many objects 

in the scene may be black or circular, like the pupil. Therefore, 

in remote eye tracking, facial detection is first performed, and 

the eye region is then extracted, and lastly pupil is segmented. 

In other words, in remote eye trackers, several procedures are 

applied to ensure that learning models receive only the most 

relevant information. This study demonstrates that the "most 

relevant visual information" principle, which remote eye 

tracking systems already apply, can also be additionally 

implemented for wearable eye tracking systems. 

In deep learning studies, training sets may be given to 

training after being cropped. However, in this type of 

cropping, the resolution of the cropped image is rescaled 

towards the fixed resolution in the dataset. Although a similar 

cropping approach has been applied in LPW-AV, resolutions 

have not been expanded to the original resolution. 

Additionally, LPW-AV, which includes cropped images at 

different resolutions, has a data augmentation effect and has 

been able to significantly improve performance. On the other 

hand, within the scope of this study, it has not been 

investigated whether this increase in success is due to different 

resolutions or only cropping. Furthermore, while exploring the 

impact of these two cropping approaches on pupil detection 

could be a different research topic, almost none of the studies 

in the literature have fixed-size cropping been used as a data 

augmentation method.  

Models designed to work with pupil patches were trained 

with LPW-AV, which combines all LPW variations. However, 

this increases the training duration cost. For example, while 

one epoch UNet with LPW-Full is completed in approximately 

3-4 hours, LPW-AV takes about 10-12 hours for one epoch. 

To reduce this cost during training, two regimes can be 

applied. The first is to select a certain number of samples from 

each LPW variation rather than using all variations, creating a 

new mixed LPW variation. The second is to complete this 

process with synthetic image generators. The working 

principle of a synthetic image generator could be to produce 

images at a lower resolution, where the model makes less 

successful predictions in real-time. We do not explore these 

two alternatives within the concept of reducing training times 
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and attribute this research as future work. On the other hand, 

in the ROM structure, if a model is used whose success is not 

affected by the input resolution, there is no issue with a 

variation like LPW-AV and, consequently, no problem of 

increased training time. 

The existing literature has highlighted the utilization of 

various eye features for diverse applications, emphasizing the 

potential value of exploring new features. However, our model 

is designed to find pupil ellipse parameters only. Making the 

developed model detectable for other eye features can be 

considered as another future work of this study. 

Parameters marked as unsuccessfully according to PETA's 

metrics are not corrected if they do not meet the condition in 

the correction approach. It may be considered to improve the 

current correction approach to correct the unsuccessful 

parameters mentioned, but our study aimed to provide a 

solution for serious jumping data only. In addition, PETA's 

upper band recommendation is only for the human eye. For the 

developed method to be used in an animal other than a human, 

the assumptions will need to be updated according to the 

relevant animal. 

The threshold of 19 pixels, as determined in PETA's upper 

band correction approach, is notably high, and its impact on 

improving performance is minute. For a more optimal upper 

band, the eyeball can be detected, and then the angular change 

between two consecutive frames can be observed. However, 

since our method does not detect eyeballs in its current form, 

it had to offer a procedure that produces higher upper band 

values. The integration of an eyeball detection feature or 

method has the potential to further enhance the accuracy of the 

PETA correction. However, on the other hand, this correction 

method with or without eyeball parameters may be useful for 

traditional pupil detectors. When the model is also capable of 

detecting the eyeball, steps 1 and 4 in Section 2.3 — which 

include the empirical procedures for calculating the PETA 

threshold — will no longer be necessary. Consequently, it 

becomes possible to directly apply a function like the one in 

Equation 13 to the desired eye tracker without relying on prior 

assumptions. However, integrating an eyeball detection 

mechanism and adapting the function to determine the upper-

bound threshold based on the detected eyeball region are 

considered as the next steps of this study. 

ROM runs at an average of 6.5 ms per frame on GPU—

approximately 4× faster than UNet and UNet++-S, and 6× 

faster than UNet++. This corresponds to 153 FPS for ROM, 

compared to 35, 39, and 25 FPS for UNet, UNet++-S, and 

UNet++, respectively. On CPU, ROM achieves around 17 

FPS, while the others drop to 1.5–2.5 FPS. While we expect 

similar speed advantages on such systems, measuring 

inference time on low-resource hardware is planned as future 

work to better assess ROM's scalability. ROM also requires 

significantly less RAM (~340 MB vs. ~1700 MB for UNet) 

and is compatible with compression techniques like 

quantization and pruning. Further acceleration is possible with 

TensorRT or ONNX, especially on lower-end devices.  

ROM represents an approach rather than a rigid structure, 

allowing flexibility in the models and methods employed. 

According to the naming used in this study, works that 

combine traditional methods with learning models are referred 

to as ROM studies. Consequently, ROM presents an 

opportunity for future research, enabling researchers in the 

pupil detection field to explore innovative studies based on the 

fusion of traditional and state-of-the-art techniques. 

Additionally, from this perspective, we attribute LEyes' pupil 

detector as a study within the ROM concept. 

As mentioned in the literature review, the most recent pupil 

detection studies are [42, 43, 50, 52, 58-63]. In our comparison 

with PONet, the proposed model not only performs more 

accurately due to its lack of limitation to 15 positions but also 

generates pupil area information thanks to its segmentation 

feature [61]. This is a crucial feature for cognitive studies. 

While EV-Eye provides a high-level frequency, it is more 

expensive, non-wearable, and likely less accurate. Therefore, 

pupil detection frame by frame with CMOS cameras remains 

a necessity. Res-CNN achieves a significant portion of its 

frequency increase by reducing resolution [63]. However, as 

resolution decreases, the error rate increases. Our proposed 

ROM structure, on the other hand, crops the image instead of 

reducing the resolution. Although the QAT structure in Res-

CNN is not used in our study, it can be adapted. This would 

provide an additional frequency increase. Furthermore, the 

SAM-based model, Vir-NET, and Mal-NET can be directly 

expressed with the ROM structure [43, 50, 52]. Thus, it is 

possible to develop new studies that improve the detection 

speeds of all three models. A similar observation can be made 

for Byrne et al. [58]. For more accurate results, incorporating 

noise reduction and segmentation map correction operations 

into ROM, along with improving learning model accuracy, can 

be a function to be tested in future studies. However, 

Jamaludin et al.’s studies work according to black amplitude 

and lack the accuracy of a learning model. As mentioned in the 

literature, black amplitude information can easily produce 

erroneous results due to its insufficiency. On the other hand, 

the ROM structure is not valid for Pistol [39]. This is because 

Pistol focuses on detecting multiple components that can 

spread across the entire image, requiring the model input to be 

evaluated as a whole. However, as stated in the study, if a 

single segmentation model is used to improve performance, it 

is possible to add the Pistol model to the learning model part 

of ROM solely for pupil and iris detection. PCR-Net is also 

unsuitable for ROM for a similar reason as Pistol, as it focuses 

on detecting non-pupil eye components for remote systems 

[42]. 

 

 

7. CONCLUSION 

 

This research introduces a pupil ellipse detector designed 

with the innovative concepts of Retro-Oriented Mind (ROM) 

and PETA. Both ROM and PETA are novel and performance 

improving approaches in pupil detection field. Benefitting 

from the proposed methodology, the detector can run real-time 

and accurately.  

In addition to running at more than 150 Hz in the 

development environment of the study, the proposed detector 

was able to show significantly higher accuracy than directly 

used segmentation models. This situation is an indicator that 

the learning model can operate more efficiently with the less 

unnecessary information it receives. Therefore, the detector 

has the potential to be directly included in general-purpose 

uses of eye tracking systems. Also, the use of the study in 

fields that require high accuracy, such as medicine, requires 

the regularization of some environmental factors and 

experimental procedures related to eye appearance. It is 

possible to say that the developed detector with a correct 

experimental procedure has the accuracy to be used for 

medical purposes. 

Additionally, the proposed automatic configuration 
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mechanism provides almost similar success compared to when 

the most successful configuration is manually selected. Thus, 

the need for manually determining settings such as thresholds 

can be eliminated.  

Furthermore, to the best of our knowledge, this study stands 

as one of the most high-performing detectors, achieving a 

harmonious balance between accuracy, latency, and 

frequency. Compared to LEyes, which is another work that can 

be evaluated in the ROM concept, our pupil detector in the 

ROM concept has almost similar accuracies but works about 

two times faster. This situation arises from both our patch 

approach not being fixed-sized and the model parameters 

being downsized to operate in real-time. It has also been 

observed that the ROM study we proposed works much more 

efficiently than using an encoder-decoder model directly. 
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