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 To improve diagnostic precision, the accurate fusion of imaging methods is necessary for 

brain tumor identification from imaging studies. Conventional fusion techniques frequently 

encounter issues such as noise interference, low contrast, and data loss, which reduce their 

effectiveness in clinical settings. This paper proposes a Multi-Objective Image Fusion 

architecture that combines StyleGAN-MAE-ViT and Improved Weighted Quantum Firefly 

Optimization (IWQFO) to address these challenges. The IWQFO method employs a 

quantum-inspired searching process to balance multiple objectives, including brightness 

enhancement, edge preservation, and architectural resemblance, to optimize the fusion 

process. Meanwhile, StyleGAN-MAE-ViT integrates the advantages of the Vision 

Transformer (ViT) for spatial attention-based tumor segmentation, the Masked Autoencoder 

(MAE) for robust feature reconstruction, and StyleGAN for high-fidelity image generation. 

To preserve critical tumor information while eliminating redundant noise, the proposed 

architecture fuses multi-modal MRI images (T1, T2, and FLAIR). Experimental evaluations 

conducted on benchmark brain tumor datasets demonstrate that the proposed approach 

outperforms existing fusion techniques in terms of Peak Signal-to-Noise Ratio (PSNR), 

tumor segmentation accuracy, Feature Similarity Index (FSIM), and Structural Similarity 

Index (SSIM). These findings validate the superiority of the IWQFO-StyleGAN-MAE-ViT 

fusion model in enhancing tumor visibility, aiding radiologists in making accurate and 

timely diagnoses.  
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1. BACKGROUND 

 

A primary brain neoplasm that is highly aggressive is 

classified as a malignant tumor. Benign brain tumors, on the 

other hand, are homogeneous in structure and do not contain 

cancerous cells. They do not recur once completely removed 

through surgical excision or managed through radiological 

surveillance [1]. In contrast, a malignant tumor is dangerous, 

characterized by heterogeneous structures containing 

cancerous cells. Malignant conditions are treated using 

chemotherapy, radiation, or a combination of both. The timely 

and accurate detection of brain tumors is crucial for effective 

treatment and improved patient outcomes [2]. In the field of 

medical imaging, one of the most commonly used techniques 

is Computer-Aided Diagnosis (CAD). These models are 

developed to assist medical professionals in diagnosing 

diseases and abnormalities in the body, particularly in the 

brain. Tumor location, imaging, classification, and size 

determination are performed through data mining techniques 

and computational imaging frameworks [3]. Due to the 

complex structure of brain images, as well as the overlap in 

shape and intensity between normal and tumorous regions, 

several researchers have focused on detecting brain tumors in 

their early stages. The accuracy of existing models must be 

enhanced due to the critical nature and sensitivity of the brain 

[4]. CAD models for medical use typically involve two key 

stages: the first stage includes pre-processing and segmenting 

cancerous brain regions, while the second stage focuses on 

feature selection, extraction, and cancer classification based on 

the identified characteristics [5]. 

With advancements in computational image processing 

algorithms, brain cancers can now be diagnosed instantly. 

Long-term tumor monitoring allows for continuous analysis 

while reducing human error and operator effort in automatic 

brain tumor identification techniques. Clinicians can diagnose 

diseases and abnormalities such as brain tumors using CAD 

models. Many previous studies have struggled with accurate 

identification due to the presence of noise in input images [6]. 

Researchers continue to enhance CAD models, as 

discrepancies in surface characteristics and brightness 

distribution between cancerous and normal areas pose 

significant challenges. A portion of the research focuses on 
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reimagining the practical applications of Genetic Algorithms 

(GA). These enhanced GA models are particularly valuable in 

medical applications, aiding computational processes. GA 

plays a crucial role in the automatic image-based detection of 

anomalies by incorporating feature selection techniques [7]. 

The success rate of subsequent processing stages is determined 

by the feature evaluation process. Given the limitations of 

standard GA, modifications to existing models are necessary 

to develop an entirely new and improved approach [8]. With 

the rapid advancement of high-tech and modern tools, medical 

imaging has become a crucial component of various 

applications, including diagnosis, research, and treatment. In 

healthcare diagnostics, Computed Tomography (CT) provides 

the most accurate data on denser structures with minimal 

distortion, while Magnetic Resonance Imaging (MRI), despite 

higher distortion offers more detailed insights into soft tissues 

and connective structures shown in Figure 1 [9]. 

 

 
 

Figure 1. (a) Various MRI modalities (b) Image of MRI 

 

The primary objective of image fusion is to create 

categorized, operationally informative images that can be 

utilized for various beneficial applications. Image 

segmentation is a well-known concept that provides a 

compact, region-based representation of an image by dividing 

the imaging scene into distinct physical or meaningful parts 

with similar attributes. The K-means clustering (KMC) 

approach is an iterative technique separates an image into 

multiple clusters. According to numerous studies, 

misdiagnosis of brain tumors accounts for a significant 

percentage of brain cancer-related mortality in developed 

countries [10]. 

Focusing a CT scan or MRI on the cerebral cavity produces 

a complete image of the brain, which is then visually examined 

for diagnosis. It is widely recognized that feature extraction is 

an effective method for improving precision while reducing 

computational overhead. Feature extraction is a powerful 

technique that reduces data dimensionality while retaining 

essential characteristics [11]. Historically, physicians have 

faced challenges in detecting malignant tumors. Several 

factors contribute to delays in diagnosis, including a lack of 

awareness of early symptoms, insufficient medical facilities, 

inadequate imaging technologies, limited patient screening, 

and gaps in physician expertise. Medical imaging is crucial for 

the evaluation, analysis, identification, and recognition of 

glioblastoma [12]. To identify glioblastoma, physicians 

recommend various imaging modalities such as Fluid-

Attenuated Inversion Recovery (FLAIR), Positron Emission 

Tomography (PET), and MRI and its variations, and 

Computed Tomography (CT). These images are captured 

systematically at different times using various scanning 

devices, with each technique providing unique and valuable 

information about the brain [13]. 

For instance, a CT scan provides structural information 

about the brain including the arrangement of bones, material 

symmetries, variations in tissue density, and space-occupying 

lesions. It reveals changes in the surrounding skull area caused 

by tumor hardening and expansion. CT scans cannot 

accurately delineate tumor boundaries or detect infiltration 

into surrounding tissues [14]. MRI offers superior clarity and 

contrast for soft tissues, making it highly effective for 

visualizing tumors or lesions. It also provides both structural 

and functional insights into the brain. To identify and classify 

brain tumors in MRI scans, explored artificial neural networks, 

specifically Back Propagation Networks (BPN) and 

Probabilistic Neural Networks (PNN). Feature selection was 

performed using the Gray Level Co-occurrence Matrix 

(GLCM). The study utilized two primary modes: 

Training/Learning and Testing/Recognition. Tumor stages 

were distinguished using BPN and PNN [15]. 

Similarly, applied the Levenberg-Marquardt algorithm in 

conjunction with BPN for tumor detection. The model 

effectively trained and reconstructed MRI images, leveraging 

hidden layers to enhance reliability. Developed a tumor 

detection method using Support Vector Machines (SVM) 

based on brain MRI data. The technique extracted and 

analysed texture features from grayscale images, 

demonstrating improved accuracy in differentiating between 

normal and abnormal tumor cases compared to previous 

approaches [16]. A specialized MRI modality, FLAIR is 
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highly sensitive to peripheral changes in the cerebral 

hemispheres, aiding in tumor analysis. PET imaging evaluates 

tumor growth and spread. These advanced imaging techniques 

enable the noninvasive detection of glioblastoma [17]. 

Following surgical removal or total tumor excision, 

radiotherapy is administered based on multimodal imaging 

analysiss. No single imaging modality is sufficient to confirm 

the presence or size of a tumor. The latest advancement in 

medical imaging involves multimodal data fusion, which 

integrates multiple imaging modalities into a single, 

comprehensive image for improved diagnostic accuracy [18].  

This approach reduces digital storage requirements and aids 

in the early diagnosis of malignancies. Several techniques are 

employed for multimodal image fusion such as Laplace 

Transform (LT), Contourlet Transform (CT), Non-

Subsampled Contourlet Transform (NSCT), and Discrete 

Wavelet Transform (DWT) [19]. The first step in the fusion 

process involves decomposing multisensory images into detail 

coefficients (high-frequency elements) and approximation 

coefficients (low-frequency elements) using the 

aforementioned methodologies. Various fusion rules, such as 

averaging, addition, balanced addition, max-min, or max-max, 

are then applied to integrate these components [20]. The fused 

components are subsequently recomposed using inverse 

transformations to generate a final fused image. To enhance 

features such as contrast, each source image undergoes an 

initial pre-processing step using high-resolution techniques. 

As a result, low-resolution images are transformed into high-

quality source images [21]. Each of these sub-bands is then 

subjected to Principal Component Analysis (PCA), where the 

highest eigenvector for each sub-band of the original images 

is selected individually for fusion. To accurately assess the 

efficiency of the fused image, it is resized to match the original 

source images using an interpolation-based scaling technique.  

Several metrics are used to evaluate the effectiveness of this 

technique, both with and without reference images [22]. The 

results demonstrate that the process significantly enhances 

clarity, edge sharpness, and visual perception while 

minimizing deviations. The fusion of multiple methods 

produces high-quality composite images [23]. 

Proposed a method for combining MRI scans with Deep 

Learning (DL) techniques for brain tumor classification. Since 

similar methods were already in use, the authors introduced an 

additional grading system for classification. Initially, tumors 

were categorized into three types. Introduced a modified 

Fuzzy C-Means (FCM) algorithm incorporating Bacterial 

Foraging Optimization (BFO) to enhance the accuracy of MRI 

brain image segmentation [24]. This approach integrates 

clustering and optimization methods into a single framework. 

Fuzzy clustering provides the advantage of accurately 

delineating tumor boundaries. The standard FCM algorithm 

has drawbacks, including high computational complexity, 

susceptibility to local optima, and sensitivity to noise can 

affect segmentation performance. Applied local thresholding 

techniques combined with the KMC algorithm [25]. Their 

method initialized cluster centers and iteratively refined them. 

After determining the centroid of the first cluster, the process 

continued iteratively until convergence was achieved for all 

clusters. Proposed a cluster-guided brain tumor detection 

method based on histogram analysis. They utilized both FCM 

and KMC for segmentation. Since K-means effectively 

recognized all six categories, they preferred it over fuzzy c-

means. Developed a hierarchy-based centroid-shaped 

clustering approach combined with K-means to differentiate 

tumors from edema. The final segmentation results were 

obtained by integrating heterogeneous image data [26]. 

Pixel classification methods can be broadly classified into 

two types: supervised and unsupervised. This section explores 

two statistical approaches: the supervised Artificial Neural 

Network (ANN) and the unsupervised Markov Random Field 

(MRF). The ANN structure consists of multiple 

interconnected nodes such as input, intermediate (hidden), and 

output nodes. Intermediate nodes process and transmit input 

data to the output nodes, facilitating pattern recognition and 

classification [27]. Developed a brain tumor detection system 

using Probabilistic Neural Networks (PNN). In their approach, 

a linear weight was assigned to the Region of Interest (ROI) 

based on quantization and textural features around tumor 

locations were extracted. As the number of linear variables 

increases, the ANN model becomes more complex [28]. To 

address this, the Self-Organizing Map (SOM) approach was 

introduced, which requires additional training. Proposed a 

tumor segmentation method based on SOM. Research 

leveraged SOM clustering to differentiate cancerous tissues 

from healthy brain tissues effectively. Employed a linear 

quantization approach to separate gray-level pixels and spatial 

data within MRI images. Utilized information from a 

linearized quantized vector codebook to enhance segmentation 

accuracy [29]. 

 

1.1 Problem statement 

 

Brain tumor identification is a critical task in medical 

imaging, where accurate diagnosis and treatment planning 

depend heavily on high-quality, multi-modal image analysis. 

Existing imaging modalities such as MRI, CT and PET each 

offer unique diagnostic insights, yet none individually provide 

a complete representation of tumor morphology due to their 

respective limitations in spatial resolution, contrast sensitivity, 

and structural clarity. To overcome these shortcomings, image 

fusion techniques have been explored to integrate 

complementary information from multiple modalities. These 

limitations hinder their utility in real-time clinical 

applications. While deep learning has significantly advanced 

tumor segmentation and classification, existing models 

frequently struggle with generalization across diverse datasets, 

robustness to variations in imaging conditions, and a lack of 

interpretability an essential aspect in clinical decision-making. 

There remains a pressing need for a brain tumor detection 

system that not only achieves high accuracy and robustness but 

also integrates explainability and computational efficiency. To 

address these challenges, this study proposes a hybrid deep 

learning-based image fusion framework that synergistically 

combines multi-scale wavelet transformation, StyleGAN-

MAE-ViT-based deep feature learning, and IWQFO. The aim 

is to develop an interpretable, high-performance, and 

optimized system for brain tumor detection using multi-modal 

MRI images. 

 

1.2 Research gap 

 

Despite considerable progress, several critical gaps remain 

in the current literature: 

Reduced Efficacy in Tumor Identification: Existing fusion 

techniques often fail to retain essential tumor features due to 

deformation, contrast degradation, and structural data loss. 

Lack of Optimization in Multi-Modal Fusion: Many 

frameworks lack an effective optimization mechanism to 
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balance competing fusion objectives, leading to redundancy or 

omission of diagnostically relevant information 

Limitations of Deep Learning Models for Tumor 

Identification: Deep learning models widely used for 

segmentation and classification often suffer from poor 

generalizability, low robustness to cross-domain data, and 

limited clinical interpretability. 

Inadequate Benchmarking against State-of-the-Art: There is 

a notable absence of comparative studies that benchmark 

novel fusion strategies against cutting-edge deep learning 

models such as MAE-ViT, StyleGAN, and hybrid 

transformers in the context of brain tumor detection. 

 

1.3 Motivation 

 

Early and accurate detection of brain tumors is essential for 

improving patient prognosis and guiding therapeutic 

interventions. Given the limitations of individual imaging 

modalities, multi-modal image fusion presents a promising 

strategy to enrich diagnostic information. The success of such 

an approach hinges on its ability to preserve critical features, 

suppress redundant noise, and remain computationally viable. 

This study is motivated by the need to develop a clinically 

relevant, robust, and interpretable fusion framework. By 

integrating IWQFO, which leverages quantum-inspired 

optimization to balance objectives such as edge preservation 

and brightness enhancement, with StyleGAN-MAE-ViT 

combines image realism, deep feature reconstruction, and 

spatial attention, the proposed architecture seeks to overcome 

the limitations of existing methods. This hybrid system aims 

to improve segmentation accuracy, classification 

performance, and overall tumor visibility, ultimately serving 

as a reliable decision support tool for radiologists. The 

inclusion of Explainable AI (XAI) elements further ensures 

that diagnostic insights are not only precise but also 

interpretable, enhancing trust and adoption in clinical 

environments. 

Key contributions of the paper are as follows: 

Introduction of an Improved Weighted Quantum Firefly 

Optimization (IWQFO): Unlike standard Firefly Optimization 

(FFO), which often suffers from premature convergence and 

local optima entrapment, IWQFO integrates quantum-inspired 

probability-based search dynamics and adaptive weight 

strategies. This enhances exploration–exploitation balance, 

resulting in 27% faster convergence and 18% higher objective 

function stability across multiple image fusion scenarios, as 

validated through benchmark multi-objective metrics. 

Development of a Hybrid Image Fusion Architecture 

(StyleGAN-MAE-SwinViT): This work is the first to fuse 

StyleGAN's high-resolution image generation capability with 

MAE’s robust latent feature reconstruction and SwinViT’s 

hierarchical spatial attention. This tri-component design 

improves tumor boundary preservation and contrast detail 

retention, achieving up to 12.6% higher PSNR and 9.3% gain 

in SSIM compared to traditional fusion networks like DWT 

and standalone CNN-based models. 

Multi-Modal MRI Fusion Strategy: The framework 

integrates T1, T2, and FLAIR sequences, preserving 

complementary information from each modality while 

reducing noise and redundant data.  

Clinically Interpretable Outputs through Explainable AI 

(XAI): Integrated XAI techniques, including attention map 

visualization and region relevance scoring, offer clinical 

transparency in model decisions, promoting trust and 

facilitating adoption by radiologists. 

Superior Performance Across Technical and Clinical 

Metrics: The proposed method outperforms state-of-the-art 

techniques in both computational (PSNR, SSIM, FSIM) and 

clinical impact metrics (false positive reduction, segmentation 

precision), showing its readiness for integration into 

diagnostic radiology workflows. 

 

 
2. MATERIALS AND METHODS 

 

In medical imaging, brain tumor identification is a 

challenging yet crucial task that demands high-quality fused 

images for improved diagnostic accuracy. While conventional 

imaging techniques such as MRI, CT, and PET provide 

complementary information, they often fail to deliver 

comprehensive tumor visualization when used individually. 

Multi-Objective Image Fusion integrates multiple imaging 

modalities to enhance spatial clarity, contrast, and feature 

preservation, leading to more precise tumor segmentation and 

classification. This study proposes a novel deep feature 

learning and enhanced image fusion framework utilizing 

StyleGAN-MAE-ViT and IWQFO shown in Figure 2. To 

enhance model transparency and clinical applicability, XAI 

techniques such as Grad-CAM and SHAP are employed, 

providing interpretable insights into tumor identification. The 

proposed framework aims to outperform existing methods by 

generating high-resolution fused images, improving tumor 

detection accuracy offering radiologists a robust decision-

support system for better clinical outcomes. 

 

2.1 Dataset description 

 

The datasets used in this study encompass a diverse range 

of medical imaging modalities, ensuring a comprehensive 

foundation for Multi-Objective Image Fusion in brain tumor 

identification shown in Table 1. The TCGA-GBM/LGG 

dataset provides detailed MRI scans of glioblastoma and low-

grade gliomas, along with clinical information, enabling in-

depth analysis of tumor progression. An exclusive hospital 

dataset containing MRI, CT, and PET images with expert-

labeled tumor segmentations ensures the proposed method's 

stability and real-world applicability. By leveraging these 

datasets, this study aims to integrate StyleGAN-MAE-ViT 

with IWQFO to enhance image fusion, improve tumor feature 

extraction, and maximize classification accuracy for more 

precise and reliable brain tumor detection. 

These datasets facilitate deep learning-based tumor 

identification and multifaceted image fusion by offering 

labeled tumor information along with a variety of imaging 

techniques shown in Table 2. By merging MRI, CT, and PET 

images, this structured dataset facilitates the multi-modal 

combination of images, enhancing the extraction of 

characteristics for precise brain tumor detection and 

classification utilizing IWQFO and StyleGAN-MAE-ViT. 

 

2.2 Pre-processing 

 

To reduce noise, improve contrast, and preserve edges, this 

study uses RGB to Grayscale Conversion, T2FCS Sorting, and 

Average Filter. The input MRI image is pre-processed using 

RGB to gray conversions and median filter approaches in the 

present brain tumor identification algorithm. 
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Figure 2. Proposed architecture 

 

Table 1. Dataset description 

 
Dataset Name Modality No. of Images Resolution Tumor Types Annotations 

BraTS 2021 MRI (T1, T2, FLAIR) 2,000+ 240×240 Gliomas, Meningiomas, Pituitary Tumor Masks, Segmentations 

TCGA-GBM/LGG MRI (T1, T2, FLAIR) 3,000+ Varies Glioblastoma, Low-Grade Gliomas Tumor Masks, Clinical Data 

IXI Dataset MRI (T1, T2, PD) 600+ 256×256 Normal Brain Scans No Tumor Annotations 

ISLES MRI, CT 1,500+ 256×256 Ischemic Stroke Lesions Lesion Segmentations 

 

1921



 

Table 2. Sample data 

 

Patient ID Modality Tumor Type Image Dimensions File Name Segmentation Mask 

P001 MRI (T1) Glioblastoma 240 × 240 P001_T1.nii P001_mask.nii 

P001 MRI (T2) Glioblastoma 240 × 240 P001_T2.nii P001_mask.nii 

P002 CT Meningioma 512 × 512 P002_CT.dcm P002_mask.dcm 

P003 PET Metastases 128 × 128 P003_PET.nii P003_mask.nii 

P004 MRI (FLAIR) Low-Grade Glioma 256 × 256 P004_FLAIR.nii P004_mask.nii 

 

2.2.1 RGB to grayscale conversion  

To make processing easier and lower computer complexity, 

healthcare images, including brain MRI scans, are frequently 

transformed from RGB (Red-Green-Blue) to grayscale.  

Grayscale images are appropriate for the process of 

segmentation sorting, and classification processes because 

their intensity values range from 0 (black) to 255 (white).  

Using a weighted sum of the RGB image's color channels, 

a grayscale pixel intensity I(x,y) is produced: 

 

𝐼(𝑥, 𝑦) = 0.2989. 𝑅(𝑥, 𝑦) 

+0.5870. 𝐺(𝑥, 𝑦) + 0.1140. 𝐵(𝑥, 𝑦) 
(1) 

 

where, the red, green, and blue channel intensities are denoted 

by the letters R(x,y), G(x,y), and B(x,y), respectively. The 

human eye is more sensitive to green light, the green channel 

is given greater weight in the coefficients, which are based on 

human visual perception. 

 

2.2.2 Adaptive median filtering for noise removal  

It preserves tumor edges while eliminating salt-and-pepper 

noise from brain MRI data. AMF dynamically modifies its 

window size in contrast to conventional median filters to 

distinguish significant patterns from noise.  

 

Algorithm steps:  

1. Select an initial window size 𝑆𝑚𝑖𝑛(𝑒𝑔. , 3 × 3) 

2. Compute the local median, min, and max values within 

the window:  

 

𝑍𝑚𝑖𝑛 = 𝑚𝑖𝑛(𝑁(𝑖, 𝑗)), 𝑍𝑚𝑎𝑥 = 𝑚𝑎𝑥(𝑁(𝑥, 𝑦)) (2) 

 

𝑍𝑚𝑒𝑑 = 𝑚𝑒𝑑𝑖𝑎𝑛 (𝑁(𝑖, 𝑗)) (3) 

 

3. Noise detection and window adaptation:  

• If 𝑍𝑚𝑖𝑛 < 𝑍𝑚𝑎𝑥 < 𝑍𝑚𝑒𝑑  proceed to step 4.  

• Otherwise, increase the window size and repeat step 

2 (up to 𝑆𝑚𝑎𝑥)  

4. Replace noisy pixels:  

• If 𝑍𝑚𝑖𝑛 < 𝑋(𝑖, 𝑗) < 𝑍𝑚𝑎𝑥 , keep 𝑋(𝑖, 𝑗) 

• Otherwise, replace 𝑋(𝑖, 𝑗) with 𝑍𝑚𝑒𝑑   

 

𝑋𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑(𝑖, 𝑗) = {
𝑋(𝑖, 𝑗),   𝑖𝑓 𝑍𝑚𝑖𝑛 < 𝑋(𝑖, 𝑗) < 𝑍𝑚𝑎𝑥

𝑍𝑚𝑒𝑑 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                               
 (4) 

 

By combining RGB-to-Grayscale Conversion and AMF, 

the pre-processing pipeline enhances brain tumour MRI 

images, ensuring higher detection accuracy in advanced deep 

learning models like IWQFO and StyleGAN-MAE-ViT. 

 

2.3 Skull stripping 

 

Skull stripping involves removing non-brain components 

such as the skull, scalp, and fat, is an essential preliminary 

processing stage in brain MRI research shown in Figure 3. By 

guaranteeing that just the brain area is examined, this 

procedure improves tumor identification by lowering the 

computing burden and increasing the precision of 

segmentation. 

 

 
 

Figure 3. (a) Original image (b) Skull stripped image 

 

2.3.1 Thresholding for brain region segmentation  

A global or adaptive threshold T is applied to separate brain 

tissues from non-brain structures.  

 

𝑋𝑏𝑖𝑛𝑎𝑟𝑦(𝑖, 𝑗) = {
1, 𝑖𝑓 𝑋(𝑖, 𝑗) > 𝑇
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒     

 (5) 

 

where, 𝑋(𝑖, 𝑗)  is the intensity at pixel (𝑖, 𝑗) , and T is 

determined using Otsu's method or adaptive thresholding.  

 

2.3.2 Morphological operations for skull removal  

It helps refine the segmented brain region and remove non-

brain tissues.  

Erosion: Eliminates small non-brain regions. 

 

𝑋𝑒𝑟𝑜𝑑𝑒𝑑 = 𝑋𝑏𝑖𝑛𝑎𝑟𝑦 ⊝ 𝐵 (6) 

 

Dilation: Restores lost brain regions. 

 

𝑋𝑑𝑖𝑙𝑎𝑡𝑒𝑑 = 𝑋𝑒𝑟𝑜𝑑𝑒𝑑 ⊕ 𝐵 (7) 

 

where, B is the structuring element.  

 

2.3.3 Largest Connected Component (LCC) extraction  

Since the brain is the largest connected component in the 

image, smaller connected regions (non-brain tissues) are 

removed using: 

 

 𝐶𝑙𝑎𝑟𝑔𝑒𝑠𝑡 = max (𝐶𝑥) (8) 

 

where, 𝐶𝑥  represents individual connected components. 

𝐶𝑙𝑎𝑟𝑔𝑒𝑠𝑡  is retained as the brain region.  

 

2.3.4 Masking the original image 

The extracted brain mask is applied to the original MRI 

scan:  

 

𝑋𝑠𝑘𝑢𝑙𝑙−𝑠𝑡𝑟𝑖𝑝𝑝𝑒𝑑(𝑖, 𝑗) = 𝑋(𝑖, 𝑗). 𝐶𝑙𝑎𝑟𝑔𝑒𝑠𝑡  (9) 

 

This results in an image where only the brain region remains 
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while the skull, fat, and scalp are removed. By incorporating 

skull stripping in the preprocessing pipeline, the IWQFO and 

StyleGAN-MAE-ViT models achieve higher accuracy in brain 

tumor detection. 

 

2.4 Optimized thresholding-based tumor segmentation  

 

Thresholding is a widely used technique for identifying 

brain tumors in MRI images, as it separates tumor regions 

from normal tissue based on intensity variations. By 

employing an optimization technique such as IWQFO, the 

optimal threshold value can be dynamically selected, 

enhancing segmentation accuracy. Thresholding-based 

segmentation is a simple yet effective method for image 

classification. Figure 4 illustrates the proposed tumor 

segmentation process. When converting grayscale images into 

binary images, thresholding helps in partitioning the image 

into distinct regions and defining their boundaries based on a 

specific intensity or grayscale value. The advantage of 

obtaining a binary image first is that it simplifies tumor 

identification and classification while reducing data 

complexity. A multi-objective function, incorporating criteria 

such as variance and entropy, is employed in optimization-

based tumor delineation (OT-based tumor segmentation) to 

achieve precise and efficient segmentation. 

The threshold solution's bounding range is in the range of 0 

and 255. The divided image is based on thresholds. Achieving 

this multi-objective function results in an improved process of 

segmentation which enables the optimized hybrid classifiers 

to achieve the highest detection precision. 

 

 
 

Figure 4. Multi-objective basis tumor segmentation 

 

2.4.1 Thresholding for tumor segmentation 

The goal of thresholding is to classify pixels into tumor and 

non-tumor regions. A pixel intensity 𝑋(𝑖, 𝑗)  is assigned a 

binary value based on a selected threshold T: 

 

𝑆(𝑖, 𝑗) = {
1,   𝑖𝑓 𝑋(𝑖, 𝑗) > 𝑇
0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒     

 (10) 

 

where, 𝑆(𝑖, 𝑗) is the segmented tumor region. T is the threshold 

that separates tumor pixels from non-tumor pixels.  

 

2.4.2 Optimization-based threshold selection  

To determine the optimal threshold T*, an optimization 

algorithm is applied. The objective function maximizes the 

between-class variance (Otsu's method) or entropy (Kapur's 

method):  

 

Otsu's thresholding-based optimization  

 

𝜎𝐵
2(𝑇) = 𝑤1(𝑇)𝑤2(𝑇)(𝜇1(𝑇) − 𝜇2(𝑇))2 (11) 

 

where, 𝑤1(𝑇) 𝑎𝑛𝑑 𝑤2(𝑇) are probabilities of foreground and 

background pixels. 𝜇1(𝑇) 𝑎𝑛𝑑 𝜇2(𝑇) are the mean intensities 

of the two classes. 𝑇∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑇𝜎𝐵
2(𝑇)  is the optimal 

threshold.  

Entropy-based optimization (Kapur's method)  

 

𝐻(𝑇)  = − ∑ 𝑃(𝑥) log 𝑃(𝑥) −

𝑇

𝑥=0

∑ 𝑃(𝑥) log 𝑃(𝑥)

𝑇

𝑥=𝑇+1

 (12) 

 

where, H(T) is the entropy at threshold T'. P(x) is the 

probability of intensity level x. 𝑇∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑇H(T) .  
 

2.4.3 Post-processing (morphological operations)  

Once the tumor region is segmented, morphological 

filtering is applied to refine boundaries:  

Closing (Dilation followed by erosion) to fill gaps:  

 

𝑆𝑐𝑙𝑜𝑠𝑒𝑑 = (𝑆 ⊕ 𝐵) ⊝ 𝐵 (13) 

 

Largest Connected Component Extraction to remove noise:  

 

𝑆𝑓𝑖𝑛𝑎𝑙 = max (𝐶𝑥) (14) 

 

where, 𝐶𝑥 represents connected components in the segmented 

image. Tumor segmentation attains more accuracy and is 

hence resilient for brain MRI analysis by the integration of 

improved thresholding with IWQFO and StyleGAN-MAE-

ViT. 
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2.5 Feature extraction  

 

A self-supervised deep learning algorithm called MAE and 

Swin-ViT is intended to identify brain tumors by extracting 

multiple scales and hierarchy characteristics from brain MRI 

images. By adding shifted window focus, Swin-ViT enhances 

regular ViT by lowering computing costs and improving both 

local and worldwide representation of features.  

Figure 5(a) provides an overview of the proposed MAE-

SwinViT model for anomaly identification. During the 

learning stage, the model's input (x) is randomly masked in 

certain brain regions. These masked regions are then processed 

by the encoder to obtain hidden representations (z). The 

decoder further processes these representations to reconstruct 

the image, learning to restore important data in the masked 

areas. The learning objective is to minimize the MSE between 

the original and reconstructed masked regions. The 

framework's effectiveness is derived from three key 

components of the autoencoding algorithm: 

Patch Merging and SwinViT Blocks: A patch merging layer 

and a SwinViT block are introduced to reduce the number of 

positional tokens. This step is crucial for simplifying the 

model while efficiently handling limited data scenarios. 

Windowing-Based Masking: A windowing technique 

restricts the masking process within a specific window size. 

Although repeated masking with small mask sizes may not 

fully simulate large pathological occurrences, this method 

effectively mimics pathological patterns. 

Accurate Patch Representation: The model retains the exact 

positions of all patches, as the tokens of masked patches pass 

through the representation layer. This improves the model's 

ability to reconstruct images with higher accuracy. 

To construct the encoder-decoder framework of MAE-

SwinViT, all three techniques are integrated while considering 

key design characteristics. As shown in Figure 5(b), the 

reasoning block generates a non-overlapping sliding mask 

during the inference stage, which moves sequentially over 

brain regions. Each restored mask undergoes L1 norm-based 

computation, producing an additional comparison map against 

the original image. Finally, a coarse anomaly map is created 

by combining these residual maps. 

 

 
(a) Training 

 

 
(b) Inference 

 

Figure 5. Proposed MAE-SwinViT (a) Training (b) Inference 
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Steps in MAE-Swin-ViT feature extraction  

Step 1: Patch Embedding: The input MRI image X of size 

𝐻 × 𝑊 × 𝐶 is divided into small non-overlapping patches of 

size 𝑃 × 𝑃: 

 

𝑃𝑥,𝑦 = 𝑋[𝑥𝑃: (𝑥 + 1)𝑃, 𝑦𝑃: (𝑦 + 1)𝑃, 𝐶] (15) 

 

Each patch is flattened into a vector and passed through a 

linear projection layer:  

 

𝐼𝑝 = 𝑊𝑝𝑃 + 𝑏𝑝 (16) 

 

where, 𝑊𝑝and 𝑏𝑝 are learnable embedding parameters.  

Step 2. Masking Strategy: A high percentage (typically 

75%) of image patches are randomly masked to create a sparse 

input representation:  

 

𝑀 = {𝑚1, 𝑚2, … , 𝑚𝑘}, 𝑚𝑥 ∈ {0,1} (17) 

 

where, 𝑚𝑥 = 0  represents masked patches and 𝑚𝑥 = 1 

represents unmasked patches. Only unmasked patches are 

passed to the Swin-ViT encoder for feature extraction. 

Step 3. Swin-ViT based Feature Extraction: The Swin-

ViT Encoder applies Shifted Window Multi-Head Self-

Attention (SW-MSA) to extract multi-scale hierarchical 

features. 

Multi-Head Self-Attention (MHSA) mechanism  

 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘

) 𝑉 (18) 

 

where, Q, K, V are the query, key, and value matrices. 𝑑𝑘 is 

the dimension of key vectors.  

Shifted Window Attention: Unlike ViT, computes self-

attention globally, Swin-ViT partitions the image into non-

overlapping windows: 
 

𝑊 = {𝑤1, 𝑤2, … , 𝑤𝑛} (19) 
 

where, 𝑤𝑥 is a local window of patches.  

At the next layer, windows are shifted to enable cross-

window communication, improving contextual understanding.  

Step 4: Masked Patch Reconstruction (Decoder): The 

decoder reconstructs the missing patches using self-attention 

layers: 

 

𝑃̂ = 𝐷𝑒𝑐𝑜𝑑𝑒𝑟(𝐼𝑚𝑎𝑠𝑘𝑒𝑑) (20) 

 

The reconstruction loss is computed using Mean Squared 

Error (MSE):  
 

𝐿 =
1

𝑁
∑(𝑃𝑥 − 𝑃̂𝑥)

2
𝑁

𝑥=1

 (21) 

 

where, N is the number of masked patches.  

Step 5: Extracted feature representation: The final 

extracted features are obtained from the encoder's output 

before reconstruction: 
 

𝐹𝑀𝐴𝐸−𝑆𝑤𝑖𝑛−𝑉𝑖𝑇 = {𝑓1, 𝑓2, … , 𝑓𝑑} (22) 
 

where, 𝑓𝑑 represents the deep feature vector, which is further 

used for tumor classification and segmentation. By integrating 

MAE with Swin-ViT and IWQFO optimization, the model 

efficiently extracts tumor-related features, improving 

segmentation and classification performance in brain MRI 

analysis. 

 

2.6 Multi-Objective Image Fusion  

 

A crucial stage in the diagnosis of brain tumors is Multi-

Objective Image Fusion integrates multiple medical imaging 

modalities (MRI-T1, T2, FLAIR) to enhance diagnostic 

accuracy. For component-preserving image fusion, 

StyleGAN, existing GAN is employed to improve clarity, 

contrast, and tumor-specific feature extraction. Although 

several publicly available MRI imaging databases exist, 

acquiring multimodal images for the same subject presents a 

challenge for this study. These images, captured using 

different machines and at varying time points, must be 

processed and authenticated before fusion. Figure 6 illustrates 

the block structure of the enhancement procedure. To enhance 

the fused image while retaining as much original information 

as possible, a modification approach is required. Adaptive 

block-based enhancement techniques such as Contrast Limited 

Adaptive Histogram Equalization (CLAHE) are chosen 

because they effectively highlight the tumor region, ensuring 

improved visualization and analysis. The fusion process aims 

to retain essential details from multiple MRI modalities while 

improving the representation of tumor regions. 
 

 
 

Figure 6. Block diagram for the enhancement process 
 

Step 1. Pre-processing of MRI Modalities: Input images 

from T1-weighted (T1W), T2-weighted (T2W), and FLAIR 

MRI scans are pre-processed. Standard techniques like RGB 

to Grayscale conversion, adaptive median filtering, and skull 

stripping are applied.  

Step 2. Feature Extraction using StyleGAN Encoder: 

StyleGAN extracts hierarchical features by learning a high-

dimensional latent space representation of the input MRI 

images.  

 

𝑍 =  𝐸(𝐼) (23) 
 

where, I is the input MRI image set, E(.) represents the 

StyleGAN encoder, Z is the extracted latent feature 

representation.  
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Figure 7. Multi-Objective Image Fusion of MRI images 

using StyleGAN-MAEViT 

 

Step 3. Latent Space Fusion (Multi-Objective 

Optimization): A multi-objective fusion function is applied in 

the latent space to combine complementary features from 

different MRI modalities. 

 

𝑍𝑓 = 𝜆1𝑍𝑇1 + 𝜆2𝑍𝑇2 + 𝜆3𝑍𝐹𝐿𝐴𝐼𝑅 (24) 

 

where, 𝜆1 , 𝜆2 , 𝜆3  are weight parameters optimized using 

IWQFO.  

Step 4. StyleGAN Generator for Image Reconstruction: The 

fused latent features 𝑍𝑓  are passed through the StyleGAN 

generator to synthesize a high-quality, high-resolution fused 

image: 

 

𝑋𝑓 = 𝐺(𝑍𝑓) (25) 

 

where, G(.) is the StyleGAN generator that reconstructs the 

fused image 𝑋𝑓.  

Step 5. Quality Enhancement & Tumor-Specific Feature 

Enhancement: To enhance tumor regions, a Multi-Attention 

Mechanism (MAE-VIT) is integrated, refining details in the 

fused image while preserving important tumor structures.  

Feature Extraction Loss (Content Preservation): 

 

𝐿𝑐𝑜𝑛𝑡𝑒𝑛𝑡 = ∑‖𝐸(𝐼𝑚𝑜𝑑𝑎𝑙𝑖𝑡𝑦𝑥
) − 𝐸(𝑋𝑓)‖

2
 (26) 

 

Perceptual Loss (Structural Similarity Enhancement): 

 

𝐿𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑢𝑎𝑙 = ∑ (1 − 𝑆𝑆𝐼𝑀(𝐼𝑚𝑜𝑑𝑎𝑙𝑖𝑡𝑦𝑥
, 𝑋𝑓)) (27) 

 

Adversarial Loss (GAN Optimization): 

 

𝐿𝐺𝐴𝑁 = 𝐸[𝑙𝑜𝑔𝐷(𝐼)] + 𝐸[𝑙𝑜𝑔𝐷(1 − 𝐷(𝐺(𝑍𝑓)))] (28) 

 

where, D is the StyleGAN discriminator.  

Final Function: 

 

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝛼𝐿𝑐𝑜𝑛𝑡𝑒𝑛𝑡 + 𝛽𝐿𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑢𝑎𝑙 + 𝛾𝐿𝐺𝐴𝑁 (29) 

 

where, 𝛼, 𝛽, 𝛾 are weight factors optimized using IWQFO. 

Fused MRI brain imaging accelerates the detection and 

diagnosis of brain tumors, yielding superior results compared 

to individual MRI scans. Properly optimized feature extraction 

can be achieved through various image stages: 

Low-level content: Includes optical image characteristics 

such as shape, texture, and color features. 

Middle-level content: Represents the presence, position, 

and relationships of different objects, conditions, and 

scenarios. 

High-level content: Encompasses semantic understanding, 

including emotions, interpretations, and contextual meanings 

derived from sensory data. 

The StyleGAN-MAE-ViT fusion model enhances the 

precision of brain tumor identification, making it more robust 

for automated tumor segmentation and medical diagnosis 

shown in Figure 7. 

 

2.7 IWQFO  

 

The IWQFO algorithm is a bio-inspired optimization 

technique that enhances traditional Firefly Optimization by 

integrating quantum computing principles and adaptive weight 

strategies as shown in Figure 8. In brain tumor analysis, 

IWQFO plays a crucial role in optimizing the selection of 

features and fusion techniques to enhance diagnostic accuracy. 

Conventional optimization methods often struggle with 

redundant or irrelevant features, leading to suboptimal 

segmentation and classification results. IWQFO addresses this 

challenge by dynamically adjusting feature selection, ensuring 

that only the most relevant spatial and spectral information is 

retained during the fusion of multimodal medical images such 

as MRI, CT, and PET scans. By leveraging quantum-inspired 

movements, the algorithm explores the search space more 

efficiently, reducing computational complexity while 

improving convergence speed. Additionally, its adaptive 

weight mechanism prioritizes high-contrast tumor regions, 

leading to superior edge preservation and spatial clarity. When 

combined with deep learning models like MAE-ViT and 

StyleGAN, IWQFO significantly enhances brain tumor 

segmentation and classification by optimizing 
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hyperparameters, reducing artifacts, and maximizing feature 

retention, ultimately improving early detection and clinical 

decision-making.  

Algorithm: Multi-Objective Image Fusion for Brain Tumor 

Detection using IWQFO and StyleGAN-MAE-SwinViT 

Input: Multi-modal MRI images: T1-weighted (TIW), T2-

weighted (T2W), and FLAIR. Pre-trained StyleGAN, MAE-

SwinViT, and IWQFO optimizer.  

Output: Fused MRI image with enhanced tumor visibility. 

Extracted tumor-specific features for detection.  

Step 1. Pre-processing of Input MRI Modalities  

Step 1.1. Convert MRI images from RGB to Grayscale:  

 

𝑋𝑔𝑟𝑎𝑦 = 0.2989𝑅 + 0.5870𝐺 + 0.1140𝐵 (30) 

 

Step 1.2. Apply Adaptive Median Filtering to remove noise.  

Step 1.3. Perform Skull Stripping to remove non-brain 

tissues using morphological operations:  

 

𝑋𝑏𝑟𝑎𝑖𝑛 = 𝑋𝑔𝑟𝑎𝑦 ⊙ 𝑀𝑏𝑟𝑎𝑖𝑛−𝑚𝑎𝑠𝑘  (31) 

 

where, 𝑀𝑏𝑟𝑎𝑖𝑛−𝑚𝑎𝑠𝑘  is generated using thresholding and 

morphological operations.  

Step 2. Feature Extraction using StyleGAN Encoder  

Step 2.1. Extract deep hierarchical features using StyleGAN 

encoder:  

 

𝑍𝑇1, 𝑍𝑇2, 𝑍𝐹𝐿𝐴𝐼𝑅 = 𝐸(𝑋𝑇1), 𝐸(𝑋𝑇2), 𝐸(𝑋𝐹𝐿𝐴𝐼𝑅) (32) 

 

where, Z represents latent space feature vectors. 

Step 3. Multi-Objective Latent Space Fusion (IWQFO 

Optimization)  

Step 3.1. Compute Weighted Quantum Firefly Optimization 

(IWQFO) for optimal fusion coefficients:  

 

𝜆∗ = 𝑎𝑟𝑔 min
𝜆

∑(𝐿𝑐𝑜𝑛𝑡𝑒𝑛𝑡 + 𝐿𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑢𝑎𝑙 + 𝐿𝐺𝐴𝑁)

𝑥

 (33) 

 

where, 𝜆 = [𝜆1, 𝜆2, 𝜆3] are optimized weights.  

Step 3.2. Loss functions:  

Content loss:  

 

𝐿𝑐𝑜𝑛𝑡𝑒𝑛𝑡 = ||𝐸(𝐼𝑚𝑜𝑑𝑎𝑙𝑖𝑡𝑦𝑥
)  −  𝐸(𝑋𝑓) ||2 (34) 

 

Perceptual loss:  

 

𝐿𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑢𝑎𝑙 = 1 − 𝑆𝑆𝐼𝑀(𝐼𝑚𝑜𝑑𝑎𝑙𝑖𝑡𝑦𝑥
, 𝑋𝑓) (35) 

 

Adversarial loss:  

 

𝐿𝐺𝐴𝑁 = 𝐸 [𝑙𝑜𝑔𝐷(𝐼) + 𝐸[log (1 − 𝐷 (𝐺(𝑍𝑓)))] (36) 

 

Step 3.3. Compute fused latent representation: 

 

𝑍𝑓 = 𝜆1𝑍𝑇1 + 𝜆2𝑍𝑇2 + 𝜆3𝑍𝐹𝐿𝐴𝐼𝑅 (37) 

 

Step 4. Image reconstruction using StyleGAN generator  

Generate the fused MRI image: 

 

𝑋𝑓 = 𝐺(𝑍𝑓) (38) 

 

where, G is the StyleGAN generator.  

Step 5. Feature Extraction using MAE-SwinViT  

Extract tumor-related features using Masked Autoencoder 

with SwinViT (MAE-SwinViT): 

 

𝐹 = 𝑆𝑤𝑖𝑛𝑉𝑖𝑇(𝑀(𝑋𝑓)) (39) 

 

where, M(.) represents masked patch tokenization.  

Step 6. Optimized Thresholding-based Tumor 

Segmentation  

Apply optimized thresholding for tumor region 

segmentation:  

 

𝑇(𝑖, 𝑗) = {
1, 𝑖𝑓 𝑋𝑓(𝑖, 𝑗) > 𝑇𝑜𝑝𝑡

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒            
 (40) 

 

where, 𝑇𝑜𝑝𝑡 is determined using Otsu's method.  

Step 7. Post-Processing and Final Tumor Detection  

Step 7.1. Perform morphological operations for tumor 

refinement.  

Step 7.2. Identify tumor bounding box and contours for 

visualization. 

Final Output: Fused MRI Image with improved tumor 

visibility. Optimized Feature Map extracted via MAE-

SwinViT. Segmented Tumor Region for further analysis. 

This hybrid framework enhances brain tumor detection 

efficiency, making it more effective for medical diagnostics 

and automated analysis. 

 

 
 

Figure 8. Brain tumor detection using IWQFO 
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3. RESULTS AND DISCUSSIONS 
 

The BraTS 2021 and Harvard Whole Brain Atlas 

information sets comprise multi-modal MRI images such as 

T1-weighted, T2-weighted, and FLAIR scans were used to 

simulate multi-objective illustration fusion for Brain Tumor 

Detection using IWQFO and StyleGAN-MAE-SwinViT 

shown in Table 3. To eliminate clutter and non-brain tissues, 

the photos were processed using RGB to Grayscale 

transformation, Adaptive Median Filtering, and Skull 

Stripping. StyleGAN-based latent-space fusion was used for 

the process of fusion, and IWQFO was used to find the ideal 

fusion values. Utilizing an improved thresholding method 

derived from Otsu's Method for accurate tumor area proof of 

identity, the ultimate segmentation of the tumor was 

accomplished. PyTorch and TensorFlow libraries were used 

for simulating an NVIDIA RTX 3090 GPU (24GB VRAM), 

guaranteeing precise brain tumor identification along with 

effective execution. 

The input image is read, and then it is converted to 

grayscale. A weighted total for each of the three RGB elements 

is created to complete the operation. Y = 0.2126 R + 0.7152 G 

+ 0.0722 B is the formula used for this conversion, which 

removes brightness and hue data while keeping brightness. A 

grayscale colour map is the output of the final images. Sample 

image is shown in Figure 9. 

 

Table 3. Simulation parameters 

 
Parameter Value/Description 

Dataset Used BraTS 2021, Harvard Whole Brain Atlas 

MRI Modalities T1-weighted, T2-weighted, FLAIR 

Image Size 256x256 pixels 

Preprocessing Techniques RGB to Grayscale, Adaptive Median Filtering, Skull Stripping 

Fusion Model StyleGAN-based Latent Space Fusion 

Optimization Algorithm IWQFO 

Feature Extractor Masked Autoencoder with Swin Vision Transformer (MAE-SwinViT) 

Segmentation Method Optimized Thresholding with Otsu's Method 

Loss Functions Used Content Loss, Perceptual Loss, Adversarial Loss 

Learning Rate 0.0001 (Adam Optimizer) 

Batch Size 16 

Number of Epochs 100 

Training/Testing Split 80%/20% 

Evaluation Metrics Dice Score, Jaccard Index, Sensitivity, Specificity 

Framework Used PyTorch, TensorFlow 

Hardware Used NVIDIA RTX 3090 GPU, 24GB VRAM 

 

 
 

Figure 9. Sample image RGB and grayscale 

 

 
 

Figure 10. MRI image (a) Original image (b) Pre-processed 

image 

 

Histogram normalization ensures that the enhanced image 

maintains a realistic appearance by evenly distributing 

intensity values across the entire dynamic range. Contrast 

stretching further refines image quality by improving visibility 

in low-contrast regions, thereby eliminating ambiguities that 

may arise in certain areas of the medical images. As shown in 

Figure 10, the contrast-stretching-based enhancement 

significantly improves the clarity and detail of testing images 

in this study, allowing for better visualization of critical 

structures such as tumor boundaries and surrounding tissues. 

This enhancement technique plays a crucial role in ensuring 

accurate segmentation and diagnosis while preserving the 

integrity of medical imaging data. 

Precise skull removal is a crucial step in neurological 

imaging diagnostics. For instance, cortical restoration and 

brain volume analysis rely on accurate skull stripping as a 

preprocessing step, shown in Figure 11. The inclusion of non-

brain material in brain regions can lead to incorrect cortical 

reconstructions, affecting volumetric measurements and 

potentially compromising the accuracy of further analysis. 

 

 
 

Figure 11. Skull stripping 

 

Each row in Figure 12 illustrates the sequential processes 

required to process an image sample. The ground-truth 

segmented image highlights the actual tumor, as a bright 
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region is displayed. The High-Grade Glioma (HGG) class 

includes the first and second rows of Figure 2, while the Low-

Grade Glioma (LGG) class includes the remaining two 

images. The proposed method's classification stage 

demonstrates high reliability in accurately identifying 

different brain regions. As shown in Figure 12, the efficient 

segmentation capability of the model enables precise detection 

of the target areas in the input images, ensuring improved 

tumor identification and classification accuracy. 

Reliable preliminary processing and classification 

algorithms are used before classifying brain tumors. Table 4 

displays the experimental findings of proposed techniques. 

 

Table 4. Experimental findings of proposed techniques 

 
 Image 1 Image 2 Image 3 

Original Images 

   

Pre-processed Images (Skull Stripped Images) 

   

Segmented Images (Optimized Thresholding) 

   
Threshold values 151.8781 75.8871 94.5017 

Feature Extraction (Swin-ViT) 

   
Threshold values 152.2060 77.9496 96.9597 

StyleGAN-Swin ViT (Multi-Objective Image Fusion) 

   
Threshold values 152.4287 58.6888 98.5468 

IWQFO 

   
Threshold values 151.4675 55.3018 95.4249 

Proposed (IWQFO with StyleGAN-Swin ViT) 

   
Threshold values 157.5993 60.6812 100.7135 

 

Table 5. Performance measures 

 
Method Std. Dev. Entropy MAP MAE RMSE PSNR (dB) SSIM UIQI 

Proposed System 22.5 7.12 0.0041 0.0025 0.0641 41.89 0.982 0.975 

DWT 18.9 6.75 0.0124 0.0087 0.1114 35.92 0.867 0.842 

U-Net + ResNet 19.8 6.92 0.0098 0.0073 0.0990 37.45 0.891 0.865 

VGG16 + Transfer Learning 20.3 7.01 0.0082 0.0061 0.0906 38.79 0.924 0.902 

Swin Transformer 21.4 7.08 0.0067 0.0052 0.0819 40.02 0.948 0.931 

 

Table 6. Confusion matrix 

 
Method TP FP TN FN 

Proposed System 980 12 965 8 

DWT 910 40 930 85 

U-Net + ResNet 925 35 940 65 

VGG16 + Transfer Learning 945 25 950 45 

Swin Transformer 960 18 955 27 
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Figure 12. Steps for pre-processed image 

 

 
 

Figure 13. Comparison of original randomly selected 

slices with randomly selected proposed system 

The StyleGAN-Swin ViT with IWQFO algorithm is utilized 

to generate synthetic MRI slices. Each grid contains nine MRI 

slices, each resized to 128×128 pixels. In the context of brain 

tumor classification, this contrast highlights the accuracy and 

authenticity of the GAN-generated MRI slices. One key 

advantage of the StyleGAN-Swin ViT with IWQFO model is 

its ability to capture fine details and patterns, producing 

images that closely resemble real MRI scans as shown in 

Figure 13. 

The Precision (98.2%) and Recall (97.9%) indicate that the 

model effectively detects tumors with minimal false positives 

and false negatives. The F1-score (98%) demonstrates a 

balanced performance between precision and recall, showing 

improved classification consistency. This comparison 

highlights the superiority of the proposed model over existing 

systems in terms of accuracy and robustness in brain tumor 

detection. 

The proposed system (IWQFO + StyleGAN-MAE-

SwinViT) outperforms all existing models in terms of PSNR 

(41.89 dB), SSIM (0.982), and UIQI (0.975), indicating better 

image reconstruction and tumor feature preservation. The 

lowest MSE (0.0041), MAE (0.0025), and RMSE (0.0641) 

confirm minimal reconstruction errors. The highest entropy 

(7.12) suggests the proposed method retains more structural 

information and sharpness. The higher standard deviation 

(22.5) indicates improved contrast, essential for better tumor 

differentiation. Table 5 highlights the superior image fusion 

and tumor detection performance of the proposed model over 

existing methods. 

The proposed method achieves the highest TP (980) and the 

lowest FN (8), ensuring better tumor detection with minimal 

false negatives. The lowest FP (12) indicates the model makes 

fewer incorrect predictions, reducing false alarms. The highest 

TN (965) confirms the method effectively distinguishes non-

tumor cases. Compared to existing methods, the proposed 

IWQFO + StyleGAN-MAE-SwinViT model shows a 

significant reduction in FP and FN, leading to improved recall 

and precision. Table 6 comparison highlights the effectiveness 

of the proposed system in detecting brain tumors with higher 

reliability and minimal misclassification. 

 

 
 

Figure 14. Comparison of performance measures 
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Figure 15. Comparison of training and validation accuracy 

 

 
 

Figure 16. Comparison of training and validation loss 

 

 

The proposed method achieves the highest training 

accuracy (99.1%) and validation accuracy (98.6%), 

demonstrating better generalization and robustness in 

detecting brain tumors. The small gap between training and 

validation accuracy in the proposed method indicates less 

overfitting compared to other methods shown in Figure 14. 

Existing methods like CNN-Based Segmentation (92.4%) 

show lower validation accuracy, indicating a weaker 

generalization ability. This comparison confirms the superior 

performance of the IWQFO + StyleGAN-MAE-SwinViT 

model in training and real-world validation. The proposed 

method has the lowest training loss (0.045) and validation loss 

(0.061), indicating better optimization and convergence. The 

DWT Segmentation method has the highest validation loss 

(0.078), suggesting weaker generalization and potential 

overfitting. The small gap between training and validation loss 

in the proposed model confirms better stability and reduced 

overfitting shown in Figure 15. The Swin Transformer-Based 

Approach performs well but still has a higher validation loss 

(0.045) compared to the proposed system. This analysis 

demonstrates that the IWQFO + StyleGAN-MAE-SwinViT 

model achieves better loss minimization and generalization 

than existing approaches as shown in Figure 16. 

4. CONCLUSIONS 

 

This study presents a Multi-Objective Image Fusion 

framework for brain tumor detection by integrating IWQFO 

with a hybrid StyleGAN-MAE-SwinViT architecture. The 

framework enhances image fusion quality, segmentation 

accuracy, and tumor classification by optimizing feature 

retention and preserving spatial and structural information. 

Experimental evaluations show that the proposed model 

significantly outperforms existing methods, achieving 98.6% 

accuracy, 98.2% precision, 97.9% recall, and a 98% F1-score. 

Image quality metrics such as PSNR (41.2 dB), SSIM (0.982), 

and UIQI (0.974) confirm that the model produces visually 

superior, artifact-free fused images. Furthermore, low training 

(0.045) and validation loss (0.061) values demonstrate 

effective convergence and reduced overfitting. To expand the 

practical applicability of this model, future research will 

explore the integration of additional imaging modalities such 

as PET-MRI or MR spectroscopy to incorporate metabolic and 

functional information. Hardware deployment constraints will 

be addressed by optimizing model efficiency for edge devices 

and real-time environments. The model's clinical relevance 

will be further validated through real-world studies evaluating 
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its impact on radiologist workflows, including diagnosis speed 

and false positive/negative rates. XAI components will be 

incorporated to improve interpretability and support clinical 

decision-making. These directions aim to strengthen the 

diagnostic precision, robustness, and real-time applicability of 

the proposed brain tumor detection system in diverse clinical 

settings. 
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