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Pneumonia is a deadly lung infection which can lead to life-threatening complications if 

left undiagnosed and untreated. Traditional diagnosis depends on radiologists reading 

chest X-rays manually, a time-consuming process prone to human error. Mistakes in 

diagnosis causes delayed or improper treatment and severe health impacts or even fatality. 

Following the growth of deep learning methods, automatic medical image analysis is 

becoming an increasingly potential means to enhance the accuracy and efficiency of 

diagnoses. To tackle these challenges, we propose a deep learning-based model for 

automated pneumonia detection using Convolutional Neural Networks (CNNs). Our 

research leverages the publicly available chest X-ray dataset from Kaggle to train a custom 

CNN model that includes three convolutional layers, batch normalization, dropout 

regularization, and an Adam optimizer. The model achieved an impressive test accuracy 

of 85.74%, showcasing its potential to aid in clinical decision-making. Additionally, this 

study looks into how data augmentation affects performance and considers ways to 

improve the model’s generalization and robustness.  
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1. INTRODUCTION

Pneumonia is an inflammatory infection of the lung induced 

by bacterial, viral, or fungal pathogens, resulting in the 

trapping of fluid within the alveoli and respiratory failure. 

Pneumonia is a serious medical risk, especially in children 

under five years old and elderly with weakened immune 

systems [1]. Pneumonia is one of the leading causes of child 

death, particularly in the developing world, according to the 

World Health Organization (WHO). Despite the medical 

advancements, pneumonia remains a significant global public 

health burden, which necessitates timely and appropriate 

diagnosis for effective intervention. medical imaging, 

particularly chest X-rays, is a standard diagnostic tool used to 

identify pneumonia. Radiologist interpretation, though, is 

subjective, time-consuming, and susceptible to human error, 

particularly in low-resource settings where experienced 

radiologists are not readily available [2]. Moreover, inter-

observer diagnostic discrepancy could lead to variability in 

patient care outcomes [3]. In underserved areas, there is an 

acute dearth of trained radiologists (i.e., one radiologist per 

100,000 people), and thus, AI-based diagnostic tools are an 

essential asset to bridge the gap and offer prompt diagnoses. 

Machine learning and deep learning have become powerful 

tools for medical image analysis, which may make diagnosis 

more efficient, accurate, and accessible [4]. Convolutional 

Neural Networks (CNNs), a deep learning network, have 

outperformed conventional networks in image classification, 

particularly medical imaging. CNNs are able to learn and 

extract useful features from chest X-ray images automatically, 

which can increase the accuracy of pneumonia detection and 

reduce the requirement for expert knowledge. The ability of 

CNNs to process large volumes of medical images efficiently 

makes it a better choice for large-scale pneumonia detection, 

particularly where expert radiologists are limited [5]. Recent 

technological developments in AI-based image processing 

techniques have shown remarkable progress in medical 

diagnosis, thereby decreasing diagnostic blunders and 

enhancing patient outcomes. AI-based models not only aid 

radiologists in decision-making but also provide quick 

diagnosis, allowing early intervention. As large datasets in 

medicine are more readily available, deep learning models can 

revolutionize diagnostic radiology [6]. AI-based applications 

are not limited to other respiratory diseases, either, and 

automated diagnostic tools form an essential component of 

contemporary healthcare. Furthermore, AI-based systems 

have the potential to alleviate the burden on healthcare 

professionals, allowing them to focus on critical cases while 

routine screenings can be automated. The application of CNN-

based models in hospitals leads to cost- and time-saving 

initiatives, such as reducing patient waiting times and 

facilitating quicker decision-making. Second, the application 

of AI on Electronic Health Records (EHR) leads to end-to-end 

analysis of patient history for further enhancing diagnostics 

[7]. This paper highlights the importance of integrating AI into 

the healthcare industry, debating real-world application issues, 

and proposing changes to existing automated diagnostic 

systems [8]. Ethical concerns and regulatory approvals for AI-

based medical devices are also addressed, highlighting the 

importance of transparency and accountability in automated 

healthcare solutions. 
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2. METHODOLOGY 

 

2.1 Dataset 

 

The data used here is taken from Kaggle’s publicly released 

chest X-ray dataset. It comprises labelled chest X-ray images, 

which are divided into "pneumonia" and "normal" categories. 

The dataset is predominantly made up of paediatric patient X-

rays, and thus it is most suitable for the detection of pneumonia 

in younger patients [5].  

The dataset description can be explained in Table 1, which 

is separated into three segments: 

• Training set: For model learning. 

• Validation set: For hyperparameter tuning and avoiding 

overfitting. 

• Test set: Used for estimating final model performance. 

 

Table 1. Dataset description 

 

Class 
Training 

Set 

Validation 

Set 

Test 

Set 

Total 

Images 

Normal 1341 8 234 1583 

Pneumonia 3875 8 390 4273 

Total 5216 16 624 5856 

 

The database has a lot of images, which provide an 

extremely well-balanced collection of pneumonia and normal 

ones. The database is a great benchmark to train machine 

learning models, and having a validation set guarantees that 

overfitting is avoided. There are frontal-view chest 

radiographs, which are the most widely used radiographs in 

clinical diagnosis. In the future, studies can investigate the use 

of multi-view X-rays in an attempt to further improve 

diagnostic performance.  

To make the dataset robust, data was collected from 

different medical sources to make sure that there are several 

imaging conditions like different scanners, different 

resolutions, and different patient positions. Quality 

verification of the images was done to avoid poor-quality or 

corrupted images which might have an adverse effect on 

model performance. In addition to this, metadata like patient 

age, gender, and medical history were also taken into account 

in order to check for possible biases in the dataset and provide 

unbiased model predictions. 

 

2.2 Preprocessing 

 

In order to enhance model performance and globalizability, 

the following preprocessing methods were utilized: 

 

• Grayscale conversion: The transformation of color to 

grayscale removed color data but retained critical 

structural information, lowering computational 

complexity. 

• Resizing: The pictures were resized to 200×200 pixels so 

that the dataset has homogeneity, the same input size is 

provided to the CNN model, and available memory space 

is saved. 

• Normalization: Normalized pixel values to 0 to 1 to 

normalize the data, improve training convergence and 

numerical stability. 

• Denoising: Median and gaussian filtering noise reduction 

were utilized to remove unnecessary noise to generate 

enhanced image detail and more accurate feature value. 

• Edge detection: Sobel or canny edge-detection filters of 

edge-enhancement have been used for the purpose of 

emphasizing lung details and characteristic anatomic 

landmarks being of importance for the detection of 

pneumonia. 

• Histogram equalization: The image contrast was adjusted 

to provide an equal brightness and enhanced feature 

visibility such that abnormalities would be readily 

identified by the model. 

• Segmentation: Segmentation of the lung region was done 

to remove the redundant background information and 

focus on the important anatomical structures used in the 

diagnosis of pneumonia. 

• Data augmentation: A number of augmentation 

techniques were utilized to enhance generalization and 

robustness of the model: 

• Rotation: The views were rotated randomly over a limited 

angle to mimic the orientation variations of real-world X-

rays and enhance generalizability. 

• Zooming: Random zooming actions were performed to 

bring about small size fluctuations to images in such a 

manner that the model cannot learn size features. 

• Width and height shift: Small shifts along the x and y axes 

were employed to bring about spatial variation as well as 

to take care of small positional discrepancies on imaging. 

• Flipping: Horizontal flipping of images was used to 

augment data diversity and make the model insensitive to 

image orientation [9]. 

• Contrast adjustments: Contrast of the images was 

manipulated to mimic varying exposure and imaging 

conditions and also to improve robustness. 

• Brightness adjustments: Comprised brightness 

adjustments to counteract variation in X-ray imaging 

environments. 

• Elastic transformations: Deformable transformations 

were applied to impose small geometric distortions, 

mimicking real-world variation in medical images. 

Through the use of these preprocessing methods, the model 

is less sensitive to real X-ray image variation, thus more 

clinically applicable and diagnostic precise. The overall 

preprocessing and image processing pipeline is illustrated in 

Figure 1. 

 

2.3 Model architecture 

 

The proposed CNN model consists of multiple layers that 

progressively extract the right features from chest X-ray 

images to enable efficient classification between pneumonia 

and normal cases. The detailed architecture of the CNN-2D 

model is illustrated in Figure 2. 

 

• Conv2d layer 1: It consists of 256 filters of size 5×5 and 

applies RELU as the activation function. It detects simple 

features such as edges and textures. Max pooling is 

applied to compress spatial dimensions and retain 

important features, and batch normalization stabilizes 

learning by normalizing activations. 

• Conv2d layer 2: 64 filters with kernel size 3×3, RELU 

activation, and max pooling. The layer captures the 

intermediate-level features, e.g., lung structure, while 

batch normalization assists in delivering smoother 

training convergence. 

• Conv2d layer 3: composed of 512 filters with a kernel 
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size of 3×3, this layer captures high-level and complex 

features of the image. The use of max pooling also 

reduces computational cost without affecting the 

important information, while batch normalization 

improves stability. 

Figure 1. Overview of the proposed CNN-based image processing pipeline 

Figure 2. Architecture of CNN model 

• Flatten layer: It reshapes the high-dimensional feature

maps that are extracted to a single dimension as a one-

dimensional vector for proper processing within the fully

connected layers.

It is trained with binary cross-entropy as the loss function, 

which is best suited for binary classification tasks. Adam 

optimizer with a learning rate of 0.0001 is employed to allow 

efficient weight updates and stable convergence during 

training [4]. Such optimizations as a whole improve the 

predictive capacity as well as the stability of the model, and 

therefore, it becomes appropriate for real-world clinical use. 

2.4 Model compilation and training 

The CNN model was trained with the pre-prepared dataset, 

implementing different optimization methods to enhance 

accuracy. Training consisted of passing input images through 

stacks of convolutional layers, extracting hierarchical features, 

and classifying them into pneumonia or normal. Every training 

iteration (epoch) updated the weights of the model using back 

propagation and gradient descent was described in Table 2. 

• Batch size: A batch size 10 was adopted to balance

between memory efficiency and better performance of

models. A smaller batch size allows finer updates in the

model's parameters, but a larger batch size helps speed up

computation. 

• Epochs: The model was trained for 15 epochs to be sure

enough that it would have reached convergence but

would not be overfitting too much. The era was as

required in the learning curve to provide optimal

performance by the model.

• Early stopping: Applied to terminate training when

validation accuracy stopped improving for three

consecutive epochs. This technique prevents unnecessary

training cycles, which reduces computational cost and

overfitting [10].

• Loss function: Binary cross-entropy was used to quantify

classification errors. The loss function is optimally

applied in binary classification problems, ensuring a

smooth gradient descent process.

• Optimizer: Adam optimizer with a learning rate of 0.0001

was used due to its adaptive learning. It adjusts the

learning rate automatically based on previous gradients,

resulting in quicker convergence [5].

• Data augmentation during training: Random flipping,

rotation, zooming, shifting, and scaling were some of the

methods used to enhance dataset diversity and model

robustness.

• Final test accuracy: The trained model achieved a test

accuracy of 85.74%, demonstrating its effectiveness in
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pneumonia classification. 

 

Table 2. Hyperparameters values 

 
Hyperparameter Value 

Learning rate 0.0001 

Batch size 10 

Optimizer Adam 

Epochs 15 

Loss function Binary cross-entropy 

 

2.5 Evaluation 

 

The F1 score, Receiver Operating Characteristic (ROC) 

curve, accuracy matrix, and Area Under the Curve (AUC) are 

applied for segmentation performance assessment. Evaluation 

metrics also define the effectiveness of classifiers. 

 

2.6 Accuracy metrics 

 

An overall assessment of the performance of model on each 

class. Accuracy is determined by dividing the number of 

correct predictions by the total number of predictions made. 

For a complete assessment, recall, F1 score and precision are 

also calculated. A mathematical representation of accuracy is 

given below: 

 

𝐴𝐶 =
(TP +  TN)

(TP +  FP +  FN +  TN)
 (1) 

 

where, 

• TP (True Positive) is correctly identified positive cases. 

• TN (True Negative) is correctly identified negative cases. 

• FP (False Positive) is incorrectly classified negative cases 

as positive. 

• FN (False Negative) is incorrectly classified positive 

cases as negative. 

The following are the classifier performance measures 

using evaluation metrics. 

 

TPR = (Sensitivity) 
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (2) 

 

TNR = (Specificity) 
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (3) 

 

FPR =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 (4) 

 

where, TPR is True Positive Rate, TNR is True Negative Rate, 

and FPR is False Positive Rate. 

 

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (5) 

 

Recall =
𝑇𝑃

𝑇𝑁 + 𝐹𝑁
 (6) 

 

G − Mean = (∏ Recall k ) 
K = 1 

(7) 

 

Here, mm is the total number of categories; GG denotes the 

accuracy ratio of the TNR to the FPR. 

The mean average precision (mAP) of the algorithm 

measures Precision, Recall, and Mean. mAP is used to 

evaluate image processing tasks and detection tasks. 

In terms of results, accuracy assesses the ratio of 

appropriately classified examples, while recall measures the 

proportion of correctly identified instances to the total relevant 

cases. 

The F1 score is yet a crucial performance measure, since it 

provides a balance between precision and recall, which can be 

said to be more informative. The formula for calculating it: 

 

F1 Score =
2 × Precision × Recall

Precision + Recall
 (8) 

 

2.7 ROC 

 

ROC curve is useful in assessing classification performance 

and addressing issues related to computational modeling. 

Figure 3 represents the connection between the false positive 

rate and the true positive rate at different thresholds. 

 

 
 

Figure 3. Receiver operating characteristics FP vs. TP 

 

The model with the highest true negative rate detected the 

bad cases, whereas the model that includes the highest true 

positive rate classified the healthy cases. To reduce both 

training and testing times, an overall assessment is made using 

the Matthews Correlation Coefficient (MCC). MCC classifies 

only tough datasets reliably. Unlike accuracy, which can be 

misleading in imbalanced datasets, MCC takes into account all 

classification results; that is, true negatives, true positives, 

false negatives, and false positives. Its values range between -

1 lowest classification to +1 perfect classification; 0 denotes 

random predictions. The combination of hidden layers, 

number of epochs and hidden nodes, dropout rate, activation 

functions, learning rate as well as batch size impact model 

optimization.  

Hyperparameter tuning – changing epochs, learning rate, 

hidden layers and activation functions in a systematic way – 

increase efficiency and performance. The model is adjusted so 

that its accuracy will be improved and the average loss will be 

reduced. 

An experimental analysis was conducted on Google 

Collaboratory using the research tools developed by Google. 

This environment is equipped with Python programming and 

several pre-installed research libraries. The experiment 

utilized Python 3 Google Compute Engine GPUs with RAM 

of 12.72 GB and disk space of 68.40 GB. Mounting Google 

Drive transferred the dataset, and the platform's robust 

computational resources trained the model. A Python program 

that turned images into arrays and fetched them from the 

directory was aided by this. 

All the label images are converted with Scikit-learn's 

Python label binarization feature and are taken from a folder 
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for processing. The train-test-split function splits the dataset 

into training and testing datasets. The deep learning CNN was 

optimized using Adam, thereby overcoming sparse gradient 

noise. 

 

2.8 Performance metrics 

 

For model performance evaluation, accuracy was 

computed: Accuracy: computes the overall accuracy of the 

predictions. Accuracy is the proportion of correctly predicted 

cases to the number of cases being tested. It provides a critical 

measure of the ability of the model to distinguish between 

pneumonia and normal cases. The model performed with an 

accuracy of 85.74%, reflecting high reliability in classification 

[11]. But accuracy does not give us information about false 

positive and false negative rates, which can be investigated in 

future research using other measures like precision and recall. 

 

 

3. RESULTS AND DISCUSSION 
 

3.1 Results 

 

Model performance: Train accuracy: 89.84%; Test 

accuracy: 85.74%. 

The model performed well, with 89.84% training accuracy 

and 85.74% test accuracy. The learning curve indicated 

consistent improvement in training accuracy, while validation 

accuracy did not fluctuate, reflecting that the model was 

successful in evading overfitting. The addition of data 

augmentation methods helped in improved generalization, 

enabling the model to generalize well to unseen images [12-

14]. The performance of the CNN model indicates its viability 

in assisting automated pneumonia diagnosis, especially in 

medical environments where there is a need for quick and 

accurate detection. The training and validation accuracy was 

described in Figure 4 in detail. 

 

3.2 Discussion 

 

The CNN model effectively handles chest X-ray images and 

labels them as "pneumonia" or "normal" categories. The 

system receives an input X-ray image and processes it, 

generating an output label: 

Pneumonia caption: It signifies the existence of pneumonia 

in the image. 

Normal caption: It confirms the absence of pneumonia. the 

output labels of chest X-ray images can be observed in Figure 

5. 

The machine labeling reduces diagnostic errors and enables 

quicker pneumonia detection, which is highly beneficial for 

clinical use. Owing to its high accuracy, the model has the 

potential to assist radiologists in more informed decisions, 

reducing the workload for medical personnel, and increasing 

the availability of pneumonia diagnosis in rural areas [15-17]. 

Potential enhancements in the future may include adding 

explainability functionality, for instance, heatmaps pointing 

out the damaged areas within the X-ray images, in order to 

facilitate the interpretability of model outputs. In general, the 

CNN-based pneumonia detection model offers a stable and 

effective solution for the detection of pneumonia from chest 

X-ray images. Its application in hospitals would improve early 

detection and timely management, ultimately leading to better 

patient outcomes and lower mortality rates [18-21].

 

 
 

Figure 4. Training and validation accuracy curves over epochs 

 

 
 

Figure 5. Model output showing classification of a chest X-ray as a classification result of normal and pneumonia 
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A critical limitation of deep learning models in the medical 

domain is their perceived "black box" nature. To mitigate this, 

the Gradient-weighted Class Activation Mapping (Grad-

CAM) technique was used to provide interpretability to the 

Xception model’s predictions. Grad-CAM heatmaps were 

generated for representative images across each KL grade. 

Grad-CAM was used to visualize model attention on two 

correct and two incorrect classifications. In correctly classified 

cases, heatmaps aligned with clinically relevant lung regions 

as confirmed by a radiologist. Misclassified cases showed 

diffuse or irrelevant focus, highlighting the need for better 

contextual learning.  

 

 

4. CONCLUSIONS 

 

The study was able to create a deep learning pneumonia 

detection model from chest X-ray images using CNN. It 

trained and tested the model using Kaggle chest X-ray data, 

whose test accuracy was 85.74%. The primary performance 

measure was accuracy, i.e., the general capability of the model 

to classify pneumonia and normal ones correctly. The findings 

state that the proposed model is suitable to detect pneumonia 

and can also support radiologists clinically by diminishing 

time taken during diagnosis and eradicating the probability of 

human errors. Using data augmentation also made the 

generalization of the model better as it avoided overfitting the 

data and delivered an enhanced performance with unseen 

information. The proposed system classifies the X-ray images 

effectively in the categories "pneumonia" and "normal," thus 

presenting an efficient resource in supporting clinical 

diagnosis. Notwithstanding its excellent performance, the 

research does concede some limitations. Accuracy being a 

general indicator of correctness, the work for the future can 

further look at further enhancements such as the inclusion of 

explainability methods, the hyperparameter optimization, and 

enlarging the dataset for better robustness and suitability in 

real clinical settings of the model. 

Though the existing model is effective in detecting 

pneumonia, a number of improvements can be made for even 

better efficiency: Integration with hospital information 

systems: It can be applied as a diagnostic assistance tool in 

hospitals to help radiologists come to decisions in real-time. 

Expansion of dataset: training the model on bigger and more 

heterogeneous datasets, including images from various 

sources, can increase its generalizability. Ulti-class 

classification: generalizing the model to classify different lung 

diseases other than pneumonia can make it more universal for 

clinical use. Tuned hyperparameters: more work with varying 

architectures, optimizers, and regularization methods can 

further refine model precision and stability. By filling in these 

gaps, the pneumonia detection system can be built into a more 

accurate, interpretable, and clinically relevant AI-based 

diagnostic system. 
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