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With the ongoing advancement of educational informatization, leveraging advanced 

technological methods to improve classroom teaching quality has become a significant focus 

of educational research. The application of deep learning-based image processing 

technology in the education field has gradually attracted attention. By automatically 

analyzing classroom videos, student behaviors can be objectively recorded and evaluated, 

helping teachers better understand teaching effectiveness and make timely adjustments to 

teaching strategies. Although some current studies have attempted to apply deep learning to 

classroom behavior analysis, challenges such as a heavy reliance on manual feature 

extraction and insufficient correlation between sequential data remain. To address these 

issues, a deep learning-based image processing system for classroom behavior analysis was 

proposed. The main research contributions include a) the development of a temporal 2D 

convolution model for classroom behavior analysis to extract temporal information from 

image data; b) the design of a method to expand the receptive field of temporal 2D 

convolution, enhancing the ability to perceive behaviors at different time scales; c) the 

construction of a classroom behavior recognition network to improve the accuracy and 

robustness of behavior recognition. This research aims to provide an efficient and accurate 

solution for classroom behavior analysis and promote the development of educational 

informatization. 
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1. INTRODUCTION

With the continuous advancement of educational 

informatization, how to effectively leverage advanced 

technologies to enhance classroom teaching quality has 

become an important research topic [1-4]. In recent years, deep 

learning-based image processing technologies have achieved 

significant accomplishments across various fields, and their 

application in education has gradually gained attention [5-9]. 

By automating the analysis of classroom videos, student 

behaviors can be objectively recorded and assessed, enabling 

teachers to better understand teaching effectiveness and adjust 

teaching strategies in a timely manner. Consequently, the 

development of a deep learning-based image processing 

system for classroom behavior analysis holds considerable 

practical significance. 

Classroom behavior analysis not only reflects student 

engagement and learning status but also provides data support 

for personalized teaching, thereby enabling precision in 

teaching [10-13]. Through the quantitative analysis of student 

behaviors during class, issues in the teaching process can be 

identified, which can subsequently inform the optimization of 

teaching design and improve the overall quality of education. 

Furthermore, classroom behavior analysis systems can be 

employed in teaching research, providing empirical data that 

contribute to the advancement of educational theory [14-16]. 

Therefore, research into deep learning-based image processing 

systems for classroom behavior analysis is not only of 

theoretical significance but also holds wide practical value. 

Although some studies have attempted to apply deep 

learning to classroom behavior analysis, there remain several 

limitations [17-22]. For example, traditional behavior analysis 

methods largely rely on manual feature extraction, which fails 

to fully exploit the information contained in image data, 

leading to insufficient accuracy and robustness in the analysis 

results [23-25]. Within the theoretical framework of deep 

learning, Convolutional Neural Networks (CNNs) are the 

foundational architecture for visual feature extraction. Their 

hierarchical feature learning mechanism provides a crucial 

basis for the analysis of image sequences [26]. In the domain 

of temporal modeling, temporal models such as Recurrent 

Neural Networks (RNNs) and their variants, notably Long 

Short-Term Memory (LSTM) [27], have been widely 

employed to capture temporal dependencies via the 

transmission of hidden states. However, these models are often 

constrained by issues such as vanishing gradients and limited 

computational efficiency. Additionally, existing CNNs often 

overlook the temporal correlations when processing sequential 

Traitement du Signal 
Vol. 42, No. 4, August, 2025, pp. 2065-2076 

Journal homepage: http://iieta.org/journals/ts 

2065

https://orcid.org/0009-0002-0878-3612
https://orcid.org/0009-0003-0166-4407
https://orcid.org/0009-0005-4570-5738
https://crossmark.crossref.org/dialog/?doi=10.18280/ts.420419&domain=pdf


data, which negatively affects the recognition performance of 

classroom behaviors. In recent years, artificial intelligence 

technologies-particularly image processing techniques driven 

by deep learning-have demonstrated growing potential within 

the field of education and have garnered increasing scholarly 

attention. CNNs have been employed to identify students’ 

postures in classroom environments, marking preliminary 

efforts toward the automation of behavioral analysis. 

Additional studies have focused respectively on video-based 

assessments of student attentiveness and analyses of 

classroom engagement, thereby underscoring the value of 

deep learning in interpreting classroom dynamics. Moreover, 

sequential models have been applied to capture patterns of 

teacher-student interaction. These investigations have 

collectively indicated that deep learning-based automated 

analysis of classroom behavior from image and video data 

offers promising pathways for enhancing the objectivity of 

teaching assessments, optimizing instructional strategies, and 

promoting personalized learning. Nevertheless, current 

methodologies still face significant challenges in fully 

extracting complex temporal information embedded in 

classroom behavior image sequences, effectively perceiving 

behavior variations across different time scales, and 

constructing robust recognition models capable of maintaining 

high generalizability. Therefore, there is an urgent need to 

develop a more effective deep learning model that can better 

capture and analyze classroom behaviors. 

In response to the aforementioned issues, a deep learning-

based image processing system for classroom behavior 

analysis was proposed in this study. The primary research 

content includes three key components: a) the development of 

a temporal 2D convolution model for classroom behavior 

analysis to fully exploit the temporal information embedded in 

image data; b) the design of a method to expand the receptive 

field of the temporal 2D convolution, enhancing the model's 

ability to perceive behaviors at different time scales; c) the 

construction of a classroom behavior recognition network to 

improve the accuracy and robustness of behavior recognition. 

Through these efforts, this research aims to provide an 

efficient and accurate solution for classroom behavior analysis 

and contribute to the advancement of educational 

informatization. 

2. CONSTRUCTION OF THE TEMPORAL 2D

CONVOLUTION FOR CLASSROOM BEHAVIOR

ANALYSIS

In the classroom teaching environment, student behaviors 

often contain rich temporal information. For example, actions, 

such as raising a hand, answering questions, and reading, 

exhibit specific temporal features. The detection and analysis 

of these behaviors play a critical role in enhancing teaching 

quality and classroom management. Conventional classroom 

behavior analysis methods have primarily relied on classical 

algorithms in computer vision, such as background subtraction, 

optical flow, and Histogram of Oriented Gradients (HOG) 

combined with Support Vector Machine (SVM) classifiers. 

These approaches have heavily depended on handcrafted 

feature design and extraction by researchers. However, this 

manual feature engineering paradigm presents several critical 

limitations: 

a) Limited expressive capacity and high subjectivity:

Handcrafted features often fail to comprehensively and 

effectively capture the rich visual and spatiotemporal 

information embedded within the complex and dynamic 

behavior patterns present in classroom environments. These 

methods are particularly inadequate when addressing subtle 

motions or occlusions. The design and selection of features are 

highly reliant on expert knowledge, which introduces a 

significant degree of subjectivity and potential bias. 

b) Weak temporal modeling capability: Classroom behavior

is inherently a temporally dependent dynamic process. 

Traditional approaches have generally been limited to single-

frame or short-sequence analysis, lacking the ability to model 

long-term behavioral evolution. As a result, they are often 

unable to distinguish between behaviors with similar initial or 

terminal states but different intermediate trajectories. 

c) Insufficient robustness and generalizability: Manually

crafted features tend to be sensitive to variations in lighting, 

viewpoint, occlusion, and background interference. 

Consequently, the performance of such models deteriorates 

across different classroom settings, camera angles, and student 

populations, undermining the stability and reliability of 

behavioral analysis outcomes. 

These limitations have hindered the effective utilization of 

the vast amount of information embedded in classroom image 

sequences, often resulting in behavior recognition outcomes 

that fall short of the accuracy and robustness required for 

practical deployment. In contrast, deep learning technologies-

particularly end-to-end deep neural networks-have 

demonstrated superior capability in automated feature learning. 

Such networks can directly learn robust and discriminative 

feature representations from raw image data. Therefore, the 

present study centers on the development of a deep learning-

based solution, with a primary objective of overcoming the 

bottlenecks associated with manual feature extraction by 

designing advanced network architectures capable of 

automatically learning and fully exploiting the spatiotemporal 

information contained in classroom imagery. 

To effectively analyze the temporal information in 

classroom behavior video images and improve the model's 

temporal perception capability without significantly 

increasing computational load, two improvements to the CNN 

were proposed in this study. First, a temporal 2D convolution 

model was constructed, utilizing the advantages of 2D 

convolution in spatial feature extraction while incorporating 

convolution operations in the temporal dimension to enhance 

the model’s ability to perceive temporal information. Second, 

a method for expanding the receptive field of the temporal 2D 

convolution was designed, which appropriately enlarges the 

convolution kernel's receptive field to ensure that it covers the 

duration of most classroom behaviors. This method not only 

effectively captures long-duration behavioral features but also 

improves the model's temporal analysis capability without a 

significant increase in computational complexity. 

The primary innovations and advantages of the proposed 

T2D-Conv module over existing approaches are as follows: a) 

Efficient temporal modeling: In contrast to computationally 

intensive 3D convolutional networks, T2D-Conv adopts a 

decompositional strategy of “spatial-first, then-temporal,” 

which significantly reduces both parameter count and 

computational complexity. This design enables more efficient 

training and deployment, particularly in classroom behavior 

analysis scenarios that require the processing of extended 

temporal sequences. b) Explicit temporal awareness: Unlike 

conventional 2D convolutional networks that are limited to 

processing single frames or simple frame stacks, T2D-Conv 
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incorporates 1D temporal convolutions following spatial 

feature extraction. This enables explicit modeling of inter-

frame temporal dependencies and allows the dynamic 

characteristics of behaviors to be effectively captured. 

Consequently, the limitations of traditional 2D methods in 

temporal information utilization are addressed. c) Modularity 

and flexibility: The T2D-Conv module is designed as a 

modular component that can be flexibly integrated into 

existing 2D CNN backbones. Temporal modeling can be 

achieved simply by appending a 1D convolutional layer along 

the temporal dimension to the output feature maps of the 

backbone network. This design facilitates transfer learning and 

modular network construction. Therefore, the T2D-Conv 

module serves as the foundational component for constructing 

an efficient and temporally aware classroom behavior analysis 

model. It provides a robust temporal feature representation for 

the subsequent components proposed in later sections, 

including the dilated temporal convolution and the behavior 

recognition network. 

In the context of classroom behavior analysis, conventional 

2D convolution methods, although highly effective in spatial 

feature extraction, struggle to capture the temporal 

information inherent in behaviors. To address this limitation, 

an innovative temporal 2D convolution method was proposed. 

The core idea of this method is to effectively compress the 

information from multiple images into a single image, thereby 

allowing 2D convolution to perceive temporal relationships 

even when processing a single image. However, directly 

stacking multiple images may distort the original spatial 

information, making it challenging to accurately classify 

classroom behaviors. To resolve this issue, an adaptive 

filtering gate (AFG) mechanism was introduced, which 

selectively retains and combines information from images at 

different time points, thereby preserving spatial features while 

enhancing the model's ability to perceive temporal information. 

The core principle of this mechanism lies in learning a 

dynamic, input-dependent weight mask capable of adaptively 

emphasizing feature channels that are critical to the current 

task while suppressing those that are irrelevant or potentially 

disruptive. AFG adaptively assigns an importance weight to 

each feature channel based on the content of the input features. 

A weight value approaching 1 indicates that the corresponding 

channel conveys features essential to the current input and 

should be retained or even amplified. Conversely, a weight 

approaching 0 suggests that the channel likely contains noise 

or redundant information and should therefore be attenuated. 

Given the complexity and variability of classroom 

environments, extracted temporal features inevitably include 

noise or irrelevant information. Through dynamic weighting, 

AFG effectively filters out such interferences, thereby 

enabling the model to focus on feature cues that are genuinely 

pertinent to behavior recognition. This contributes to enhanced 

recognition accuracy and robustness under complex scenarios. 

Fundamentally, the mechanism operates as a form of feature 

calibration; rather than introducing new features, it reassigns 

significance to existing feature channels to improve the quality 

of feature representation. 

To construct a temporal 2D convolution model for 

classroom behavior analysis, it is first necessary to understand 

how to perceive 3D temporal information at the 2D image 

level. Based on the understanding of conventional convolution 

operations, the temporal convolution operation can be 

decomposed into shifting and convolution operations. In 1D 

convolution, convolution weights Q={q1,q2,q3} are convolved 

with the input sequence A={A1,A2,…,Au}, where the 

sequence is shifted through displacement, and weighted sums 

are computed at each position to produce the output. When 

extending this concept to 2D image sequences, it becomes 

necessary to apply displacement operations on multiple 

consecutive image frames and combine them using 

convolutional kernel weights, thus enabling the perception of 

temporal information. Convolution can then be defined as 

Y=Conv1D(W,X)B=CONV1D(Q,A), as expressed in the 

following formula: 

1 1 2 3 1u u u uB q A q A q A− += + + (1) 

The displacement operation formula is as follows: 
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The convolution operation after displacement is expressed 

as: 

1 0 1

1 2 3u u uB q A q A q A− += + + (3) 

Specifically, in the construction of temporal 2D convolution, 

for each image frame, displacement operations along the time 

dimension were performed, with each image at different time 

points being weighted accordingly. It is assumed that each 

frame of the input video image sequence is a 2D matrix. By 

applying the displacement operation, each frame of the image 

was shifted along the time dimension, and corresponding 

convolution kernel weights were introduced to perform a 

weighted sum on each image frame. As a result, the outcome 

of the displacement and weighted summation not only 

contained the spatial information of the current frame but also 

integrated the temporal information of the preceding and 

succeeding frames. Let the 2D convolution kernel q be of size 

(l,v), and let the resolution of the input image a be (u,k). The 

conventional definition of 2D convolution is given by the 

following equation: 

( ) ( ) ( ), , ,
l v

CONV q a a u l k v q l v= + + (4) 

Let the batch size be represented by V, the number of 

channels by Z, the time dimension by S, and the resolution of 

a single image by u and k. The input vector for the temporal 

image sequence of classroom behavior can thus be represented 

as [V,Z,S,u,k]. For different time displacements of the channels, 

ZX1={Z1,…,ZZ/3} and ZX2={ZZ/3+1,…,ZZ}, the displacement 

expression for the time dimension channels is given by: 

1 1

1

2 2

Z Z

s s

Z Z

s s

A a

A a

−=

=
(5) 

To address the limitations of fixed channel displacement in 

temporal feature extraction, a filtering gate mechanism was 

introduced within the temporal 2D convolution structure to 

enhance the effectiveness of classroom behavior analysis. 

Specifically, the feature map processed by each network layer 

represents the result of each image frame after 2D convolution, 
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with these feature maps arranged in chronological order. By 

adding a filtering gate at each layer, the network was enabled 

to dynamically select which channels should be moved and 

aggregated along the time dimension, allowing the model to 

flexibly adapt to variations in the duration of different 

behaviors. The output dimension of the filtering gate was 

consistent with the number of channels, and its weights were 

trained through backpropagation, thereby adjusting the 

extraction of temporal features in real time for each channel. 

Figure 1. Example of the role of the filtering gate 

The role of the filtering gate is to process its output values 

through a sigmoid activation function, ensuring that the values 

are distributed within the range [0, 1]. Figure 1 illustrates an 

example of the filtering gate's function. A threshold of 50% 

was used as the boundary, with channels whose output exceeds 

0.5 undergoing temporal shifting, while those below 0.5 

remain unchanged. This filtering gate mechanism allows the 

network to effectively extract temporal feature information 

without significantly increasing computational complexity. 

Let the input video image sequence consist of a series of 

frames. After 2D convolution, the feature maps obtained can 

determine, based on the output of the filtering gate, whether 

temporal shifting and accumulation should occur. Let the 

filtering gate before the activation function be represented by 

c. The computational formula for this layer is as follows:

( )
( )

1

1
c

c
e

 =
+

(6) 

As for the filtering gate output, the channel sequence that 

needs to be shifted is represented by T={a|δ(a)}, and the 

sequence that remain unchanged is represented by T’. The 

resulting channel displacement after applying the filtering gate 

is then given by: 

1

' '

T T

s s

T T

s s

A a

A a

−=

=
(7) 

Further, the A convolution computation after temporal 

channel displacement is expressed as: 

( ) ( ) ( ), , ,
l v

CONV q A A u l k v q l v= + + (8) 

3. CALCULATION OF THE EXPANDED TEMPORAL

2D CONVOLUTION PERCEPTION RANGE FOR

CLASSROOM BEHAVIOR ANALYSIS

When processing classroom behavior video images, the 

temporal perception range of the feature maps generated by 

the temporal 2D convolution must be considered. By stacking 

a sufficient number of temporal 2D convolutional layers, a 

broader temporal perception range and richer semantic 

features can, in theory, be obtained. However, the depth of the 

neural network cannot be increased indefinitely, as both 

computational cost and training difficulty rise significantly 

with the increase in layers. To effectively explore and optimize 

this process, a feedforward neural network was discussed in 
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this study using the nonlinear unit as the unit. This approach 

aids in a clearer analysis and understanding of the role and 

contribution of the temporal 2D convolution at specific layers. 

Let the neural network D(a;r) consist of M stacked nonlinear 

units. Assuming that the computation of the neural network is 

denoted as G and the activation function is represented by h, 

the net input c and output x of the m-th layer of the neural 

network can be expressed by the following equation: 

( ) ( )( )
( ) ( )( )

1m m

m m

c G x

x h x

−
=

=
(9) 

To harness the advantages of deep networks, it is necessary 

to address issues such as overfitting, gradient vanishing, and 

gradient explosion effectively. The classroom behavior 

analysis model utilized in this study expands the perception 

range through multiple layers of the temporal 2D convolution, 

capturing the temporal dynamics within the video data to 

identify and analyze students' behaviors. To prevent 

overfitting, several regularization techniques were employed. 

These include L2 regularization, dropout, and data 

augmentation methods. L2 regularization involves adding a 

weight penalty term to the loss function to suppress 

excessively large network parameters, thereby reducing the 

risk of overfitting. Dropout works by randomly deactivating a 

portion of neurons during training, enhancing the model's 

robustness and preventing dependence on specific nodes. 

Additionally, data augmentation generates more diverse 

training samples through operations such as rotation, 

translation, and scaling, further enhancing the model's 

generalization capability. The combined use of these methods 

helps the deep neural network to better learn features during 

training, rather than memorizing the training data. 

To address the issues of gradient vanishing and explosion, 

several advanced techniques and optimization strategies were 

introduced in this study. For example, batch normalization was 

employed to standardize the input of each batch of data, 

ensuring that the input distribution of each layer remains stable. 

This technique accelerates training convergence and reduces 

the risk of gradient vanishing. Additionally, appropriate 

weight initialization methods were adopted to ensure that the 

initial weights are within a suitable range, thereby preventing 

the gradual disappearance or explosion of gradients during 

both forward and backward propagation. Furthermore, the 

selection of suitable activation functions, such as ReLU and its 

variants, can effectively mitigate the gradient vanishing 

problem and improve training efficiency. Specifically, the 

parameter update at the M-th layer requires the computation of 

the gradient of the loss Z with respect to the layer. This 

gradient depends on the error term of the layer, denoted as 

σ=∂γ/∂c(m). According to the chain rule, σ(m) is related to the 

error term σ(m+1) of the subsequent layer: 

( )
( )

( )

( )
1

1
m

m m

m

c

c
 

+
+

= 


(10) 

Let ε(m)∂c(m+1)/∂c(m), then it leads to the following expression: 

( ) ( ) ( )1m m m
  

+
= (11) 

Assuming that the output and input dimensions of the neural 

network are consistent, the function G that needs to be fitted 

can be divided into two parts as follows: 

( ) ( )( ) ( ) ( )( )2 1 1 1m m m m
c G x x D x

− − −
= = + (12) 

For computational convenience, if no activation functions 

are applied, the following expression can be obtained: 

( ) ( ) ( )( )
( ) ( )( ) ( )( )

2 2 2

2 2 2

1 1

2 2 1

m m m
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x x D x

x D x D x

− −

− − −

= +

= + +
(13) 

By recursively expanding this expression, the final result 

can be derived as: 

( ) ( ) ( )( )
2

2 1

1

1m
m m u

u m

x x D x
−

=

= + (14) 

The gradient of the final loss γ with respect to a lower-layer 

output can be expanded as: 

( ) ( )
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
(15) 

The choice of optimization algorithm and hyperparameter 

tuning are also crucial for the training of deep neural networks. 

The Adam optimizer was employed in this study, which 

adjusts the update step size of each layer's parameters through 

an adaptive learning rate. The incorporation of momentum 

terms helps to reduce oscillations, further stabilizing the 

training process. 

As previously described, the standard T2D-Conv module 

captures sequential frame information through 1D 

convolutional kernels. However, classroom behaviors exhibit 

pronounced multi-scale temporal characteristics: certain 

actions occur over brief durations, whereas others span 

significantly longer periods. To enhance the model’s ability to 

perceive long-duration behavioral patterns-while avoiding the 

computational burden and optimization challenges associated 

with excessively deep convolutional stacks-a dilated 

convolution mechanism was introduced into the temporal 1D 

convolutional component, forming the D-T2D-Conv module. 

The primary advantage of dilated convolution lies in its 

ability to exponentially expand the receptive field. By simply 

increasing the dilation rate, D-T2D-Conv significantly extends 

the model’s temporal receptive field without increasing the 

number of convolutional parameters or the network depth. 

This enhancement markedly improves the model’s capability 

to capture long-range dependencies, thereby enabling the 

effective recognition of classroom behaviors that span dozens 

or even hundreds of frames. In contrast, achieving an 

equivalent receptive field with standard convolution would 

necessitate deep layer stacking, substantially increasing model 

complexity and training difficulty. 

In the system design, multiple groups of D-T2D-Conv 

modules with different dilation rates were applied across 

various network hierarchies, forming a multi-scale temporal 

feature extraction pyramid. Lower layers employed smaller 

dilation rates to capture fine-grained, short-term actions, while 

upper layers utilized larger dilation rates to model coarse-
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grained, long-duration behavioral patterns. This architectural 

strategy constitutes a core technique for enhancing the model’s 

perceptual capacity across diverse temporal scales in 

classroom behavior recognition. 

4. CONSTRUCTION OF THE CLASSROOM 

BEHAVIOR RECOGNITION NETWORK

The goal of this study is to develop an efficient and real-

time neural network architecture for accurately recognizing 

and analyzing student behavior in the classroom. To achieve 

this, the network architecture must not only possess strong 

feature extraction capabilities but also maintain computational 

efficiency, avoiding performance degradation due to excessive 

parameters and layers that may affect real-time processing. To 

address these challenges, a core structure based on the 

temporal 2D convolution and dilated perception was proposed 

in this study, which cleverly balances performance with 

computational efficiency. 

Figure 2. Temporal offset dilation structure 

Figure 3. Identity mapping structure 

The network adopts a temporal offset dilation core structure 

that integrates the temporal 2D convolution and dilated 

perception techniques. Specifically, the input to the network 

first passes through a filtering gate channel to filter out key 

temporal information. The filtered channel data is then 

processed with a temporal offset, transforming it into input 

with temporal information. This processing method 

effectively captures temporal features in video data, catering 

to the requirements of classroom behavior analysis. To prevent 

the gradient vanishing problem caused by the multi-layer 

stacking of the temporal offset dilation structure shown in 

Figure 2, an identity mapping structure, as shown in Figure 3, 

was introduced after the temporal offset input. The addition of 

the identity mapping ensures that gradients are successfully 

transmitted, maintaining training stability in the network. In 

each layer, to maintain the equivalence of the input and output 

matrix dimensions, a 1×1 temporal 2D convolution was used 

for dimensionality reduction, followed by a 3×3 temporal 2D 

convolution for feature extraction. A 1×1 temporal 2D 

convolution was then employed for dimensionality expansion, 

preparing for the subsequent identity mapping addition. 

The core of the network architecture lies in efficiently 

extracting and processing temporal features to achieve 

accurate recognition of various classroom behaviors. Initially, 

a preprocessing module was employed, where three-layer 3×3 

convolution operations progressively compress the input high-

resolution video frames (224×224×3) into lower-resolution 

feature maps (56×56×24), while simultaneously increasing the 

number of feature channels. This operation significantly 

reduces the computational load while enhancing the 

expressive capacity of the feature maps, thereby laying a solid 

foundation for subsequent temporal feature extraction. At this 

stage, by reducing the resolution and increasing the number of 

channels, the computational load of the input was reduced 

from approximately 150,000 to around 70,000, which is 

roughly half of the original amount, making the network more 

efficient when processing large volumes of video frames. 

The core structure of the network, the temporal offset 

dilation structure, gradually expands the temporal receptive 

field by stacking 12 layers. Each layer of the temporal offset 

dilation structure ensures stable gradient propagation through 

identity mapping and utilizes the 1×1 convolution with a stride 

of 2 to perform dimensionality expansion. This approach 

allows deeper features to be extracted while halving the feature 

map and doubling the dimensionality. Each layer applies 

temporal offset processing to the input feature map, enabling 

the network to effectively capture and integrate behavioral 

information spanning up to 6 seconds. Finally, through 

average pooling, the feature map can be converted into a 

highly compact 1×1 feature vector, which can then be 

connected to a fully connected layer to output the final 

behavior category. This architecture not only ensures the full 

utilization of temporal information but also maintains 

computational efficiency and feature richness through 

judicious dimensionality reduction and expansion, providing 

efficient and precise technical support for classroom behavior 

recognition. Assuming that the probability of the current 

action belonging to the u-th action category is represented by 

Tu, the numerical output of the u-th action category is denoted 

as Cu, and the category is denoted as Z. The output category 

formula is as follows: 

1

u

z

C

u Z
c

z

e
T

e
=

=


(16) 

5. EXPERIMENTAL RESULTS AND ANALYSIS

As shown in Table 1, the classroom behavior recognition 

network architecture describes a multi-level deep learning 

model specifically designed for the analysis and recognition of 

behaviors in classroom environments. Each input image to the 

network contains multiple temporal frames. A series of 

different convolutional layers, combined with the temporal 

offset dilation structure, was used to progressively extract 

features from low-level to high-level. In the initial stages, 
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multiple standard convolutional layers were used for spatial 

feature extraction, with the output channel count increasing, 

while convolution operations with a stride of 1 were employed 

to maintain spatial resolution while ensuring feature 

dimension consistency. As the network deepened, the 

temporal offset dilation convolution structure was introduced 

to enhance the ability to perceive temporal information. 

Particularly, through the use of different dilation rates and 

repetition counts, the network was able to model and extract 

temporal features across various time scales, effectively 

capturing the dynamic changes in classroom behaviors. 

Table 1. Classroom behavior recognition network 

architecture 

Input 
Network 

Type 

Number of 

Output 

Channels 

Repetition 

Count of the 

Layer 

Stride 

11*215*215*3 
Standard 3×3 

convolution 
31 1 2 

11*125*125*31 
Standard 3×3 

convolution 
15 1 1 

11*125*125*31 
Standard 3×3 

convolution 
23 1 2 

11*55*55*23 

Temporal 

offset dilation 

structure 

23 3 1 

11*55*55*23 
Standard 1×1 

convolution 
31 1 2 

11*27*27*31 

Temporal 

offset dilation 

structure 

31 2 1 

11*27*27*31 
Standard 1×1 

convolution 
62 1 2 

11*12*12*62 

Temporal 

offset dilation 

structure 

62 3 1 

11*12*12*62 
Standard 1×1 

convolution 
95 1 1 

11*12*12*94 

Temporal 

offset dilation 

structure 

95 3 1 

11*12*12*94 
Standard 1×1 

convolution 
158 1 2 

11*7*7*158 

Temporal 

offset dilation 

structure 

158 1 1 

11*7*7*335 
Standard 1×1 

convolution 
1125 1 1 

11*7*7*1128 
Average 

pooling 
- 1 - 

11*1*1*1128 
Fully 

connected 
4 1 - 

In the experimental section, the first task was the prediction 

and detection of classroom behavior boundaries, with the goal 

of distinguishing between intervals containing classroom 

behaviors and those without. Figure 4 illustrates the 

conceptual approach for boundary prediction, which 

effectively segments long videos into multiple segments. Each 

segment was marked with the action intervals of both students 

and teachers, allowing the model to focus on analyzing only 

those parts of the video that contain classroom behavior. This 

segmentation improves data processing efficiency and model 

accuracy. This step not only reduces interference from 

irrelevant data but also provides more precise input data for 

the subsequent behavior recognition network. The segments 

selected through this method serve as the input for the 

classroom behavior recognition network, enabling further 

detailed action recognition. 

Figure 4. Prediction of classroom behavior boundaries to 

identify the student-teacher action intervals 

Table 2. Results of classroom behavior recognition testing 

Dataset 

Correct 

Action 

Accuracy 

Incorrect 

Action 

Accuracy 

False 

Positive 

Rate 

False 

Negative 

Rate 

Training 

dataset 
95% 91% 0% 0% 

Testing 

dataset 
87% 85% 22% 12% 

Based on the classroom behavior recognition test results 

presented in Table 2, it can be observed that the system's 

performance differs between the training and testing datasets. 

On the training dataset, the model achieved high accuracy, 

with a correct action accuracy of 95%, an incorrect action 

accuracy of 91%, and both false positive and false negative 

rates of 0%, indicating that the model was able to effectively 

identify classroom behaviors during training without any 

misclassifications or omissions. In contrast, the results for the 

testing dataset were slightly lower, with a correct action 

accuracy of 87%, an incorrect action accuracy of 85%, a false 

positive rate of 22%, and a false negative rate of 12%. This 

suggests that, while the model's behavior recognition ability 

remains highly accurate in practical applications, the increased 

diversity and complexity of the testing data led to a higher 

occurrence of false positives and false negatives. 

Table 3. Performance comparison of different models 

Network Model 
Backbone 

Network 

Number of 

Sample 

Frames 

Weight mAP 

Classroom behavior 

recognition network 

Temporal 

expansion 

network 

11 8.8 M 44.6 

Two-stream networks VGG 8 46.2 M 38.9 

SlowFast networks ResNet 31 34.5 M 42.3 

Temporal segment 

networks 
ResNet 8 32.6 M 37.8 

Inflated 3D ConvNet Inception-v1 8 11.2 M 18.6 

As shown in Table 3, the proposed classroom behavior 

recognition network demonstrates excellent performance in 

terms of mean Average Precision (mAP), achieving a value of 

44.6, which outperforms several other mainstream network 

models. The model employs a temporal expansion network as 
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the backbone and was trained with a sample size of 11 frames, 

with a weight parameter of 8.8 M. In comparison, the two-

stream networks, which use the Visual Geometry Group (VGG) 

backbone, have a higher weight (46.2 M) but achieve an mAP 

of 38.9, which is slightly lower than the proposed network. 

SlowFast networks, based on the ResNet backbone and with 

31 sample frames, achieve an mAP of 42.3, indicating good 

performance in spatiotemporal feature extraction, although it 

does not surpass the proposed network. Additionally, temporal 

segment networks and inflated 3D ConvNet, which use the 

ResNet and Inception-v1 backbones, respectively, show 

weaker performance with mAP values of 37.8 and 18.6. The 

comparison results clearly show that the classroom behavior 

recognition network proposed in this study performs 

superiorly across several aspects, particularly in accurately 

identifying classroom behaviors. While other models, such as 

two-stream networks and SlowFast networks, also perform 

well in processing temporal and spatial features, their more 

complex network structures and higher parameter weights 

limit their computational efficiency and generalization ability. 

The temporal expansion network designed in this study, with 

fewer parameters (8.8 M) and a reasonable frame count (11 

frames), achieves a balance between accuracy, computational 

efficiency, and robustness. 

Table 4. Comparison of processing speeds of different 

models 

Network Model FLOPs Weight 
Processing 

Time 

Inflated 3D ConvNet 315 G 34.6 M 156.2 ms 

Two-Stream Networks 63 G 46.2 M 31.2 ms 

SlowFast Networks 32 G 28.5 M 24.3 ms 

Classroom behavior 

recognition network 
16 G 8.8 M 12.4 ms 

As shown in Table 4, the classroom behavior recognition 

network proposed in this study demonstrates a significant 

advantage in processing speed. The model has a floating-point 

operations (FLOPs) count of 16 G, with a weight of 8.8 M and 

a processing time of only 12.4 ms, indicating high 

computational efficiency. In contrast, although the inflated 3D 

ConvNet and two-stream networks perform well in terms of 

recognition accuracy, their processing times are 156.2 ms and 

31.2 ms, respectively. Furthermore, the former has a FLOPs 

count of 315 G, and the latter 63 G, suggesting that these 

models incur higher computational costs. Even the SlowFast 

Networks, with a FLOPs count of 32 G, has a processing time 

of 24.3 ms, which still does not match the performance of the 

proposed network. 

To provide a more intuitive and in-depth understanding of 

system performance beyond quantitative metrics, a detailed 

qualitative analysis was also conducted. A comprehensive 

review of numerous video samples was undertaken to 

summarize representative cases of successful recognition and 

to examine challenging scenarios that led to misclassification, 

thereby revealing both the strengths and current limitations of 

the system. In the successfully recognized cases, the system 

demonstrated robust capability in capturing a variety of typical 

classroom behaviors. For instance, in the recognition of the 

“raising hand to ask a question” behavior, the model was able 

to accurately track the full sequence of motion-from the initial 

lift of the arm, through the maintained raised-hand posture, to 

the eventual lowering of the hand-while consistently 

producing high-confidence outputs. This outcome 

substantiates the effectiveness of the T2D-Conv model in 

modeling the dynamic evolution of continuous actions. In the 

detection of the “taking notes” behavior, the recognition 

results remained stable even when students momentarily 

looked up at the blackboard, thereby interrupting the writing 

motion. This stability was attributed to the moderate window-

overlap strategy and the model’s temporal contextual memory, 

which allowed temporal segments to be associated across time, 

effectively preventing misclassification due to short-term 

interruptions. For the “attentive listening” state, high-

confidence results were continuously produced when students 

maintained a standard seated posture facing the lectern. Even 

in the presence of minor background disturbances, the AFG 

mechanism was presumed to have effectively suppressed noise 

activation in non-critical regions, maintaining focus on the 

target student. In addition, for long-duration “inattentive” 

behaviors, the use of high-level D-T2D-Conv modules with 

large dilation rates enabled the successful capture of these 

prolonged deviation patterns spanning dozens of frames. 

Figure 5. Testing results on the actual classroom video dataset 
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Based on the data presented in Figure 5, which shows the 

variation in average recall with respect to the average number 

of predicted results per video, differences in performance at 

varying overlap rates can be observed. When the overlap rate 

is 0.45, the average recall increases gradually from 0.52 to 

0.91, with an Area Under the Curve (AUC) of 67.26. As the 

number of predicted results increases, the average recall 

steadily rises, indicating that the model performs well in 

capturing actual behavioral segments at lower overlap rates. 

When the overlap rate is 0.55, the initial average recall is 0.48, 

which eventually reaches 0.87, with an AUC of 54.59. As the 

overlap rate increases to 0.65, the initial recall decreases to 

0.44, and it eventually reaches 0.83, with an AUC of 50.61. 

Further increasing the overlap rate to 0.75 results in an initial 

recall of 0.34, which rises to 0.73, with an AUC of only 42.33. 

At an overlap rate of 0.85, the initial recall remains 0.34, but 

the final recall reaches only 0.73, with an AUC of 24.61. In 

comparison, the AR-AN method shows a gradual increase in 

average recall from 0.24 to 0.47, with an AUC of 43.15, 

overall underperforming. From the experimental results, it can 

be observed that the proposed deep learning-based classroom 

behavior analysis system demonstrates a superior recall at 

lower overlap rates. The average recall steadily improves as 

the number of predicted results increases, suggesting that the 

model can accurately capture time segments that overlap with 

actual behavior segments. However, as the overlap rate 

increases, the recall performance of the system significantly 

decreases, and the AUC value also drops sharply, reflecting 

the model's difficulty in maintaining high accuracy at higher 

overlap rates. Particularly at an overlap rate of 0.85, despite 

the increase in the number of predicted results, the final recall 

shows only limited improvement, with the AUC dropping to 

24.61, indicating a significant decline in the model's 

recognition performance in this scenario. 

To assess the system's sensitivity to behavior boundary 

delineation, performance was evaluated under different sliding 

window overlap ratios during input video segmentation for 

prediction generation. The experimental results demonstrated 

that as the overlap ratio increased from 0% to 50%, the overall 

recognition accuracy initially improved and then plateaued. 

Notably, optimal or near-optimal performance was typically 

achieved when the overlap ratio ranged between 25% and 33%. 

The performance variation under different overlap settings can 

be attributed to the following factors: a) Continuity of 

behaviors and boundary ambiguity: Classroom behaviors 

generally evolve continuously, with indistinct onset and offset 

boundaries. When the window overlap is too low, a severe 

discontinuity is introduced between adjacent segments. As a 

result, behavioral sequences may be split at the window 

boundaries, causing the model to observe only partial behavior 

segments. This fragmentation leads to incomplete feature 

representations and increases the likelihood of 

misclassification or missed detections. b) Temporal modeling 

and contextual information: The proposed D-T2D-Conv 

module relies on adequate contextual frames to effectively 

model temporal dynamics. A moderate overlap ratio ensures 

that a substantial number of frames are shared across adjacent 

windows. Consequently, even when a behavior spans across 

window boundaries, a relatively complete contextual 

representation is preserved within multiple overlapping 

windows. More comprehensive information from preceding 

and succeeding frames is utilized when predicting behaviors 

near the center of each sliding window, thereby enhancing the 

accuracy of assessing the complete behavioral process and 

mitigating the adverse effects of boundary segmentation. c) 

Computational redundancy and noise amplification: While 

high overlap ratios theoretically minimize boundary 

segmentation issues, they also introduce significant 

redundancy due to repeated frames across adjacent windows. 

This redundancy leads to increased computational cost from 

repeated feature extraction and inference across highly similar 

windows, thereby reducing processing efficiency. Moreover, 

the high degree of content similarity among overlapping 

windows may amplify transient or local noise or 

mispredictions during result fusion, rather than providing 

diverse and complementary information. In some cases, this 

effect may even slightly degrade overall performance or result 

in diminishing returns. 

Considering both recognition accuracy and computational 

efficiency, an overlap ratio of 25% to 33% is recommended. 

This configuration strikes an effective balance between 

minimizing behavior boundary fragmentation, ensuring 

sufficient contextual representation, and controlling 

computational redundancy. This parameter serves as a critical 

factor in maximizing the performance of the proposed multi-

scale temporal modeling network. Furthermore, the findings 

reinforce the importance of effectively leveraging temporal 

context information to enhance the robustness of behavior 

recognition. 

 

Table 5. Comparison of testing results on the actual 

classroom video dataset with other mainstream models 

 
Network Model mIoU mAP@0.5IoU mAP@0.7IoU FPS 

Two-stream networks 62.26 81.23 42.31 75 

SlowFast networks 72.15 91.25 61.25 42 

Temporal segment 

networks 
76.36 87.26 64.58 31 

Inflated 3D ConvNet 51.23 57.54 9.36 41 

Classroom behavior 

recognition network 
83.21 96.36 81.26 75 

 

Based on the comparison of the test results from the actual 

classroom video dataset with other mainstream models 

provided in Table 5, the proposed classroom behavior 

recognition network demonstrates superior performance 

across multiple evaluation metrics. The model achieves a 

mean intersection over union (mIoU) of 83.21, significantly 

outperforming other leading network models, such as the two-

stream networks (62.26) and SlowFast networks (72.15). On 

the mAP@0.5IoU metric, the proposed network also leads all 

comparison models with a score of 96.36, especially 

surpassing the inflated 3D ConvNet (57.54). The model 

continues to maintain a leading position in mAP@0.7IoU with 

a score of 81.26, well above SlowFast networks (61.25) and 

temporal segment networks (64.58). Additionally, in terms of 

frames per second (FPS), the processing speed of the proposed 

classroom behavior recognition network is comparable to that 

of the two-stream networks, both achieving 75 FPS, indicating 

high real-time performance suitable for real-time classroom 

behavior analysis applications. The comparison results clearly 

indicate that the proposed network excels in both accuracy and 

efficiency. Particularly in the mIoU, mAP@0.5IoU, and 

mAP@0.7IoU metrics, the model significantly outperforms 

other mainstream models, demonstrating a strong ability to 

accurately recognize classroom behaviors and more precisely 

segment and identify behavior-related time intervals. 

Furthermore, the network’s real-time performance is excellent, 

with a processing speed of 75 FPS, matching that of the two-
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stream networks, ensuring efficient real-time feedback 

capability. In contrast, the inflated 3D ConvNet performs 

poorly across multiple metrics, particularly in mAP@0.7IoU, 

where it scores only 9.36, highlighting its deficiencies in both 

accuracy and robustness. Overall, the proposed network not 

only offers significant advantages in recognition accuracy but 

also excels in computational efficiency, showing greater 

potential for practical applications, especially in meeting the 

high efficiency and real-time requirements of actual classroom 

behavior analysis. Figure 6 provides an example of classroom 

behavior tracking and judgment. 

Figure 6. Example of classroom behavior tracking and 

judgment 

To evaluate the temporal and spatial computational 

efficiency, a comparative experiment was conducted using 3D 

convolution as the baseline method on the ClassroomAction 

dataset. As presented in Table 6, the T2D-Conv module 

achieved a 68.3% reduction in FLOPs, a 52.7% decrease in the 

number of model parameters, and a 41.2% improvement in 

per-frame inference time relative to the standard 3D 

convolution. These gains can be attributed to the structural 

optimization offered by the T2D-Conv, wherein the spatial and 

temporal convolution operations are decoupled, thereby 

preserving the temporal feature modeling capacity while 

significantly enhancing computational efficiency. Such 

lightweight architectural design is particularly advantageous 

for real-time analysis in classroom scenarios, as it reduces the 

computational burden on edge devices and facilitates practical 

system deployment. 

Table 6. Comparative evaluation of temporal and spatial 

computational complexity 

Method 
FLOPs 

(G) 

Parameters 

(M) 

Inference Time 

(ms/frame) 

3D-Conv 12.6 28.4 32.7 

T2D-Conv 3.9 13.4 19.2 

Performance 

improvement 
↓68.3% ↓52.7% ↓41.2% 

Method 
FLOPs 

(G) 

Parameters 

(M) 

Inference time 

(ms/frame) 

3D-Conv 12.6 28.4 32.7 

To further validate the effectiveness of the AFG mechanism, 

a pair of comparative experiments was designed, consisting of 

Model A with the mechanism enabled and Model B without it. 

On the standard test set of the ClassroomAction dataset, Model 

A achieved an average recognition accuracy of 89.7%, 

representing a 4.5 percentage point improvement over Model 

B, which yielded an accuracy of 85.2%, as detailed in Table 7. 

Under robustness evaluation conditions with 10% Gaussian 

noise added to the input images, the performance of Model A 

decreased to 82.3%, while Model B dropped more sharply to 

75.1%. These results demonstrate the AFG mechanism’s 

capacity to suppress noise interference effectively. By 

dynamically adjusting the weight distribution across 

spatiotemporal features, the mechanism enables more precise 

focus on salient behavioral cues while mitigating the impact of 

background noise and irrelevant information. Consequently, 

the mechanism enhances the practical applicability of the 

model in real-world classroom environments. 

Table 7. Comparative results for the AFG mechanism 

Experimental 

Condition 

Model A (with the 

Mechanism) 

Model B (without 

the Mechanism) 

Standard test set 89.7% 85.2% 

10% Gaussian 

noise 
82.3% 75.1% 

6. CONCLUSION

The deep learning-based classroom behavior analysis image

processing system proposed in this study demonstrated 

significant advantages in the task of classroom behavior 

recognition. By constructing a temporal 2D convolution model 

designed for classroom behavior analysis, the temporal 

information within image data was thoroughly explored. 

Additionally, a method to enhance the receptive field of the 

dilated temporal 2D convolution was devised, further 

strengthening the model’s ability to perceive behaviors at 

different time scales. Moreover, the proposed classroom 

behavior recognition network not only achieved 

breakthroughs in accuracy but also outperformed current 

mainstream models, such as two-stream networks and 

SlowFast networks, across multiple evaluation metrics. 

Particularly, it exhibited outstanding performance in metrics 

such as mIoU, mAP@0.5IoU, and mAP@0.7IoU, thereby 

validating the method's efficiency and robustness in classroom 

behavior recognition. More importantly, the model also 

demonstrated strong real-time performance, with a processing 

speed of 75 FPS, which meets the real-time feedback 

requirements in actual classroom environments. 

However, despite the excellent results achieved in multiple 

aspects in this study, some limitations remain. First, the 

model’s performance is constrained by the diversity and 

complexity of the dataset. The current experiments were 

conducted only on a specific classroom video dataset, and 

future work should focus on validating the model’s 

generalization capability on a wider range of scenarios and 

datasets. Second, while a balance between accuracy and 

computational efficiency was achieved, further optimization 

of the model may require deeper algorithmic refinements to 

reduce computational resource consumption and improve real-

time performance. Despite the advances achieved by the 

proposed deep learning-based classroom behavior analysis 

system, several challenges and promising directions remain to 

be further explored: a) Enhancing robustness under dynamic 

and complex classroom environments and improving 

recognition of intricate behaviors: A performance decline has 

been observed in scenarios involving extreme lighting 

variations, severe occlusions, unconventional camera angles, 

or densely interactive student behaviors. Future efforts should 

be directed toward the development of more robust 

spatiotemporal feature representation learning methods and 

interference-resistant mechanisms. b) Integrating multimodal 

data to enrich analytical depth and dimensionality: Reliance 

on visual data alone has proven insufficient for capturing the 

full complexity of classroom dynamics. The incorporation of 
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multimodal information-such as audio signals, textual content, 

and even physiological indicators-is regarded as a necessary 

progression for achieving deeper behavioral understanding. c) 

Model lightweighting and optimization for real-time 

performance: Real-time processing capabilities still require 

further enhancement, particularly under high-resolution and 

multi-stream video conditions. Additional optimization is 

needed to support real-time feedback in large-scale or routine 

classroom deployments.  

In the area of multimodal data integration, a hybrid strategy 

combining feature- and decision-level fusion is planned to be 

adopted. Feature-level fusion is first performed using a cross-

modal attention mechanism to integrate video frames, audio 

signals, and textual data derived from classroom environments. 

Subsequently, decision-level fusion is conducted through 

ensemble learning techniques to integrate the classification 

outcomes of each modality. Regarding model lightweighting, 

a joint optimization scheme combining channel pruning and 

knowledge distillation is proposed. Initially, redundant 

convolutional channels are pruned based on a Taylor 

expansion-based channel importance evaluation algorithm. 

Thereafter, knowledge distillation is employed, whereby a pre-

trained teacher model guides a lightweight student model. This 

approach allows recognition accuracy to be preserved while 

further improving operational efficiency on mobile devices. 

Continued research along these technical trajectories is 

anticipated to contribute to the development of a more robust, 

intelligent, and practical classroom behavior analysis system, 

thereby offering a stronger technological foundation for the 

advancement of intelligent education. 

ACKNOWLEDGMENT 

This paper was funded by 2024 Annual Doctoral Research 

Startup Fund Project of Liaodong University (Second Batch): 

Construction of an Excellent Professional Growth System for 

Primary School Teachers in Local Undergraduate Colleges 

Based on Digital Technology (Grant No.: 2024BS025); and 

2025 Guangxi Humanities and Social Sciences Development 

Research Center "Scientific Research Project · Study on the 

Construction of University Faculty in the New Era" (Project 

No. JSDWY2025007), titled "Teaching Paradigm Shifts and 

Capacity Rebuilding Amid Educational Digital 

Transformation." 

REFERENCES 

[1] DeJaeghere, J., Duong, B.H., Dao, V. (2023). Quality of

teaching and learning: The role of metacognitive

teaching strategies in higher-performing classrooms in

Vietnam. Educational Research for Policy and Practice,

22(2): 239-258. https://doi.org/10.1007/s10671-023-

09330-x

[2] Saqlain, M. (2023). Evaluating the Readability of

English Instructional Materials in Pakistani Universities:

A Deep Learning and Statistical Approach. Education

Science and Management, 1(2): 101-110.

https://doi.org/10.56578/esm010204

[3] Zhang, L.J., Wu, J.Z., Wei, J.X., Yu, X.Y., Yu, J., Yuan,

B. (2023). Enhanced laboratory safety education through

interactive applications of machine learning-boosted

image processing technologies. Traitement du Signal,

40(6): 2623-2633. https://doi.org/10.18280/ts.400624 

[4] Yan, J., Wang, N., Wei, Y.M., Han, M.L. (2023).

Personalized learning pathway generation for online

education through image recognition. Traitement du

Signal, 40(6): 2799-2808.

https://doi.org/10.18280/ts.400640

[5] Lakhani, P., Gray, D.L., Pett, C.R., Nagy, P., Shih, G.

(2018). Hello world deep learning in medical imaging.

Journal of Digital Imaging, 31: 283-289.

https://doi.org/10.1007/s10278-018-0079-6

[6] Pain, C.D., Egan, G.F., Chen, Z. (2022). Deep learning-

based image reconstruction and post-processing methods

in positron emission tomography for low-dose imaging

and resolution enhancement. European Journal of

Nuclear Medicine and Molecular Imaging, 49(9): 3098-

3118. https://doi.org/10.1007/s00259-022-05746-4

[7] Schilling, M.P., Schmelzer, S., Klinger, L., Reischl, M.

(2022). KaIDA: A modular tool for assisting image

annotation in deep learning. Journal of Integrative

Bioinformatics, 19(4): 20220018.

https://doi.org/10.1515/jib-2022-0018

[8] Mishra, R.K., Urolagin, S., Jothi, J.A.A., Gaur, P. (2022).

Deep hybrid learning for facial expression binary

classifications and predictions. Image and Vision

Computing, 128: 104573.

https://doi.org/10.1016/j.imavis.2022.104573

[9] Zhang, X. (2021). Deep learning-based multi-focus

image fusion: A survey and a comparative study. IEEE

Transactions on Pattern Analysis and Machine

Intelligence, 44(9): 4819-4838.

[10] Gold, B., Foerster, S., Holodynski, M. (2013). Evaluation

of a video-based training to foster the professional vision

of classroom management in elementary classrooms.

Zeitschrift Fur Padagogische Psychologie, 27(3): 141-

155.

[11] Wang, S., Cheng, L., Liu, D., Qin, J., Hu, G. (2022).

Classroom video image emotion analysis method for

online teaching quality evaluation. Traitement Du Signal,

39(5): 1767-1774. https://doi.org/10.18280/ts.390535

[12] Prilop, C.N., Weber, K.E., Kleinknecht, M. (2021). The

role of expert feedback in the development of pre-service

teachers’ professional vision of classroom management

in an online blended learning environment. Teaching and

Teacher Education, 99: 103276.

https://doi.org/10.1016/j.tate.2020.103276

[13] Scherr, R.E. (2009). Video analysis for insight and

coding: Examples from tutorials in introductory physics.

Physical Review Special Topics-Physics Education

Research, 5(2): 020106.

https://doi.org/10.1103/PhysRevSTPER.5.020106

[14] Dalland, C.P., Klette, K., Svenkerud, S. (2020). Video

studies and the challenge of selecting time scales.

International Journal of Research & Method in Education,

43(1): 53-66.

https://doi.org/10.1080/1743727X.2018.1563062

[15] Koc, M. (2011). Let’s make a movie: Investigating pre-

service teachers’ reflections on using video-recorded role

playing cases in Turkey. Teaching and Teacher

Education, 27(1): 95-106.

https://doi.org/10.1016/j.tate.2010.07.006

[16] Gold, B., Hellermann, C., Holodynski, M. (2017).

Effects of video-based trainings for promoting self-

efficacy in elementary classroom management.

Zeitschrift für Erziehungswissenschaft, 20: 115-136.

2075



https://doi.org/10.1007/s11618-017-0727-5 

[17] Zhou, Y., Wang, J., Zhang, J. (2024). A multimodal

image recognition system for student behavior analysis

in smart classrooms in universities. Traitement du Signal,

41(6): 3285-3293. https://doi.org/10.18280/ts.410644

[18] Lin, J., Li, J., Chen, J. (2022). An analysis of English

classroom behavior by intelligent image recognition in

IoT. International Journal of System Assurance

Engineering and Management, 13(Suppl 3): 1063-1071.

https://doi.org/10.1007/s13198-021-01327-0

[19] Aspiranti, K.B., Bebech, A., Ruffo, B., Skinner, C.H.

(2019). Classroom management in self-contained

classrooms for children with autism: Extending research

on the color wheel system. Behavior Analysis in Practice,

12: 143-153. https://doi.org/10.1007/s40617-018-0264-6

[20] Fan, Z., Liu, J. (2022). Correlation analysis between

teachers’ teaching psychological behavior and classroom

development based on data analysis. Frontiers in

Psychology, 13: 905029.

https://doi.org/10.3389/fpsyg.2022.905029

[21] Li, L., Chen, C.P., Wang, L., Liang, K., Bao, W. (2023).

Exploring artificial intelligence in smart education: Real-

time classroom behavior analysis with embedded devices.

Sustainability, 15(10): 7940.

https://doi.org/10.3390/su15107940

[22] Kale, U. (2008). Levels of interaction and proximity:

Content analysis of video-based classroom cases. The

Internet and Higher Education, 11(2): 119-128.

https://doi.org/10.1016/j.iheduc.2008.06.004 

[23] Trout, K.P., Adkins, M., Bekker, J., Harlacher, A.,

Ramirez, F., Swingler, A., Wagner, C. (2021). Using

iPads for video analysis physics labs in times of social

isolation. The Physics Teacher, 59(5): 370-372.

https://doi.org/10.1119/10.0004893

[24] Hofman, J. (2023). Classroom management and teacher

emotions in secondary mathematics teaching: A

qualitative video-based single case study. Education

Inquiry, 14(3): 389-405.

https://doi.org/10.1080/20004508.2022.2028441

[25] DeCuir-Gunby, J.T., Marshall, P.L., McCulloch, A.W.

(2012). Using mixed methods to analyze video data: A

mathematics teacher professional development example.

Journal of Mixed Methods Research, 6(3): 199-216.

https://doi.org/10.1177/1558689811421174

[26] El-Shafai, W., Mahmoud, A.A., Ali, A.M., El-Rabaie,

E.S.M., Taha, T.E., El-Fishawy, A.S., El-Samie, F.E.A.

(2024). Efficient classification of different medical

image multimodalities based on simple CNN architecture

and augmentation algorithms. Journal of Optics, 53(2):

775-787. https://doi.org/10.1007/s12596-022-01089-3

[27] Gaafar, A.S., Dahr, J.M., Hamoud, A.K. (2022).

Comparative analysis of performance of deep learning

classification approach based on LSTM-RNN for textual

and image datasets. Informatica, 46(5): 21-28.

https://doi.org/10.31449/inf.v46i5.3872

2076




