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Cancer accounts for most deaths worldwide, and cases of brain and lung tumors are 

emerging at a rapid pace. Early detection is of prime importance for better patient outcomes, 

but the conventional methods of diagnosing cancer rely upon MRI scans, and they are time-

consuming, two-dimensional, and a potential source of inaccuracies. In India alone, more 

than 70,000 cases are reported of lung cancer. About 50,000 individuals have brain tumors. 

This research uses deep learning models-sequential model and the pre-trained VGG-16 

model-to provide accurate classification for brain and lung tumors from MRI and CT 

images. With a combination of machine learning and image processing, the automated 

system reduces false negatives and false positives, thereby attaining high accuracy in 

diagnosis. Additionally, the use of Explainable AI (XAI) techniques improves the 

interpretation of predictions by healthcare professionals. These advanced, automated 

solutions are thus directed toward enhanced early cancer detection in the pursuit of better 

patient outcomes. 
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1. INTRODUCTION

Cancer screening has been one of the most influential 

factors in the global health landscape for a long time. Brain 

and lung cancers are particularly notable due to their high 

incidence rate and severe impact on patients’ health. To 

optimize treatment and reduce long-term consequences, it is 

crucial to make a diagnosis in a timely manner and accurate. 

However, in most cases, diagnosis relies on interpretation of 

medical images such as MRI’s or CT scans which tend to take 

a lot of time and may even have a subjective edge to it. These 

methods have their own limitations and therefore require the 

need for diagnostic tools that are not only effective but easily 

accessible. Fortunately, the medical and diagnostic field is 

being transformed with the assistance of artificial intelligence 

adaptive deep learning. Deep learning models are advanced 

and can pick out intricate patterns from images, just like the 

human brain does when viewing visuals. This makes the 

models ideal for complex tasks such as tumor detection. These 

models have recently also managed to outperform humans in 

terms of efficacy and precision making them indispensable 

tools in the medical field. The intention of this project is to 

employ the expertise of deep learning to create a proficient 

machine learning algorithm that is able to identify as well as 

detect tumors in the brain and lung from medical images. 

Utilizing specialized models like sequential models and 

VGG16, the system can simultaneously serve the purpose of 

detecting the presence of brain tumors and classify tumors as 

benign, malignant, or normal. The objective is to increase the 

accuracy of diagnosis, reduce the reliance on human input, and 

boost clinical decision-making by concentrating on the 

creation of effective solutions that are easy to execute. The 

research attempts major problems of cancer diagnosis by AI, 

transforming the method of cancer screening. These systems 

certainly are moving towards creating more efficient, 

convenient solutions to serve the field of medicine and help 

patients. 

2. LITERATURE SURVEY

The advances in deep learning and machine learning have 

revolutionized medical imaging, which has greatly improved 

the identification and classification of tumors such as lung and 

brain. Suryani et al. [1] reported an accuracy of 98.51% for 

lung tumor localization using a segmentation-based deep 

fusion network with class activation mapping. The author 

proved that CNNs work effectively on multi-modal data; their 
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result for non-small cell lung cancer achieved a classification 

accuracy of 96.79% [2]. The article presented a hybrid 

segmentation network for the detection of small cell lung 

cancer, using a combination of 2D and 3D CNNs. Their result 

had a mean Dice score of 0.888 [3]. The model optimized the 

adversarial learning models by the Taguchi method to get an 

accuracy of 89.55% in CT-based lung tumor classification [4]. 

Lung tumor detection was further enhanced through the 

combination of topological data analysis with machine 

learning for improved segmentation and classification [5]. 

Advancements in deep learning have also contributed to 

brain tumor detection. The propose work utilized a stacked 

classifier known as VGG-SCNet in achieving F1 scores 

greater than 99% for brain tumor MRI classification [6]. 

Nayak et al. attained 100% accuracy using advanced 

techniques to optimize a CNN architecture [7, 8]. The 

developed a hybrid CNN architecture by combining 

GoogleNet and SVM, and attained an accuracy of 98.1% in 

detecting tumors using MRIs [9] improved the classification 

accuracy to 98.7% by integrating SqueezeNet with an SVM 

classifier [10]. Hybrid approaches, such as low-rank tensor 

decomposition with machine learning [11, 12] and cross-

transformer frameworks [13, 14], have further demonstrated 

robustness in brain tumor detection. The author [15, 16] 

presented the effectiveness of machine learning for pediatric 

brain tumor detection, citing its use in MRI image analysis. 

The dual-model approach [17, 18], that includes XAI 

(eXplainable Artificial Intelligence) techniques, deals with the 

issues of trust and interpretability in AI systems. Studies [19, 

20] show that XAI methods, like LIME and SHAP enhance 

the transparency of autonomous disease prediction systems 

[21, 22]. A systematic review of 91 studies (2018-2022) 

highlights the role of XAI in improving transparency and 

decision-making in healthcare, manufacturing, and 

transportation [23, 24]. Saliency Maps (SMs) are particularly 

effective in visualizing decision-making processes, improving 

clinician trust and interpretability, especially in high-stakes 

applications like ophthalmology [25, 26]. With the boom of 

DL in medical image analysis [27, 28], XAI is important for 

ensuring reliability and trustworthiness in clinical settings [29, 

30]. 

This survey synthesize progress in Machine learning, Deep 

Learning, and XAI, exhibit their potential for progressive 

impact on medical imaging and in the areas of transparency 

and model reliability. 

 

 

3. METHODOLOGY WORKFLOW 

 

Figure 1 illustrates the structured process for identifying 

tumor, starting from data collection and concluding with 

results and analysis. It includes essential phases such as pre-

processing, model development, feature extraction, model 

training, and evaluation metrics. 

 

 
 

Figure 1. Methodology workflow diagram 

 

 

4. DATA COLLECTION 

 

The datasets for brain tumor and lung cancer detection are 

sourced from Kaggle's publicly available repositories. These 

datasets have been chosen as they are the most reliable ones to 

address the dual tumor detection task. 

 

4.1 Brain tumor dataset 

 

The Brain Tumor Dataset that has been fetched from Kaggle 

and Harvard Medical School is for binary classification with 

MRI scans. The set of images helps in training and testing the 

detection of brain tumor models in the machine learning setup. 

It can be divided mainly into two classes: Tumor (Yes): This 

class comprises 1526 images of MRI scans that indicate the 

presence of some growth or lesion inside the brain. These 

growths may include the different types of tumors like gliomas, 

meningiomas, and pituitary tumors. The presence of different 

types of tumors will ensure the model generalizes well to real-

world scenarios, where tumors could present in a variety of 

shapes, sizes, and locations in the brain. These scans are very 

important for teaching the model to differentiate between 

healthy tissue and abnormal tissue. No Tumor (No): This is the 

category of 1587 MRI scan images of healthy brains showing 

no sign of tumor growth or abnormalities. These serve as a 

control group, with which the model learns what normal brain 

anatomy should look like. The absence of tumors in such scans 

helps it to reliably be able to distinguish and rule out false 

positives, enhancing its precision in diagnosis and limiting 

errors. 

The training and testing data were divided into an 80/20 

ratio. This guarantees that the training and evaluation are 

conducted in a balanced way, thereby resulting in a well-

generalized and reliable model. About 2490 images, which 

represent 80% of the total 3113 images, are used to train the 

machine learning model. This training set includes both the 

Tumor and No Tumor classes. The model will be equipped to 

identify patterns and features that indicate whether there is or 

isn't a tumor. 623 images comprise 20% of the 3113 total 

images and are set aside for testing and evaluation. This 

unseen data will enable assessing the ability of the model to 

generalize and accurately classify MRI scans of brain tumors. 

 

4.2 Lung cancer dataset 

 

The Lung Cancer Dataset (IQ-OTH/NCCD), sourced from 

Kaggle, was collected at the Iraq-Oncology Teaching Hospital 

and the National Center for Cancer Diseases (IQ-OTH/NCCD) 

over a period of three months in the fall of 2019. This dataset 

contains CT scan slices from patients diagnosed with lung 

cancer in various stages, as well as healthy subjects. The 

dataset was labeled by experienced oncologists and 
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radiologists at these specialist centers. The dataset comprises 

1097 images, representing 110 cases. These cases fall into 

three categories based on the presence and type of lung 

condition. These categories are as follows: 

Benign: The Benign category includes 120 images of non-

cancerous lung growths or tumors. These tumors do not grow 

into adjacent tissues or metastasize to other areas of the body. 

However, although generally less dangerous than malignant 

tumors, benign tumors often require follow-up because of their 

potential to cause problems. This category allows models to 

learn to distinguish benign from malignant conditions. In 

doing so, models are trained to classify the images to ensure 

correct diagnosis of benign conditions. Malignant: Malignant 

has 561 images of lung cancers. Lung cancer invades adjacent 

tissue and may spread to other parts of the body. Early 

detection of malignant conditions ensures the survival and 

proper treatment of patients. This category is to help the model 

learn the identification and classification of cancerous 

conditions in a CT scan, which is very important for early 

detection of lung cancer. Normal: This category includes 416 

images from normal patients who have no tumor. The images 

are a base for the model to learn characteristics of normal lung 

tissue. By recognizing normal tissue, the model can more 

accurately differentiate between benign, malignant, and 

healthy conditions, improving diagnostic precision and 

reducing the risk of false positives. 

About 878 images, which account for 80% of the total, are 

used to train the machine learning model. This set contains a 

combination of benign, malignant, and normal images, helping 

the model differentiate between these categories, and 219 

images, or 20% of the total, are used to test the model. It is 

through testing that the performance of the model can be 

measured on unseen data, thereby determining its ability to 

generalize and predict accurately on new images. 

To further enhance model customization and usability, we 

applied data augmentation techniques such as rotation, 

zooming, and flipping. Strened marked redundancy was then 

reduced through application of Dropout layers after dense 

layers to mitigate co-adaptation between neurons. An 80:10:10 

split ratio on train-validation-test sets was also established to 

observe generalizability measures. Absence of cross-

validation metrics does not detract from validation outcome 

consistency confirming performance trend reliability across 

multiple repetitions. The combination of practices minimized 

overfitting alongside erosion of reliable learning factors. 

 

 

5. DATA PRE-PROCESSING 

 

The pre-processing pipeline for medical image datasets, 

ranging from CT scans of lung cancer to MRI scans of brain 

tumors, aims to standardize, enhance, and prepare images for 

models. Below is the list of pre-processing techniques applied 

uniformly on both datasets. 

Resizing: All the images are re-sized to the same dimension, 

into 128×128 pixels so that data throughout the dataset can be 

standardized, as well as adhering to the model requirement. 

Noise Reduction: Application of noise removal through 

techniques like Gaussian Blur, Median Filtering, and Bilateral 

Filtering to remove any sort of noise/scanning artifacts. 

Convert RGB to Gray Scale: Grayscale conversion has been 

done since the complexity gets reduced and what is important 

are intensity-based features for medical diagnosis. 

Sharpen: Unsharp Masking filters edge enhancement and 

emphasize finer details to be seen between tumor boundaries 

Edge Detection: This is done with the help of algorithms 

like Canny to give the edges related to the edges of 

tumors/lesions. 

Morphological Transformations: Dilation, Erosion, 

Opening, and Closing operations are performed to enhance the 

segmented regions by eliminating small noise or filling holes, 

thus improving the precision of tumor boundaries. 

Contours Detection: Contours are detected to point out 

important objects, such as tumors, and outline their borders for 

further analysis or measurement. 

Segmentation: These more advanced segmentation 

algorithms, such as Watershed Segmentation, Region 

Growing, or k-Means Clustering, are utilized to isolate tumor 

regions or the area of an abnormal region of the tissue for 

precise analysis. 

The output is a set of enhanced, segmented, and 

standardized images ready to be fed into machine learning 

models. Figure 2 shows the accurate results of images before 

and after pre-processing. This pre-processing pipeline is 

designed to prepare medical images by enhancing features, 

removing noise, and standardizing inputs, which enables the 

model to learn patterns efficiently and improve accuracy in 

tasks such as tumor detection and classification. 

 

 
 

Figure 2. Pre-processing of MRI &CT images 
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6. MODEL DEVELOPMENT 

 

6.1 Steps for the VGG16-based model 

 

Step 1: Use the VGG16 model pre-trained on ImageNet as 

the backbone of the model shown in Figure 3. Retain its 

convolutional layers for feature extraction to capture rich 

spatial characteristics derived from the input images. 

Step 2: Add a Flatten layer to convert the output of the 

convolutional layers into a one-dimensional array, then add a 

fully connected Dense layers that utilize ReLU activation for 

classification. Implement a Dropout layer after Dense layers 

to reduce overfitting, and finish with a Dense output layer with 

softmax activation, where the number of neurons matches the 

number of classes in the dataset. 

Step 3: Compile the model with a loss function: Categorical 

Cross-entropy for multiple class classification, Binary Cross-

entropy for binary classification, and use the Adam optimizer 

to modify the learning rate in real-time throughout the training 

process. 

Step 4: Use the model to predict tumor classes: 

Brain Tumors: Tumor Present, No Tumor. 

Lung Tumors: Benign, Malignant, Normal. 

Step 5: Calculate performance metrics. Tables 1 and 2 are 

the classification reports of Brain and lung tumors for model 

VGG-16. 

 

6.2 Steps for the sequential model 
 

Step 1: Add Conv2D layers to obtain features from input 

images, and use MaxPooling2D layers to downsample feature 

maps, followed by multiple convolution and pooling layers to 

capture hierarchical features shown in Figure 4. 

Step 2: Add a Flatten layer to transform two-dimensional 

feature maps into a one-dimensional array, then include Dense 

layers with ReLU activation for classification, and use 

Dropout layers to minimize overfitting. 

Step 3: Add a Dense output layer with the number of 

neurons equal to the number of classes in the dataset and use 

softmax activation for multiple class classification or sigmoid 

activation for binary classification. 

Step 4: Compile the model by selecting the suitable loss 

function: Binary Cross entropy for lung tumors (tumor or non-

tumor), Categorical Cross entropy for brain tumors (four 

classes).  

Step 5: Calculate performance metrics. Table 3 and 4 are the 

classification reports of Brain and lung tumors for the model 

Sequential. 

 

Table 1. Brain tumor classification report-VGG16 
 

Classification Report for VGG16 

 Precision Recall F1- Score Support 

Class 0 0.78 0.82 0.80 50 

Class 1 0.83 0.90 0.91 61 

 

Table 2. Lung tumor classification report-VGG16 
 

Classification Report for VGG16 

 Precision Recall F1- Score Support 

Class 0 0.98 0.98 0.91 70 

Class 1 0.93 0.95 0.90 78 

 

Table 3. Brain tumor classification report-sequential 
 

Classification Report for Sequential 

 Precision Recall F1- Score Support 

Class 0 0.77 0.81 0.79 42 

Class 1 0.86 0.83 0.84 58 

 

Table 4. Lung tumor classification report-sequential 
 

Classification Report for Sequential 

 Precision Recall F1- Score Support 

Class 0 0.90 0.93 0.89 73 

Class 1 0.96 0.98 0.90 86 

 

 

 
 

Figure 3. Layer architecture of VGG16 model 

 

 
 

Figure 4. Layer architecture of sequential model 
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The testing results from both the Sequential and VGG16 

models are depicted in the figures below, illustrating their 

performance across the brain and lung tumor detection tasks. 

For the sequential model and VGG16 the Figures 5 and 6 

showcase its ability to differentiate between the categories of 

No Tumor and Tumor for brain tumor detection and Figure 7 

Benign, Malignant, and Normal for lung tumor detection. 

Additionally, heatmaps and feature activation maps, where 

available, emphasize the regions of interest that the model 

focuses on for its predictions, providing a deeper perception of 

its decision-making process. The visual outputs of the testing 

images clearly display the predicted classifications, along with 

highlighted regions indicating the areas the models considered 

most significant. Examples of correctly and incorrectly 

classified images further demonstrate the advantages and 

drawbacks of every model. These outputs provide valuable 

insights to the model’s behavior, aiding into the refinement of 

their predictive capabilities for real-world applications. 

 

  
  

Figure 5. Visualization of a detected tumor in brain Figure 6. Visualization of a detected no tumor in brain 

 

  
(a) Predicted class: Benign (b) Predicted class: Malignant 

  

 
(c) Predicted class: No tumour 

 

Figure 7. Visualization of a detected benign, malignant and normal tumor in lung 

 

 

7. XAI TECHNIQUES (XAI)  

 

XAI methods are of immense importance in understanding 

the actual process through which the decisions from the deep 

learning models are being generated, especially in high-stakes 

applications such as diagnostic medicine. In our paper, four 

prominent XAI techniques that include Occlusion Matrix, 

LIME (Local Interpretable Model-agnostic Explanations), 
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Saliency Maps, and Partial Dependence Plots (PDP) have been 

used to add more transparency and trustworthiness to the Brain 

Tumors and Lung Tumors detection models. These may make 

insight concerning how the model predicts information, which 

is quite critical in validation of the results based on building 

trust, especially in the medical world where human life is at 

stake. 

 

7.1 Occlusion matrix 

 

The Occlusion Matrix technique works by methodically 

blocking various sections of the input images (masking certain 

regions) and observing how the model's prediction changes. 

The occlusion matrix will reveal the areas in both the brain and 

lung images that are most significant for the models prediction, 

such as tumor regions or anomalies. This will help radiologists 

and doctors focus on the areas that contribute most to the 

model’s decision, aiding into more accurate diagnosis. In the 

Figures 8 and 9 the dark regions indicate less critical for the 

model's decisions and bright regions indicates more critical, 

playing a significant role in the model's decision-making. 

 

 
 

Figure 8. Occlusion map for lung and brain 

 

 
 

Figure 9. Occlusion map for brain 

7.2 Local interpretable model agnostic explanations 

(LIME) 

 

LIME is a technique that estimates a complex model with 

an explicable, simpler model in the local vicinity of a given 

prediction. LIME generates local explanations of model 

predictions by examining different image segments. For both 

brain and lung tumor images, it emphasizes the most 

influential parts of the image, such as tumor boundaries or 

regions of interest. This will help doctors and radiologists 

validate whether the model is focusing on the right features for 

diagnosis. The corroded regions in Figure 10 indicate areas of 

the original image that were deemed irrelevant or unimportant 

by the model when making its prediction. 

 

 
(a) Original image (b) After lime 

 

Figure10. LIME explanation for lung 

 

7.3 Saliency maps 

 

 Saliency Maps are essentially a visualization whereby 

gradients are computed to highlight strong areas of images that 

affect prediction by the models. The output of a saliency map 

is a sort of heatmap image that shows parts of the original 

image the network is considering vital. 

In Figures 11 and 12 the warmer colors (red, yellow) 

typically indicate regions that are more salient, while other 

colors indicate less important areas. In the above figures, the 

bright red and yellow areas in the saliency map likely 

correspond to the regions where the model detected the 

presence of tumors. 

 

 
 

Figure 11. Saliency map for lung 
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Figure 12. Saliency map for the brain 

 

7.4 PDP 

 

PDP illustrates shown in Figures 13 and 14, the relationship 

between specific features (or pixels) of an image and the 

predicted output. This technique helps to understand how 

variations in one or more features influence the model’s 

predictions. PDPs enable a granular inspection of what 

changes to the input image (like the intensity of a pixel) affect 

the model's choice. For brain and lung tumor detection, PDPs 

enable the demonstration of whether certain patterns in tissue 

or the tumor contribute to the model classifying it in this way. 

 

 
 

Figure 13. PDP for lung 

 

 
 

Figure 14. PDP for brain 

 

 

8. RESULT 

 

This study introduced an approach to detect brain and lung 

tumors by deep learning methods combined with XAI 

techniques for clarity and transparency to doctors and 

radiologists. The study used two different models: Sequential 

(custom model) and VGG16 (pre-trained CNN model). The 

study obtained high diagnostic accuracy Refer Table 5, with 

the sequential model outperforming VGG16 in brain tumor 

detection (96% vs. 94%) and both models showing strong 

results for lung tumor detection, with Sequential at 98% and 

VGG16 at 99%. However, the VGG16 model showed 

potential overfitting, which means that a balanced approach is 

needed to avoid this issue. 

A Graph Figure 15 comparing the Sequential and VGG16 

models' predictions for tumor classification shows that 

VGG16 (orange line) aligns more closely with the true labels 

(dashed blue line) than the sequential model (blue line), 

suggesting better performance for this task. 

Incorporating XAI techniques, such as Occlusion matrix, 

LIME, Saliency map, and PDP, added further clarity to both 

models, allowing health care professionals to comprehend the 

rationale behind the conclusions made by the models. XAI 

enhances the interpretability of the AI systems, thus making 

them more transparent and trustworthy for clinicians. Such a 

level of explainability is crucial because it allows doctors and 

radiologists to use AI tools for tumor classification confidently 

while also making decisions about patient care. 

 

 
 

Figure 15. Model comparison graph 
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Table 5 Accuracy of sequential & VGG-16 models  

(Brain & Lung) 

 
Tumor Type Sequential VGG-16 

BRAIN 96% 94% 

LUNG 98% 99% 

 

The goal of this system is to aid doctors and radiologists by 

providing an assistive second-opinion tool. With the use of 

LIME and Saliency Maps, critical regions on medical images 

(MRI & CT) are illuminated, which assists radiologists in 

confirming their diagnoses, thus minimizing the chances for 

oversights. The explanations provided visually bolster clinical 

judgment based on the analyses since they reveal portions of 

the images that have been processed and influence the model’s 

output. 

 

 

9. CONCLUSION AND FUTUREWORK 

 

This analysis demonstrates the ability of deep learning 

models, specifically the Sequential and VGG16 architectures, 

to identify brain and lung tumours with a significant level of 

accuracy. Both models were shown to be capable of 

classifying tumour types and generating relevant visual results, 

such as heatmaps and feature activation maps. Implementing 

Explainable Artificial Intelligence (XAI) methods was 

essential for enhancing transparency in how models make 

decisions, allowing clinicians to understand and rely on the 

outcomes. This research highlights the potential of AI in 

medical diagnostics and underlines the importance of 

explainability in building confidence in AI-assisted healthcare 

systems. Standard practices dictate that lighter sequential 

models, comprising fewer parameters, train and infer more 

quickly. In contrast, deeper networks such as VGG16 tend to 

exhibit higher accuracy and better generalization, albeit at the 

cost of increased computational expense. The study 

recommends building a hybrid model that integrates the 

adaptability of the sequential model with the feature extraction 

strengths of VGG16. This approach will minimize overfitting, 

enhance generalization, and broaden the system's  

application to various medical imaging tasks. The hybrid 

system will also be structured for extended use, including 

detection of tumors in other organs and handling other 

complex medical imaging challenges. Integrating XAI 

techniques with the hybrid model will ensure more precise and 

interpretable results, facilitating AI-assisted diagnoses for 

broader clinical use. As an initial step, validation was 

conducted on the model using open-access repositories. 

Testing feasibility, usability, and real-time interaction will be 

carried out within controlled environments through a web-

based interface application. Following clinical trial 

verification, adaptations can be made for integration with 

DICOM standards and PACS systems. Adopting this phased 

strategy will help align the model with clinical workflows and 

enable flexible deployment in real-world environments. 

Although we employed XAI techniques like Saliency Maps, 

we recognize the need for deeper evaluation of their 

limitations, such as noise sensitivity. Our model is not 

intended to fully automate radiological diagnostics; rather, it 

is designed to support radiologists as a secondary screening 

aid. The web-based interface is intuitive and carefully 

designed to enhance workflow without adding to the user’s 

burden. In the future, we plan to gather feedback from expert 

clinicians regarding interpretability, usability, and the model’s 

impact in real-world clinical settings. 
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