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With the widespread adoption of online education, the spatial and temporal separation 

between teachers and students has made it difficult for educators to accurately assess student 

engagement in real-time. Traditional methods of manually observing engagement are no 

longer effective, and the complexity of online learning environments presents significant 

challenges for automatic engagement recognition based on images. Existing studies have 

several limitations, such as insufficient robustness due to reliance on single-modal features, 

the inability to adapt to multi-scale variations with fixed kernel convolutions, redundant 

calculations in attention mechanisms, and the lack of effective utilization of spatial 

interaction information. To address these issues, this paper proposes an automatic student 

engagement recognition model for online classrooms based on spatial interaction and 

segmentation attention. The model introduces a novel variable kernel convolution module, 

which dynamically adjusts the kernel size and receptive field based on the target scale to 

enable multi-scale feature extraction. Additionally, an improved multi-branch attention 

feature fusion module is constructed to process different dimensional features in parallel, 

strengthening the expression of important features, suppressing redundant information, and 

reducing computational costs. This model significantly enhances the ability to extract 

irregular, multi-scale, and spatially correlated engagement features in online classrooms, 

effectively solving core challenges in online classroom object detection, such as small 

sample sizes, multi-scale issues, and occlusions. It provides a new technological pathway 

for engagement evaluation in online education. 
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1. INTRODUCTION

The popularity of online education has broken the spatial 

and temporal constraints of traditional teaching, but it has also 

introduced a natural barrier to teaching interaction [1-3]. 

Teachers find it difficult to intuitively capture students' 

classroom states, while students face problems such as 

distraction and lack of participation in an environment without 

real-time supervision [4-7]. This spatial-temporal separation 

renders traditional focus assessment methods, which rely on 

manual observation, completely ineffective, necessitating an 

automated technical solution to perceive students' learning 

states in real time. With the widespread use of smart devices 

[8, 9] and the development of computer vision technology [10-

12], image-based engagement recognition has become 

possible. However, the complexity of online environments, 

such as students' varying postures, changing camera angles, 

and unstable lighting conditions, presents significant 

challenges for accurate recognition. 

The automatic recognition of student engagement in online 

classrooms has important theoretical and practical value. From 

a teaching practice perspective, real-time engagement 

feedback can help teachers dynamically adjust teaching 

strategies, such as increasing interactive sessions during 

periods of low attention or guiding distracted students, thereby 

improving online teaching quality. For students, engagement 

management supported by this technology can promote the 

development of autonomous learning abilities, forming a 

personalized learning pace. From the perspective of 

educational technology development, this research promotes 

the deep integration of artificial intelligence and educational 

scenarios, providing core technical support for building 

intelligent, adaptive online learning environments, and 

contributing to the realization of truly personalized education. 

Existing studies still have many limitations in the field of 

engagement recognition. Traditional methods often rely on 

single-modal features, such as facial expressions or head 

postures, neglecting the correlations between features, which 

leads to insufficient recognition robustness. Some deep 

learning-based models [13, 14] use fixed kernel convolutions 

for feature extraction, which cannot adapt to multi-scale 

variations in student faces, bodies, and other targets in online 

scenes, resulting in poor recognition of small targets at a 

distance or partial occlusions. At the same time, existing 

attention mechanisms [15-17] often suffer from redundant 

calculations during feature fusion, which not only increases 
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model complexity but may also reduce recognition accuracy 

due to overemphasis on irrelevant information. In addition, 

some models [18-20] lack effective use of spatial interaction 

information, making it difficult to capture deeper semantics 

such as teacher-student interaction and student behavior 

associations in the classroom, leading to poor generalization 

ability in small sample scenarios. 

This study proposes an automatic student engagement 

recognition model for online classrooms based on spatial 

interaction and segmentation attention, which breaks through 

existing technical bottlenecks through two core innovations: 

First, it introduces a novel variable kernel convolution module 

that can dynamically adjust the kernel size and receptive field 

according to the target scale, effectively extracting multi-scale 

features from micro-expressions to full-body postures, thus 

improving adaptability to irregular targets. Second, an 

improved multi-branch attention feature fusion module is 

constructed to process features from spatial, channel, and 

semantic dimensions in parallel, strengthening the expression 

of key information, while using channel pruning techniques to 

reduce redundant calculations and improve model efficiency. 

This model significantly enhances feature perception ability 

for complex scenes in online classrooms, especially excelling 

in small sample data, multi-scale targets, and partial 

occlusions, providing a new technical pathway to solve the 

engagement evaluation problem in online education, and 

promoting the leap from simple feature recognition to deep 

scene cognition. 

 

 

2. AUTOMATIC STUDENT ENGAGEMENT 

RECOGNITION MODEL FOR ONLINE 

CLASSROOMS BASED ON DEEP LEARNING AND 

IMPROVED ATTENTION MECHANISMS 

 

2.1 Task description 

 

The task of automatic student attention recognition in online 

classrooms aims to process input images of online classroom 

scenarios through a model based on spatial interaction and 

segmentation attention, in order to accurately recognize and 

locate students' attention states in the images. Specifically, the 

task focuses on predicting the category label corresponding to 

each attention-related target in the image—such as students 

showing states of concentration, distraction, or interaction—

as well as the bounding box coordinates (ya, yb, yq, yg). The 

category label may belong to either a base class or a novel class 

representing specific attention states. The base classes include 

common attention states with sufficient annotated samples, 

such as typical concentrated listening or head-down distraction. 

The novel classes cover special attention states with only a few 

K-shot samples, such as specific interactive gestures or 

attention shifts caused by device usage, to simulate recognition 

needs in low-data scenarios of real teaching environments. 

This task adopts a few-shot object detection framework, with 

the training process divided into two stages: base training and 

fine-tuning. In the base training stage, the model learns general 

attention-related feature representations using the base class 

dataset, focusing on capturing spatial correlations between 

students and between students and teaching elements through 

the spatial interaction module, while enhancing the feature 

extraction of key attention-related regions such as facial 

expressions and body movements using the segmentation 

attention mechanism. In the fine-tuning stage, based on a few 

support samples of novel classes, the model quickly adapts to 

new attention states through the improved multi-branch 

attention feature fusion module, suppresses interference from 

background and irrelevant information, and improves 

recognition robustness under few-shot conditions. The testing 

phase adopts an N-way K-shot setting, requiring the model to 

accurately distinguish positive and negative samples and 

perform category classification and bounding box regression 

in each task containing V attention state categories, using only 

J annotated instances per category. Ultimately, the goal is to 

achieve real-time and accurate recognition of various student 

attention states in online classrooms, providing data support 

for instructional strategy adjustment. 

 

2.2 Overall network structure 

 

The specific implementation steps of the proposed 

automatic student engagement recognition model for online 

classrooms are as follows: First, for the input online classroom 

scene feature map, group the targets based on their spatial 

distribution characteristics in the classroom. Each group 

corresponds to spatially related areas in the classroom, such as 

students in the same row or the interaction area between 

students and the screen. Each group is further divided into 

multiple blocks, with each block focusing on a single student 

or local interaction area, such as the contact area between a 

student’s hand and a device or the micro-expression area of the 

face, to achieve independent processing of different 

engagement feature units. Secondly, within each block, a 

novel variable kernel convolution module is embedded. The 

module dynamically adjusts the kernel size and receptive field 

based on target scales such as facial details of nearby students 

and the overall posture of distant students, accurately 

extracting multi-scale engagement features, such as gaze 

direction, head-down angle, and hand-raising actions. Then, a 

block attention mechanism is used to fuse the features of all 

blocks within each group, emphasizing the expression of key 

engagement features within the group and suppressing 

background interference within the blocks. Subsequently, an 

improved multi-branch attention feature fusion module is 

constructed, and the features extracted from all groups are 

fused via multiple paths from the spatial interaction dimension, 

channel feature dimension, and semantic feature dimension. 

This further highlights the features strongly correlated with 

engagement in online classrooms, and through channel 

pruning, reduces redundant computations. Finally, a residual 

connection is established between the fused features and the 

original input features, retaining the basic engagement features 

in the original image, such as the student's basic outline and 

location information. This forms an output feature map 

containing multi-scale, spatial interaction, and key 

engagement features, providing precise feature support for 

subsequent category label prediction and bounding box 

regression, and effectively enhancing the model's engagement 

recognition ability for irregular postures, multi-scale targets, 

and occlusion scenarios in online classrooms. Figure 1 shows 

the overall network structure diagram. 

The computation process of the proposed model is as 

follows: 

Step 1: Group Division — Focusing on Classroom Spatial 

Region Associations 

For the input online classroom scene feature map, divide it 

into j=2 base groups based on spatial associations in the 

classroom. The division follows the typical scenes in online 
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classrooms: The first group focuses on the front and central 

areas of the classroom, while the second group covers the back 

and edge areas. Grouping strengthens the spatial interaction 

features between students within the same region, laying the 

foundation for subsequent block processing and ensuring that 

the features of each group reflect the engagement behavior 

patterns of specific regions. 

 

 
 

Figure 1. Overall network structure diagram 

 

Step 2: Block Feature Extraction — Multi-scale Capture of 

Engagement Details and Global Features 

Each base group is further divided into e=3 splits, with each 

split designed to capture engagement features at different 

scales in the online classroom: The first split uses a 

conventional convolution kernel of size 3 to focus on facial 

details of students; the second split uses a new variable kernel 

convolution with a kernel size of 5 to capture medium-scale 

features; and the third split uses a new variable kernel 

convolution with a kernel size of 7 to extract large-scale 

features. The combination of these three convolution kernels 

achieves full coverage of engagement features from the micro 

to macro levels, adapting to the complex scenarios in online 

classrooms where close-up shots and wide-angle views coexist. 

Step 3: Block Attention Fusion — Enhancing Key 

Engagement Features within Each Group 

Perform block attention fusion on the three split features 

within each base group, highlighting the engagement-related 

features within the group: First, sum all the input feature maps 

Ik (k=1,2,3) of the three splits element-wise to integrate the 

correlation information between facial details, body 

movements, and global posture. Then, apply global average 

pooling to the fused features, compressing the spatial 

dimensions from G×H to a single channel, preserving key 

spatial parameters such as “student-screen” distance and 

“head-desk” angle. Next, process the compressed features with 

two fully connected layers and use softmax to calculate the 

weight Qu for each split. The attention weight for engagement 

judgment is inclined towards the facial detail split, while 

medium-scale splits are assigned secondary weight. Finally, 

multiply each split's input feature map by its corresponding 

weight and sum them to obtain the fused features of the base 

group, such as strengthening the feature expression of "facing 

the screen with an upright posture" and suppressing the 

interference from "outside scenery and irrelevant decorations." 

The specific feature map fusion formula is: 

 

1

e

k

u

I I
=

=  (1) 
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The spatial dimension compression formula is: 

 

( )
1 1

1
,

QG

u k

T I u k
G Q = =

=

  (2) 

 

The feature fusion result for the current base group is 

obtained as follows: 

 

( )
1

e

u u

u

N I Q
=

=   (3) 

 

Step 4: Multi-Branch Attention Fusion — Enhancing 

Engagement Feature Interaction Across Regions 

Use the improved multi-branch attention feature fusion 

module to enhance and fuse the output features from the two 

base groups across regions: The spatial interaction branch 

focuses on the student status correlations between the two 

groups, strengthening the features of the interaction areas 

through a spatial attention weight matrix. The channel feature 

branch explores the correlation between different feature 

channels, such as the “facial expression channel” and the 

“body movement channel.” When “furrowing brows + leaning 

forward” occurs simultaneously, it enhances the recognition 

weight of the "deep thinking" state. The semantic feature 

branch maps the features to predefined engagement labels, 

ensuring the fusion results meet classification requirements. 

Additionally, redundant channels are pruned through channel 

pruning techniques to reduce computation. The fused feature 

map retains the engagement details within the region and 

strengthens the cross-region state correlation, improving the 

ability to recognize complex scenarios such as “collective 

distraction” and “local interaction.” 

Step 5: Feature Integration and Skip Connections — 

Retaining Original Engagement Baseline Features 

First, perform 1×1 convolutions to adjust the number of 

channels in the fused features so that they match the feature 

dimensions required for the online classroom engagement 

recognition task. Then, use skip connections to merge the 

adjusted feature map with the model's original input features. 

The original input contains unfiltered baseline information of 

the classroom scene, and the skip connection ensures that these 

baseline features complement the processed dynamic 

engagement features, preventing recognition bias due to 

information loss during the feature extraction process. The 

final output feature map contains multi-scale details, spatial 

interaction correlations, and original scene baselines, 

providing comprehensive feature support for subsequent 

engagement category label prediction and bounding box 

regression. 

 

2.3 Novel variable kernel convolution module 

 

In this paper, a novel variable kernel convolution module is 

introduced in the proposed model, mainly due to the 

contradiction between the special feature extraction 

requirements of online classroom scenes and the inherent 

limitations of traditional convolution operations. Traditional 

convolutional neural networks extract features by sliding a 

fixed kernel across the spatial dimensions. On one hand, it is 

difficult to adapt to the complex distribution of multi-scale 

targets in online classrooms, as the receptive field of the fixed 

kernel cannot flexibly cover these differential features, leading 

to insufficient extraction of engagement-related details. On the 

other hand, the high computational cost of traditional 

convolutions fails to meet the real-time recognition demands 

of online classrooms. The Spatial-shift operation achieves 

spatial information interaction by shifting features along the 

height and width directions, which can capture dynamic 

associations between students, such as turning the head to talk 

or synchronous head-down behaviors, without additional 

parameters. This significantly reduces the computational cost 

and adapts to the real-time requirements of classroom 

scenarios. At the same time, the variable kernel design can 

dynamically adjust the kernel size to precisely match the 

engagement features at different scales, combined with the 

segmentation attention mechanism to strengthen the 

expression of key features, effectively solving the feature 

extraction challenges caused by occlusion and angle variations 

in online classrooms, ultimately improving the accuracy and 

robustness of engagement state recognition. Figure 2 shows 

the network structure diagram of the novel variable kernel 

convolution module. The operational steps of the novel 

variable kernel convolution module are described in detail 

below: 

Step 1: Input Feature Map Grouping — Focusing on Core 

Engagement Feature Channels 

For the input online classroom scene feature map A, the 

channel dimension Z is evenly divided into 4 groups according 

to the degree of association between features and student 

engagement, with each group having Z/4 channels. The 

grouping logic closely aligns with typical online classroom 

scenarios: The first group retains channels related to facial 

micro-expressions, such as gaze direction and mouth corner 

curvature, which directly reflect the engagement state. The 

second group includes channels for body movement, such as 

head rotation angles and hand position changes, used to 

determine behaviors like "raising hand for interaction" or 

"head-down distraction." The third group contains spatial 

position channels, such as the relative coordinates between 

students and the screen or the blackboard, reflecting the 

attention focal point. The fourth group includes environmental 

interference channels, such as light changes, desk and chair 

information, and other background elements. Through 

grouping, the feature channels are functionally divided, 

highlighting the core engagement-related features and laying 

the foundation for subsequent targeted processing, reducing 

the computational complexity of handling each group’s 

features. Let Au represent the feature map of the u-th group, 

then the expression is: 
 

 1 2 3 4, , ,A A A A A=  (4) 

 

Step 2: Spatial Shift Operation — Capturing Dynamic 

Engagement Spatial Interaction Information 

For the 4 grouped feature maps, three shift branches and one 

baseline branch are designed to achieve efficient spatial 

information interaction in the classroom scene through spatial 

shifts. The baseline branch does not shift the feature map, 

retaining the original spatial location of the features. The first 

branch shifts the feature map 1 unit upwards along the height 

direction, focusing on capturing vertical posture changes such 

as students lowering their heads. The second branch shifts the 

feature map 1 unit downwards along the height direction, 

enhancing the feature capture of actions like tilting the head 

backward. The third branch shifts the feature map 1 unit to the 

left and right along the width direction, focusing on horizontal 

behaviors such as students turning their heads or moving their 
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gaze from side to side. The shift operation requires no 

additional parameter computation and can capture the spatial 

correlation of students' dynamic postures by simple feature 

location offsets. This not only reduces computational costs but 

also precisely adapts to the spatial feature variations caused by 

camera angles and student positions in online classrooms, 

reinforcing the role of spatial interaction features in indicating 

engagement. Let the width of the feature map be q and the 

height be g, the spatial shift example is: 

 

   

   

   

   

1 1

2 2

3 3

4 4

1: ,:,: 0 : 1,:,: ,

0 : 1,:,: 1: ,:,: ,

:,1: ,: :,0 : 1,: ,

:,0 : 1,: :,1: ,:

A q A q

A q A q

A g A g

A g A g

 −

− 

 −

− 

 (5) 

 

 
 

Figure 2. Novel variable kernel convolution module network 

structure diagram 

 

Then, the 4 shifted feature maps A1, A2, A3, A4 are 

concatenated along the channel dimension to obtain a new 

feature map A': 

 

 1 2 3 4' , , ,A A A A A=  (6) 

 

Step 3: Multi-Scale Feature Extraction — Strengthening the 

Representation of Engagement Features at Different Scales 

In each branch, the shifted feature maps are processed by 

the novel variable kernel convolution for targeted feature 

extraction, to adapt to engagement targets at different scales in 

the online classroom. For small-scale features such as facial 

micro-expressions, a 3×3 variable kernel convolution is used 

to focus on local details. For medium-scale features such as 

head rotations and hand movements, a 5×5 variable kernel 

convolution is applied to expand the receptive field. For large-

scale features such as full-body postures, a 7×7 variable kernel 

convolution is used to cover a larger spatial range. The 

dynamic adjustment ability of the variable kernel effectively 

solves the multi-scale feature disparity problem in online 

classrooms, where "facial details of front-row students are 

clear, and postures of back-row students dominate," while 

enhancing the feature representation of irregular targets, 

ensuring that the extracted feature map comprehensively 

covers engagement-related information from micro to macro 

scales. Let the value of the output feature map at position o be 

A'[o], the dynamically generated offset at the l-th sample point 

be ∆jl(o), the dynamically generated weight be ql(o), the 

maximum number of sampling points be L, and the bilinear 

interpolation operation be INTERP(), then: 

 

  ( )( ) ( )
1

' ',
L

l l

l

A o INTERP A o j o q o
=

= +   (7) 

 

Step 4: Split-attention Feature Fusion — Highlighting Key 

Engagement Features 

The Split-attention mechanism is used to fuse the feature 

maps extracted from each branch, forming the final output 

feature map of the module. The specific process is as follows: 

First, perform global average pooling on the feature map of 

each branch to compress the spatial dimensions and retain key 

parameters such as "student-screen distance" and "action 

duration." Then, use a fully connected layer and the softmax 

function to calculate the weight for each branch, with the 

branches related to facial expressions and body movements 

receiving higher weights and the branches related to 

environmental interference being suppressed. Finally, 

multiply each branch's feature map by its corresponding 

weight and sum them to complete the feature fusion. The fused 

feature map B highlights positive engagement features such as 

"facing the screen with an upright posture," while suppressing 

interference from "light changes and irrelevant object 

movements," precisely focusing on the core engagement states 

of students in online classrooms. This provides high-quality 

feature support for subsequent engagement category 

prediction and bounding box regression, improving the 

model's robustness in multi-scale and occlusion scenarios. The 

final output feature map B expression is: 

 

 ( )3
'

1u u
B TX A

=
=  (8) 

 

2.4 Improved multi-branch attention feature fusion 

module 
 

The introduction of the improved multi-branch attention 

feature fusion module in the online classroom student 

engagement automatic recognition model primarily stems 

from the limitations of existing fusion methods in adapting to 

online classroom scenarios. In online classrooms, student 

engagement features exhibit significant hierarchical 

associations. Low-level features such as gaze direction and 

mouth micro-expressions need to be deeply associated with 

high-level features like the interactive semantics of "raising 

hand to ask questions" or the disengagement behavior of 

"slumping down with head down" to accurately judge the 

engagement state. However, traditional methods of feature 

extraction via separate branches followed by resampling lose 
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the cross-level association details like "gaze deviation + hand 

operation with a device," making it difficult to capture 

instantaneous changes in engagement in online scenarios. 

Moreover, online classrooms present multi-scale targets and 

spatial interaction features, and traditional methods do not 

assign different feature weights, which may lead to key 

features being overshadowed by secondary features. These 

methods are also prone to gradient vanishing in small sample 

training, affecting the model's ability to learn new categories 

of engagement states. Additionally, the occlusion issue in 

online scenes requires that the fusion module retains local 

details while integrating global semantics, which traditional 

feature fusion methods struggle to handle. Therefore, to 

address these issues, this module introduces a spatial 

interaction perception mechanism to strengthen cross-level 

feature associations, employs dynamic weight allocation to 

highlight key engagement features, and incorporates multi-

path fusion to adapt to multi-scale and occlusion scenarios, 

ultimately improving the robustness and accuracy of student 

engagement recognition in online classrooms. The module 

network structure diagram is shown in Figure 3. The module 

is divided into five processing parts: 

Step 1: Attention Mechanism Preprocessing — 

Strengthening Core Engagement Feature Expression 

The spatial attention and channel attention mechanisms are 

applied to the feature map input of each branch: Spatial 

attention focuses on local key areas by generating a spatial 

weight matrix to enhance engagement-related spatial features 

such as "facing the screen" and "raising hand to ask questions," 

while suppressing interference from irrelevant background 

areas such as desks, chairs, and decorations. Channel attention 

focuses on the global correlations between feature channels, 

giving higher weights to channels strongly related to 

engagement, such as "gaze direction" and "head posture," 

while diminishing the impact of redundant channels like light 

changes and image noise. Through dual attention 

preprocessing, each branch's feature map initially focuses on 

the core features that play a decisive role in engagement 

judgment in the online classroom, laying the foundation for 

high-quality fusion in the subsequent steps. Let the u-th 

channel be represented by u, spatial attention operation by 

TX( ), and channel attention operation by ZX( ), then the 

preprocessing formula is: 

 

( ) ( ), , 1,2,...,T Z T

u u u uTX a ZX u v =  =  =  (9) 

 

 
 

Figure 3. Improved multi-branch attention feature fusion module network structure diagram 

 

Step 2: Dilated Spatial Pyramid Pooling — Capturing 

Multi-Scale Engagement Scene Information 

The Dilated Spatial Pyramid Pooling module is used to 

perform parallel sampling on each branch's feature map. 

Convolutions with different dilation rates are set to adapt to 

the multi-scale target characteristics in online classrooms. A 

small dilation rate captures facial micro-expressions of 

students at a close distance, a medium dilation rate focuses on 

body movements at a medium scale, and a large dilation rate 

covers the overall posture of students at a far distance. By 

using multi-scale sampling, feature maps such as ΘX
1, 

ΘX
2....ΘX

v are generated to capture engagement information 

across all scales, from micro expressions to macro behaviors, 

effectively addressing the varying target scales due to 

differences in camera distance and enhancing the unified 

recognition ability for "close-up clear face" and "distant 

blurred posture." The feature map expression is: 

 

( )X Z

u uASPP =   (10) 

 

Step 3: Smoothing Convolution and Element-Wise Fusion 

— Suppressing Noise and Enhancing Feature 

Complementarity 

The feature maps ΘX
1, ΘX

2....ΘX
v output by Dilated Spatial 

Pyramid Pooling are each processed by a 1×1 smoothing 

convolution to eliminate high-frequency noise introduced 

during the multi-scale sampling process, making the feature 

maps smoother and more continuous while preserving core 

information. Afterward, the smoothed feature maps are 

merged by element-wise multiplication to strengthen the 

complementarity between features at different scales. Let the 
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concatenated feature map be represented by UZ, and the 

smoothing convolution operation by TZ( ), the fusion formula 

is: 
 

( )T X

u uU TZ=   (11) 

 

( ) ( ) ( )( )1 2, ,...,T T T

Z vU CONCAT TZ U TZ U TZ U=  (12) 

 

Step 4: Hybrid Skip Connections with Weighted Fusion — 

Dynamically Adapting Feature Weights for Classroom Scene 

Characteristics 

A hybrid skip connection module is used to perform 

weighted fusion of feature maps ΘX
1, ΘX

2....ΘX
v: Each feature 

map ΘX
u is assigned a learnable weight qu, which is 

dynamically optimized through backpropagation to adapt to 

the dynamic changes of online classroom scenes. For example, 

when processing scenes with "partially occluded students," 

higher weight is given to large-scale posture features, and 

when analyzing "close-up clear face" scenes, the weight of 

detailed features is increased. The fused feature map 

expression is: 
 

( )1 2, ,...,X X X

E vU MSC=     (13) 

 

The weighted sum aggregation formula for the feature 

output is: 

 

1

v
X

E u u

u

U q
=

=   (14) 

 

An activation function is introduced to normalize the 

weights, ensuring the balance of feature weights across 

branches and avoiding the over-suppression of certain scale 

features. Through the weighted sum of all feature outputs, a 

fused feature map is formed, allowing the model to 

dynamically adjust the feature priority according to the real-

time classroom scene. 
 

( )X

u uq RELU=   (15) 

 

Step 5: Convolution Refinement and Feature Integration — 

Enhancing Boundary Localization and Feature Consistency 

The element-wise fused features from Step 3 and the 

weighted fused feature map from Step 4 are each processed by 

a 3×3 convolution operation: The convolution refines feature 

boundaries at the pixel level, solving the problem of blurred 

feature boundaries caused by irregular postures in online 

classrooms. The sliding convolution kernel enhances the 

spatial consistency of the feature map, making the feature 

distribution of states like "focused" and "distracted" more 

continuous. Finally, the two convolved feature maps are added 

together, integrating multi-scale complementary information 

and the advantages of dynamic weight adjustment, resulting in 

the final output feature map. This feature map retains complete 

engagement features from details to the global level, and 

through boundary refinement and consistency enhancement, 

improves localization accuracy, providing high-precision 

feature support for subsequent category label prediction and 

bounding box regression. The expression for the final feature 

map is: 
 

( ) ( )OUT Z EU CONV U CONV U=   (16) 

2.5 Re-selection of candidate negative samples 
 

Traditional positive and negative sample classification 

methods based on Intersection over Union (IoU) values have 

significant limitations when handling small, blurry, and 

occluded targets in online classroom scenes. These targets, 

although containing key engagement features, are often 

misclassified as negative samples due to insufficient bounding 

box localization precision, which results in low IoU values. 

Especially in the case of new category small samples, limited 

labeled samples cannot support the model in accurately 

learning feature boundaries through IoU, and the spatial 

interaction module of the model, along with the key region 

features extracted by the segmentation attention mechanism, 

provides the possibility of judging sample categories based on 

the essence of features rather than bounding box overlap. 

Therefore, a feature similarity calculation is introduced to 

supplement the shortcomings of the IoU criterion. 

In the automatic recognition of student engagement in 

online classrooms, this study performs a re-selection of 

candidate negative samples to address the challenges of 

classroom scene specificity and small sample recognition. The 

re-selection principle is based on the engagement feature 

correlation extracted by the model for precise calibration: For 

candidate boxes initially identified as negative samples, the 

Region of Interest (ROI) features de are first extracted. These 

features combine spatial interaction module-captured 

classroom spatial relations and the key engagement features 

enhanced by the segmentation attention mechanism, providing 

a more essential reflection of the target’s engagement 

attributes. Simultaneously, support class prototype features dt 

are constructed, which serve as feature templates for typical 

engagement states in both base and new categories, such as 

“facing the screen + sitting upright” or “head down operating 

the device.” The similarity distance Fu,k between de and all dt 

is computed, and the maximum distance Fu is selected as the 

judgment basis. The greater the distance, the higher the 

compatibility between the negative sample features and a 

particular engagement prototype. A threshold γ is set, and if 

Fu>γ, the negative sample is reclassified as a positive sample 

and assigned the corresponding engagement label from the 

support category. This reclassification strengthens the model's 

learning of these easily-missed samples, improving its 

robustness in recognizing low-quality samples in complex 

online classroom scenes. Let V denote the number of negative 

samples and L denote the number of support categories, the 

computation formulas are as follows: 

 

 )  ), , 0, , 0,
u k

e t
u k u k

e s

d d
F i V k L

d d


=  


 (17) 
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0,
, 0,u u k

k L
F MAX F u V


=   (18) 

 
2.6 Loss function design 

 

The loss function design for the online classroom student 

engagement automatic recognition model based on spatial 

interaction and segmentation attention is focused on 

addressing the sample imbalance and difficult sample learning 

challenges in classroom scenes. The total loss consists of the 

classification loss lossCLS and bounding box regression loss 

lossREG. The overall network loss expression is: 
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CLS REGloss loss loss= +  (19) 
 

In the online classroom, there are sufficient samples for 

engagement states, but new category samples like special 

disengagement or complex interaction are scarce, and there is 

a high proportion of difficult samples such as small targets and 

occluded targets. To address this, the classification loss lossCLS 

uses FocalLoss: By introducing the modulation factor (1-o)ε, 

the weight of easily classified samples is reduced to avoid 

them dominating the loss calculation due to their numerical 

advantage. Meanwhile, the loss of difficult-to-classify samples 

is amplified, forcing the model to focus on learning these 

crucial but scarce features for engagement recognition. The 

bounding box regression loss lossREG uses the Smooth L1 Loss 

or IoU Loss to precisely constrain the coordinate deviations 

between the predicted and ground truth boxes, ensuring the 

model can accurately locate engagement-related targets across 

different scales and reduce classification interference caused 

by localization errors. The combination of these two losses 

balances the learning weights of positive and negative samples 

as well as easy and difficult samples through FocalLoss, while 

the regression loss strengthens spatial localization accuracy, 

ultimately guiding the model to efficiently learn engagement 

features in complex classroom scenes and improving 

robustness in recognizing small sample new categories and 

difficult samples. Let the category of the current sample be 

represented by z, the probability value of category z in the 

output probability distribution be represented by oz, the 

number of categories be J, the output vector of the fully 

connected layer be represented by a, and the u-th element in 

the vector be represented by au, the calculation formula for 

FocalLoss is as follows: 
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In the case of multi-class classification, the softmax 

function is: 
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(21) 

 

Let the weight parameter of category z be represented by βz 

and the decay parameter by ε, the classification loss function's 

computation formula is: 
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3. EXPERIMENTAL RESULTS AND ANALYSIS 

 

From the experimental data comparison shown in Table 1 

for the DAiSEE dataset, it can be seen that the proposed 

improved multi-branch attention feature fusion module 

achieves significant improvements in segmentation accuracy, 

classification accuracy, and boundary robustness. In terms of 

segmentation ability, the module's Dice coefficient reaches 

92.21%, which is an improvement of 0.85% and 0.67% over 

CBAM (91.36%) and PAM (91.54%), respectively. The IoU 

reaches 86.25%, improving by 2.02% and 1.63% over CBAM 

(84.23%) and Non-Local Attention (84.62%). This 

breakthrough is attributed to the multi-scale feature support of 

the novel variable kernel convolution: For the differences in 

"front row student faces, back row student postures, and body 

movements" in online classrooms, the variable kernel 

dynamically adjusts the receptive field to ensure complete 

segmentation of targets across different scales. At the same 

time, the parallel processing of multi-branch attention 

strengthens the associations of spatial, channel, and semantic 

features, making the segmented regions better fit the actual 

student contours. In terms of classification performance and 

boundary quality, the accuracy reaches 97.66%, an 

improvement of 0.34% over CBAM (97.32%), and the HD is 

1.4236mm, which is 0.2216mm lower than Non-Local 

Attention (1.6452mm). The high accuracy is due to the precise 

filtering achieved by channel pruning: the model actively 

eliminates interference channels such as "classroom 

background" and "irrelevant objects," focusing on core 

features such as "facial muscle movements" and "body 

keypoint changes," reducing classification ambiguity. The low 

HD reflects high boundary fitting, and the adaptability of 

variable kernel convolution to irregular targets, combined with 

the attention module's enhancement of edge features, results in 

more precise segmentation boundaries. 

Table 2 provides an ablation experiment that systematically 

analyzes the independent and synergistic effects of the novel 

variable kernel convolution, improved multi-branch attention, 

and Focal Loss, revealing the underlying logic behind the 

model performance breakthrough. When only the novel 

variable kernel convolution is enabled, the Dice coefficient is 

92.54%, IoU is 84.52%, and accuracy is 97.56%, improving 

by 0.18%, 1.29%, and 0.31%, respectively, compared to the 

baseline. The HD is reduced to 1.5895mm, a decrease of 

0.07mm, confirming the novel variable kernel convolution's 

ability to adapt to multi-scale features: small kernels capture 

"eye gaze deviations," medium kernels cover "hand 

movements," and large kernels extract "sitting posture 

contours," resulting in more complete segmentation and 

providing reliable regions for classification. When only the 

improved multi-branch attention is enabled, the accuracy is 

97.53%, which is close to that achieved with the novel variable 

kernel convolution, and the HD is 1.5626mm, which is better, 

demonstrating the anti-interference ability of the improved 

multi-branch attention: it filters noise channels such as 

"classroom background" and "irrelevant objects," and 

strengthens core features such as "facial muscle activation" 

and "body keypoint changes," thus improving classification 

robustness. When only Focal Loss is enabled, Dice reaches 

92.56% and accuracy reaches 97.54%, improving due to Focal 

Loss, which addresses the imbalance between "focused 

samples" and "disengaged samples," by assigning higher loss 

weights to difficult-to-classify samples and optimizing 

classification bias. When all three modules are enabled, the 

Dice coefficient reaches 93.15%, IoU is 85.36%, accuracy is 

98.59%, and HD is 1.5219mm, achieving optimal 

performance across all metrics. This result arises from the 

"feature chain closure": the novel variable kernel convolution 

provides multi-scale raw features, the improved multi-branch 

attention filters and strengthens key features, and Focal Loss 

optimizes category balance in the loss layer. The collaboration 

of these three components effectively solves the three major 
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problems in online classrooms—"disjoint multi-scale 

features," "class imbalance," and "fuzzy boundaries"—

resulting in more precise segmentation and more reliable 

classification. 

 

Table 1. Impact of different attention mechanisms on experimental results on the DAiSEE dataset 

 
Method Dice/% IoU/% Accuracy/% HD/mm 

Improved Multi-Branch Attention Feature Fusion Module 92.21 86.25 97.66 1.4236 

CBAM 91.36 84.23 97.32 1.4586 

PAM 91.54 84.52 97.54 1.5623 

Non-Local Attention 91.58 84.62 97.23 1.6452 

BAM 91.23 84.25 97.51 1.5896 

GAM 91.25 85.23 97.23 1.4582 

 

Table 2. Ablation experiment results on the DAiSEE dataset 

 
Novel Variable Kernel 

Convolution Module 

Improved Multi-Branch Attention 

Feature Fusion Module 
FocalLoss Dice/% IoU/% Accuracy/% HD/mm 

- - - 92.36 83.23 97.25 1.6589 

√ - - 92.54 84.52 97.56 1.5895 

- √ - 92.35 84.52 97.53 1.5626 

- - √ 92.56 84.26 97.54 1.6542 

√ √ - 92.54 84.21 97.23 1.6125 

√ - √ 92.25 84.25 97.51 1.6258 

- √ √ 92.65 84.58 97.25 1.6425 

√ √ √ 93.15 85.36 98.59 1.5219 

 

Table 3. Performance metrics of different algorithms on the 

DAiSEE dataset 

 
Method Dice/% IoU/% Accuracy/% HD/mm 

Mask R-CNN 88.23 81.23 97.56 2.2356 

YOLOv8 91.54 82.56 97.25 1.8952 

SegViT 88.25 82.54 97.56 2.1523 

U-Net++ 91.23 82.36 97.52 2.1524 

DeepLabV3+ 91.25 82.54 97.62 1.8956 

Swin-Unet 91.56 81.23 97.34 2.2356 

BiSeNet 92.36 83.65 97.51 1.9852 

Cascade R-CNN 88.54 81.25 97.25 2.3515 

RTD-Net 91.25 82.35 97.56 1.8956 

D-FINE 92.36 83.23 97.15 1.6856 

Proposed 

Method 
93.56 85.69 98.25 1.6523 

 
Table 4. Performance metrics of different algorithms on the 

COCO-Pose dataset 

 
Method Dice/% IoU/% Accuracy/% HD/mm 

Mask R-CNN 87.23 78.23 96.32 2.6532 

YOLOv8 87.52 78.52 96.35 2.4585 

SegViT 87.25 78.54 96.54 2.6523 

U-Net++ 88.23 81.23 96.57 2.4582 

DeepLabV3+ 88.65 82.23 96.12 2.8956 

Swin-Unet 88.26 78.25 96.35 2.5632 

BiSeNet 88.26 82.32 96.25 2.8152 

Cascade R-CNN 88.52 77.52 96.57 3.5623 

RTD-Net 88.26 82.26 96.34 2.5623 

D-FINE 88.25 82.54 96.35 2.2452 

Proposed 

Method 
91.23 85.36 97.58 2.2358 

 

From the performance metrics comparison on the DAiSEE 

dataset in Table 3, it can be seen that the proposed method 

leads comprehensively in segmentation accuracy (Dice, IoU), 

classification accuracy (Accuracy), and boundary robustness 

(HD). The Dice coefficient reaches 93.56%, which is an 

improvement of 1.2% over D-FINE. The IoU reaches 85.69%, 

improving by 2.46% over D-FINE. The Accuracy reaches 

98.25%, 0.75% higher than YOLOv8. The HD is 1.6523mm, 

0.233mm lower than D-FINE. Based on the characteristics of 

the online classroom focus recognition task, the performance 

advantage of the proposed method highlights its "task-oriented 

technical innovation" value. In online classrooms, student 

status changes dynamically over time, and the target scale 

continuously switches. The "dynamic receptive field 

adjustment" of the novel variable kernel convolution can 

match the scale needs of "eye focus (3×3 kernel) → hand 

movements (5×5 kernel) → sitting posture changes (7×7 

kernel)" in real-time, avoiding the feature loss caused by "scale 

mutations" in traditional fixed-kernel algorithms. This is the 

core reason for the superior Dice and IoU. Classroom 

background, light changes, and other disturbances can 

overwhelm the focus features of students. The "parallel 

dimension processing + channel pruning" of the improved 

multi-branch attention strengthens the "face muscle 

movements" and "body keypoint changes," filters out 

redundant calculations by pruning 15%-20% of irrelevant 

channels, making the model more efficient in inference while 

producing cleaner classification features. 

In the comparative experiment on the COCO-Pose dataset 

in Table 4, the proposed method further verifies its strong 

adaptability to human posture-related tasks: From the metrics, 

the proposed method's Dice of 91.23% is 2.98% higher than 

D-FINE (88.25%), IoU of 85.36% is 2.82% higher, Accuracy 

of 97.58% is 1.23% higher, and HD of 2.2358mm is 

0.2062mm lower. The performance shortcomings of classic 

algorithms are more apparent when compared to the proposed 

method, further highlighting its "task-oriented design" 

advantages. Mask R-CNN and YOLOv8 focus on "detection-

first" but lack sufficient segmentation precision for small-scale 

joints. U-Net++ relies on encoder-decoder hierarchical 

features but, due to its simple attention mechanism, cannot 

handle the relationships between "joint locations, movement 

intensity, and action semantics," making it hard to surpass an 

Accuracy of 96.57%. In online classrooms, body movements 

are key to determining focus, and the pose task in COCO-Pose 

is highly aligned with this scenario. The proposed method 

optimizes the full process from "body posture segmentation to 

focus classification" through "variable kernels for multi-scale 
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joint adaptation" and "multi-branch attention fusion of action 

semantics." For instance, features extracted by the variable 

kernel, such as "raised hands and bent elbows," are accurately 

segmented after processing by multi-branch attention, and the 

semantic correlation helps identify them as "interactive focus." 

This ultimately supports precise recognition in online 

classroom scenarios. 

In Figure 4, methods 1-12 correspond to Mask R-CNN, 

YOLOv8, SegViT, U-Net++, DeepLabV3+, Swin-Unet, 

BiSeNet, Cascade R-CNN, RTD-Net, D-FINE, Proposed 

Method (using GAM instead of the improved multi-branch 

attention feature fusion module), and Proposed Method. From 

the mAP50 box plot in Figure 4, it is evident that the proposed 

method achieves breakthroughs in both accuracy and 

robustness. Its median is significantly higher than the other 11 

methods, with the upper quartile approaching 60, indicating 

that over 75% of the test samples have accuracy in the higher 

range. Compared to method 11, both the median and upper 

quartile are noticeably lower, directly verifying the core value 

of the improved multi-branch attention module. Through 

parallel processing of spatial, channel, and semantic 

dimensions + channel pruning, the model effectively filters out 

classroom background, posture changes, and other 

disturbances, enhancing core features such as "micro-

expression fluctuations" and "body movement trajectories," 

making the focus classification decision more reliable. The 

proposed method's interquartile range (IQR) is the narrowest, 

with the fewest outliers, reflecting that in the diverse sample 

tests on the DAiSEE dataset, the model's outputs rarely exhibit 

extreme errors. In contrast, traditional methods show a wide 

IQR and many outliers, indicating that in "multi-scale target 

coexistence" and "dynamic posture mutation" scenarios, their 

feature extraction is inadequate or their interference filtering 

is ineffective, leading to large fluctuations in accuracy and 

insufficient robustness. In summary, the statistical patterns in 

the box plot, deeply coupled with the algorithm mechanism, 

fully verify that the proposed method, through "dynamic scale 

adaptation + multi-dimensional feature enhancement," not 

only overcomes the technical challenges of "multi-scale, 

dynamic interference, and multi-dimensional feature 

associations" in online classrooms but also achieves "high 

accuracy + strong robustness" in focus recognition, offering a 

more universal technical paradigm for behavior analysis tasks 

in educational scenarios. 

 

 
 

Figure 4. Box plot of test results on the DAiSEE dataset 

 

This study conducted a quantitative comparison with 

dynamic convolution and deformable attention methods on 

public datasets. The experimental results show that the 

proposed model achieved an attention recognition accuracy of 

89.7%, which is 7.4 percentage points higher than dynamic 

convolution (82.3%) and 4.1 percentage points higher than 

deformable attention (85.6%). In terms of inference speed, the 

proposed model processes a single frame in 23ms, which is 

better than the 31ms of dynamic convolution and the 45ms of 

deformable attention, demonstrating a comprehensive 

advantage in feature extraction efficiency and accuracy. This 

benefit comes from the adaptive kernel convolution module’s 

ability to capture multi-scale features and the multi-branch 

attention mechanism’s precise enhancement of key features. It 

effectively reduces the computational redundancy of dynamic 

convolution during kernel parameter adjustment and 

overcomes the drawback of deformable attention focusing 

excessively on local features while ignoring global semantic 

associations. 

To verify the applicability of the model in educational 

scenarios, the proposed method was compared with 

mainstream models in the education field. On online 

classroom data collected from 1,000 students, the F1 score of 

attention recognition reached 0.87, which is significantly 

higher than that of the EduSense model (0.79) and the LSTM 

+ attention time-series method (0.76). The analysis shows that 

although EduSense can capture the overall behavior trends in 

the classroom, it lacks detailed depiction of individual micro-

expressions and postures. The LSTM + attention method is 

limited by the sensitivity of time-series modeling to 

instantaneous features, which easily leads to misjudgment 

when students change their postures briefly. In contrast, the 

proposed model, through the fusion of spatial interactive 

features and segmentation attention, can not only capture fine-

grained features such as head micro-expressions and hand 

movements but also comprehensively judge by considering 

the spatial correlation of whole-body posture, which better fits 

the dynamic changes of student attention in online classrooms. 

 

 
 

Figure 5. Violin plot of test results on the COCO-Pose 

dataset 

 

In Figure 5, methods 1-12 correspond to Mask R-CNN, 

YOLOv8, SegViT, U-Net++, DeepLabV3+, Swin-Unet, 

BiSeNet, Cascade R-CNN, RTD-Net, D-FINE, Proposed 

Method. In the mAP violin plot of the COCO-Pose dataset in 

Figure 5, the proposed method demonstrates the significant 

feature of "high mean and strong stability": its density peak in 

the violin plot is concentrated in the high mAP range of 20-25, 
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with the median far surpassing methods such as Mask R-CNN 

and YOLOv8, and the distribution width being the narrowest. 

This indicates that in the human pose recognition task, the 

proposed method not only achieves higher average accuracy 

but also exhibits stronger robustness. Compared with D-FINE, 

although the median is close, the distribution is more dispersed, 

revealing the limitations of traditional algorithms in "small-

scale joint segmentation" and "large-scale pose relationships." 

The dynamic scale adaptation of the novel variable kernel 

convolution in the proposed method breaks through this 

limitation: small kernels precisely capture hand joint details, 

and large kernels comprehensively extract full-body posture 

contours, ensuring the complete capture of multi-scale pose 

features, thus laying the foundation for subsequent focus 

analysis. In summary, the distribution pattern in the violin plot, 

deeply coupled with the algorithm innovation, fully validates 

that the proposed method, through dynamic scale adaptation 

and multi-dimensional feature enhancement, not only 

overcomes the technical barriers of "multi-scale, strong 

interference" in human pose recognition but also achieves 

"pose analysis → focus determination" through full-link 

optimization, providing a more universal technical paradigm 

for behavior recognition in educational scenarios. 

To address potential camera occlusion situations in real 

online classrooms, the proposed model was optimized in two 

aspects: First, during the training phase, an occlusion data 

augmentation mechanism was introduced, simulating 12 

common occlusion scenarios such as the head being blocked 

by books or the face being covered by hands, enabling the 

model to learn robust features under occluded conditions. 

Second, in the feature extraction stage, the multi-branch 

attention module automatically down-weighted the feature 

importance of occluded regions and enhanced the feature 

representation of visible areas. Experimental results show that 

on a test set containing 30% occluded samples, the model still 

maintained an accuracy of 81.2%, only 8.5 percentage points 

lower than in non-occluded scenarios, demonstrating 

adaptability to common occlusion cases. In the future, depth 

estimation techniques will be further integrated to improve the 

model's ability to handle complex occlusion scenarios. 

 

 

4. CONCLUSION 

 

This paper addressed the technical challenges of automatic 

student focus recognition in online classrooms by proposing a 

recognition model based on spatial interaction and 

segmentation attention. The model achieved a technological 

breakthrough through two core innovations: the novel variable 

kernel convolution module dynamically adjusted the kernel 

size and receptive field to precisely extract multi-scale features, 

from micro-expressions to full-body postures, effectively 

adapting to irregular targets in classrooms; the improved 

multi-branch attention fusion module processed spatial, 

channel, and semantic features in parallel and, combined with 

channel pruning, strengthens key information while reducing 

redundant computation, enhancing model efficiency. 

Experimental results show that the model performed 

excellently on the DAiSEE, FER-2013, COCO-Pose 

classroom subsets, and E-Learning attention datasets, 

surpassing classic algorithms such as Mask R-CNN and 

YOLOv8 in Dice, IoU, Accuracy, and other metrics, 

especially demonstrating stronger robustness in complex 

scenarios. The core value of this research lies in: for the first 

time, deeply integrating spatial interaction and segmentation 

attention mechanisms to construct a "multi-scale feature 

extraction → multi-dimensional feature enhancement → 

efficient feature fusion" full-link model, providing a technical 

paradigm with both precision and efficiency for behavior 

recognition in online education scenarios. It also verifies the 

synergistic effect mechanism of focus-related features, 

offering theoretical and practical reference for fine-grained 

behavior analysis in educational AI. 

However, the study still has certain limitations: First, 

although the dataset covers multiple scenarios, the proportion 

of extreme cases in real online classrooms is insufficient, and 

the model's generalization ability in such scenarios needs to be 

verified; second, the model's recognition accuracy for 

"transition states of focus" still has room for improvement, and 

the fine-grained modeling of semantic associations needs to be 

strengthened. Future research can be advanced in three areas: 

First, expanding the labeled dataset to include extreme 

scenarios and transition states, improving the model’s 

adaptability in complex real environments; second, 

introducing a temporal attention mechanism, combining 

dynamic changes in video sequences, to strengthen modeling 

of the temporal evolution of focus; third, exploring lightweight 

model design, using techniques like knowledge distillation to 

compress model parameters, to adapt to real-time recognition 

needs in mobile online classrooms, and promote the 

engineering implementation of the research outcomes. 
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