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 Magnetic Resonance (MR) imaging is a powerful digital imaging technique that provides 

detailed insights into the abnormal structure and function of the brain. However, during 

image acquisition, these MR images are affected by artifacts and noise, which primarily 

follow the Rician distribution. The quality of the image is diminished by these 

inconsistencies, limiting the interpretive effectiveness of radiologists. To overcome these 

issues, an optimized reformed Anisotropic Diffusion Unsharp Masking (OADUM) filter has 

been proposed that preserves the sharpness, contrast, edges, and fine details of Rician noise-

corrupted MR images. In this proposed methodology, the edge threshold constant of the 

diffusion coefficient is automated using the Enhancement Measurement on Entropy (EMEE) 

method and clubbed with Maximum Likelihood Estimation (MLE) instead of manual 

calculation. Further, to improve the quality of smoothen images, the Greedy Search 

Optimization (GSO) algorithm is applied, where Peak Signal-to-Noise Ratio (PSNR) is 

taken as a fitness function. The performance of the restored and enhanced output image has 

been analyzed with earlier existing methods in both qualitative and quantitative ways on 

COBRE dataset. The quantitative assessment parameters taken are MSE, PSNR, UQI, 

SSIM, MS-SSIM, NAE, CP, and DE, whose average values are coming out to be 0.4486, 

51.9872, 0.8268, 0.9947, 0.9857, 0.6075, 0.9862, and 5.0547, respectively. Experimental 

results demonstrated that the proposed methodology outperformed earlier existing state-of-

the-art methods, significantly improving the visual quality and performance indexes of the 

dataset, thereby making the method more useful for diagnostic and clinical purposes. 
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1. INTRODUCTION 

 

Magnetic resonance imaging has revolutionized medical 

diagnosis by providing unparalleled anatomical details and 

functional information about the brain. Precise detection of 

abnormalities within the brain tissue is crucial for accurate 

diagnosis and timely intervention. However, Magnetic 

Resonance (MR) images are inherently susceptible to noise [1]. 

Due to the thermal turbulence of electrons, MR images are 

sensitive mostly to Rician noise [2]. The presence of Rician 

noise in MR images can significantly degrade image quality, 

particularly at low Signal-to-Noise Ratio (SNR) [3]. This noise 

can obscure critical features, hindering the accurate diagnosis 

of abnormalities [4]. Furthermore, existing denoising methods 

often fail to balance noise reduction and preservation of 

structural detail, leading to dusky images and misdiagnosis of 

diseases. According to a survey by the National Center for 

Biotechnology Information in 2024, the misdiagnosis rate of 

Schizophrenia (SZ) in clinical practice can be as high as 25% 

[5]. Approximately 30% of individuals with SZ demonstrate 

treatment-resistant traits and respond inadequately to 

conventional antipsychotic medications, which presents a 

significant challenge [6]. Further, a report from the Miami 

Neuroscience Centre indicates that 80,000 new cases of brain 

cancer arise in the US each year [7]. This paper proposes a 

novel method to address these challenges and improve the 

quality of Rician noise-corrupted MR images. The proposed 

methodology integrates two powerful techniques, reformed 

Anisotropic Diffusion Unsharp Masking (ADUM) with 

Greedy Search Optimization (GSO) algorithm with the Peak 

Signal-to-Noise Ratio (PSNR) serving as the fitness function. 

This method effectively reduces noise while preserving crucial 

features such as edges and contours. It ensures that fine details 

remain visible, even in regions characterized by low contrast 

or noise, thereby enhancing image quality. The method begins 

with the removal of noise to improve the quality of image. 

Here modified Anisotropic Diffusion (AD) acts as a 

sophisticated denoising filter [8]. To reduce the Rician noise, 

AD filter is integrated with Maximum Likelihood Estimation 

(MLE) simultaneously automating the edge threshold constant 

of diffusion coefficient by Enhancement Measurement on 

Entropy (EMEE) method [9]. Unlike traditional filters that 

blur the entire image, this reformed AD selectively smooths 

out the noise while preserving sharp edges and crucial 

structural details within the brain tissue [10, 11]. Here, the 

regularization parameter for the smoothed image is varied by 

the average SNR calculation. Following denoising, 

optimization of these images is done with the computation of 

the Global Variance (GV), using GSO algorithm, which 

informs the subsequent processing steps where Peak Signal-

to-Noise Ratio (PSNR) is taken as fitness function [12]. Unlike 

fixed-parameter approaches, this algorithm actively searches 
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for the best possible configuration [13]. This technique 

sharpens edges by highlighting the difference between 

neighboring pixels [14]. Through a series of iterative 

adjustments guided by the greedy search, the method achieves 

optimal results in terms of noise reduction and overall image 

clarity. After that, scaling of the edge image is done using 

manual and random search optimization followed by 

employing modified Unsharp Masking (UM) to enhance the 

contrast and sharpness of image [15]. Finally, the restored and 

enhanced output image obtained from modified UM improves 

the visibility of subtle anatomical features within the brain, 

making it visually clear and allows for accurate diagnosis. 

The effectiveness of the proposed method is thoroughly 

assessed by conducting both qualitative and quantitative 

comparisons with existing state-of-the-art techniques. The 

experimental results demonstrate that the proposed method 

significantly improves the visual quality of Rician noise-

corrupted MR images. The enhanced clarity and detail 

afforded by this method hold substantial promise for 

diagnostic and clinical applications, potentially leading to 

more accurate and reliable medical assessments. 
 

1.1 Motivation 
 

Brain diseases are constantly increasing due to stressful 

lifestyles, environmental factors, and chronic diseases. For 

accurate diagnoses of these diseases, an enhanced quality of 

MR image is required. Despite their high-resolution device 

imaging capabilities, MR images are frequently subjected to 

noise primarily Rician noise, which can obscure crucial 

anatomical details and hinder accurate clinical assessments. 

To address this issue, the proposed methodology aims to 

achieve superior image detail and clarity by systematically 

exploring parameter space. This advancement promises to 

improve diagnostic accuracy and patient outcomes, providing 

a robust solution to the persistent challenge of Rician noise in 

MR imaging. 
 

1.2 Key contributions and organization 
 

The fundamental contributions of this paper are as follows: 

(1) Identification of noise. 

(2) Develop a novel method combining reformed 

anisotropic diffusion unsharp masking filter and a greedy 

search optimization algorithm to restore and enhance MR 

images corrupted by Rician noise while preserving the 

important structural details. 

(3) Systematically explored the parameter space to ensure 

an optimal balance between noise reduction and detail 

enhancement. 

(4) Significantly improved the visual clarity and diagnostic 

utility of MR images. 

(5) Addressed a critical challenge in medical imaging with 

a robust and practical solution to Rician noise. 

The rest of this manuscript is organized as follows: Section 

2. gives details about previous works done in this area. Section 

3. discusses about the dataset taken, and describes the 

experimental setup of the proposed methodology and the 

different performance assessment parameters taken. Results 

are drawn and discussed in Section 4. Finally, a conclusion and 

future scope of this methodology is discussed in Section 5. 
 
 

2. PREVIOUS WORK 
 

This section gives details about some earlier work done on 

denoising, enhancement, and optimization. Hu et al. 

introduced Non-Local Means (NLM) filter using random 

sampling (SNLM) method which reduces noise, improves 

computational quality, and competitive denoising results [16]. 

Nguyen et al. enhanced the classical NLM filter by introducing 

improved Non-Local Self-Weight (NLSW) estimation 

techniques [17]. While the method improves denoising 

performance, it has higher computational complexity and can 

be time consuming, especially for large image data. Chang et 

al. introduces Trilateral Filter (TLF) with extended the 

Bilateral Filter (BF) by adding an extra intensity similarity 

function and an adaptive entropy function to improve noise 

reduction [18]. While the self-regulating TLF demonstrates 

significant advancements and effectiveness in denoising brain 

MR images, it faces limitations related to automation 

challenges and potential over-smoothing. Zhang et al. 

proposed denoising method, MR image utilizes a combination 

of image Low-Rank and Sparse Gradient prior Gaussian 

Mixture (LRSGM) model clustering and iterative optimization 

techniques to achieve effective noise reduction while 

preserving image details [19]. The use of Gaussian Mixture 

(GM) for clustering and the iterative algorithm can be 

computationally intensive, requiring significant processing 

power and time, which might be a limitation for real-time 

applications or large datasets. The proposed method of 

Kanoun et al. enhances the traditional NLM filter by 

incorporating the Kolmogorov-Smirnov (KS) distance for 

better patch similarity estimation [20]. This method coupled 

with local anisotropy analysis (AKSNLM), results in the 

denoising and preservation of image details. While the method 

is effective at moderate noise levels, its performance may 

degrade in extremely noisy conditions. The anisotropic 

weighting and KS distance calculation might not be sufficient 

to handle very high noise levels, leading to the potential loss 

of important image details. Rai et al. proposed Augmented 

Deep Residue Network (ADRN) framework which performs 

denoising by combining the strengths of both Residual 

Learning (RL) and Dictionary Learning (DCL) [21]. The 

performance of the denoising framework is highly dependent 

on the quality and diversity of the training data. Also, the 

integration of RL and DCL in a single framework adds 

complexity to the implementation. Hou et al. utilizes truncated 

residual based plug-and-play Alternating Direction Method of 

Multipliers (ADMM) framework called TRPA, which enables 

the incorporation of pre-trained denoisers to address the 

denoising subproblem in ADMM-based MR image 

reconstruction [22]. TRPA relies on the effectiveness of pre-

trained denoisers. If the denoiser is not well-optimized for the 

specific noise characteristics or MR images being 

reconstructed, the overall performance of TRPA may be 

compromised. Chuang et al. proposed a denoising method 

which is Score-based Reverse Diffusion Sampling (SRDS), to 

tackle the challenges of noise in MR image scans, offering 

robust performance on diverse and complex noise 

distributions [23]. It enhances image resolution, and quantifies 

uncertainty with significant improvements over Traditional 

Minimum Mean Squared Error (MMSE) based methods. The 

sampling approach may involve complex computations and a 

sophisticated architecture, resulting in high computational 

demands. This complexity might limit its practicality in real 

time applications. The scalability of the model to larger 

datasets or different MR imaging devices is yet to be 

extensively tested. Variations in imaging hardware and 

acquisition parameters could impact the performance of the 
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model. Huang et al. had proposed a method that integrates a 

self-supervised denoising network with a plug-and-play 

optimization framework [24]. Here, the concept of 

Regularization by Denoising (RED) is used to enhance MR 

image reconstruction. This approach named DURED imposes 

a denoising network to act as a regularizer, ensuring high-

quality reconstruction by incorporating imaging physics. 

However, this approach is dependent on the quality of the 

denoising network, which may lead to longer processing time, 

computational complexity, integration challenges with clinical 

workflows, and risk of overfitting for small MR image data. 

Addressing these limitations is essential for improving the 

robustness, efficiency, and applicability of the proposed 

denoising methods across diverse imaging contexts. Table 1 

summarizes these earlier methods on denoising and 

enhancement. 

 

Table 1. Earlier reported works on denoising and enhancement 

 
Author Year Method Remark 

Hu et al. [16] 2016 SNLM Requires accurate selection of the sampling ratio. 

Nguyen et al. [17] 2017 NLSW Higher computational complexity and time consumption. 

Chang et al. [18] 2018 TLF Automation challenges and potential over-smoothing. 

Zhang et al. [19] 2019 LRSGM Significant processing power and time. 

Kanoun et al. [20] 2020 AKSNLM Effective at moderate noise levels. 

Rai et al. [21] 2021 ADRN Dependence on high-quality training data and computational complexity. 

Hou et al. [22] 2022 TRPA Dependence on pre-trained denoisers. 

Chung et al. [23] 2023 SRDS High computational demand and scalability issues. 

Huang et al. [24] 2024 DURED Longer processing time and the risk of overfitting. 

 

 

3. PROPOSED WORK 

 

This section offers a comprehensive overview of the 

proposed methodology and the dataset employed for this 

analysis. 

 

3.1 Datasets 

 

The dataset for this study was provided by the Center for 

Biomedical Research Excellence (COBRE) [25]. It includes 

raw anatomical and functional magnetic resonance imaging 

brain data from 72 patients diagnosed with schizophrenia and 

75 healthy control subjects. The dataset consists of sample MR 

image of patients with age ranges from 18 to 65 years. Class 

imbalance does not affect the performance of the proposed 

method, as it operates independently for each individual image. 

Figure 1 shows sample MR image view of a patient suffering 

from Schizophrenia. Sample images contain three different 

orientation Axial, Coronal, and Sagittal scan of brain MR 

image. 

 

 
(a) 

 
(b) 

 
(c) 

 

Figure 1. Sample MR image view of a Schizophrenia patient, 

(a) Axial, (b) Coronal, and (c) Sagittal from COBRE dataset 

[25] 

 

3.2 Methodology 
 

The block diagram of methodology taken for 

implementation of the proposed methods are shown in Figure 

2. First and foremost, identification of noise in MR images is 

done. In order to have noise – free MR images, the proposed 

method starts with denoising using reformed AD filter 

followed by optimization and modified UM to obtain a 

restored and enhanced output image. The detail description of 

proposed methodology is explained below in mathematical 

way. 

 

3.2.1 Proposed methodology with mathematical evaluation 

With pixel-by-pixel magnitude calculation of real and 

imaginary section of MR image, the noise distribution 

identified is Rician as both the section is distorted by 

uncorrelated Gaussian noise with zero-mean (𝜇 = 0)  equal 

variance 𝜎2 [26]. Noisy corrupted image ‘𝐼η’ is given as: 

 

𝐼η =  √𝐼𝑅
2 +  𝐼𝐼

2  (1) 

 

where, ‘𝐼𝑅’ denotes real part of noisy image and ‘𝐼𝐼 ’ is the 

imaginary part of noisy image. 

The Rician Probability Density Function (PDF) of noisy 

MR image of pixel intensity ‘𝑀’ is given as [27]: 

 

𝑝(𝐼
𝑀⁄ ) =

𝑀

𝜎2  𝑒
(− 

(𝑀2+𝐼2)

2𝜎2 )
𝐽0 (

𝐼𝑀

𝜎2) 𝐻(𝑀)  (2) 

 

where, ‘𝐼’ denotes the noise-free image, ‘σ2 ’ is the Rician 

noise variance, ‘ 𝐽0 (. ) ’ is zero-order modified Bessel’s 

function, and ‘𝐻(. )’ represents the Heaviside function. 

For MR image ‘𝑀’, the magnitude of a signal cannot be 

negative. So, the value of 𝐻(𝑀) = 1, then, the Rician PDF is 

given as [28]: 

 

𝑝(𝐼
𝑀⁄ ) =

𝑀

𝜎2  𝑒
(− 

(𝑀2+𝐼2)

2𝜎2 )
𝐽0 (

𝐼𝑀

𝜎2)  (3) 

 

Here, noisy image ‘𝑀’ is processed using an Anisotropic 

Diffusion (AD) filter, where the diffusion is governed by the 

MLE and EMEE for the noise-free image ‘𝐼’. This filter aims 

to reduce noise while preserving essential structural details 

and edges in the image. 

For ‘𝑛’ set of observations, the likelihood function is given 

as [29]:  
 

𝐿 (𝑝(𝐼
𝑀⁄ )) =  ∑ 𝑙𝑛 (

𝑀

𝜎2  𝑒
(− 

(𝑀2+𝐼2)

2𝜎2 )
𝐽0 (

𝐼𝑀

𝜎2
))𝑛

𝑖=1   (4) 
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Figure 2. Framework for proposed methodology to obtain denoised and enhanced MR image 

 

For maximum likelihood estimation [30]: 

 
𝜕

𝜕𝐼
𝐿 (𝑝(𝐼

𝑀⁄ )) = 0  (5) 

 

The general regularization function of the Anisotropic 

Diffusion equation is [31]: 

 

𝑓(𝐼) = 𝛻 . (𝑐(||𝛻𝐼||)𝛻𝐼  (6) 

 

where, ‘𝑐(||𝛻𝐼||)’ is the diffusion coefficient whose value is 

given as: 

 

𝑐(||∇I||) =
1

1+(
∇I

𝛽
)2

  (7) 

 

where, ‘𝛽’ is a constraint of the diffusion coefficient. 

Here, the value of ‘𝛽’ is calculated as edge threshold value 

of Enhancement Measurement based on Entropy (EMEE). 

EMEE focusses on maximising local entropy around edges, in 

contrast to traditional methods that depend on global intensity 

distributions [32, 33]. It enhances edge regions adaptively, 

maintaining fine details even in areas with low contrast or 

noise [34, 35]. By directly linking entropy to edge strength, 

EMEE ensures superior edge preservation compared to 

conventional entropy-based techniques [36, 37]. 

The reformed diffusion coefficient is given as [38]: 

 

𝑐′(||∇I||) =
1

1+(
∇I

𝛽′)2
  (8) 

 

where, ‘𝛽′’ is a threshold value of EMEE that controls the 

sensitivity to edges. The value is given as [39]: 

 

𝛽′ =  
1

𝑝1𝑝2
∑ ∑ 𝛼

𝑝2
𝑙=1

𝑝1
𝑚=1 (

𝐼𝑚𝑎𝑥
𝑙,𝑚

𝐼𝑚𝑖𝑛
𝑙,𝑚 )

𝛼
𝐼𝑚𝑎𝑥

𝑙,𝑚

𝐼𝑚𝑖𝑛
𝑙,𝑚   (9) 

 

where, ‘𝑝1’ and ‘𝑝2’ show the number of cells used to split the 

denoised image, ‘𝐼𝑚𝑎𝑥
𝑙,𝑚

’ denotes maximum values of pixel in 

each block of denoised image, ‘𝐼𝑚𝑖𝑛
𝑙,𝑚

’ denotes minimum values 

of pixel in each block of denoised image, and ‘𝛼’ is the scaling 

factor. 

The Energy functional of image ‘𝐼’ that is ‘𝐸(𝐼)’ obtained 

from a reformed AD filtered image is given as [40]: 

 

𝐸(𝐼)  =  𝑎𝑟𝑔𝑚𝑖𝑛 [∫ [
𝜕

𝜕𝐼
𝐿 (𝑝(𝐼

𝑀⁄ )) + 𝛾𝑓(𝐼)]
 

Ω
𝑑Ω]  (10) 

 

where, ‘𝛾’ is called the regularization parameter, whose value 

is given as [41]: 

 

𝛾 =  
1

𝐴𝑣𝑔.𝑆𝑁𝑅
  (11) 

 

where, ‘𝑆𝑁𝑅’ denotes signal to noise ratio. 

The value of ‘𝐴𝑣𝑔. 𝑆𝑁𝑅’ is given as: 

 

𝐴𝑣𝑔. 𝑆𝑁𝑅 =  
𝑚𝑒𝑎𝑛

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
=

µ

𝜎
  (12) 

 

The denoised filtered output image obtained is represented 

as: 
 

𝜕𝐸(𝐼)

𝜕𝑡
= − 

I

σ2 
 + 

2𝑘1

𝐼
+ 𝛾 𝛻 . (𝑐′(||𝛻𝐼||)𝛻𝐼) (13) 

 

Further, the discretization of the above Eq. (13) is given as: 

 
𝐼𝑛+1(𝑖,𝑗)−𝐼𝑛(𝑖,𝑗)

∆𝑡𝑛 =  
𝐼𝑛(𝑖,𝑗)

𝜎2 
+

2𝑘1

𝐼
+ 𝛾 𝛻 . (𝑐′(||𝛻𝐼||)𝛻𝐼)  (14) 

 

Again, it can be written as: 
 

𝐼𝑛+1(𝑖, 𝑗) =  𝐼𝑛(𝑖, 𝑗) + ∆𝑡 [
𝐼𝑛(𝑖,𝑗)

𝜎2 
+

2𝑘1

𝐼
+

𝛾 𝛻 . (𝑐′(||𝛻𝐼||)𝛻𝐼)]  
(15) 

 

where, ‘𝑖’ and ‘𝑗’ are the pixel indices of an image ‘𝐼’, ‘ ∆𝑡 ’ 

is the grid constant, and ‘𝑛’ is the number of iterations. 

Finally, the value of the filtered image can be given as: 
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𝐼′ =  𝐼𝑛(𝑖, 𝑗) +  ∆𝑡 [
𝐼𝑛(𝑖,𝑗)

𝜎2 
+

2𝑘1

𝐼
+

𝛾 𝛻 . (𝑐′(||𝛻𝐼||)𝛻𝐼)]  
(16) 

 

To incorporate the global variance (GV) into the reformed 

anisotropic filtered image ‘𝐼′’ for Greedy Search Optimization 

(GSO), the global variance ‘𝜎𝑔
2’ of the filtered MR image ‘𝐼′’ 

is calculated as [42]: 
 

𝜎𝑔
2 =  

1

𝑃 × 𝑁
∑ ∑ (𝐼𝑖𝑗

′ −  𝜇)2𝑁
𝑗=1

𝑃
𝑖=1   (17) 

 

where, ‘𝑃’ and ‘𝑁’ are the dimensions of the image, ‘𝐼𝑖𝑗
′ ’ is the 

intensity of the pixel at position (𝑖, 𝑗), and ‘𝜇’ is the mean 

intensity of the image. 

The value of ‘𝜇’ the mean intensity of the image is given as: 

 

𝜇 =  
1

𝑃 × 𝑁
∑ ∑ 𝐼𝑖𝑗

′𝑁
𝑗=1

𝑃
𝑖=1   (18) 

 

Now, adding the GV ‘𝜎𝑔
2’ to the output of the filtered image 

‘𝐼′, the value of the reformed output image obtained is given 

as: 

 

𝐼𝑟 = 𝐼′ +  𝜎𝑔
2 (19) 

 

GSO aims to define an objective function and iteratively 

make local adjustments to enhance the reformed image ‘𝐼𝑟’ 

obtained from the previous step. The stopping condition for 

the GSO algorithm determines the condition where the 

optimization function should terminate the number of 

iterations [43]. In the proposed methodology, PSNR is taken 

as fitness function for the GSO. Convergence threshold and 

max. number of iterations clearly define stopping condition for 

GSO algorithm. Mathematically it can be defined as: 

Suppose ‘𝑛’ be define as number of iteration and ‘ε’ denotes 

convergence threshold, then stopping condition for GSO 

algorithm can be defined as [44]: 

 
|𝑃𝑆𝑁𝑅𝑛 − 𝑃𝑆𝑁𝑅𝑛−1|  < ε (20) 

 

where, value of ‘ε’ is a positive number such as around 0.001 

dB or 0.01 dB. 

This shows that there is no further scope for improvement 

in PSNR, so the optimization algorithm stops. The proposed 

method achieves the maximum PSNR value of 51.9872 dB for 

𝑛 = 50, the number of iterations.  

Let ‘𝐽’ denote the optimized output image after performing 

GSO on ‘𝐼𝑟’. The objective function ‘𝐸(𝐽)’ can be defined as: 

 

𝐸(𝐽) = ∑ [(𝐼𝑖𝑗
𝑟 − 𝐽𝑖𝑗)

2
+  𝜆 ∑ (𝐽𝑖𝑗 −(𝑖′,𝑗′)𝜖𝒩(𝑖,𝑗)𝑖,𝑗

 𝐽𝑖′𝑗′)
2

]  
(21) 

 

where, ‘λ’ is a regularization parameter that balances fidelity 

to the original noisy image and smoothness, and ‘𝒩(𝑖, 𝑗)’ 

denotes the set of neighbouring pixels of (𝑖, 𝑗). 

This objective function has two components that is data 

fidelity term ‘(𝐼𝑖𝑗
𝑟 − 𝐽𝑖𝑗)

2
’ which shows the output image ‘𝐽’ 

remains close to the original noisy image ‘ 𝐼𝑟 ’ and the 

smoothness term ‘ (𝐽𝑖𝑗 −  𝐽𝑖′𝑗′)2 ’ which shows the output 

image ‘ 𝐽 ’ to smoothed by the fine differences between 

neighboring pixels. 

The GSO algorithm evaluates the objective function ‘𝐸(𝐽)’ 

locally and updates the pixel value ‘𝐽𝑖𝑗’ to minimize the local 

objective function. 

Mathematically, it can be written as: 

 

𝐽𝑖𝑗
(𝑘+1) =  𝐽𝑖𝑗

(𝑘) +  ∆ 𝐽𝑖𝑗 (22) 

 

where, ‘∆ 𝐽𝑖𝑗’ is the change that minimizes the local objective 

function ‘𝐸’at pixel (𝑖, 𝑗). 

The iterative process is done until the objective function 

‘𝐸(𝐽)’ converges or until a maximum number of iterations is 

reached. 

Hence, the smoothen output image obtained after the GSO 

algorithm can be expressed as: 

 

𝐽′ = 𝑎𝑟𝑔𝑚𝑖𝑛 ∑ ((𝐼𝑖𝑗
𝑟

− 𝐽𝑖𝑗)
2

+ 𝜆 ∑ (𝐽𝑖𝑗 −(𝑖′,𝑗′)𝜖𝒩(𝑖,𝑗)𝑖,𝑗

𝐽𝑖′𝑗′)
2

)  
(23) 

 

where, ‘𝐽′’ represents the optimized image or smoothen image 

obtained after filtering Rician noise using reformed AD, 

adding global variance, and refining with greedy search 

optimization. The optimization ensures that the image is 

smooth and retains essential features while minimizing noise. 

Further, edge images can be calculated as follows: 

 

𝐼𝐸𝑑𝑔𝑒 =  𝑀 − 𝐽′ (24) 

 

Again, the modified unsharp masked image is given as: 

 

𝐼𝑈𝑀 =  𝛼 𝐼𝐸𝑑𝑔𝑒  (25) 

 

where, ‘𝛼’ is a weighted parameter known as the scaling factor 

(𝛼 > 0) that determines the level of sharpness.  

The value of ‘𝛼’ is calculate with the help of random search 

optimization. 

This formula encapsulates the entire process, combining the 

benefits of noise reduction, edge enhancement, and the 

addition of the original image details. 

Algorithm 1 depicts the pseudocode for the proposed 

methodology. Also, the preferred values of parameters taken 

for this methodology are given in Table 2. 

 

Table 2. Detail description of parameters taken for proposed 

methodology 

 
Parameters Description Value 

∆𝑡 Grid constant 0.1 

𝑛 Number of iterations 50 

𝛽′ Threshold value for 

reformed AD 

10 to 50 

𝛾 Regularization parameter Eq. (11) 

𝜎𝑔
2 Global variance Eq. (17) 

𝜇 Mean intensity Eq. (18) 

𝜆 Diffusion parameter 0 to 1.0 

𝛼 Weighted parameter    

 

Algorithm 1: Pseudo code for proposed method 

Input: Read noisy input image 𝑀(𝑖, 𝑗). 

Output: Enhanced MR Image 𝐼𝑂 . 

Initialize 𝐼𝑛(𝑖, 𝑗) with input image 𝑀(𝑖, 𝑗). 

Identification of dominant Rician noise. 

Compute noise-free image using Rician probability 

distribution: 

   for each pixel (𝑖, 𝑗) in the image  
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      Perform MLE to estimate ‘ 𝐼 ’ by setting 
𝜕

𝜕𝐼
𝐿 (𝑝(𝐼

𝑀⁄ )) = 0 

Apply Anisotropic Diffusion filtering: 

   For 𝑡 = 1 𝑡𝑜 𝑛o. of iteration ‘𝑛’ 

      for each pixel (𝑖, 𝑗) in the image do 

      Compute reformed diffusion coefficient based on 

threshold value  

       𝛽′of EMEE.       

       Evaluate regularization parameter ‘𝛾’. 

       Update image 𝐼𝑛+1(𝑖, 𝑗) using: 

        𝐼𝑛+1(𝑖, 𝑗) =  𝐼𝑛(𝑖, 𝑗) + ∆𝑡 [
𝐼𝑛(𝑖,𝑗)

𝜎2 
+

2𝑘1

𝐼
+

𝛾 𝛻 . (𝑐′(||𝛻𝐼||)𝛻𝐼)] 

       Set 𝐼′ = 𝐼𝑛+1(𝑖, 𝑗). 

Compute global variance 𝜎𝑔
2 of the filtered image 𝐼′: 

    Calculate mean intensity 𝜇 of the image. 

    Add global variance to the filtered image 𝐼′. 

      𝐼𝑟 = 𝐺𝑉(𝐼′, 𝜎2) 

     Return 𝐼𝑟. 

Perform Greedy Search Optimization (GSO): 

  GSO stops: | 𝑃𝑆𝑁𝑅𝑛 − 𝑃𝑆𝑁𝑅𝑛−1 |  < ε. 

   Initialize optimized image 𝐽 

     repeat until convergence or maximum iterations reached 

        for each pixel (𝑖, 𝑗) in the image 

         Compute objective function 𝐸(𝐽) Eq. (21). 

         Update pixel value 𝐽𝑖𝑗  using: 

           𝐽𝑖𝑗
(𝑘+1) =  𝐽𝑖𝑗

(𝑘) +  ∆ 𝐽𝑖𝑗 

   Set 𝐽′ = 𝑎𝑟𝑔𝑚𝑖𝑛 ∑ ((𝐼𝑖𝑗
𝑟 −  𝐽𝑖𝑗)

2
+𝑖,𝑗

 𝜆 ∑ (𝐽𝑖𝑗 − 𝐽𝑖′𝑗′)
2

(𝑖′,𝑗′)𝜖𝒩(𝑖,𝑗) ) 

Compute edge image, 𝐼𝐸𝑑𝑔𝑒 . 

Initialize UM to enhance edge details obtained sharpen 

image 𝐼𝑈𝑀 . 𝐼𝑈𝑀 = 𝑈𝑀(𝐼𝐸𝑑𝑔𝑒 , 𝛼) 

Final output image obtained as 𝐼𝑂 = 𝐼𝑈𝑀 . 

 

 

3.3 Performance assessment 

 

Evaluating the quality of the processing applied to an image 

is known as image performance assessment. This crucial step 

determines the final quality of the processed image. To assess 

the accuracy of the proposed method, different assessment 

parameters of output images are considered. Sensitivity 

analysis of the method can be conducted to assess how various 

parameters influence the quality and robustness of the 

denoised output. Here, the parameters taken for sensitivity 

analysis are: Mean Square Error (MSE), Peak Signal to Noise 

Ratio (PSNR), Universal Quality Index (UQI), Structural 

Similarity Index (SSIM), Multiscale SSIM (MS-SSIM), 

Normalized Absolute Error (NAE), Correlation Parameter or 

Correlation Coefficient (CP/CC), and Discrete Entropy (DE). 

These are defined as: 

(1) MSE–It is commonly used to quantify the difference 

between the original and processed images [45]. It is measured 

in squared intensity values. 

(2) PSNR–It evaluates the quality of a reconstructed or 

processed image relative to the original by comparing the 

maximum possible pixel intensity value to the noise 

introduced during processing [46]. It is measured in Decibels 

(dB). 

(3) UQI–It measures image quality by considering both 

structural and luminance similarities between the original and 

processed images [47]. It does not have a specific unit of 

measurement. 

(4) SSIM–It evaluates the perceived quality of a processed 

image by comparing its structural information, luminance, and 

contrast with the original image [48]. It is dimensionless. 

(5) MS-SSIM–It extends SSIM by evaluating parameters 

like luminance, contrast, and structural similarity across 

multiple scales. These results are then combined to produce a 

comprehensive similarity measure [49]. It is also 

dimensionless. 

(6) NAE–It provides a normalized measure of the absolute 

error between the original noisy image and the processed 

image [50]. It has no units. 

(7) CP/CC–It is a statistical measure that describes the 

linear relationship between two images [51]. There is no unit 

associated with it. 

(8) DE–It shows the amount of information or randomness 

in the intensity values of images [52]. It is measured in terms 

of bits per symbol or bits per pixel.  

 

Table 3. Mathematical formula of performance assessment 

parameters 

 

Index Mathematical Formula 
Expected 

Value 

MSE 

[45] 

1

𝑃×𝑁
∑ ∑ (𝑀(𝑖, 𝑗) − 𝐼(𝑖, 𝑗))2𝑁−1

𝑗=1
𝑃−1
𝑖=1   Low 

PSNR 

[46] 
20𝑙𝑜𝑔10

(𝐿−1)

√𝑀𝑆𝐸
  High 

UQI 

[47] 

4𝜇𝑀𝜇𝐼𝜎𝑀𝐼

(𝜇𝑀
2+ 𝜇𝐼

2)(𝜎𝑀
2+𝜎𝐼

2)
  High 

SSIM 

[48] 

(2𝜇𝑀𝜇𝐼+𝐶1)(2𝜎𝑀𝐼+𝐶2)

(𝜇𝑀
2+ 𝜇𝐼

2+𝐶1)(𝜎𝑀
2+𝜎𝐼

2+𝐶2)
  High 

MS-

SSIM 

[49] 

(2𝜇𝑀𝜇𝐼+𝐶1)

(𝜇𝑀
2+ 𝜇𝐼

2+𝐶1)
∏

(2𝜎𝑀𝐼+𝐶2)

(𝜎𝑀
2+𝜎𝐼

2+𝐶2)
𝐿−1
0   High 

NAE 

[50] 

∑ ∑ (𝑀(𝑖,𝑗)−𝐼(𝑖,𝑗))𝑁−1
𝑗=1

𝑃−1
𝑖=1

∑ ∑ 𝑀(𝑖,𝑗)𝑁−1
𝑗=1

𝑃−1
𝑖=1

  Low 

CP [51] 
∑ ∑ (𝑀(𝑖,𝑗)−𝜇𝑀)(𝐼(𝑖,𝑗)−𝜇𝐼)𝑁

𝑗=1
𝑃
𝑖=1

√∑ ∑ (𝑀(𝑖,𝑗)−𝜇𝑀)2 ∑ ∑ (𝐼(𝑖,𝑗)−𝜇𝐼)2𝑁
𝑗=1

𝑃
𝑖=1

𝑁
𝑗=1

𝑃
𝑖=1   

  High 

DE [52] − ∑ 𝐼(𝑖, 𝑗)𝑙𝑜𝑔2 
𝐿−1
𝑖=0 (𝐼(𝑖, 𝑗))  High 

 

Table 4. Detailed description of symbols taken for the 

mathematical formulation of assessment parameters 

 
Symbol Description 

𝑀(𝑖, 𝑗) Noisy MR image. 

𝐼(𝑖, 𝑗) Processed output image. 

(𝑖, 𝑗) Pixel coordinates of image. 

𝑃 × 𝑁 Dimension size of the image. 

L Dynamic possible pixel range of image. 

𝜇𝑀 Mean of reference noisy MR image. 

𝜇𝐼 Mean of processed output MR image. 

𝜎𝑀 Standard deviation of reference noisy MR image. 

𝜎𝐼 Standard deviation of processed MR image. 

𝜎𝑀𝐼 Covariance of noisy input and processed image. 

C1, C2 Constant taken to prevent the resulting instability. 

 

Table 3 shows a detailed description of the mathematical 

parameters taken for performance assessment. Table 4 shows 

a detailed description of symbols used for the mathematical 

formulation of performance assessment parameters in Table 3. 

The value of these performance assessment parameters 

obtained in output images is drawn in box plot form. With the 

help of a box plot, it is easy to find the spread of the data [53]. 
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4. RESULT AND DISCUSSION 

 

This section shows the findings of the qualitative and 

quantitative outputs of the proposed methodology. This 

illustrates the amount of information or randomness present in 

the intensity values of images. Figure 3 shows the output MR 

images obtained at each step of the proposed methodology. 

Figure 3(a), 3(e), and 3(i) show sample Axial, Coronal, and 

Sagittal scan MR images taken from the dataset, respectively 

[25]. Figure 3(b), 3(f), and 3(j) represent a smoothen image 

obtained after optimization. Figures 3(c), 3(g), and 3(k) show 

the edge image obtained after deducting the smoothed image 

from the input MR image. Finally, Figures 3(d), 3(h), and 3(l) 

exhibit a restored and sharpened enhanced image obtained 

after the proposed methodology. Further, Figures 4-6 show a 

comparative study of the final output image obtained with the 

proposed methodology and the earlier existing method 

discussed in Section II with Axial, Coronal, and Sagittal MR 

images of the dataset, respectively. In this comparative 

analysis, it can be seen that the visual output of the proposed 

methodology is more enhanced and sharper in comparison to 

earlier existing methods. For a more subjective evaluation, we 

conducted a comprehensive study involving a diverse group of 

individuals with expertise in medical imaging, including 

radiologists, clinicians, and imaging scientists. Finally, based 

on the recommendations from the doctors of the medical 

department at the National Institute of Technology Patna, 

India, the proposed methodology produces a denoised and 

enhanced MR image that sharpens the details of abnormalities, 

aiding in the accurate detection of disorders. 

Apart from qualitative analysis, a quantitative analysis of 

the parameters discussed in Table 3 has also been done in 

between the proposed method and earlier existing methods. A 

comparison of the average performance assessment 

parameters between the earlier existing method and the 

proposed method is shown in Table 5 for this dataset. It can be 

observed that the proposed methodology imparts better results, 

such as a high PSNR ratio, low MSE, higher UQI, SSIM, MS-

SSIM, lower NAE, higher CC, and lower DE than earlier 

existing methods. The marked bold values in Table 5 show the 

optimal value of the performance metrics. However, the 

underlined values show the second-best value, and the dotted 

lines show the third-best value observed for these performance 

assessment parameters. The box plot of the parameters of 

evaluation given in Table 5 has been shown in Figure 7. 
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Figure 3. MR image (a) Sample axial [25], (b) Smoothen axial, (c) Edge image of axial, (d) Enhanced axial output, (e) Sample 

coronal [25], (f) Smoothen coronal, (g) Edge image of coronal, (h) Enhanced coronal output, (i) Sample sagittal [25], (j) 

Smoothen sagittal, (k) Edge image of sagittal, and (l) Enhanced sagittal output 
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Figure 4. (a) Sample axial MR image [25], (b) SNLM [16], (c) NLSW [17], (d) TLF [18], (e) LRSGM [19], (f) AKSNLM [20], 

(g) ADRN [21], (h) TRPA [22], (i) SRDS [23], (j) DURED [24], and (k) Proposed 
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Figure 5. (a) Sample coronal MR image [25], (b) SNLM [16], (c) NLSW [17], (d) TLF [18], (e) LRSGM [19], (f) AKSNLM 

[20], (g) ADRN [21], (h) TRPA [22], (i) SRDS [23], (j) DURED [24], and (k) Proposed 
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Figure 6. (a) Sample sagittal MR image [25], (b) SNLM [16], (c) NLSW [17], (d) TLF [18], (e) LRSGM [19], (f) AKSNLM 

[20], (g) ADRN [21], (h) TRPA [22], (i) SRDS [23], (j) DURED [24], and (k) Proposed 

 

Table 5. Comparative assessment of earlier work with proposed method on dataset 

 
S. No. Methods MSE PSNR UQI SSIM MS -SSIM NAE CC DE 

1. SNLM [16] 2.0451 41.5897 0.5331 0.6445 0.6277 0.8051 0.7623 5.8160 

2. NLSW [17] 1.5897 43.7481 0.6547 0.7541 0.7431 0.8127 0.7858 6.3873 

3 TLF [18] 2.7440 37.7412 0.5126 0.7519 0.7203 0.6366 0.5646 4.4289 

4. LRSGM [19] 1.9626 40.2513 0.6185 0.7926 0.7157 0.7653 0.5764 6.3763 

5. AKSNLM [20] 0.8886 48.6484 0.7949 0.6187 0.6063 0.7473 0.8998 6.8774 

6. ADRN [21] 1.3912 46.7031 0.7881 0.7234 0.7146 0.8759 0.7827 7.3678 

7. TRPA [22] 1.3956 46.6796 0.7247 0.8637 0.8138 0.6378 0.8537 7.6085 

8. SRDS [23] 0.8658 48.7468 0.7908 0.8439 0.8156 0.8471 0.8953 5.2561 

9. DURED [24] 0.6942 49.7221 0.7917 0.9648 0.9162 0.7511 0.9125 6.9126 

10 Proposed 0.4486 51.9872 0.8268 0.9947 0.9857 0.6075 0.9862 5.0547 

 

Table 6. Combination of parametric values for finding the best performance assessment parameters on dataset 

 
 Performance Parameters      

Experimental Parameter Values MSE PSNR UQI SSIM MS –SSIM NAE CC DE 

Case 1: ∆𝑡 =  0.1, 𝑛 =  02, 𝛽 =  10, 𝛼 = 0.5 4.9354 32.8756 0.8846 0.9745 0.9707 0.8657 0.7358 4.1269 

Case 2: ∆𝑡 =  0.2, 𝑛 =  05, 𝛽 =  15, 𝛼 = 0.9 4.6209 35.7754 0.6089 0.9786 0.9782 0.8012 0.7686 4.5275 

Case 3: ∆𝑡 =  0.3, 𝑛 =  10, 𝛽 =  20, 𝛼 = 1.0 4.7428 35.6465 0.7178 0.9836 0.9806 0.6456 0.7655 4.2467 

Case 4: ∆𝑡 =  0.4, 𝑛 =  15, 𝛽 =  25, 𝛼 = 1.2 3.1489 40.2513 0.7656 0.9857 0.9832 0.8754 0.7439 4.6531 

Case 5: ∆𝑡 =  0.5, 𝑛 =  20, 𝛽 =  30, 𝛼 = 1.5 4.0623 37.8761 0.7949 0.9886 0.9854 0.7335 0.8234 4.5738 

Case 6: ∆𝑡 =  0.6, 𝑛 =  25, 𝛽 =  35, 𝛼 = 1.9 4.2954 36.5793 0.7356 0.9945 0.9924 0.7665 0.8592 4.7874 

Case 7: ∆𝑡 =  0.7, 𝑛 =  30, 𝛽 =  40, 𝛼 = 2.0 1.4142 46.6421 0.7144 0.9967 0.9936 0.7488 0.8061 4.9234 

Case 8: ∆𝑡 =  0.8, 𝑛 =  35, 𝛽 =  45, 𝛼 = 2.3 3.4854 40.7468 0.8298 0.9843 0.9876 0.5382 0.8955 5.2095 

Case 9: ∆𝑡 =  0.9, 𝑛 =  40, 𝛽 =  47, 𝛼 = 2.5 0.7246 49.5381 0.8965 0.9921 0.9911 0.7511 0.8976 5.2871 

Case 10: ∆𝑡 =  1.0, 𝑛 =  45, 𝛽 =  50, 𝛼 = 2.7 0.8848 48.3268 0.7956 0.9987 0.9925 0.5376 0.9154 5.1843 

Case 11: ∆𝑡 =  0.1, 𝑛 =  50, 𝛽 =  40, 𝛼 = 2.0 0.4486 51.9872 0.8268 0.9947 0.9857 0.6075 0.9862 5.0547 
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Figure 7. Box plot of comparative parameter assessment for performance evaluation between proposed method and existing state 

of art (a) MSE, (b) PSNR, (c) UQI, (d) SSIM, (e) MS-SSIM, (f) NAE, (g) CC, and (h) DE 
 

  
(a) (b) 

  

  
(c) (d) 

 

Figure 8. Dot plot of combination of parameter values taken in all 11 cases (a) PSNR, (b) MSE and DE, and (c) UQI, SSIM, MS-

SSIM, NAE, and CC 
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Table 7. Quantitative evaluation of the proposed methodology on phantom MR image with different noise variations 

 
S. No. Noisy Image MSE PSNR UQI SSIM MS -SSIM NAE CC DE 

1. Figure 9(b)  0.5287 42.7652 0.6684 0.8602 0.8929 0.4941 0.8435 6.8445 

2. Figure 9(f)  0.6586 41.8170 0.7515 0.8058 0.8887 0.5367 0.8194 6.9318 

3. Figure 9(j)  0.4402 43.5621 0.7461 0.7429 0.7961 0.5801 0.7285 6.7683 

4. Figure 9(n) 1.2821 38.9205 0.9735 0.8930 0.9693 0.1730 0.9934 5.2310 

 

To show the best possible output combination of this 

method, a total of 11 cases have been taken with the help of 

random search optimization using the parameters described in 

Table 2. The values of those iterations are shown in Table 6. 

The parameters taken for the final output performance 

assessment calculation are shown in Case 11. A comparative 

study of these cases is shown with dot plots in Figure 8. 

The major advantage of the proposed method is that it 

effectively reduces Rician noise in MR images while 

preserving critical structural details through reformed AD with 

MLE and EMEE. Parameter optimization via GSO and 

enhancement using modified UM significantly improve the 

sharpness and contrast of images, improving both qualitative 

visual quality and quantitative values, thereby aiding in better 

diagnosis and clinical applications. Our proposed work and 

comparison of those works are completely based on traditional 

image denoising methods; that’s why real-time denoising 

methods have been omitted. Real-time denoising methods, 

such as lightweight CNNs, are deep learning models that 

require a large training dataset to learn effective noise patterns 

and work aggressively on denoising [54]. Our proposed 

methodology is robust to small datasets. The proposed method 

selectively smooths regions based on the edge threshold 

constant of the diffusion coefficient. It is automated using the 

Enhancement Measurement on Entropy (EMEE) method and 

is combined with Maximum Likelihood Estimation (MLE) 

rather than relying on manual calculation. To further enhance 

the quality of the smoothed images, the Greedy Search 

Optimization (GSO) algorithm is employed, with the Peak 

Signal-to-Noise Ratio (PSNR) serving as the fitness function. 

This approach facilitates denoising while preserving 

significant structures, such as edges and contours. In the 

context of real-time denoising images, it is extremely 

important to preserve edges rather than solely concentrating 

on aggressive noise removal. Additionally, real-time 

denoising methods typically demand more computational 

resources compared to traditional denoising techniques [55]. 

Also, in the case of small datasets, these real-time denoising 

models frequently struggle to generalize effectively because 

they lack sufficient training samples, resulting in overfitting 

[56]. 

Generally, denoising methods are affected by class 

imbalance, especially when the number of healthy controls in 

datasets is greater than individuals with abnormalities [57-59]. 

Model-based or data-driven methods typically learn noise 

patterns primarily from the majority class [60]. This highlights 

the importance of balancing the datasets in data-driven 

denoising methods. To address the issues related to class 

imbalance, the process of data augmentation is used [61]. Data 

augmentation increases the number of samples in data using 

zooming, cropping, rotation, etc., and enhances generalization 

by introducing diversity into the data. Generative Adversarial 

Networks (GANs) are the most preferred data augmentation 

used for balancing the datasets [62]. However, class imbalance 

does not affect the performance of the proposed method, as it 

operates independently on each individual image. Also, the 

main objective of the methodology is to check the ability of 

the algorithm to improve the quality of the image by removing 

noise. 
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Figure 9. MR image (a) Phantom image [63], (b) 5% Rician noisy image, (c) Edge image, (d) Enhanced output image, (e) 

Phantom image [63], (f) 10% Rician noisy image, (g) Edge image, (h) Enhanced output image, (i) Phantom image [63], (j) 20% 

Rician noisy image, (k) Edge image, (l) Enhanced output image, (m) Phantom image [63], (n) Gaussian and poisson noisy Image, 

(o) Edge image, and (p) Enhanced output image 

 

Though the proposed method is tailored for Rician noise. 

However, its inherent properties that suppresses noise while 

keeping edges sharp and adjusting the smoothness makes it 

effective for denoising images affected by Gaussian and 

Poisson noise too. Some phantom MR images from the Kaggle 

dataset were taken to support the statement [63]. The proposed 
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methodology has been applied to those images. Figures 9(a), 

9(e), 9(i), and 9(m) show sample phantom MR images taken 

from the dataset [63]. Figures 9(b), 9(f), and 9(j) represent 

images obtained after adding 5%, 10%, and 20% of Rician 

noise, respectively. Figures 9(n) comprises a combination of 

additive Gaussian and Poisson noise. Figures 9(c), 9(g), 9(k), 

and 9(o) show edge images obtained after deducting the 

smoothened image from those noisy MR images. Finally, 

Figures 9(d), 9(h), 9(l), and 9(p) exhibit restored and 

sharpened enhanced images obtained after the proposed 

methodology. These noisy images have also undergone a 

quantitative analysis of the parameters discussed in Table 3. 

The values of parameter obtained is shown in Table 7. The 

qualitative and quantitative outputs of the phantom images 

shows that the proposed method performs well with various 

other types of noises too. 

Apart from advantages, this methodology has some 

disadvantage too. This proposed method has high 

computational complexity and requires precise parameter 

tuning, which may not always yield optimal results. 

Additionally, Unsharp Masking can introduce artifacts, and 

implementing the combined approach requires extensive 

expertise in image processing. These disadvantages highlight 

the need for careful consideration and potential improvement 

of methods when taken for future application in other digital 

image processing. 
 

 

5. CONCLUSION 
 

The primary objective of this method is to achieve superior 

visual quality with reducing noise and preserving critical 

structural details thereby enhancing the features of MR images 

for diagnostic and clinical applications. The proposed method 

effectively restores and enhances Rician noise-corrupted MR 

images by integrating AD for denoising, GSO for parameter 

optimization, and OADUM for improving the sharpness and 

contrast of the MR image. The efficiency of the model can be 

validated through qualitative and quantitative analyses. From 

the comparative study, it can be seen that the proposed method 

is giving best visual output MR image of taken dataset. 

Through quantitative analysis shown in Table 5., the values 

of parameter MSE, PSNR, UQI, SSIM, MS-SSIM, NAE, CC, 

and DE are coming out to be 0.4486, 51.9872, 0.8268, 0.9947, 

0.9857, 0.6075, 0.9862, and 5.0547, respectively. Out of eight 

parameters, this method is giving best output for seven 

parameters which show its utility in diagnostic and clinical 

settings, contributing to better diagnosis, treatment planning, 

and patient outcomes. Also, the qualitative and quantitative 

output values of the phantom images indicate that the proposed 

methodology produces good denoised output images for 

various types of noise as well. 

Enhancing computational efficiency for real-time 

processing and integrating machine learning for automatic 

parameter adjustment can improve its robustness and 

practicality. This can be further supported by hardware 

implementation on platforms like GPUs or FPGAs. 

Implementing the proposed method on GPUs accelerates 

parallel processing using computing platforms Open 

Computing Language (OpenCL) or Compute Unified Device 

Architecture (CUDA). For FPGAs, the use of pipelined fixed-

point architectures alongside custom data dataflows can 

guarantee high throughput and minimal latency. Optimized 

memory management and fixed-point computations enhance 

speed and energy efficiency, making them suitable for 

embedded devices. Additionally, further enhancing its utility 

and effectiveness in clinical settings can be achieved by 

extending its application to multimodality imaging, 

developing a user-friendly interface, validating on larger 

datasets, and combining it with other enhancement techniques 

like deep learning-based super resolution. 
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