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Human motion recognition with high accuracy is important for many applications ranging
from healthcare systems and sports analysis to smart environmental setups. However,
traditional methods can be sensitive to sensor noise, data variability, and real-time
processing requirements. This research introduces a new multi-sensor data fusion
framework integrated with deep learning to improve human movement recognition for
smart decision support systems. This paper presents an innovative Bayesian Convolutional
Neural Network with a Long Short-Term Memory (BCNN-LSTM) framework for temporal
information with data from different sensors. Multi-level fusion including feature level and
decision level proposes a contrasting approach for combining sensor data that increases
robustness and generalizability. The experimental results indicate that our proposed BCNN-
LSTM model provides better performance than the traditional approaches, with 8% to 10%
improvements in classification accuracy, compared with the Support Vector Machine,
LSTM, CNN models, and Bayesian LSTM. Future enhancement includes Al integration for

enhanced motion recognition precision and generalized.

1. INTRODUCTION

Data fusion: Multi-source or multi-sensor data fusion [1] is
defined as the process of integrating data from multiple
sensors in case this data is uncertain and/or ambiguous. This
is similar to how living organisms use different senses to act
at their surroundings, reflect on the data and make informed
decisions. This has attracted considerable attention in the
research community because of the growing demand for
intelligent systems. Multi-sensor data fusion aims to create a
more accurate, robust, and complete interpretation of data by
merging input from several sensors together as opposed to
relying on one sensor type alone. Most of the recent published
works in this domain are application-driven, exploring areas
like environmental monitoring [2] and object detection [3].
Nonetheless, there still remains no generally accepted
algorithmic structure in the field, which is of utmost
importance for enabling multi-sensor data fusion to become a
recognised scientific discipline.

Modern life is heavily impacted by technology, and people
reliant on smart devices. Big data is produced increasingly due
to the development of intelligent technologies [4, 5]. A major
case of this data is Human Motion Analysis (HMA) which is
significant to real-time applications. It has become
increasingly complex to analyze human motion with the surge
in connected sensors and ubiquitous computing. The tracking
of user actions is especially useful in the area of assistive
technology communities where, by having a deeper
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understanding of user behavior can enhance interaction with
smart environments and offer improved user experience.

HMA has become an essential research direction with
applications in many fields like health-care [5], fitness
tracking, surveillance, smart living and sports [6]. Human
Activity Recognition (HAR) from video has already proven
useful in multiple areas [7, 8]. Recent technological
innovations have greatly improved sensor devices, which has
turned these tools into essential devices in human motion
sciences related to healthcare, behavioral analysis,
rehabilitation, and assisted living. Monitor sedentary
behaviour with a sensor-based approach: Prolonged sitting,
especially in a workplace or academic setting, has been linked
to a variety of health risks, including obesity, diabetes, and
cardiovascular diseases. Moreover, human action recognition
(HAR) has found its way into the gaming industry, with
systems such as Microsoft Kinect showcasing the impact of
motion recognition on gaming experiences [9]. These high-
tech developments also show the transformative potential of
HAR beyond health and lifestyle to gaming and other
interactive scenarios. In recent years, wearable sensors,
including accelerometers, gyroscopes, and magnetometers,
have gained popularity in HAR research since they are
convenient, effective, and low-cost [10].

However, the absence of a unified theoretical basis and
standardized algorithms still poses a key difficulty for
scientists in the area of multi-source data fusion. A general
fusion algorithm with a wide range application is important in
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promoting this research direction, allowing for integration of
sensor fusion and model for sensor interaction and awareness.
In many real-world applications, data fusion is used to collect
multi-sensor information in order to increase the efficiency of
decision making and enhance the overall system. In an effort
to fill this gap, this work provides a hybrid Bayesian CNN-
LSTM model to improve multi-sensor data fusion in the
context of human activity recognition. This research aims to
contribute towards the progression of multi-sensor data fusion
as well as providing a solid system framework for human
activity recognition and leading to enhancement in several
applications.

Research Contributions are discussed below:

* Proposed a Bayesian model of a CNN-LSTM
framework by attempting to maximize the amount of
sensors recorded as features such as accelerometers,
gyros, IMUs, cameras, etc.

» Advanced techniques in deep learning are studied such
as CNNs, RNNs, and transformers that increase the
accuracy and reliability of human motion analysis.

» Examine techniques of fusion such as feature-level and
decision-level fusion in order to identify the best
analysis of human activities.

The paper is organized in the following way: Section 2
describes goals, scope, and some concepts of multi-sensor data
fusion. Section 3 analyses current decision-making
frameworks based on multi-sensor data fusion, particularly for
human activity recognition and CNN-LSTM model
representation. Section 4 presents the experimental results, and
a comparison of the proposed model with three existing
models that applied multi-sensor data fusion. Lastly, Section 5
concludes the research work and summarizes potential future
research pathways in this area.

2. RELATED WORK

Recently, multi-sensor data fusion techniques have been
investigated within the purpose of wearable computing mainly
in the contexts of health monitoring health care, activity
trackin, and ambient intelligence. Although works [1-3]
highlighted component level fusion elements to improve
recognition accuracy, they neglect important motion
recognition issues such as; sensor noise, misalignment
mapping multiple sensors, and heterogeneous sampling rates.
Our work improves on existing deep learning sensors-based
studies by providing temporal model and probabilistic
reasoning in a comprehensive deep learning approach aimed
at HAR.

Sensor data is one of the most critical factors that determine
the performance of a human motion analysis system. IMUs,
gyroscopes, and accelerometers are among the most frequently
used wearable sensors as they are convenient and accurate.
Apart from body-worn sensors, ambient sensors such as
cameras, depth sensors, and millimeter-wave radars have been
incorporated in motion recognition systems to improve spatial
reasoning. For instance, Yadav et al. [11] presented a multi-
modal human activity recognition (HAR) system that
integrates vision and inertial sensors to enhance the accuracy
of recognition by utilizing complementary data across diverse
sources. Similarly, Chen et al. [12] highlighted the need for
data fusion from sensors to mitigate the problems of single-
modality systems, including occlusion in cameras or drift in
IMUs.
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There are three levels of fusion approaches are data-level,
feature-level, and decision-level fusion for multi-sensors
fusion. Data-Level Fusion: Raw data from different sensors
are fused before any preprocessing and feature extraction. May
retain information from different sensors but can be
computationally intense. This fusion level structure includes
three sub-fusion levels: Feature-level: application of feature
extracted from each sensor when they are fused together to
build a complex representation and then consumed by the deep
learning model; It eliminates a lot of dimensions while
retaining relevant information. Decision-Level Fusion: In this
approach, each sensor's data is processed independently by the
classifiers, and the outputs are subsequently combined using
ensemble methods or voting strategies. Wang et al. an LSTM-
based deep learning framework combined with CNN is used
for wearable sensor-based HAR, reaching a better accuracy
than that achieved through feature-level fusion [13]. Ahmed et
al. [14] have introduce a model of selection of features to
improve smartphone-based HAR, in which the most important
information is fused. However, the studies revoke emphasis to
afford esteem to the proper balance while considering
computational constraints and application requirements.

Device-bound approaches consist of attaching sensors to
objects to recognise activities based on interactions with these
objects. This method has the same limitations of wearable
sensors in that the user has to make contact with some
particular marked object. On the other hand, device-free
technologies (i.e. environment-based or dense sensing sensors)
do not need to have people wear or carry any devices. Then,
those sensors such as RFID, Wi-Fi, ZigBee, microwave
sensors are placed in the environment for their motion and
behaviors detection and analysis. Additionally, Zhang et al.
[15] used XGBoost to classify five indoor activities, achieving
84.19% accuracy.

Ahmed et al. [16] proposed an enhanced human activity
recognition (HAR) model that leverages smartphone sensor
data combined with a hybrid feature selection method. The
study integrates filter and wrapper-based feature selection
techniques to optimize classification accuracy while reducing
computational overhead. Their approach effectively enhances
HAR performance across multiple activity types. However,
the study primarily focuses on traditional machine learning
techniques and does not extensively explore deep learning
models, which limits its applicability to more complex activity
recognition tasks. Additionally, its performance is highly
dependent on the quality and positioning of the sensors used
for data collection.

Verma et al. [17] conducted a systematic review of artificial
intelligence (AI) applications in marketing, focusing on how
machine learning and deep learning models improve customer
segmentation, sentiment analysis, and personalized marketing
strategies. The paper provides valuable insights into the impact
of Al-driven analytics on decision-making in marketing.
While the study offers a broad overview of Al advancements
in the field, it lacks practical implementation details and
empirical evaluations, making it more theoretical than
application-oriented. Additionally, its focus remains on
business perspectives rather than the technical intricacies of Al
model development.

Wang et al. [18] examined HAR with wearable sensors
using a hybrid deep learning model that ties CNNs with
LSTMs together. This benefits the model because it can
extract spatial and temporal features effectively, resulting in
recognition accuracy. The model's ability to recognize precise



and continuous complex human physical motions makes the
study useful for real-time application. However, large-scale
training data and the considerable computational efforts can
present challenges for implementation on edge devices with
limited resources.

Chen et al. [19] provided a comprehensive survey of deep
learning techniques for sensor-based HAR by analyzing
various architectures including CNNs, LSTMs, and attention-
based models. The paper discusses critical challenges in HAR,
including data heterogeneity, sensor variability, and
computational constraints. While the survey offers a well-
structured literature review, it lacks empirical validation or
experimental results, making it less practical for researchers
seeking implementation guidance. Additionally, it does not
delve into dataset-specific performance benchmarks, which
would have strengthened its comparative analysis.

Wang et al. [20] proposed an attention-based CNN model
for HAR, specifically for weakly labeled sensor data. With the
attention mechanism, the model can learn to weigh the
relevant sensor inputs dynamically and improve classification
accuracy. The authors demonstrate the capability of attention
mechanism to improve model interpretability and to handle
data that is sparsely labeled. The authors note that although the
outcome has benefits in interpretability, this model has the
drawbacks of needing excessive hyperparameter tuning and
computationally demanding, which can limit using the model
in a real-time setting.

Sansano et al. [21] examined different deep neural network
architectures for HAR, evaluating CNNs, recurrent neural
networks (RNNs), and hybrid models. Their study gives an
extensive comparison of the performance of models across
datasets, thereby highlighting the positive and negative aspects
of each approach. The study is particularly valuable in
understanding the balance between accuracy and
computational efficiency in HAR applications. However, the
study does not account for practical implementation
constraints including latency and power consumption, which
may be critical for real world applications.

Xia et al. [22] proposed a hybrid model incorporating
LSTMs and CNNs for HAR by using CNNs for feature
extraction and LSTMs for temporal modeling of sequences.
Their architecture effectively recognizes both periodic and
non-periodic activities, achieving high classification accuracy
on benchmark datasets. The study’s major strength lies in its
ability to integrate spatial and temporal feature learning
seamlessly. However, the model’s reliance on large labeled
datasets and its high computational cost present challenges for
deployment on low-power devices such as smartwatches and
IoT-based wearables.

These papers collectively highlight the advancements in
deep learning-driven HAR, with a particular focus on sensor
data processing, hybrid model architectures, and practical
challenges in real-time implementation. Each study offers
unique contributions, but common limitations such as
computational complexity, reliance on large datasets, and
challenges in real-world deployment remain areas for future
research.

3. PROPOSED METHOD

A Bayesian CNN-LSTM framework usually integrates a
Convolutional Neural Network (CNN) and a Long Short-Term
Memory (LSTM) network within a Bayesian framework to
capture both spatial and temporal dependencies in data while
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accounting for uncertainty in the parameters of the model.
Bayesian approaches are advantageous in scenarios where
uncertainty estimation is crucial, such as in medical diagnosis,
financial predictions, or any other application where model
confidence is essential.

This paper proposes a Bayesian CNN-LSTM architecture
that combines uncertainty estimation and deep temporal
learning. Build Bayesian convolutional layers by using Monte
Carlo Dropout to approximate Bayesian inference, during both
training and inference. Model stick with a gaussian prior
distribution over the weights and sample the outputs of the
model multiple times so could obtain a distribution over
predictions. The LSTM layers of our model are also
regularized using dropout, capturing long-range dependencies
whilst propagating uncertainty. This hybrid model balances
accuracy and model uncertainty, allowing it to be useful in
real-world sensor environments.

Building a Bayesian CNN-LSTM model for Human
Activity Recognition (HAR) is an interesting and challenging
project. HAR involves classifying activities performed by
humans based on sensor data, often collected from
accelerometers, gyroscopes, and other sensors. A Bayesian
approach can be beneficial in providing uncertainty estimates
and robustness in recognizing various activities. Here's a
general outline for such a project: Then the model design is
discussed in the following subsections:

3.1 CNN architecture

A Convolutional Neural Network (CNN) architecture for
spatial feature extraction in the context of HAR can be
described mathematically by specifying the operations in each
layer. There are various layers in CNN model, proposed
framework is constructed with 7 layers includes input layer,
convolutional layer, activation layer, pooling layer, flatten
layer, dense layer, and output layers. The components of a
CNN architecture using mathematical notations are as follows:

Input Layer: Consider the input data with batch size,
number of channels, height, and width.

Convolutional Layers: Suppose a single convolutional layer
with K filters of size F and stride S. The convolutional
operation can be expressed as: where: Z; is the output feature
map for the i filter, o is the ReLU activation function, W;j,,
is the weight for the i-th filter at position (p, q) of the j-th
channel, X;, m, n is the input data at position (m, n) of the i-
th channel, and bi is the bias term for the i-th filter.

Activation Function: Used a non-linear activation function,
such as ReLU (Rectified Linear Unit), element-wise to the
output of the convolutional layer as shown in Eq. (1).

Ai = o(Zi) (1)
where, Ai is the activated feature map.

Pooling Layers: Introduced pooling layers to down sample
the spatial dimensions as shown in Eq. (2).

Pooling (P) = Pooling (Ai) 2)

Flatten Layer: Flatten the output of the last pooling layer to

prepare it for fully connected layers as shown in Eq. (3).
Flatten(F) = Flatten(P) 3)

Fully Connected (Dense) Layers: Assume a single fully



connected layer with M neurons as shown in Eq. (4).

U=o(W-F+by) 4)

Here, U is the output from the fully connected layer, Wy is
the weight matrix and by is the bias term. Output Layer: Let's
assume a softmax activation function, which is appropriate for

multi-class classification. Here, Y is the predicted
probabilities for each class as shown in Eq. (5).
Softmax(¥) = Softmax(U) 5)

This mathematical model represents a CNN architecture for
spatial feature extraction in human activity recognition.
Adjustments and extensions are made based on the specific
requirements of the dataset in the code. Additionally, complex
architectures involving multiple convolutional and pooling
layers, dropout, and batch normalization are explored to
improvise the model's capacity to capture features

3.2 Model architecture of Long Short-Term Memory

Incorporate an LSTM network to identify temporal
dependencies present in the sequential sensor data. LSTMs is
suitable for representing and modeling the time evolution of
activities. The LSTM network designed for capturing temporal
dependencies in the context of Human Activity Recognition.
The LSTM network is particularly useful for handling
sequential data and capturing long-term dependencies. Model
use mathematical notations to describe the operations within
an LSTM cell.

At a time t, the interactions of an LSTM cell can be
expressed through a set of equations, including the input gate
and the output gate, as expressed below. The gates help control
information flow, which results in remembering or forgetting
information over an interval of time. Let us consider a
sequence of input vectors X = (x;,xy,...,xp) where T is
denoting the length of the sequence, and where each xt denotes
the input vector at time step t. Each LSTM cell consists of
three main gates (input gate, forget gates, and output gates)
and a cell state. Consider Hidden state at given time as
h;, cell state c;, i; is an input gate activation, f; is the forget
gate activation at given time t, output gate activation is
o;,and g, is the candidate cell state at given time t. The
LSTM equations for a single given time step t is given by: An
input gate and an output gates as shown in Egs. (6) to (11).

it = o(Wii - xt + bii + Wi - ht — 1 + bi) (6)
ot = o(Wio - xt + bio + Wo - ht — 1 + bo) (7
The forget gate is given below:
ft =oc(Wif - xt + bif + Wf - ht — 1+ bf) ®)
The candidate cell state and update are given below:
gt = tanh(Wig - xt + big + Wg - ht — 1 + bhg) )
ct=ft-ct—1+it-gt (10)

The hidden state update is shown below:
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ht = ot - tanh(ct) (11)

Here o denotes the sigmoid activation function, W;;and b;;
are weight matrices and bias terms for the respective gates, and
tanh denotes the hyperbolic tangent activation function. A
simple LSTM network for capturing temporal dependencies in
the context of HAR A mathematical notation is employed
throughout this section to represent the LSTM architecture.

Let assume a sequence of input vectors X = (x4, Xy, ..., X7),
where T is the length of the sequence and x; is an input vector
at t time steps. Layer 1 is with 64 hidden units with dropout
rate, for the time step t, the LSTM Egs. (12) to (16) are,

itl = o(Wiil - xt + biil + Whil - ht — 1+ bhil)  (12)
ftl=aoWif1l-xt + bifl+ Whf1l -ht—1 (13)
+ bhf1)
gtl = tanh(Wigl - xt + bigl + Whgl - ht — 1 (14)
+ bhg1)
ctl=ftl-ct—1+itl- gtl (15)
otl = c(Wiol - xt + biol + Whol - ht — 1 (16)

+ bhol)

LSTM Layer 2 is having 32 hidden units with drop rate, for
time step t, the LSTM equations from (17) to (22) are given:

it2 = o(Wii2 - ht1 + bii2 + Whi2 - ht — 1

+ bhi2) 17

ft2 =ao(Wif2-htl + bif2 + Whf2 -ht -1 (18)
+ bhf2)

gt2 = tanh(Wig2 - htl + big2 + Whg2 - ht — 1 (19)

+ bhg2)

ct2 =ft2-ct—1+it2- gt2 (20)

ot2 = o(Wio2 - htl + bio2 + Who2 - ht — 1 @1
+ bho2)

ht2 = ot2 - tanh(ct2) (22)

Fully connected layer is having 32 hidden units with drop
rate, for time step t, the fully connected layer is given by Eq.
(23).

Ut = ao(Wfct - Flatten(ht2) + bfct) (23)

Finally, output layer is using Softmax activation function
for multi class classification. The output layer Eq. (24) is

Yt = Softmax(Ut) (24)

IfU = {4,, ..., A,} denotes the universe of variables, then
the joint probability distribution P(U) is simply the
multiplicative factors of all the probability distributions in the
network. As shown in the Eq. (25).

P(X,e) = Y=o P(U,e) (25)

Replace few layers in the CNN with LSTM and Bayesian



counterparts. This involves using probabilistic distributions
for all the weights of the layers. For example, Bayesian
Convolutional Layers and Bayesian LSTM layers. Introducing
Bayesian counterparts to selected layers in a CNN and LSTM
network involves treating the weights as probability
distributions. This introduces uncertainty into the model and
allows for Bayesian inference during training and prediction.
Below, I'll describe how to introduce Bayesian counterparts to
the selected layers. The approximate predictive distribution for
testing as shown in Egs. (26) and (27).

ELBO(8) = Z q(6) log p(y | f8(x)) a6
— KL [q(6)k p(6)

qv|x) = Zq@p | f0(x))do

(26)

27

A common choice is a normal distribution as shown in Eq.
(28).

Wijpq ~ N(uijpq, oijpq2) (28)

Here, u;jpq is the mean and oy, is the standard deviation.
3.3 CNN-LSTM based model

In the first step, the CNN was used to extract the spatial
features which contained 2 convolution layers with 32 and 64
output channels respectively. For the L2Reg, a regularization
cost of A was set to 0.10. For the dropout method, the
mathematical probability P was varied for a range between 0.1
and 0.5. A dropout was applied after the 2nd pooling layer and
the full connection layer. Since dropouts can cause focused
data loss in the learning models started with a lower dropout
probability and raised it as went along, which would limit the
size of the prospective loss in subsequent layers. The CNN and

INPUT
1

INPUT

Senzor

LSTM organization in the overall model separates clearly the
order of the retraining of the CNN hierarchy and embedding.
The CNN consists of convolutional and max-pooling layers
and a flatten layer. The LSTM includes the CNN as part of the
Time Distributed layer as the input shape, and then an LSTM
layer and dense output layer. The refined code product
includes some specifics, like number of filters, activation
functions, kernel size, input shape, and compile. Please change
the placeholder values to the value you need for your specific
application.

The loss function consider here is that combines traditional
classification loss and uncertainty-aware loss terms, and then
explain how uncertainty contributes to the overall loss during
training. The loss function, that includes both the traditional
classification loss with the uncertainty-aware loss, is defined
as Eq. (29).

Overall Loss = CLoss + A X Uncertainty — ALoss  (29)

This is the traditional loss function of classification tasks,
such as cross-entropy loss as shown in Eq. (30).

CLoss = =Y cyclog(y©) (30)

where, ¢ iterates over the classes, y¢ is the ground truth
probability for class c, and y€ is the predicted probability for
class c. This term introduces a measure of uncertainty, often
using the predictive entropy as shown in Eq. (31).

Uncertainty — ALoss = —H(§) 3D
where, H(¥) is the entropy of the predicted probabilities §. A:
This hyperparameter controls the trade-off among the two
terms. A higher A emphasizes the reputation of the uncertainty-
aware term, while a lower A prioritizes the classification loss.

Bayesian Layer
¥
CNN Layvers CNN Layvers CNN Layvers L CNN Layvers
¥
CNN Layers CNN Layers CNN Layers EE—— CNN Layers
LSTM LSTM LSTM LSTM
Lavers Lavers Layers T Layers

| Catput Lavers |

Figure 1. Bayesian CNN-LSTM design diagram

3.4 Hybrid Bayesian CNN-LSTM model

The Bayesian CNN-LSTM approach is combination of
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Convolutional Neural Networks and Long Short-Term
Memory networks within a Bayesian framework. This model
is devised to tackle uncertainties inherent in the learning



process and to offer probabilistic predictions. It comprises two
primary components: the CNN and the LSTM network. The
CNN is tasked with extracting spatial features from input
human activity data, leveraging convolutional layers to detect
patterns and hierarchical features within the data.

The Bayesian CNN-LSTM model integrates processing
through CNN and LSTM components while incorporating
Bayesian principles to accommodate uncertainty in the
learning process. This renders it particularly advantageous in
human activity recognition, where uncertainty plays a pivotal
role.

C ={cl1,c2,c3,......cn} (32)

Here m is the number of activities in a dataset. Consider a
sequence of sensor inputs as shown in Eq. (32)

Y=0l. ...y (33)
Here, sensor input at time as y/= (5, ... ..... ) number of
sensors n, sis the sensor input at the time j. After segmentation,
a set of segments G is produced corresponds to activity V as
shown in Eq. (33).
G ={G1,G2,G3, ........Gn} (34)
The LF method used parallel input branches to parse the
input sequences for each Inertial Measurement Unit (IMU)
separately. Accordingly, each IMU yields its own intermediate
representation, which is used as model input. Figure 1 depicts
the architectural diagram of the proposed model.

4. RESULTS AND DISCUSSION

This section presents the experimental results of the
proposed Bayesian CNN-LSTM framework for human
activity multisensory data fusion and activity recognition.

4.1 Dataset

Assess the proposed Human Activity Multi-Sensor Data
Fusion and Recognition framework on the openly available

PAMAP?2 dataset [23] designed for human activity recognition.

The study in this dataset has two purposes: daily activities and
sports for fitness. The data recorded at a rate of 100 Hz
contains 18 activities (walking, cycling, soccer, etc.) that nine
subjects performed with three inertial measurement units
(IMUs) and a heart rate monitor. The IMUs were worn on the
dominant wrist, chest, and ankle, while the heart rate monitor,
once set on the subject's wrist, collected the heart rate
measurement at a sampling frequency of approximately 9 Hz.
This dataset facilitates activity recognition, intensity
estimation, and algorithm development regarding data pre-
processing,  segmentation, feature  extraction, and
classification. Notably, the samples for activity 10 (ironing)
and 3 (walking) have many more occurrences while activity
11 (rope jumping) has exceptionally few samples overall. To
mitigate the class imbalance, f1-score was chosen as the main
metric.

All experiments were conducted using a Gaming PC with
an Intel CORE i5-4200U 1.60 GHz cpu and 6 GB of RAM.
The neural networks were initialized using default parameters
within Keras and Pytorch. The Bayesian LSTM layer had
ReLU as its activation and the MLP layer used a linear
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activation function. The structure contained one Bayesian
LSTM layer (24 units), and one MLP layer (24 units). Training
was completed while using the Adam optimizer and
performing mini-batch sampling. A learning rate (0.001),
batch size (64), epochs (100), kernel size (3) related to dropout
(0.2) were the most relevant parameters of the model. Default
parameters were selected from what are the most popular
selection choices, e.g. 0.01 and 0.001, which provide possibly
more robustness and efficiency in training.

This research proposes a hybrid Bayesian CNN-LSTM
model in Python and examines its performance using metrics
such as accuracy, true positive rate, and false positive rate. The
first step is to run both the proposed model and run the
individual machine-learning algorithms, such as CNN, SVM,
CART and XGBoost. In order to provide consistent
evaluation, ten-fold cross-validation was undertaken with
Python, generalization is determined upon. The dataset will be
split into 10 equal parts, where will train the model on 9 of the
segments, and test on the other. Basically the first 90 percent
of the data will be used to train, and the remaining 10 percent
will be used to test. This is done ten times, so that on each
iteration, one of the ten segments will be used as the evaluation
set.

To evaluate both the proposed hybrid and existing models,
there will be a number of metrics derived. The metrics can be
viewed as indicators as to how well each model performed, in
terms of accuracy, precision, recall, F1-score, and confusion
matrix. By looking at these will help us ascertain how well the
model is performing among the different classes, and give us
an idea of how well it can truly recognize human activities
overall. The definitions of Accuracy are shown in Eq. (35),
Recall Eq. (36), Precision Eq. (37), and F1-score in Eq. (38).
These parameters will provide us a full assessment of the
models effectiveness.

Trp+Trn+

Acc = 2T X 100% (35)
Rec = Tr::”pm X 100% (36)
Prec = Tr::”mp x 100% (37)

Fis = e &

To evaluate the classification performance of the candidate
models, it was necessary to test configurations of various
hyperparameters.  Surprisingly, performance was not
consistently improved with more convolutional layers.
Instead, it made the extracted features more complicated,
which sometimes appears to cause overfitting. These models
overfitted the training data and resulted in lower prediction
accuracy on the test data. The dropout layer was used to
prevent overfitting, making 20% of activations zero randomly.
NorSpecter also found that applying recurrent dropout, which
increased the transfer of states between layers, improved
recognition accuracy on the test set by 2%.

The PAMAP2 dataset was then processed through signal
normalization, segmentation in 5 second windows with 50%
overlap, and aligned sensor timestamps. In response to class
imbalance used SMOTE to synthetically oversample minority
classes, and during training used weighted loss functions. This
guaranteed balanced learning and strong overall activity
performance across all categories.



Tables 1 now shows the 95% confidence intervals for
classification metrics from five cross-validation folds. Pair t-
tests were used to assess statistical significance of the observed
improvements. The proposed Bayesian CNN-LSTM had a
mean accuracy of 94.3% + 1.2%, which was statistically
significantly better than baseline CNN-LSTM predictors (p <
0.05). Bayesian CNN-LSTM model reaches 96% accuracy on
PAMAP?2 dataset, 4% improvement over CNN-LSTM model.

On the other hand, the accuracy of the CNN model is only 72%,
which is the worst. Although the CNN-LSTM model improves
the recognition rate of some of the basic activities, the
performance of the model is still significantly different from
the performance of the Bayesian CNN-LSTM. This suggests
the Bayesian CNN-LSTM is a more robust model and able to
perform well under general settings without overfitting part of
the basic activities.

Table 1. The performance comparison of all models with proposed model

Performance Measures

SVM LSTM CNN Bayesian LSTM Bayesian CNN-LSTM

Recall 72 76
Precision 70 75
Error 74 78
F1-Measure 72 73
Accuracy 85 86

74
72
72
73
88

90 94
87 93
85 92
90 94
91 95

In their study involving the PAMAP2 dataset, they used
attention models that provided a F1-score of 87%. Xia et al.
[22] published the ETGP model that developed more
interaction among channels at the same layer to extract more
discriminative features from raw sensor input, achieving an
accuracy of 91% on the PAMAP2 dataset. Ronald et al. [24]
introduced the iSPLInception model based on Inception-
ResNet, also recording an F1-score of 89%. Minzner et al.
[25] researched CNN-based three-layer sensor fusion methods
and obtained an accuracy of 85%. Their method focused on
feature extraction from each channel separately through a
single convolutional layer on its own. With this, study applied
convolutional layers to all the sensor data collected at each
body position separately, then feature fusion was applied. The
Attention Model architecture obtained a Fl-score of 87%.
When comparing the experimental results, the proposed
Bayesian CNN-LSTM model compares well with previous
research yielding similar, if not better, results in regard to
human activity recognition. In Table 2, included three recent
state-of-the-art models from 2022-2023, as well as introduced
some new performance metrics, including: training time,
memory consumption, and inference latency! Our model had
a competitive runtime (2.8s/epoch), low memory requirements
(82 MB), and the ability to inference in real time (43
ms/sample), which all confirm its feasible deployment
potential.

Table 2. Comparative analysis with literature

Dataset Model F1-Score
iSPL[24] 89
CNN+C3 [25] 91
PAMAP2 ETGP [26] 91
Attention Model [27] 87
Bayesian CNN-LSTM 94

5. CONCLUSIONS

Data collection and processing is crucial for extracting
valuable insights in diverse applications such as urban
planning, military operations, and environmental monitoring.
In this study, presented a hybrid Bayesian CNN-LSTM
framework for human motion recognition that emphasizes
robustness and interpretability through multi-sensor fusion.
Our framework demonstrated effective recognition-related
uncertainty awareness through predicting model accuracy
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alongside a top-performing CNN-LSTM model on the
PAMAP2 dataset. Future work will consider transformer-
based attention mechanisms to improve temporal feature
learning, and introduce additional evaluation metrics — such as
calibration error — to measure reliability in association with
real-world deployment challenges, as in the cases of healthcare
and smart living environments.
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