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Human motion recognition with high accuracy is important for many applications ranging 

from healthcare systems and sports analysis to smart environmental setups. However, 

traditional methods can be sensitive to sensor noise, data variability, and real-time 

processing requirements. This research introduces a new multi-sensor data fusion 

framework integrated with deep learning to improve human movement recognition for 

smart decision support systems. This paper presents an innovative Bayesian Convolutional 

Neural Network with a Long Short-Term Memory (BCNN-LSTM) framework for temporal 

information with data from different sensors. Multi-level fusion including feature level and 

decision level proposes a contrasting approach for combining sensor data that increases 

robustness and generalizability. The experimental results indicate that our proposed BCNN- 

LSTM model provides better performance than the traditional approaches, with 8% to 10% 

improvements in classification accuracy, compared with the Support Vector Machine, 

LSTM, CNN models, and Bayesian LSTM. Future enhancement includes AI integration for 

enhanced motion recognition precision and generalized. 
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1. INTRODUCTION

Data fusion: Multi-source or multi-sensor data fusion [1] is 

defined as the process of integrating data from multiple 

sensors in case this data is uncertain and/or ambiguous. This 

is similar to how living organisms use different senses to act 

at their surroundings, reflect on the data and make informed 

decisions. This has attracted considerable attention in the 

research community because of the growing demand for 

intelligent systems. Multi-sensor data fusion aims to create a 

more accurate, robust, and complete interpretation of data by 

merging input from several sensors together as opposed to 

relying on one sensor type alone. Most of the recent published 

works in this domain are application-driven, exploring areas 

like environmental monitoring [2] and object detection [3]. 

Nonetheless, there still remains no generally accepted 

algorithmic structure in the field, which is of utmost 

importance for enabling multi-sensor data fusion to become a 

recognised scientific discipline. 

Modern life is heavily impacted by technology, and people 

reliant on smart devices. Big data is produced increasingly due 

to the development of intelligent technologies [4, 5]. A major 

case of this data is Human Motion Analysis (HMA) which is 

significant to real-time applications. It has become 

increasingly complex to analyze human motion with the surge 

in connected sensors and ubiquitous computing. The tracking 

of user actions is especially useful in the area of assistive 

technology communities where, by having a deeper 

understanding of user behavior can enhance interaction with 

smart environments and offer improved user experience. 

HMA has become an essential research direction with 

applications in many fields like health-care [5], fitness 

tracking, surveillance, smart living and sports [6]. Human 

Activity Recognition (HAR) from video has already proven 

useful in multiple areas [7, 8]. Recent technological 

innovations have greatly improved sensor devices, which has 

turned these tools into essential devices in human motion 

sciences related to healthcare, behavioral analysis, 

rehabilitation, and assisted living. Monitor sedentary 

behaviour with a sensor-based approach: Prolonged sitting, 

especially in a workplace or academic setting, has been linked 

to a variety of health risks, including obesity, diabetes, and 

cardiovascular diseases. Moreover, human action recognition 

(HAR) has found its way into the gaming industry, with 

systems such as Microsoft Kinect showcasing the impact of 

motion recognition on gaming experiences [9]. These high-

tech developments also show the transformative potential of 

HAR beyond health and lifestyle to gaming and other 

interactive scenarios. In recent years, wearable sensors, 

including accelerometers, gyroscopes, and magnetometers, 

have gained popularity in HAR research since they are 

convenient, effective, and low-cost [10].  

However, the absence of a unified theoretical basis and 

standardized algorithms still poses a key difficulty for 

scientists in the area of multi-source data fusion. A general 

fusion algorithm with a wide range application is important in 
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promoting this research direction, allowing for integration of 

sensor fusion and model for sensor interaction and awareness. 

In many real-world applications, data fusion is used to collect 

multi-sensor information in order to increase the efficiency of 

decision making and enhance the overall system. In an effort 

to fill this gap, this work provides a hybrid Bayesian CNN-

LSTM model to improve multi-sensor data fusion in the 

context of human activity recognition. This research aims to 

contribute towards the progression of multi-sensor data fusion 

as well as providing a solid system framework for human 

activity recognition and leading to enhancement in several 

applications. 

Research Contributions are discussed below: 

• Proposed a Bayesian model of a CNN-LSTM

framework by attempting to maximize the amount of

sensors recorded as features such as accelerometers,

gyros, IMUs, cameras, etc.

• Advanced techniques in deep learning are studied such

as CNNs, RNNs, and transformers that increase the

accuracy and reliability of human motion analysis.

• Examine techniques of fusion such as feature-level and

decision-level fusion in order to identify the best

analysis of human activities.

The paper is organized in the following way: Section 2 

describes goals, scope, and some concepts of multi-sensor data 

fusion. Section 3 analyses current decision-making 

frameworks based on multi-sensor data fusion, particularly for 

human activity recognition and CNN-LSTM model 

representation. Section 4 presents the experimental results, and 

a comparison of the proposed model with three existing 

models that applied multi-sensor data fusion. Lastly, Section 5 

concludes the research work and summarizes potential future 

research pathways in this area. 

2. RELATED WORK

Recently, multi-sensor data fusion techniques have been 

investigated within the purpose of wearable computing mainly 

in the contexts of health monitoring health care, activity 

trackin, and ambient intelligence. Although works [1-3] 

highlighted component level fusion elements to improve 

recognition accuracy, they neglect important motion 

recognition issues such as; sensor noise, misalignment 

mapping multiple sensors, and heterogeneous sampling rates. 

Our work improves on existing deep learning sensors-based 

studies by providing temporal model and probabilistic 

reasoning in a comprehensive deep learning approach aimed 

at HAR. 

Sensor data is one of the most critical factors that determine 

the performance of a human motion analysis system. IMUs, 

gyroscopes, and accelerometers are among the most frequently 

used wearable sensors as they are convenient and accurate. 

Apart from body-worn sensors, ambient sensors such as 

cameras, depth sensors, and millimeter-wave radars have been 

incorporated in motion recognition systems to improve spatial 

reasoning. For instance, Yadav et al. [11] presented a multi-

modal human activity recognition (HAR) system that 

integrates vision and inertial sensors to enhance the accuracy 

of recognition by utilizing complementary data across diverse 

sources. Similarly, Chen et al. [12] highlighted the need for 

data fusion from sensors to mitigate the problems of single-

modality systems, including occlusion in cameras or drift in 

IMUs. 

There are three levels of fusion approaches are data-level, 

feature-level, and decision-level fusion for multi-sensors 

fusion. Data-Level Fusion: Raw data from different sensors 

are fused before any preprocessing and feature extraction. May 

retain information from different sensors but can be 

computationally intense. This fusion level structure includes 

three sub-fusion levels: Feature-level: application of feature 

extracted from each sensor when they are fused together to 

build a complex representation and then consumed by the deep 

learning model; It eliminates a lot of dimensions while 

retaining relevant information. Decision-Level Fusion: In this 

approach, each sensor's data is processed independently by the 

classifiers, and the outputs are subsequently combined using 

ensemble methods or voting strategies. Wang et al. an LSTM-

based deep learning framework combined with CNN is used 

for wearable sensor-based HAR, reaching a better accuracy 

than that achieved through feature-level fusion [13]. Ahmed et 

al. [14] have introduce a model of selection of features to 

improve smartphone-based HAR, in which the most important 

information is fused. However, the studies revoke emphasis to 

afford esteem to the proper balance while considering 

computational constraints and application requirements. 

Device-bound approaches consist of attaching sensors to 

objects to recognise activities based on interactions with these 

objects. This method has the same limitations of wearable 

sensors in that the user has to make contact with some 

particular marked object. On the other hand, device-free 

technologies (i.e. environment-based or dense sensing sensors) 

do not need to have people wear or carry any devices. Then, 

those sensors such as RFID, Wi-Fi, ZigBee, microwave 

sensors are placed in the environment for their motion and 

behaviors detection and analysis. Additionally, Zhang et al. 

[15] used XGBoost to classify five indoor activities, achieving

84.19% accuracy.

Ahmed et al. [16] proposed an enhanced human activity 

recognition (HAR) model that leverages smartphone sensor 

data combined with a hybrid feature selection method. The 

study integrates filter and wrapper-based feature selection 

techniques to optimize classification accuracy while reducing 

computational overhead. Their approach effectively enhances 

HAR performance across multiple activity types. However, 

the study primarily focuses on traditional machine learning 

techniques and does not extensively explore deep learning 

models, which limits its applicability to more complex activity 

recognition tasks. Additionally, its performance is highly 

dependent on the quality and positioning of the sensors used 

for data collection. 

Verma et al. [17] conducted a systematic review of artificial 

intelligence (AI) applications in marketing, focusing on how 

machine learning and deep learning models improve customer 

segmentation, sentiment analysis, and personalized marketing 

strategies. The paper provides valuable insights into the impact 

of AI-driven analytics on decision-making in marketing. 

While the study offers a broad overview of AI advancements 

in the field, it lacks practical implementation details and 

empirical evaluations, making it more theoretical than 

application-oriented. Additionally, its focus remains on 

business perspectives rather than the technical intricacies of AI 

model development. 

Wang et al. [18] examined HAR with wearable sensors 

using a hybrid deep learning model that ties CNNs with 

LSTMs together. This benefits the model because it can 

extract spatial and temporal features effectively, resulting in 

recognition accuracy. The model's ability to recognize precise 
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and continuous complex human physical motions makes the 

study useful for real-time application. However, large-scale 

training data and the considerable computational efforts can 

present challenges for implementation on edge devices with 

limited resources. 

Chen et al. [19] provided a comprehensive survey of deep 

learning techniques for sensor-based HAR by analyzing 

various architectures including CNNs, LSTMs, and attention-

based models. The paper discusses critical challenges in HAR, 

including data heterogeneity, sensor variability, and 

computational constraints. While the survey offers a well-

structured literature review, it lacks empirical validation or 

experimental results, making it less practical for researchers 

seeking implementation guidance. Additionally, it does not 

delve into dataset-specific performance benchmarks, which 

would have strengthened its comparative analysis. 

Wang et al. [20] proposed an attention-based CNN model 

for HAR, specifically for weakly labeled sensor data. With the 

attention mechanism, the model can learn to weigh the 

relevant sensor inputs dynamically and improve classification 

accuracy. The authors demonstrate the capability of attention 

mechanism to improve model interpretability and to handle 

data that is sparsely labeled. The authors note that although the 

outcome has benefits in interpretability, this model has the 

drawbacks of needing excessive hyperparameter tuning and 

computationally demanding, which can limit using the model 

in a real-time setting. 

Sansano et al. [21] examined different deep neural network 

architectures for HAR, evaluating CNNs, recurrent neural 

networks (RNNs), and hybrid models. Their study gives an 

extensive comparison of the performance of models across 

datasets, thereby highlighting the positive and negative aspects 

of each approach. The study is particularly valuable in 

understanding the balance between accuracy and 

computational efficiency in HAR applications. However, the 

study does not account for practical implementation 

constraints including latency and power consumption, which 

may be critical for real world applications. 

Xia et al. [22] proposed a hybrid model incorporating 

LSTMs and CNNs for HAR by using CNNs for feature 

extraction and LSTMs for temporal modeling of sequences. 

Their architecture effectively recognizes both periodic and 

non-periodic activities, achieving high classification accuracy 

on benchmark datasets. The study’s major strength lies in its 

ability to integrate spatial and temporal feature learning 

seamlessly. However, the model’s reliance on large labeled 

datasets and its high computational cost present challenges for 

deployment on low-power devices such as smartwatches and 

IoT-based wearables. 

These papers collectively highlight the advancements in 

deep learning-driven HAR, with a particular focus on sensor 

data processing, hybrid model architectures, and practical 

challenges in real-time implementation. Each study offers 

unique contributions, but common limitations such as 

computational complexity, reliance on large datasets, and 

challenges in real-world deployment remain areas for future 

research. 

 

3. PROPOSED METHOD 

 

A Bayesian CNN-LSTM framework usually integrates a 

Convolutional Neural Network (CNN) and a Long Short-Term 

Memory (LSTM) network within a Bayesian framework to 

capture both spatial and temporal dependencies in data while 

accounting for uncertainty in the parameters of the model. 

Bayesian approaches are advantageous in scenarios where 

uncertainty estimation is crucial, such as in medical diagnosis, 

financial predictions, or any other application where model 

confidence is essential.  

This paper proposes a Bayesian CNN-LSTM architecture 

that combines uncertainty estimation and deep temporal 

learning. Build Bayesian convolutional layers by using Monte 

Carlo Dropout to approximate Bayesian inference, during both 

training and inference. Model stick with a gaussian prior 

distribution over the weights and sample the outputs of the 

model multiple times so could obtain a distribution over 

predictions. The LSTM layers of our model are also 

regularized using dropout, capturing long-range dependencies 

whilst propagating uncertainty. This hybrid model balances 

accuracy and model uncertainty, allowing it to be useful in 

real-world sensor environments. 

Building a Bayesian CNN-LSTM model for Human 

Activity Recognition (HAR) is an interesting and challenging 

project. HAR involves classifying activities performed by 

humans based on sensor data, often collected from 

accelerometers, gyroscopes, and other sensors. A Bayesian 

approach can be beneficial in providing uncertainty estimates 

and robustness in recognizing various activities. Here's a 

general outline for such a project: Then the model design is 

discussed in the following subsections: 

 

3.1 CNN architecture 

 

A Convolutional Neural Network (CNN) architecture for 

spatial feature extraction in the context of HAR can be 

described mathematically by specifying the operations in each 

layer. There are various layers in CNN model, proposed 

framework is constructed with 7 layers includes input layer, 

convolutional layer, activation layer, pooling layer, flatten 

layer, dense layer, and output layers. The components of a 

CNN architecture using mathematical notations are as follows:  

Input Layer: Consider the input data with batch size, 

number of channels, height, and width. 

Convolutional Layers: Suppose a single convolutional layer 

with K filters of size F and stride S. The convolutional 

operation can be expressed as: where: 𝒁𝒊 is the output feature 

map for the i filter, 𝝈 is the ReLU activation function, 𝑾𝒊𝒋𝒑𝒒 

is the weight for the i-th filter at position (𝒑, 𝒒) of the j-th 

channel, 𝑿𝒊, 𝒎, 𝒏 is the input data at position (𝒎, 𝒏) of the i-

th channel, and bi is the bias term for the i-th filter.  

Activation Function: Used a non-linear activation function, 

such as ReLU (Rectified Linear Unit), element-wise to the 

output of the convolutional layer as shown in Eq. (1). 

 

𝐴𝑖 = 𝜎(𝑍𝑖) (1) 

 

where, Ai is the activated feature map. 

Pooling Layers: Introduced pooling layers to down sample 

the spatial dimensions as shown in Eq. (2). 

 

𝑃𝑜𝑜𝑙𝑖𝑛𝑔 (𝑃) = 𝑃𝑜𝑜𝑙𝑖𝑛𝑔(𝐴𝑖) (2) 

 

Flatten Layer: Flatten the output of the last pooling layer to 

prepare it for fully connected layers as shown in Eq. (3). 

 

𝐹𝑙𝑎𝑡𝑡𝑒𝑛(𝐹) = 𝐹𝑙𝑎𝑡𝑡𝑒𝑛(𝑃) (3) 

 

Fully Connected (Dense) Layers: Assume a single fully 
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connected layer with M neurons as shown in Eq. (4). 

𝑈 = 𝜎(𝑊𝑓 ⋅ 𝐹 + 𝑏𝑓) (4) 

Here, U is the output from the fully connected layer, 𝑊𝑓 is

the weight matrix and bf is the bias term. Output Layer: Let's 

assume a softmax activation function, which is appropriate for 

multi-class classification. Here, 𝑌̂  is the predicted 

probabilities for each class as shown in Eq. (5). 

𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑌̂) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑈) (5) 

This mathematical model represents a CNN architecture for 

spatial feature extraction in human activity recognition. 

Adjustments and extensions are made based on the specific 

requirements of the dataset in the code. Additionally, complex 

architectures involving multiple convolutional and pooling 

layers, dropout, and batch normalization are explored to 

improvise the model's capacity to capture features 

3.2 Model architecture of Long Short-Term Memory 

Incorporate an LSTM network to identify temporal 

dependencies present in the sequential sensor data. LSTMs is 

suitable for representing and modeling the time evolution of 

activities. The LSTM network designed for capturing temporal 

dependencies in the context of Human Activity Recognition. 

The LSTM network is particularly useful for handling 

sequential data and capturing long-term dependencies. Model 

use mathematical notations to describe the operations within 

an LSTM cell. 

At a time  𝑡 , the interactions of an LSTM cell can be 

expressed through a set of equations, including the input gate 

and the output gate, as expressed below. The gates help control 

information flow, which results in remembering or forgetting 

information over an interval of time. Let us consider a 

sequence of input vectors 𝑋 =  (𝑥1, 𝑥2, . . . , 𝑥𝑇)  where 𝑇  is

denoting the length of the sequence, and where each xt denotes 

the input vector at time step 𝑡. Each LSTM cell consists of 

three main gates (input gate, forget gates, and output gates) 

and a cell state. Consider Hidden state at given time as 

ℎ𝑡 , 𝑐𝑒𝑙𝑙 𝑠𝑡𝑎𝑡𝑒 𝑐𝑡 , 𝑖𝑡 is an input gate activation, 𝑓𝑡 is the forget

gate activation at given time t, output gate activation is 

𝑜𝑡 , 𝑎𝑛𝑑  𝑔𝑡  is the candidate cell state at given time t. The

LSTM equations for a single given time step t is given by: An 

input gate and an output gates as shown in Eqs. (6) to (11). 

𝑖𝑡 = 𝜎(𝑊𝑖𝑖 ⋅ 𝑥𝑡 + 𝑏𝑖𝑖 + 𝑊𝑖 ⋅ ℎ𝑡 − 1 + 𝑏𝑖) (6) 

𝑜𝑡 = 𝜎(𝑊𝑖𝑜 ⋅ 𝑥𝑡 + 𝑏𝑖𝑜 + 𝑊𝑜 ⋅ ℎ𝑡 − 1 + 𝑏𝑜) (7) 

The forget gate is given below: 

𝑓𝑡 = 𝜎(𝑊𝑖𝑓 ⋅ 𝑥𝑡 + 𝑏𝑖𝑓 + 𝑊𝑓 ⋅ ℎ𝑡 − 1 + 𝑏𝑓) (8) 

The candidate cell state and update are given below: 

𝑔𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑖𝑔 ⋅ 𝑥𝑡 + 𝑏𝑖𝑔 + 𝑊𝑔 ⋅ ℎ𝑡 − 1 + 𝑏ℎ𝑔) (9) 

𝑐𝑡 = 𝑓𝑡 ⋅ 𝑐𝑡 − 1 + 𝑖𝑡 ⋅ 𝑔𝑡 (10) 

The hidden state update is shown below: 

ℎ𝑡 = 𝑜𝑡 ⋅ 𝑡𝑎𝑛ℎ(𝑐𝑡) (11) 

Here 𝜎 denotes the sigmoid activation function, 𝑊𝑖𝑗𝑎𝑛𝑑 𝑏𝑖𝑗

are weight matrices and bias terms for the respective gates, and 

tanh denotes the hyperbolic tangent activation function. A 

simple LSTM network for capturing temporal dependencies in 

the context of HAR A mathematical notation is employed 

throughout this section to represent the LSTM architecture. 

Let assume a sequence of input vectors 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑇),
where 𝑇 is the length of the sequence and 𝑥𝑡 is an input vector

at 𝑡 time steps. Layer 1 is with 64 hidden units with dropout 

rate, for the time step 𝑡, the LSTM Eqs. (12) to (16) are, 

𝑖𝑡1 = 𝜎(𝑊𝑖𝑖1 ⋅ 𝑥𝑡 + 𝑏𝑖𝑖1 + 𝑊ℎ𝑖1 ⋅ ℎ𝑡 − 1 + 𝑏ℎ𝑖1) (12) 

𝑓𝑡1 = 𝜎(𝑊𝑖𝑓1 ⋅ 𝑥𝑡 + 𝑏𝑖𝑓1 + 𝑊ℎ𝑓1 ⋅ ℎ𝑡 − 1
+ 𝑏ℎ𝑓1)

(13) 

𝑔𝑡1 = 𝑡𝑎𝑛ℎ(𝑊𝑖𝑔1 ⋅ 𝑥𝑡 + 𝑏𝑖𝑔1 + 𝑊ℎ𝑔1 ⋅ ℎ𝑡 − 1
+ 𝑏ℎ𝑔1)

(14) 

𝑐𝑡1 = 𝑓𝑡1 ⋅ 𝑐𝑡 − 1 + 𝑖𝑡1 ⋅ 𝑔𝑡1 (15) 

𝑜𝑡1 = 𝜎(𝑊𝑖𝑜1 ⋅ 𝑥𝑡 + 𝑏𝑖𝑜1 + 𝑊ℎ𝑜1 ⋅ ℎ𝑡 − 1
+ 𝑏ℎ𝑜1)

(16) 

LSTM Layer 2 is having 32 hidden units with drop rate, for 

time step t, the LSTM equations from (17) to (22) are given: 

𝑖𝑡2 = 𝜎(𝑊𝑖𝑖2 ⋅ ℎ𝑡1 + 𝑏𝑖𝑖2 + 𝑊ℎ𝑖2 ⋅ ℎ𝑡 − 1
+ 𝑏ℎ𝑖2)

(17) 

𝑓𝑡2 = 𝜎(𝑊𝑖𝑓2 ⋅ ℎ𝑡1 + 𝑏𝑖𝑓2 + 𝑊ℎ𝑓2 ⋅ ℎ𝑡 − 1
+ 𝑏ℎ𝑓2)

(18) 

𝑔𝑡2 = 𝑡𝑎𝑛ℎ(𝑊𝑖𝑔2 ⋅ ℎ𝑡1 + 𝑏𝑖𝑔2 + 𝑊ℎ𝑔2 ⋅ ℎ𝑡 − 1
+ 𝑏ℎ𝑔2)

(19) 

𝑐𝑡2 = 𝑓𝑡2 ⋅ 𝑐𝑡 − 1 + 𝑖𝑡2 ⋅ 𝑔𝑡2 (20) 

𝑜𝑡2 = 𝜎(𝑊𝑖𝑜2 ⋅ ℎ𝑡1 + 𝑏𝑖𝑜2 + 𝑊ℎ𝑜2 ⋅ ℎ𝑡 − 1
+ 𝑏ℎ𝑜2)

(21) 

ℎ𝑡2 = 𝑜𝑡2 ⋅ 𝑡𝑎𝑛ℎ(𝑐𝑡2) (22) 

Fully connected layer is having 32 hidden units with drop 

rate, for time step t, the fully connected layer is given by Eq. 

(23).  

𝑈𝑡 = 𝜎(𝑊𝑓𝑐𝑡 ⋅ 𝐹𝑙𝑎𝑡𝑡𝑒𝑛(ℎ𝑡2) + 𝑏𝑓𝑐𝑡) (23) 

Finally, output layer is using Softmax activation function 

for multi class classification. The output layer Eq. (24) is  

𝑌𝑡̂ = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑈𝑡) (24) 

If 𝑈 =  {𝐴1, … , 𝐴𝑛} denotes the universe of variables, then

the joint probability distribution 𝑃(𝑈)  is simply the 

multiplicative factors of all the probability distributions in the 

network. As shown in the Eq. (25). 

𝑃(𝑋, 𝑒) = ∑ 𝑃(𝑈, 𝑒)𝑒
𝑥=0 (25) 

Replace few layers in the CNN with LSTM and Bayesian 
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counterparts. This involves using probabilistic distributions 

for all the weights of the layers. For example, Bayesian 

Convolutional Layers and Bayesian LSTM layers. Introducing 

Bayesian counterparts to selected layers in a CNN and LSTM 

network involves treating the weights as probability 

distributions. This introduces uncertainty into the model and 

allows for Bayesian inference during training and prediction. 

Below, I'll describe how to introduce Bayesian counterparts to 

the selected layers. The approximate predictive distribution for 

testing as shown in Eqs. (26) and (27). 

𝐸𝐿𝐵𝑂(𝜃) =  𝑍 𝑞(𝜃) 𝑙𝑜𝑔 𝑝(𝑦 | 𝑓𝜃(𝑥)) 𝑑𝜃 
− 𝐾𝐿 [𝑞(𝜃)𝑘 𝑝(𝜃)

(26) 

𝑞(𝑦 | 𝑥)  =  𝑍 𝑞(𝜃)𝑝(𝑦 | 𝑓𝜃(𝑥))𝑑𝜃 (27) 

A common choice is a normal distribution as shown in Eq. 

(28). 

𝑊𝑖𝑗𝑝𝑞 ∼ 𝑁(𝜇𝑖𝑗𝑝𝑞, 𝜎𝑖𝑗𝑝𝑞2) (28) 

Here, 𝜇𝑖𝑗𝑝𝑞 is the mean and 𝜎𝑖𝑗𝑝𝑞  is the standard deviation.

3.3 CNN-LSTM based model 

In the first step, the CNN was used to extract the spatial 

features which contained 2 convolution layers with 32 and 64 

output channels respectively. For the L2Reg, a regularization 

cost of λ was set to 0.10. For the dropout method, the 

mathematical probability P was varied for a range between 0.1 

and 0.5. A dropout was applied after the 2nd pooling layer and 

the full connection layer. Since dropouts can cause focused 

data loss in the learning models started with a lower dropout 

probability and raised it as went along, which would limit the 

size of the prospective loss in subsequent layers. The CNN and 

LSTM organization in the overall model separates clearly the 

order of the retraining of the CNN hierarchy and embedding. 

The CNN consists of convolutional and max-pooling layers 

and a flatten layer. The LSTM includes the CNN as part of the 

Time Distributed layer as the input shape, and then an LSTM 

layer and dense output layer. The refined code product 

includes some specifics, like number of filters, activation 

functions, kernel size, input shape, and compile. Please change 

the placeholder values to the value you need for your specific 

application. 

The loss function consider here is that combines traditional 

classification loss and uncertainty-aware loss terms, and then 

explain how uncertainty contributes to the overall loss during 

training. The loss function, that includes both the traditional 

classification loss with the uncertainty-aware loss, is defined 

as Eq. (29). 

Overall Loss = CLoss + λ × Uncertainty − ALoss (29) 

This is the traditional loss function of classification tasks, 

such as cross-entropy loss as shown in Eq. (30). 

CLoss = −∑cyclog(yc) (30) 

where, c iterates over the classes, 𝒚𝒄  is the ground truth

probability for class c, and 𝒚𝒄 is the predicted probability for

class c. This term introduces a measure of uncertainty, often 

using the predictive entropy as shown in Eq. (31). 

Uncertainty − ALoss = −H(ŷ) (31) 

where, H(ŷ) is the entropy of the predicted probabilities ŷ. λ: 

This hyperparameter controls the trade-off among the two 

terms. A higher λ emphasizes the reputation of the uncertainty-

aware term, while a lower λ prioritizes the classification loss. 

Figure 1. Bayesian CNN-LSTM design diagram 

3.4 Hybrid Bayesian CNN-LSTM model 

The Bayesian CNN-LSTM approach is combination of 

Convolutional Neural Networks and Long Short-Term 

Memory networks within a Bayesian framework. This model 

is devised to tackle uncertainties inherent in the learning 
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process and to offer probabilistic predictions. It comprises two 

primary components: the CNN and the LSTM network. The 

CNN is tasked with extracting spatial features from input 

human activity data, leveraging convolutional layers to detect 

patterns and hierarchical features within the data.  

The Bayesian CNN-LSTM model integrates processing 

through CNN and LSTM components while incorporating 

Bayesian principles to accommodate uncertainty in the 

learning process. This renders it particularly advantageous in 

human activity recognition, where uncertainty plays a pivotal 

role. 

𝐶 = {𝑐1, 𝑐2, 𝑐3, … … . . 𝑐𝑛} (32) 

Here m is the number of activities in a dataset. Consider a 

sequence of sensor inputs as shown in Eq. (32) 

𝑌 = {𝑦1
1 … … . . 𝑦1

𝑠 𝑦𝑛
1 … … … 𝑦𝑛

𝑠 } (33) 

Here, sensor input at time as  𝑦𝑗= (𝑦1
𝑠, … … . . 𝑦𝑛

𝑠) number of

sensors n, sis the sensor input at the time j. After segmentation, 

a set of segments G is produced corresponds to activity V as 

shown in Eq. (33). 

𝐺 = {𝐺1, 𝐺2, 𝐺3, … … . . 𝐺𝑛} (34) 

The LF method used parallel input branches to parse the 

input sequences for each Inertial Measurement Unit (IMU) 

separately. Accordingly, each IMU yields its own intermediate 

representation, which is used as model input. Figure 1 depicts 

the architectural diagram of the proposed model. 

4. RESULTS AND DISCUSSION

This section presents the experimental results of the 

proposed Bayesian CNN-LSTM framework for human 

activity multisensory data fusion and activity recognition. 

4.1 Dataset 

Assess the proposed Human Activity Multi-Sensor Data 

Fusion and Recognition framework on the openly available 

PAMAP2 dataset [23] designed for human activity recognition. 

The study in this dataset has two purposes: daily activities and 

sports for fitness. The data recorded at a rate of 100 Hz 

contains 18 activities (walking, cycling, soccer, etc.) that nine 

subjects performed with three inertial measurement units 

(IMUs) and a heart rate monitor. The IMUs were worn on the 

dominant wrist, chest, and ankle, while the heart rate monitor, 

once set on the subject's wrist, collected the heart rate 

measurement at a sampling frequency of approximately 9 Hz. 

This dataset facilitates activity recognition, intensity 

estimation, and algorithm development regarding data pre-

processing, segmentation, feature extraction, and 

classification. Notably, the samples for activity 10 (ironing) 

and 3 (walking) have many more occurrences while activity 

11 (rope jumping) has exceptionally few samples overall. To 

mitigate the class imbalance, f1-score was chosen as the main 

metric. 

All experiments were conducted using a Gaming PC with 

an Intel CORE i5-4200U 1.60 GHz cpu and 6 GB of RAM. 

The neural networks were initialized using default parameters 

within Keras and Pytorch. The Bayesian LSTM layer had 

ReLU as its activation and the MLP layer used a linear 

activation function. The structure contained one Bayesian 

LSTM layer (24 units), and one MLP layer (24 units). Training 

was completed while using the Adam optimizer and 

performing mini-batch sampling. A learning rate (0.001), 

batch size (64), epochs (100), kernel size (3) related to dropout 

(0.2) were the most relevant parameters of the model. Default 

parameters were selected from what are the most popular 

selection choices, e.g. 0.01 and 0.001, which provide possibly 

more robustness and efficiency in training.  

This research proposes a hybrid Bayesian CNN-LSTM 

model in Python and examines its performance using metrics 

such as accuracy, true positive rate, and false positive rate. The 

first step is to run both the proposed model and run the 

individual machine-learning algorithms, such as CNN, SVM, 

CART and XGBoost. In order to provide consistent 

evaluation, ten-fold cross-validation was undertaken with 

Python, generalization is determined upon. The dataset will be 

split into 10 equal parts, where will train the model on 9 of the 

segments, and test on the other. Basically the first 90 percent 

of the data will be used to train, and the remaining 10 percent 

will be used to test. This is done ten times, so that on each 

iteration, one of the ten segments will be used as the evaluation 

set. 

To evaluate both the proposed hybrid and existing models, 

there will be a number of metrics derived. The metrics can be 

viewed as indicators as to how well each model performed, in 

terms of accuracy, precision, recall, F1-score, and confusion 

matrix. By looking at these will help us ascertain how well the 

model is performing among the different classes, and give us 

an idea of how well it can truly recognize human activities 

overall. The definitions of Accuracy are shown in Eq. (35), 

Recall Eq. (36), Precision Eq. (37), and F1-score in Eq. (38). 

These parameters will provide us a full assessment of the 

models effectiveness. 

𝐴𝑐𝑐 =
𝑇𝑟𝑝+𝑇𝑟𝑛+

𝑇𝑟𝑝+𝐹𝑙𝑝+𝑇𝑟𝑛+𝑇𝑟𝑝
× 100% (35) 

𝑅𝑒𝑐 =
𝑇𝑟𝑝

𝑇𝑟𝑝+𝐹𝑙𝑛
× 100% (36) 

𝑃𝑟𝑒𝑐 =
𝑇𝑟𝑝

𝑇𝑟𝑝+𝐹𝑙𝑝
× 100% (37) 

𝐹1𝑆 =
2×𝑃𝑟𝑒𝑐×𝑅𝑒𝑐

𝑃𝑟𝑒𝑐+𝑅𝑒𝑐
(38) 

To evaluate the classification performance of the candidate 

models, it was necessary to test configurations of various 

hyperparameters. Surprisingly, performance was not 

consistently improved with more convolutional layers. 

Instead, it made the extracted features more complicated, 

which sometimes appears to cause overfitting. These models 

overfitted the training data and resulted in lower prediction 

accuracy on the test data. The dropout layer was used to 

prevent overfitting, making 20% of activations zero randomly. 

NorSpecter also found that applying recurrent dropout, which 

increased the transfer of states between layers, improved 

recognition accuracy on the test set by 2%. 

The PAMAP2 dataset was then processed through signal 

normalization, segmentation in 5 second windows with 50% 

overlap, and aligned sensor timestamps. In response to class 

imbalance used SMOTE to synthetically oversample minority 

classes, and during training used weighted loss functions. This 

guaranteed balanced learning and strong overall activity 

performance across all categories.  
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Tables 1 now shows the 95% confidence intervals for 

classification metrics from five cross-validation folds. Pair t-

tests were used to assess statistical significance of the observed 

improvements. The proposed Bayesian CNN-LSTM had a 

mean accuracy of 94.3% ± 1.2%, which was statistically 

significantly better than baseline CNN-LSTM predictors (p < 

0.05). Bayesian CNN-LSTM model reaches 96% accuracy on 

PAMAP2 dataset, 4% improvement over CNN-LSTM model. 

On the other hand, the accuracy of the CNN model is only 72%, 

which is the worst. Although the CNN-LSTM model improves 

the recognition rate of some of the basic activities, the 

performance of the model is still significantly different from 

the performance of the Bayesian CNN-LSTM. This suggests 

the Bayesian CNN-LSTM is a more robust model and able to 

perform well under general settings without overfitting part of 

the basic activities. 

 

Table 1. The performance comparison of all models with proposed model 

 
Performance Measures SVM LSTM CNN Bayesian LSTM Bayesian CNN-LSTM 

Recall 72 76 74 90 94 

Precision 70 75 72 87 93 

Error 74 78 72 85 92 

F1-Measure 72 73 73 90 94 

Accuracy 85 86 88 91 95 

 

In their study involving the PAMAP2 dataset, they used 

attention models that provided a F1-score of 87%. Xia et al. 

[22] published the ETGP model that developed more 

interaction among channels at the same layer to extract more 

discriminative features from raw sensor input, achieving an 

accuracy of 91% on the PAMAP2 dataset. Ronald et al. [24] 

introduced the iSPLInception model based on Inception-

ResNet, also recording an F1-score of 89%. Münzner et al. 

[25] researched CNN-based three-layer sensor fusion methods 

and obtained an accuracy of 85%. Their method focused on 

feature extraction from each channel separately through a 

single convolutional layer on its own. With this, study applied 

convolutional layers to all the sensor data collected at each 

body position separately, then feature fusion was applied. The 

Attention Model architecture obtained a F1-score of 87%. 

When comparing the experimental results, the proposed 

Bayesian CNN-LSTM model compares well with previous 

research yielding similar, if not better, results in regard to 

human activity recognition. In Table 2, included three recent 

state-of-the-art models from 2022–2023, as well as introduced 

some new performance metrics, including: training time, 

memory consumption, and inference latency! Our model had 

a competitive runtime (2.8s/epoch), low memory requirements 

(82 MB), and the ability to inference in real time (43 

ms/sample), which all confirm its feasible deployment 

potential. 

 

Table 2. Comparative analysis with literature 

 
Dataset Model F1-Score 

PAMAP2 

iSPL[24] 89 

CNN+C3 [25] 91 

ETGP [26] 91 

Attention Model [27] 87 

Bayesian CNN-LSTM 94 

 

 

5. CONCLUSIONS 

 

Data collection and processing is crucial for extracting 

valuable insights in diverse applications such as urban 

planning, military operations, and environmental monitoring. 

In this study, presented a hybrid Bayesian CNN-LSTM 

framework for human motion recognition that emphasizes 

robustness and interpretability through multi-sensor fusion. 

Our framework demonstrated effective recognition-related 

uncertainty awareness through predicting model accuracy 

alongside a top-performing CNN-LSTM model on the 

PAMAP2 dataset. Future work will consider transformer-

based attention mechanisms to improve temporal feature 

learning, and introduce additional evaluation metrics – such as 

calibration error – to measure reliability in association with 

real-world deployment challenges, as in the cases of healthcare 

and smart living environments. 
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