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Perilous and difficult-to-detect lung cancer poses a significant health threat.  Because of the 

gender-neutral lethality, it is especially important to check for nodules as soon as possible. 

This has led to the development of a number of strategies for identifying lung cancer in its 

earliest stages. Lung image analysis and segmentation are among the first steps taken in the 

war against cancer. Manually segmenting medical images is a time-consuming challenge for 

radiation oncologists. Accurate segmentation of lung Magnetic Resonance Imaging (MRI) 

and feature extraction and selection models for lung tumor identification are presented in 

this research. In recent years, numerous methods have been developed for diagnosing lung 

cancer, with the vast majority relying on MRI scan images. This study provides further 

evidence supporting the higher diagnostic accuracy of MRI scan images. Consequently, 

cancer diagnosis based on MRI scans predominates. To determine if the tumor on the lung 

is benign or malignant, many statistical and textural features are retrieved from the 

segmented image. There is a symmetric expanding path that recovers the required 

information and a contracting path that extracts high-level data. This research proposes a 

Linked Pixel Edge Segmentation with Least Correlated Weight Factor (LPES-LCWF) using 

machine learning for Lung Tumor Detection. When compared to other models, the findings 

show that the suggested model does a better job of segmentation and generating feature 

vectors. 
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1. INTRODUCTION

The worldwide death toll from cancer is rising at an 

alarming rate. According to the most up-to-date estimates from 

Global Cancer Statistics, 20.1 million new cases of cancer will 

be identified in humans by 2025. In 2020, cancer was 

responsible for the deaths of 9.96 million people. Lung cancer 

segmentation has been the subject of extensive research, 

making it a major field of inquiry [1]. Surgical restraint, 

radiation, chemotherapy, thermotherapy, and immunotherapy 

are only a few of the numerous options for managing 

cancerous tumors and improving patients' quality of life [2]. 

Among cancers, 12.5% are lung cancers, making it the second 

most prevalent. Furthermore, about 22% of all cancer-related 

fatalities worldwide are attributed to it [3]. 

Non-Small Cell Lung Cancer (NSCLC) account for the 85% 

of lung malignancies while SCLCs account for only 12-15%. 

Early diagnosis and treatment is a key factor to improving the 

overall five-year survival rate for lung cancer, which is due to 

the disease's invasiveness and heterogeneity [4]. In order to 

lower mortality rates, more money must be invested in the 

medical field [5], and new methods must be created for early 

cancer diagnosis [6]. Accuracy is essential when using 

segmentation results for lung cancer diagnosis. Radiologists 

typically use manual segmentation [7], despite the fact that it 

can produce inaccurate results because to variability among 

observers and inconsistency [8]. Automatic segmentation of 

MRI scan images of lung cancer is a critical tool for addressing 

this problem. The normal and cancer MRI image is shown in 

Figure 1. 

Figure 1. (a) Normal MRI image (b) Cancer MRI image 

Models trained using deep learning have recently shown 

remarkable proficiency in a variety of AI and computer vision-

related niche tasks. Deep learning has shown promising results 

in the medical field when applied to the segmentation 

challenge of lung cancer. One area where algorithms based on 

deep learning have excelled is in the auto-segmentation of 

medical images [9]. Without any intervention from a human, 
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deep learning models can learn feature representation and 

apply the high-dimensional generalization they've acquired to 

finish segmentation tasks. When dealing with massive datasets, 

it might be challenging to implement deep learning structures 

[10].  

Using fewer datasets does not improve the results of deep 

learning models. Adding new types of data, such as medical 

photographs, might be challenging [11]. The exorbitant price 

of medical imaging equipment and the need to protect patient 

privacy make this a necessity. Other medical problems have 

been helped by applying deep learning to the domains of 

identification, segmentation, and classification [12]. To stop 

the spread of cancer, automatic detection and diagnosis 

utilizing deep learning in Magnetic Resonance Imaging (MRI) 

scans is essential. A popular area of research in computer 

vision right now is medical image segmentation [13]. One of 

the most important and difficult subfields of image processing 

is introduced in this article. Significant advancements and 

remarkable results have been achieved in medical image 

segmentation since the implementation of deep learning and 

deep convolutional network architectures. 

One of the main points of this research is to figure out how 

to use computer vision and image processing to spot lung 

cancer. Algorithmic techniques from the field of image 

processing, such as preprocessing, feature extraction [14], 

segmentation, edge detection [15], and region-based 

identification, are used. Parameter values based on features are 

compared to the spectrum of values employed in clinical 

practices. By comparing the data, the precise position of the 

tumour can be determined. MRI images are considered as 

input and display disordered features alongside the location of 

the affected area [16]. This has led to the emergence of medical 

analysis as a new and exciting area of study that has the 

potential to enhance both the efficiency with which diseases 

may be detected and the accuracy with which they can be 

treated [17]. Digitally detecting and diagnosing a patient's 

disease is the major focus of the Computer Aided Diseases 

Diagnosis system [18]. Such a technology would analyze 

patient images and provide doctors with a detailed report on 

what they see, speeding up the process by which they can 

decide how to treat their patients. Various imaging modalities 

are used in the medical profession, including MRI, CT, X-ray, 

mammography, ultrasound, etc.  

X-rays are commonly recommended by specialists for the 

detection of skeletal-related disorders such arthritis, fractures, 

bone cancer, tumours in the tissue of the bones, spinal cord 

injuries, and so on. Components of this type of image 

processing include picture acquisition, improvement, 

categorization, edge detection, Region Detection, 

categorization, data analysis [19], and so on. Since the image 

needs to be scaled into a square matrix while retaining 

uniformity, and the undesired pixel values need to be 

accurately eliminated, pretreatment of data is important. In 

order to quickly and accurately pinpoint the area of interest in 

an MRI image [20], image segmentation is a crucial step. As a 

result, there are numerous subcategories that may be created 

from these segmentation techniques, such as threshold-based, 

region-based, edge-based, pattern-based, wavelet-based, 

intensity-based, adaptive threshold-based segmentation 

approaches, etc. The lung image segmentation is shown in 

Figure 2. 

Image segmentation has several applications, including 

robotic vision, object recognition, and medical imaging [21]. 

When it comes to diagnosing lung diseases such as lung cancer, 

tuberculosis, pneumonia, and pulmonary emphysema, MRI is 

currently the method of choice [22]. The quantity and 

complexity of medical images continue to increase. This is 

why the use of computers to aid with tasks like image 

processing and analysis is so important when dealing with 

medical images [23]. The original FCM approach is effective 

for noise-free image segmentation but fails when dealing with 

images that contain noise, outliers, or other imaging 

distortions. The general process of lung tumor detection is 

shown in Figure 3. 

 

 
 

Figure 2. Lung image segmentation 

 

 
 

Figure 3. General process of lung cancer detection 

 

Before the model for prediction can be trained, however, a 

feature selection procedure must be run to exclude 

unnecessary and unreliable features. A predictive model is 

trained using two datasets: a training dataset and a test dataset, 

all of which come from the patient cohort. Model 

improvement relies heavily on the impartial information 

provided by the independent test set [24]. The radiomic 

features that are retrieved are commonly divided into four 

classes: shape, first-order features, second-order features, and 

higher-order features [25]. The morphological features of the 

Region of Interest (ROI) are represented by the shapes within 

it. The intensity distribution inside the ROI can be described 

with first-order features, which are straightforward 

observations of the voxel values [26]. Second order features, 

also known as texture features, describe the connections 

between individual voxels within a ROI. Applying filters to 

the ROI or image while extracting features might create 

higher-order features. This research proposes a Linked Pixel 

Edge Segmentation with Least Correlated Weight Factor using 

machine learning for Lung Tumor Detection. A 

groundbreaking model in lung tumor diagnosis, the LPES-

LCWF integrates machine learning, optimizes weight factors, 

and detects edges. The model lowers false positives and 

optimizes feature selection through the use of least correlated 

weight factors, and it excels at exact tumor border delineation 

with its superior pixel linking algorithms and continuous edge 
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tracking capabilities. Machine learning allows for complex 

pattern detection and ongoing model improvement when 

combined with supervised and deep learning architectures. 

Enhanced accuracy in detecting tiny cancers, decreased false 

positive rates, and more precise tumor boundary 

characterization are some of the significant practical benefits 

that result from these technological aspects. Thanks to its 

enhanced processing techniques and decreased overhead, the 

model exhibits amazing computing efficiency, rendering it 

suitable for real-world clinical applications. Its architecture is 

capable of handling multiple MRI protocols and picture 

quality levels with ease, and it consistently performs well 

across a wide range of patient demographics. In terms of 

patient care, the model improves radiologists' diagnostic 

support, allows for more accurate tumor measures, and makes 

treatment planning easier. 

 

 

2. LITERATURE SURVEY 

 

The use of medical imaging in actual patient care has been 

expanding in the last several years. Radiographs of the lungs 

are crucial for medical diagnosis. The precision with which 

surgeons can remove a tumor depends on their knowledge of 

its precise location, volume, and size. Consequently, 

computer-aided design (CAD) software is crucial for 

managing and interpreting numerous images of lung tumors. 

Using a hybrid attention mechanism and parallel deep learning, 

Hu et al. [2] proposed a method for segmenting images of lung 

tumors that could handle the complexity and self-adaptation of 

such images. Identifying lung parenchyma was aided by early 

stages of image processing. As part of a hybrid attention 

mechanism, the pictures were subsequently fed into a 

DenseNet module. There are four possible approaches to the 

verification that include adjusting the quantity of dense blocks 

used in the convolution. The long-awaited realization of the 

perfect network layout has arrived.  

A computer-aided detection system (CAD) for breast 

malignancies is meaningless without automated segmentation 

of breast ultrasound pictures. By combining a feature pyramid 

nonlocal network (FPNN) with transform modal ensemble 

learning (TMEL), Tang et al. [3] were able to effectively 

separate breast tumors from ultrasound pictures. The FPNN 

combines the nonlocal module with the feature pyramid 

network to fuse multilayer features while addressing long-

range dependencies. The TMEL is also employed to direct two 

iFPNNs that extract specific tumor-related properties. Dataset-

Cairo University and Dataset-Merge, two publicly available 

datasets, were important in making this possible.  

Chronic NSCLC accounts for 84% of all lung cancer 

diagnosis. In order to differentiate between the two kinds of 

NSCLC, adenocarcinoma (ADC) and squamous cell 

carcinoma (SqCC), Bicakci et al. [4] conducted a thorough 

investigation into the application of deep learning-based 

classification methods. Eighteen F-FDG PET scans were 

administered to 94 study participants' tumors in a total of 1457 

separate slices. The function of non-tumor regions in cancer 

subtype categorization was investigated in three experiments 

using positron emission tomography (PET) images. In these 

tests, three distinct image types were used to assess 

convolutional neural network (CNN) models, including the 

multilayer perceptron (MLP), SqueezeNet, and 

VGG16/VGG19. There are three types of image segments: 

first, those that have been cropped to include the cancer; 

second, those that have been randomly sliced and matched to 

tumors; and third, the raw slices, which have not been edited 

in any way. Each model was fine-tuned for diagnostic 

classification using a combination of optimizers and 

regularisation methods. We used F-score and area-under-

curve (AUC) measures to evaluate the classification models' 

performance after training and verifying them with stratified 

10-fold cross validation. The author draws the conclusion that 

including peritumoral areas and tissues entirely eliminates the 

need for manual segmentation and increases model 

performance based on the data.  

The clinical implications of lung tumor segmentation in 

PET-CT images are substantial, as they facilitate precise 

diagnosis and treatment. This remains an uphill battle, 

nonetheless, in the realm of medical image processing. The 

lung tumor appears to change substantially between PET and 

CT images as a result of breathing and movement. Lung 

tumors in PET-CT scans appear to be of varying sizes and 

shapes, even though they were collected and aligned at around 

the same time. Despite these obstacles, a modality-specific 

segmentation network is still the way to go for PET-CT data 

processing when trying to identify lung tumors. It is possible 

to use MoSNet in tandem with PET and CT scans to detect 

lung cancer. In order to train MoSNet to recognize lung tumors 

in PET and CT scans, the network first learns a representation 

that is distinct to each modality, which shows how the two 

scans differ. Then, it learns a representation that is fused 

between modality, which shows how the two scans share 

features. In order to reduce the approximative modality gap, 

Xiang et al. [5] suggest an adversarial technique that utilizes a 

modality discriminator and a reserved modality-common 

representation in conjunction with an adversarial objective. 

The network's representational power is enhanced, allowing 

for modality-aware segmentation of lung cancer in PET and 

CT scans.  

Tahmasebi et al. [6] created a GPU-based system that can 

accurately follow tumors in real time, making automated 

radiation therapy for cancer treatments more successful. In 

order to make it suitable for use in clinical settings, the authors 

reimplemented it on a cheap parallel GPU-based computer 

architecture, which significantly improved the processing 

performance. It is highly recommended to use GPUs for 

certain parts of the registration technique, such as computing 

the similarity metric, because they are well-suited to parallel 

processing. Utilizing the GPU's significantly quicker shared 

memory allowed for the rapid generation of the mesh 

deformation by speeding up the solution of a partial 

differential equation. Applying the suggested technique to an 

NVIDIA Tesla K40c GPU resulted in computational 

acceleration that was almost five times faster than a central 

processing unit.  

Models based on fully convolutional networks (FCNs) and 

unified neural networks (U-Nets) are now considered to be the 

best for medical picture segmentation. Although these models 

work, there are two big problems with them: first, the best 

depth to use is unknown in advance, so finding an architecture 

that works takes a long time or using an ensemble of 

prototypes with different depths doesn't work. Second, the 

fusion scheme that these models use is too restrictive because 

of their bypassing connections. As a result, you can only 

aggregate maps that are the same size in the encoder and 

decoder sub-networks. Zhou et al. [7] offered three solutions 

to the issue of unknown network depth: first, a highly flexible 

feature fusion scheme that uses a redesign of skip connections 
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to aggregate characteristics with different semantic scales at 

the decoder sub-networks; second, an efficient ensemble of U-

Nets with different depths that share an encoder and co-learn 

simultaneously using deep supervision; and third, UNet++, an 

architecture that uses this redesign for semantic and instance 

segmentation.  

In order to separate several organs and UDAs from CT 

images, Jiang et al. [8] created a unique hybrid network called 

PSIGAN, which combines probabilistic segmentation with 

image distribution matching. The UDA method uses a new 

structure discriminator to show how the images and their 

segmentation are dependent on each other through a joint 

probability distribution. The ability to automatically segment 

liver tumors is crucial for improving the detection and 

management of liver cancer. Annotations at the pixel level 

have been the basis for many deep learning techniques that 

have improved picture segmentation in recent times. 

Nevertheless, due to the extensive annotations that need to be 

obtained, deep neural networks' performance is limited when 

applied to medical image segmentation. When presenting data 

linked to liver cancer, radiologists frequently employ the 

Couinaud segment because of its usefulness in describing 

tumor location. A new method for segmenting liver tumors 

using convolutional networks and annotations from Couinaud 

segments was introduced by Lyu et al. [9] in their publication. 

Numbers 1 through 8 placed on images form the Couinaud 

segments, which each stand for a distinct section of the liver. 

In order to train a fully supervised tumor segmentation model, 

the author presented a model called Couinaud Net. This model 

can estimate pseudo tumour masks using only the Couinaud 

segment annotations as pixel-wise supervision.  

Brain tumour segmentation has attracted the attention of 

both academics and businesses due of the hope it holds for the 

future of improved diagnosis and treatment. Present methods, 

however, frequently disregard clinical practise standards in 

favour of treating the problem as a simple semantic 

segmentation exercise. A frequent clinical practice that can 

uncover areas of cancer that were previously undiscovered is 

comparing volume data across multiple imaging modalities. 

After dividing the tumor into its most distinguishable piece, 

they also search for the other two sections. To segment brain 

tumors, Zhang et al. [10] first presented a new task-structured 

network (TS net) built on the task-task structure, and then they 

presented a new task-structured network (TSBTS net) built on 

the task-modality structure. The author developed a modality-

aware feature embedding method to examine the task-

modality relationship by deducing the important weights of the 

modality data during network training. The author performed 

tumor area prediction as contingently dependent sub-tasks and 

embedded this reliance in the network stream to examine the 

task-task structure.  

While detection and segmentation have garnered a lot of 

attention in computer-assisted lung cancer diagnosis, volume 

estimation and grading of malignant nodules have gotten 

comparatively little attention. Furthermore, due to the fact that 

lung cancer segmentation methods are currently semi-

automatic, radiologists are still required to identify the 

cancerous regions on each slice. This leads to longer wait 

times for diagnoses and makes them more subjective. The use 

of conventional convolution in these methods also leads to 

erroneous segmentation of the cancerous nodule's real 

boundaries. It is also important to have a system in place that 

can detect irregularities in screenings and assign a grade to 

lung cancer based on actual criteria. Enhanced performance in 

cancer diagnosis, segmentation, volume estimate, grading, and 

early warning system are described in this study work by Sathe 

et al. [11]. The system is fully automated and end-to-end and 

uses five primary models. So that the real shape of the 

cancerous nodule can be preserved, the traditional 

convolutional method is tweaked. Segmenting lymph nodes, 

trachea, and cancer all at once is possible with the use of a 

focus module and a modified loss function, and it achieves an 

accuracy of 92.09% while also eliminating redundancy.  

One of the deadliest cancers in the world, lung cancer, has 

a much better prognosis when caught early. Pulmonary 

nodules are discovered most frequently by CT scans and are 

an early indicator of lung cancer. More and more medical 

professionals are turning to computer-aided diagnostic 

technologies to help them spot illnesses. Pulmonary nodule 

segmentation accuracy is affected by both internal 

heterogeneity and external data sources. Jiang et al. [12] 

propose a new mixed manual feature network to address the 

segmentation problems of subtle, mixed, adhesion-type, 

benign, and unclear nodule types by increasing sensitivity and 

accuracy. This approach incorporates feature information 

using a multi-dimensional fusion module and a dual-branch 

network structure. 

The way people live their lives now has caused or 

exacerbated many ailments. Cancer, the deadliest of all 

cancers, is one of these illnesses. It is possible that early cancer 

identification made possible by Computer Aided Diagnosis 

(CAD) technology might save lives. When it comes to finding 

lung tumors, computed tomography (CT) scans are highly 

regarded. Location, form, and poor image quality from CT 

scans are just a few of the challenges that clinicians face when 

attempting to diagnose malignant cancers. Because of this, 

deep learning algorithms have a lot of respect among experts. 

A new model for tumor and nodule segmentation in CT scan 

images was introduced by Rehman et al. [13] using a 

convolutional neural network (CNN) approach. The proposed 

model incorporates pre- and post-processing stages to ensure 

precise nodule segmentation. Filtering is used in preprocessing 

to enhance images, and morphological operators are used in 

postprocessing to fine-tune segmentation. Finally, the active 

counter method showed that tumors and nodules could be 

accurately detected.  

Although airway segmentation is a major pain to do 

manually, it is necessary for studying, diagnosing, and 

prognosing the progression of lung diseases. In an attempt to 

do away with this time-consuming and subjective human 

procedure, researchers have proposed methods to 

automatically split airways using CT images. Certain small-

sized airway branches, such bronchus and terminal 

bronchioles, make automatic segmentation using machine 

learning models even more challenging. Because voxel values 

vary and there is a huge data imbalance in airway branches, 

the computational module is prone to false-negative and 

discontinuous predictions, especially for groups with different 

lung illnesses. The attention mechanism has proven capable of 

segmenting complex structures, and fuzzy logic can reduce 

uncertainty in feature representations. Since the fuzzy 

attention layer incorporates fuzzy theory, combining deep 

attention networks with it should yield a more robust and 

generalizable solution. In their study, Nan et al. [14] laid out a 

method for airway segmentation that works. With the use of a 

comprehensive loss function and a novel fuzzy attention 

neural network (FANN), it enhances the spatial continuity of 

airway segmentation. A deep fuzzy set is built upon a set of 
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feature map voxels and a learnable Gaussian membership 

function. The proposed channel-specific fuzzy attention 

approach deviates from the existing attention method in order 

to address the issue of channels with diverse attributes. 

The use of automated detection methods, namely nodule 

segmentation approaches, has recently become popular in lung 

cancer screening, thanks to developments in computing 

technology. These techniques distinguish between solid and 

soft tissues, normal and cancerous nodules, and more by 

means of thresholding. Recognizing nodules in close 

proximity to vital lung structures including blood vessels, 

bronchi, and the pleura is challenging and calls for more 

sophisticated procedures to enhance the accuracy of diagnoses. 

According to Gunawan et al. [15], combination processing 

filters should be used to prepare the data before using one of 

the modified Convolutional Neural Networks (CNNs) as the 

classifier. Solid, semi-solid, or ground glass nodule targets 

with improved filters can be used for low-stage cancer (cancer 

screening data) or high-stage cancer. Furthermore, two 

additional investigations addressing juxta-pleural nodules 

were incorporated; these investigations used three-

dimensional domains for pre-processing and classification 

rather than the conventional two-dimensional domain.  

Segmenting the lung parenchyma accurately is critical for 

computer-aided lung cancer diagnosis. When presented with 

large, clearly defined regions, existing networks for 

segmenting lung parenchyma perform admirably. However, 

when confronted with smaller, less clearly defined regions, 

they become extremely slow. Zhu et al. [16] proposed an 

improved network setup to improve segmentation 

performance of small and fuzzy lung parenchyma sections 

while maintaining accuracy for big and clear regions. U-Net 

has been upgraded to become the proposed network. A shape 

stream branch and multi-scale convolutional blocks are now 

part of the network. The suggested network takes computed 

tomography (CT) pictures as input and returns matching 

binary masks as output. The Open Source Imaging 

Consortium's Pulmonary Fibrosis Progression dataset 

provided the major CT images utilized in this study.  

In PET images because the process of segmenting sick 

tissue in these images is tedious, inaccurate, and takes a lot of 

time. The framework designed by Guan et al. [17] began by 

selecting whole-body pictures that contain lesion tissue using 

a differential activation filter, which takes PET image features 

into consideration. Secondly, a novel neural network with 

residual connections is suggested for PET image denoising 

and reconstruction; this network outperforms the standard 

FCN network in terms of generalization. Lastly, a proprietary 

density-based clustering approach is employed to differentiate 

between normal and lesion tissues during lesion tissue 

segmentation. In comparison to other algorithms, the entire 

automated system outperforms them in terms of performance 

and time cost when it comes to screening PET lesion images, 

denoising images, and segmenting lesion tissues, as 

demonstrated by tests conducted on real medical PET scans. 

There is hope for future research and practical use of the 

framework.  

A deterministic result, ignoring the underlying uncertainty, 

is generally produced by deep learning systems, 

notwithstanding their success in multi-modality segmentation 

tasks. In safety-critical clinical applications in particular, the 

lack of uncertainty could cause overconfidence in forecasts, 

which could have disastrous results. Because it provides a 

metric for the certainty of machine choices, uncertainty 

estimate has been getting a lot of interest as of late. There has 

been very little research into the uncertainty of multi-modality 

networks since most of the current uncertainty estimation 

methods concentrate on single-modality networks. Kang et al. 

[18] provided the first comprehensive look into multi-

modality uncertainty as they pertain to PET/CT tumor 

segmentation. For this purpose, the author compared four 

popular uncertainty estimating methods on a number of 

criteria, such as segmentation accuracy, uncertainty quality, 

correlation to contradicting information across modalities, and 

comparison to uncertainties for a single modality. By 

combining qualitative and quantitative methods, the author 

was able to better understand the advantages of multi-modality 

uncertainty, the information they capture, and their correlation 

with data from individual modalities.  

When working with massive labelled datasets, supervised 

deep learning techniques have achieved state-of-the-art 

performance. However, due to privacy concerns, high 

annotation costs, and a lack of medical professionals, medical 

image analysis faces challenges when trying to access big 

labeled datasets. In a so-called pretext task, a subfield of self-

supervised learning uses unlabeled data to train a network to 

prioritize a legitimate latent representation of the input. After 

learning features in earlier tasks, the model applies them to a 

downstream job with less annotations. Cheke et al. [19] 

presented PatchLoc, a new kind of pretext task, whose goal is 

to use an image as a supervisor and determine where a 

particular patch is located. Using three separate medical 

datasets, we proved that PatchLoc was effective on a 

downstream segmentation job.  

Among the many obstacles to overcome in the creation of 

CADs is the automated segmentation of data from 

multimodality positron emission tomography—computed 

tomography experiments. Here, methods based on CNNs are 

seen as cutting. But when they only look at local patterns, these 

CNN-based approaches struggle to learn the global context or 

co-learn the complementing PET-CT picture elements. 

Methods: For the purpose of PET-CT image segmentation, Bi 

et al. [20] presented a cascaded CNN-transformer network 

(CCNN-TN). Because TNs may build global context via self-

attention and embedding picture patches. By using a cascade 

of TNs and CNNs, the author was able to learn both the global 

and local contexts, expanding the TN definition. Additionally, 

the author included a hyper fusion branch that merges the 

complementary picture features that were extracted 

individually in an iterative fashion. Using three datasets, one 

for soft tissue sarcoma (STS), one for nonsmall cell lung 

cancer (NSCLC), and one for our method, compared it against 

the state-of-the-art CNN approaches. To enhance cancer 

survival prediction, Cai et al. [21] presented a novel 

computational method called CRESCENT. It is a GCN based 

on prior knowledge graphs including protein-protein 

interactions (PPI). In order to forecast whether patients will 

survive, CRESCENT uses gene expression networks instead 

of gene expression levels.  

 

 

3. PROBLEM STATEMENT 

 

When it comes to global mortality rates, lung cancer is 

among the top one. A key component of early cancer detection 

is the processing and segmentation of lung images. Radio 

oncologists have a lengthy and laborious task ahead of them 

when it comes to medical imaging segmentation. When it 
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comes to cancer, lung cancer is still the killer on a global scale. 

The key to successful therapy and higher survival rates is early 

discovery. While there are some benefits to using traditional 

methods like chest radiography, such as convenience and low 

cost, there are also some drawbacks, such as a high likelihood 

of false positives and misdiagnosis when it comes to detecting 

lung nodules. Detecting lung cancer accurately with current 

imaging modalities, such as CT and chest radiography, is a 

substantial issue. A big problem is the high rate of false 

positives, which causes patients to undergo unneeded tests and 

follow-up appointments. It is becoming more and more 

difficult to identify problematic lesions early on because to 

studies showing that a large percentage of nodules found by 

CT screening are false positives. Additionally, radiologists 

frequently face difficulties in differentiating between benign 

and malignant nodules because of overlapping anatomical 

components, which adds another layer of diagnostic 

uncertainty. Globally, lung cancer ranks among the top 

cancers in terms of incidence and mortality. To improve a 

patient's chances of survival, lung cancer must be detected 

early. MRI imaging, which gives a thorough scan of the lung, 

is a commonly utilized modality for screening and diagnosing 

lung cancer. There has been much research into using deep 

learning techniques to aid in the interpretation of MRI images 

to identify lung cancer, in keeping with the development of 

computer-assisted systems. There is a strong requirement to 

perform segmentation of MRI images to consider the relevant 

portions for accurate detection of lung tumor. 

When it comes to clinical applications, the success of 

current methods for segmenting and extracting features from 

lung cancer suffers from a number of serious shortcomings. 

Dealing with the tremendous variety of tumor features is the 

main obstacle, especially in early-stage detection when benign 

and malignant nodules can be easily ignored due to small 

variances. When tumors are situated close to similar-density 

anatomical features, like blood arteries or the chest wall, 

traditional segmentation methods frequently over-segment or 

border leak when trying to contain them. The variable 

segmentation findings are also caused by the limits of current 

approaches when dealing with low-contrast pictures, motion 

artifacts, and MRI scans with varied slice thicknesses. Lung 

tumors are notoriously diverse, with ground-glass opacity 

nodules and part-solid nodules being just two examples of the 

many variations that might throw off automated feature 

extraction systems that rely on classic intensity-based methods. 

Additionally, when tumors have irregular or spiculated 

margins, or if they are of a varied size or location, existing 

systems frequently do not have strong enough mechanisms to 

deal with these variations. 

For complete feature extraction, there is still a major lack of 

integration between temporal and multi-modal data. Existing 

approaches often examine photos independently, overlooking 

the importance of longitudinal data that could reveal patterns 

of tumor progression and treatment efficacy. Finding solutions 

that work for everyone is difficult because imaging techniques 

and equipment vendors don't agree on how to extract features. 

Most algorithms are trained on specialized datasets that may 

not represent the complete range of real-world cases, thus 

there's a noticeable gap in their capacity to automatically 

adjust to varied patient populations and varying image 

qualities. When it comes to processing massive volumetric 

datasets in real-time clinical situations, existing methods 

frequently fail to strike a good balance between computational 

efficiency and accuracy. Since most existing approaches 

ignore the larger clinical context in favor of imaging features, 

there is an urgent need to improve the integration of radiomics 

features with genetic information and clinical metadata. 

Important for clinical decision-making and treatment planning, 

there are no reliable ways in the field to measure uncertainty 

in segmentation and feature extraction. 

 

 

4. TRADITIONAL MODELS CONSIDERED 

 

4.1 Weighted discriminative extreme learning machine 

design for lung cancer detection by an electronic nose 

system 

 

All sensors are treated uniformly and their data is utilized 

consistently when features are extracted. Features obtained 

from sensors that are unable to detect lung cancer biomarkers 

will ultimately be useless for classification, though, because 

not all sensors will have this capability [27]. Thus, it is 

commendable to use feature selection to further optimize 

features. To achieve this goal, the TRC algorithm is utilized to 

evaluate characteristics. The TRC framework is a universal 

graph-based feature selection tool that finds the best subset-

level score rather than maximizing the scores of individual 

features. To compare the accuracy of feature subsets of 

different sizes, the WDELM classifier and the TRC method 

are used in leave-one-out cross validation. By combining the 

ideas of accuracy with G-mean optimality, we can get the five-

feature optimal feature subset. In order to facilitate the 

subsequent construction of the sensor array, the characteristics 

are correlated with the WSP2110, MP901, and SP3S-AQ2-01 

sensors.  

The feature data and the proposed classification method are 

utilized to construct the discriminant model. Detailed three-

dimensional principal component analysis (PCA) diagram 

showing all features and the features that were selected for 

study. (a) A full feature principal component analysis (PCA). 

(b) The attributes that have been specified will undergo 

principal component analysis (PCA). The effectiveness of the 

model is evaluated using the leave-one-out cross-validation. 

The next thing to do is arrange the samples by when they were 

collected. Next, the model's robustness is tested by using the 

remaining samples as a training set and the final data as a test 

set. Using the min-max technique, the data is normalized to 

remove disparities in feature magnitudes. In addition, the 

proposed classification method is tested using a gas sensor 

array with a drift dataset obtained from the UCI machine 

learning repository [28]. Batch processing is utilized due to the 

enormous quantity of information contained in this dataset. 

Class 4 has the smallest sample size overall, yet each of the six 

classes has its own unique sample size. For this reason, 

datasets with class 4 data and datasets with data from other 

classes are used to compare WDELM to other classical 

algorithms. Every dataset has its data standardized using the z-

score method and subjected to tenfold cross validation. After 

that, for comparison, the average recognition results are 

displayed.  

 

4.2 Metabolic imaging based sub-classification of lung 

cancer 

 

For the purposes of this inquiry, three independent 

experiments were conducted using three distinct datasets. The 

main dataset for the initial experiment was a series of raw 
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FDG-PET images obtained from the scans, with a resolution 

of 168 × 168 pixels. A different dataset, including ROIs 

meticulously extracted from each FDG-PET slice to include 

tumor and peritumoral tissue, is utilized in the second study. 

Instead of specifying a typical bounding box size, the boxes 

were individually cropped to fit the tumor. Because the tumors 

were not uniform in shape, the number of peritumoral areas 

differed among slices [29]. In order to ensure that the input 

photos used by deep learning models are uniform in size, a 

standard and appropriate picture size is defined. Since further 

processing wasn't needed for the initial trial, all of the 

photographs were the same size. We utilized datasets with a 

maximum subimage size of 64 × 64 pixels, which allowed us 

to include all tumors in each slice, for the second and third 

tests. Everyone in the bounding box had their pixel value set 

to zero in order to achieve zero padding, with the exception of 

the ROIs in the second experiment and the segmented sections 

in the last experiment. Ultimately, the datasets were input into 

the deep learning models, which were subsequently trained 

and tested.  

As part of this technique, nodes are removed from the 

network at random during training in accordance with a fixed 

ratio. Finally, this work trained the models' fully-connected 

layers using the dropout with a ratio of 0.5. These fine-tuned 

convolutional neural network (CNN) designs take 64 × 64 

pictures. Using 64 neurons and varying the number of hidden 

layers, this research aimed to compare MLP models. 

Deepening the structure of the MLP model improved its 

classification performance. Studying the optimal performance 

of MLP variants with 3,7,11, and 15 hidden layers helped 

reach this objective. There is no known academic study that 

specifies a minimum or maximum number of neurons that 

should be used in MLP architectures at this time. The dropout 

strategy, which maximizes the number of hidden layers by 

employing alternative values, improves the number of neurons 

by randomly removing nodes from the network during training 

based on the 0.5 ratio.  

 

 

5. PROPOSED MODEL 

 

A novel strategy for edge connectivity and feature 

weighting sets the proposed LPES-LCWF model apart from 

previous segmentation methods. With its linked pixel 

methodology, LPES-LCWF prioritizes pixel-level 

associations, allowing for more precise boundary detection, 

particularly in cases with delicate tumor margins, in contrast 

to UNet++'s reliance on skip connections and dense layered 

architectures. In contrast to fuzzy attention networks, which 

are great at dealing with uncertainty by softly assigning 

attention weights, LPES-LCWF's least correlated weight 

factor introduces a new optimization criterion that reduces 

false positives and improves tumor detection by eliminating 

redundant feature dependencies. Edge continuity and 

correlation-based feature selection are the primary areas of 

focus for LPES-LCWF, in contrast to CNN-transformer 

hybrids that use self-attention processes to merge local feature 

extraction with global context. Because of its expertise, it is 

better able to deal with the unique computational challenges of 

lung tumor segmentation, such as accommodating tumors of 

varied sizes and forms. Another typical problem in lung cancer 

imaging is tumors with irregular or poorly defined boundaries; 

this model excels at dealing with these tumors because it 

places a focus on linked pixel relationships, which other 

architectures may struggle with. Using least correlated weight 

factors also helps in cases where there are artifacts or 

fluctuations in tissue density, making it harder for 

conventional attention processes or skip connections to 

differentiate between actual tumor boundaries and noise. 

The detection of lung tumor nodules relies in part on lung 

region extraction because of its improved reliability and 

accuracy at a reduced computing cost. The pulmonary area can 

be extracted using multi step procedure. In order to extract 

specific information from a large image, a procedure called 

segmentation is used. When processing medical images, 

segmentation is a common approach. The main purpose of any 

picture is to help people spot the relevant region and avoid the 

irrelevant region. Therefore, it separates an image into sections 

based on the degree to which their components are alike. This 

appearance can be achieved by adjusting the intensity and 

texture. By isolating a focus region, diagnostic information 

that is specific to the issue at hand can be accessed more 

quickly. 

To segment an image, it is divided into smaller sections. An 

image is segmented after it has been preprocessed so that more 

information may be gleaned from it. To begin segmenting a 

picture, a method of edge detection that breaks down an 

image's border into discrete parts is considered in this research. 

To continue the segmentation process, a threshold range is 

applied to the operator to eliminate intensity values below the 

threshold and retain intensity values above the threshold. The 

grayscale image is preprocessed based on the gradient 

magnitude, which consists of the high pixel values along the 

object's border and the low pixel values in another left region. 

The resulting segmented image can then be used to extract 

features. The death rate from lung cancer can be reduced 

significantly with early identification. Regular MRI chest 

screenings are recommended for people at high risk for 

detecting lung cancer. It has been demonstrated that the CAD 

system is an effective second opinion for doctors in the 

interpretation of medical imaging data. The three key parts of 

the typical feature-based CAD workflow are nodule 

segmentation, feature selection, and inferring clinical 

assessments.  

As an input, the MRI lung pictures are taken into account 

by the suggested model. Processing and segmentation of the 

photos will follow. Pixel extraction is carried out after the most 

pertinent parts of the lung picture have been retrieved. A 

weight allocation is carried out once features are taken from 

the lung region. The features are given weights according to 

the dependency model. In order to train the machine to 

accurately detect lung cancer, we take the features that are 

least associated and keep them in the feature set. 

The proposed model framework is shown in Figure 4. 

Nodule size, type, position, count, and emphysema 

information in MRI scans are common imaging criteria, 

whereas age, gender, specimen collection date, smoking 

history, family history of lung cancer, and other clinical 

variables may be involved. Although these criteria are 

commonly used to evaluate malignant nodule characteristics, 

they are subjective and not standardized, thus they may not 

always give a complete and quantitative picture. This study 

presents a machine learning-based approach to lung tumor 

detection called Linked Pixel Edge Segmentation with Least 

Correlated Weight Factor (LPES-LCWF).
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Figure 4. Proposed model framework 

 

Algorithm LPES-LCWF 

{ 

Input: MRI Lung Image Dataset {LIDset} 

Output: Feature Set {Fset} 

Step 1: Initially, each image from the dataset is loaded, and 

the image attributes are considered for processing. The image 

loading from the dataset is performed as 

 

𝐼𝑠𝑒𝑡[𝑁] = ∑ 𝑔𝑒𝑡𝐼𝑚𝑔𝑎𝑡𝑡𝑟(𝐿𝐼𝐷𝑠𝑒𝑡(𝑖))

𝑁

𝑖=1

+ 𝛿(𝑖){𝑠𝑒𝑡 (𝜃(𝑖) 𝑡𝑜 30)
+ 𝑚𝑎𝑥𝐼𝑛𝑡𝑒𝑛𝑖𝑡𝑦(𝑖) 

 

Here, each and every image is loaded from the image dataset 

and δ is the intensity level of the image considered. 

Step 2: After loading each image, segmentation is 

performed which divides the images into multiple portions. 

The purpose of segmentation is to transform a MRI image 

representation into one that is more digestible and informative. 

Components and boundaries can be found with the help of 

image segmentation. Assigning a name to each pixel in an 

image in such a way that pixels having the identical label share 

attributes is done by segmentation process. Segmenting an 

image yields a collection of contours that outline the image's 

boundaries or a series of segments that encompass the full 

image. Similarity between pixels in a region is measured by 

their shared possession of a single characteristic or calculated 

property such as hue, saturation, or texture. The MRI image 

segmentation process is performed as: 

 

𝐼𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡[𝑁] = ∑ 𝑝𝑖𝑥𝑠𝑒𝑡𝑝𝑞(𝑝 − 𝑞)2

𝑁

𝑝,𝑞=0

 

𝐼𝐸𝑛𝑡𝑟𝑜[𝑁] = − ∑ 𝑝𝑖𝑥𝑠𝑒𝑡𝑝𝑞 log2 (𝑝𝑖𝑥𝑠𝑒𝑡𝑝𝑞)

𝑁

𝑝,𝑞=0

 

 

𝐼𝑠𝑒𝑔[𝑁] = ∏

√∑ max(𝛿(𝑖)) + max (𝐼𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡(𝑖))𝑁
𝑖=1

𝑙𝑒𝑛(𝐼𝑠𝑒𝑡) + 𝐼𝐸𝑛𝑡𝑟𝑜(𝑖)

𝑁

𝑖=0

+ 𝜏(𝑥, 𝑦) − min(𝛿(𝑖)) + ∑
𝑚𝑎𝑥𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦(𝑖)

𝑚𝑖𝑛𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦(𝑖)

𝑁

𝑖=0

+ 𝑇ℎ 

Here, τ is the pixel similarity level of two adjacent pixels x 

and y. The minimum intensity pixels are removed from the 

images that are irrelevant. This is the threshold value of the 

image. 

Step 3: The images, after being divided into segments, 

perform pixel extraction to load all pixels from each segment. 

The pixel extraction will extract all pixel sets from each 

segment. The pixel extraction process is performed as 

 

𝑃𝑖𝑥𝑆𝑒𝑡[𝑁] = ∑
𝐺(𝑥, 𝑦)

𝐼𝑠𝑒𝑔(𝑖)
+ 𝑔𝑒𝑡𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦(𝑖)

𝑁

𝑖=1

+ max
𝑖≤𝑥≤𝑁

(𝐼𝑠𝑒𝑔(𝑖) ∗ 𝑥𝑦 

 

Here, G is the model for considering the pixel values from 

the segments. Each pixel value is considered from the segment 

set. 

Step 4: The purpose of the image processing technique 

known as edge detection is performed on the extracted feature 

set that is to locate specific locations within a digital image 

where there are abrupt contrast shifts for differentiating 

relevant irrelevant portions of the image segments. The 

borders of an image are defined as the points where the 

brightness of the image changes dramatically. The edge 

detection process is performed as 

 

𝐸𝑑𝑔𝑒𝑆𝑒𝑡[𝑁] = ∑ 𝑔𝑒𝑡𝑚𝑎𝑥(𝑃𝑖𝑥𝑆𝑒𝑡(𝑖))

𝑁

𝑖=1

+
𝑠𝑖𝑚𝑚(𝑝𝑖𝑥𝑎𝑡𝑡𝑟(𝑖, 𝑖 + 1))

𝑙𝑒𝑛(𝐼𝑠𝑒𝑔(𝑖))

+ 𝑇ℎ {
𝑠𝑒𝑡 ← 𝑚𝑎𝑥𝑎𝑡𝑡𝑟(𝑖)𝑖𝑓 𝑠𝑖𝑚𝑚(𝑖) < 𝑇ℎ
0                                            𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑖𝑓(𝐸𝑑𝑔𝑒𝑆𝑒𝑡(𝑖) == 0) 

𝐸𝑑𝑔𝑒𝑆𝑒𝑡[𝑁] ← 𝑔𝑒𝑡𝑚𝑎𝑥(𝑃𝑖𝑥𝑆𝑒𝑡(𝑖))

+
𝑠𝑖𝑚𝑚(𝑝𝑖𝑥𝑎𝑡𝑡𝑟(𝑖, 𝑖 + 1))

𝑙𝑒𝑛(𝐼𝑠𝑒𝑔(𝑖))
∀𝑚𝑎𝑥𝑎𝑡𝑡𝑟(𝑖) 

 

Step 5: The process of converting unstructured data to an 

assortment of quantifiable qualities that can subsequently be 

handled without retaining any of the original data's contexts is 

known as feature extraction. The feature extraction from the 

relevant segment portion is performed as 

 

𝐹𝑒𝑥𝑡𝑟[𝑁] = ∑
𝑚𝑎𝑥𝑎𝑡𝑡𝑟(𝐸𝑑𝑔𝑒𝑆𝑒𝑡(𝑖))

𝑙𝑒𝑛(𝐸𝑑𝑔𝑒𝑆𝑒𝑡(𝑖))
+ max(𝑔𝑒𝑡𝑉𝑎𝑙(𝑖, 𝑖 + 1))

𝑁

𝑖=1

+
𝛽(𝐸𝑑𝑔𝑒𝑆𝑒𝑡(𝑖, 𝑖 + 1))

max (𝑠𝑖𝑚𝑚(𝐸𝑑𝑔𝑒𝑆𝑒𝑡(𝑖, 𝑖 + 1))
− 𝑚𝑖𝑛𝑎𝑡𝑡𝑟(𝐸𝑑𝑔𝑒𝑆𝑒𝑡(𝑖)) 

 

Here β is the model considered for getting the attributes with 

the similar intensity range that is extracted in numerical format. 

Step 6: Each feature in the set of extracted features is given 

a weight according to its association with the other features in 

the set, following its extraction from the picture segments. The 

correlation factor is used to assign the weights. The weight 

allocation is performed as: 
 

𝑊𝑎𝑙𝑙𝑜𝑐[𝑁] = ∑ max (𝑐𝑜𝑟𝑟(𝐹𝑒𝑥𝑡𝑟(𝑖, 𝑖 + 1)))

𝑁

𝑖=1

+
min (𝑑𝑖𝑓𝑓(𝐹𝑒𝑥𝑡𝑟(𝑖, 𝑖 + 1)))

𝑙𝑒𝑛(𝐹𝑒𝑥𝑡𝑟(𝑖))

− max (𝑑𝑖𝑓𝑓(𝐹𝑒𝑥𝑡𝑟(𝑖, 𝑖 + 1)))

+ max (𝑠𝑖𝑚𝑚(𝐹𝑒𝑥𝑡𝑟(𝑖, 𝑖 + 1)) 

1882



 

The corr() is used to find the correlation relation among the 

two features, which is repeatedly performed for all the features. 

Simm() model is used for similarity checking of the features 

for weight allocation. 

Step 7: The Least Correlated Weighted feature vector is 

generated based on the allocated weights. The feature vector 

set is generated, which is used to train the machine learning 

model for lung tumor detection. The feature vector generation 

process is performed as: 

 

𝐹𝑣𝑒𝑐𝑡[𝑁] = ∏
∑ max (𝑊𝑎𝑙𝑙𝑜𝑐(𝐹𝑒𝑥𝑡𝑟(𝑖)))𝑁

𝑖=1

𝑙𝑒𝑛(𝑊𝑎𝑙𝑙𝑜𝑐)

𝑁

𝑖=1

+ 𝛾(𝑊𝑎𝑙𝑙𝑜𝑐(𝑖, 𝑖 + 1)) 

 

𝐹𝑣𝑒𝑐𝑡[𝑁] = {
𝐹𝑣𝑒𝑐𝑡 ← 𝐹𝑒𝑥𝑡𝑟(𝑖) 𝑖𝑓 min(𝑑𝑖𝑓𝑓(𝑖, 𝑖 + 1)) 

0                                            𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   
 

 

𝐹𝑣𝑒𝑐𝑡[𝑁] = {

𝐹𝑣𝑒𝑐𝑡 ← 𝐹𝑒𝑥𝑡𝑟(𝑖)𝑖𝑓 𝑐𝑜𝑟𝑟(𝐹𝑒𝑥𝑡𝑟(𝑖))

𝑎𝑛𝑑 max(𝑊𝑎𝑙𝑙𝑜𝑐(𝑖)) 

0                          𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒      

 

 

Here, γ is the method for extracting the maximum weighted 

features list that is used for training the model. 

} 
 

 

6. RESULTS 
 

The lung cancer is dreaded in many parts of the world, 

despite the fact that lung cancer has a relatively high survival 

rate if discovered in its early stages. The disease known as lung 

cancer can be fatal. The detection of cancer remains a difficult 

task for doctors. Unfortunately, neither the precise origin nor 

a comprehensive cure for cancer has been found. If detected 

early enough, cancer can be successfully treated. Locating 

areas of the lung affected by cancer requires the application of 

image processing techniques including noise mitigation, 

extraction of features, recognizing damaged regions, and 

maybe contrasting them with data on previous diagnoses of 

lung cancer.  There are two main categories of cancer cells: 

benign and malignant.  Malignant tumours cause the growth 

of several cancerous cells deep within a person's lungs, while 

benign tumours are easily detectable.  The key to survival is 

finding malignant cancer cells when they're still relatively easy 

to treat. The benign and damaging modules differ in terms of 

where cancer cells develop and how they look and feel.  In 

order to analyze and make sense of visual data, segmentation 

is a necessary first step. Several methods have been proposed 

in the existing literature.  

When segmenting an image, each pixel is labeled with a 

category. In order to do any additional analysis on an image, 

segmentation must first be performed. Recent developments in 

imaging and sequencing technologies have allowed for the 

methodical advancement of clinical research into lung cancer. 

However, there is a limit to what the human brain can do in 

terms of effectively handling and making full use of such 

enormous data sets. Machine learning-based approaches play 

a significant role in integrating and evaluating these massive 

and complicated datasets, which have effectively described 

lung cancer from a variety of viewpoints using the acquired 

data.  

Google Colab development in Python requires a 

comprehensive setup that begins with basic hardware 

requirements, including a web browser, a stable internet 

connection, and minimum 4GB RAM on the local machine, 

along with a Google account for accessing Google Drive. The 

platform offers free tier specifications including 12GB RAM, 

68GB disk space, and GPU access (NVIDIA K80/T4/P4/V100, 

subject to availability) with a maximum session duration of 12 

hours and an idle timeout of 90 minutes. The software setup 

involves installing essential Python libraries for data 

processing (numpy, pandas), visualization (matplotlib, 

seaborn), machine learning (sklearn, tensorflow, torch, keras), 

and image processing (cv2, PIL), along with proper 

configuration of GPU acceleration and memory management 

tools. 

The lung cancer dataset known as the Iraq-Oncology 

Teaching Hospital/National Center for Cancer Diseases (IQ-

OTH/NCCD) was amassed over the course of three months in 

the fall of 2019 in the aforementioned specialist hospitals. The 

dataset contains MRI scans of both healthy subjects and 

patients diagnosed with lung cancer at various stages. The 

oncologists and radiologists working at the IQ-OTH/NCCD 

centers annotated the slides used to create the dataset. The 

dataset is organized into three categories: normal, benign, and 

malignant. Out of these, 40 cases are classified as malignant, 

15 cases as benign, and 55 cases as normal. The original 

format of the MRI scans was DICOM. The dataset is 

considered from the link 

https://www.kaggle.com/datasets/adityamahimkar/iqothnccd-

lung-cancer-dataset. This research proposes a Linked Pixel 

Edge Segmentation with Least Correlated Weight Factor 

(LPES-LCWF) using machine learning for Lung Tumor 

Detection. The proposed model is compared with the 

traditional Weighted Discriminative Extreme Learning 

Machine Design for Lung Cancer Detection by an Electronic 

Nose System (WDEL-ENS) and Metabolic Imaging Based 

Sub-Classification of Lung Cancer (MIbSCLC). 

Transforming an image into a set of mask or label 

representable pixel regions is what image segmentation is all 

about. If an image is segmented, then only the relevant parts 

of the image need to be processed, rather than the complete 

image. The proposed model performs segmentation on MRI 

images to consider the relevant portion to perform pixel 

extraction. The Table 1 and Figure 5 shows the Image 

Segmentation Accuracy Levels of the proposed and existing 

models and the Image Segmentation Accuracy Levels 

compared with Deep Learning Models are shown in Table 2 

and Figure 6. 

Image data is segmented into useful and useless parts 

throughout the processing phase. On the image segments, the 

pixel extraction is applied. In order to detect edges, the 

collected pixels will undergo a pixel similarity check. The 

pixel extraction time levels of the proposed and existing 

models are shown in Table 3 and Figure 7. 

 
Table 1. Image segmentation accuracy levels 

 

Images 

Considered 

Models Considered 

LPES-LCWF 

Model 

WDEL-ENS 

Model 

MIbSCLC 

Model 

50 97 91.6 93 

100 97.2 92 93.4 

150 97.4 92.2 93.7 

200 97.7 92.5 94 

250 98 93 94.2 

300 98.2 93.5 94.6 
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Figure 5. Image segmentation accuracy levels 

 

 
 

Figure 6. Image segmentation accuracy levels compared 

with deep learning models 

 

Table 2. Image segmentation accuracy levels compared with 

deep learning models 

 

Images 

Considered 

Models Considered 

LPES-LCWF 

Model 
UNET UNET++ 

50 97 93.2 93.6 

100 97.2 93.4 93.8 

150 97.4 93.6 94 

200 97.7 93.8 94.3 

250 98 94 94.4 

300 98.2 94.1 94.6 

 

Table 3. Pixel extraction time levels 

 

Images 

Considered 

Models Considered 

LPES-

LCWF 

Model 

WDEL-ENS 

Model 

MIbSCLC 

Model 

50 10 19.4 16 

100 10.3 19.7 16.3 

150 10.7 22.1 16.5 

200 11 22.5 17 

250 11.2 22.7 17.4 

300 11.5 23 18 

 
 

Figure 7. Pixel extraction time levels 

 

 
 

Figure 8. Edge detection accuracy levels 

 

Table 4. Edge detection accuracy levels 

 

Images 

Considered 

Models Considered 

LPES-

LCWF 

Model 

WDEL-ENS 

Model 

MIbSCLC 

Model 

50 96 92.8 87 

100 96.2 93 88 

150 96.5 93.2 89 

200 97 93.5 90 

250 97.2 93.8 91 

300 97.6 94 92 

 

Table 5. Edge detection accuracy levels compared with deep 

learning models 

 

Images 

Considered 

Models Considered 

LPES-LCWF 

Model 
UNET UNET++ 

50 96 93 93.4 

100 96.2 93.3 93.8 

150 96.5 93.5 94 

200 97 93.8 94.3 

250 97.2 94 94.6 

300 97.6 94.2 94.8 
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Image processing algorithms are often tasked with locating 

the edges of objects in MRI images. The way it works is by 

sensing when there are abrupt changes in light levels. Edge 

detection is used for picture segmentation and data extraction 

in domains including computer vision, machine vision, and 

image analysis. The edge detection accuracy levels of the 

existing and proposed models are depicted in Table 4 and 

Figure 8. Table 5 and Figure 9 show the edge detection 

accuracy levels compared with deep learning models. 

 

 
 

Figure 9. Edge detection accuracy levels compared with 

deep learning models 

 

 
 

Figure 10. Feature extraction time levels 

 

Table 6. Feature extraction time levels 

 

Images 

Considered 

Models Considered 

LPES-

LCWF 

Model 

WDEL-ENS 

Model 

MIbSCLC 

Model 

50 13.4 17 21 

100 13.7 17.2 21.6 

150 14 17.5 22 

200 14.3 17.8 22.4 

250 14.7 18.2 23 

300 15 18.5 24 

Table 7. Feature extraction time levels compared with deep 

learning models 

 

Images 

Considered 

Models Considered 

LPES-LCWF 

Model 
UNET UNET++ 

50 13.4 16 17 

100 13.7 16.4 17.3 

150 14 16.6 17.6 

200 14.3 17 17.8 

250 14.7 17.3 18 

300 15 17.5 18.2 

 

Table 8. Feature weight allocation time levels 

 

Images 

Considered 

Models Considered 

LPES-

LCWF 

Model 

WDEL-ENS 

Model 

MIbSCLC 

Model 

50 17 19.5 25.8 

100 17.3 19.8 26 

150 17.8 20 26.2 

200 18 20.3 26.5 

250 18.4 20.5 26.7 

300 18.6 21 27 

 

Table 9. Least correlated weighted feature vector generation 

accuracy levels 

 

Images 

Considered 

Models Considered 

LPES-

LCWF 

Model 

WDEL-ENS 

Model 

MIbSCLC 

Model 

50 97 93.2 90.5 

100 97.5 93.6 90.8 

150 97.7 94 91 

200 98 94.2 91.5 

250 98.1 94.6 91.8 

300 98.3 95 92 

 

By eliminating unnecessary information, feature extraction 

cleans up the dataset. In the end, data reduction aids model 

construction with less machine effort and boosts the pace of 

machine learning's learning and generalization phases. Table 

6 and Figure 10 represent the feature extraction time levels of 

the proposed and existing models. Table 7 and Figure 11 show 

the feature extraction time levels compared with deep learning 

models. 
 

 
 

Figure 11. Feature extraction time levels compared with 

deep learning models 
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Figure 12. Feature weight allocation time levels 

 

 
 

Figure 13. Least correlated weighted feature vector 

generation accuracy levels 

 

Table 10. Overall Comparison 

 

Metrics 

Considered 

Models Considered 

LPES-

LCWF 

Model 

WDEL-

ENS Model 

MIbSCLC 

Model 

Dice similarity 

coefficient 
0.82 0.85 0.89 

Jaccard index 0.74 0.79 0.82 

Sensitivity 0.97 0.91 0.88 

Specificity 0.96 0.93 0.87 

Precision 0.98 0.94 0.89 

 

The extracted features will undergo weight allocation. The 

weights are allocated based on the correlation factor. The 

weakly correlated features are allocated with highest weight. 

The training is performed based on the allocated weights. The 

Feature Weight Allocation Time Levels of the existing and 

proposed models are shown in Table 8 and Figure 12. 

Table 9 represents the accuracy levels of least correlated 

weighted feature vector generation, and Table 10 represents 

the overall comparison of the proposed model with traditional 

models. The proposed model, from the weights allocated to the 

extracted features, generates the least correlated weighted 

feature set. The final feature vector is used to train the machine 

learning model for accurate lung cancer detection. The least 

correlated weighted feature vector generation accuracy levels 

of the existing and proposed models are shown in Table 9 and 

Figure 13. Table 10 presents the overall comparison of the 

proposed model with the traditional models. 

 

 

7. CONCLUSION 

 

Lung cancer is the primary killer of people in several 

regions. Many studies have been proposed as potential 

solutions to this problem, but none of them have worked so far 

since they all use the same approach to the problem of lung 

cancer, which is to divide the data into categories and then 

analyze those categories. Extensive experiments have been 

conducted to enhance segmentation and classification results. 

This motivated us to develop an MRI imaging-based, lung 

cancer diagnostic system. Segmentation refers to the process 

of separating an input image into a collection of visually 

distinct areas, where the union of any two neighboring parts 

does not result in a visually confusing mode. There have been 

many different approaches to segmentation put forth. The field 

of medicine has made extensive use of image segmentation for 

disease diagnosis in recent years. The proposed technology 

provides a new way to analyze MRI scans for the detection of 

lung cancer. This research proposes a Linked Pixel Edge 

Segmentation with Least Correlated Weight Factor using 

machine learning for Lung Tumor Detection. The proposed 

method is effective enough to aid radiologists and doctors in 

the fight against lung cancer, with extremely promising 

segmentation and feature set generation outcomes. The 

proposed model considers the highly weighted feature vector 

set to train the machine learning model. The proposed model, 

when tested on MRI images, generates the most important 

feature set to train the model for accurate lung tumor 

prediction. The proposed model achieves 98.3% accuracy in 

weighted feature set generation. In the future, the proposed 

model can be applied with hybrid optimization techniques that 

reduce the feature set further for enhancing the tumor 

prediction rate. 
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