
Automatic Generation of PLC Control Code from Natural Language Requirement

Specifications

Abderrahmane Boudribila1,2* , Abdelouahed Tajer1 , Zakaria Boulghasoul1

1 Systems Engineering and Applications Laboratory, Cadi Ayyad University, Marrakech 40000, Morocco
2 LAMIGEP, Moroccan School of Engineering Sciences, Marrakech 40000, Morocco

Corresponding Author Email: a.boudribila.ced@uca.ac.ma

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/isi.300618 ABSTRACT

Received: 24 April 2025

Revised: 26 May 2025

Accepted: 8 June 2025

Available online: 30 June 2025

Developing control programs for manufacturing systems is time-consuming and requires

expert control designers. While manual programming is common, it becomes complex as

systems grow, leading to long development times, frequent errors, and difficult

maintenance. To address these issues, researchers have introduced formal methods like

Supervisory Control Theory (SCT) and model checking to improve precision and

verification. Although these are some of the most advanced approaches, they are difficult

to use in practice because they are time-consuming, require high mathematical expertise,

and face scalability problems such as combinatorial explosion in large systems. This study

aims to overcome these limitations by presenting an AI-based system that automatically

generates programmable logic controller (PLC) code from natural language requirement

specifications. The approach uses AutoFactory, a dataset of annotated specifications, and

fine-tunes two Bidirectional Encoder Representations from Transformers (BERT)-based

models to extract actuators, pre-actuators, and sensors before generating International

Electrotechnical Commission (IEC) 61131‑3 Structured Text (ST) code. BERT‑Base

achieved an F1 score of 0.9711, showing reliable component extraction. The study proves

that transformer models can accurately detect control components and initiate logic

generation. These results confirm that AI can assist and augment control designers by

automating extraction and initial coding. Future work will complete the pipeline to deliver

verified IEC 61131‑3 code ready for industrial deployment.

Keywords:

code generation, IEC 61131-3, industrial

automation, large language models (LLMs),

manufacturing systems, named entity

recognition (NER), natural language

processing (NLP), programmable logic

controllers (PLCs)

1. INTRODUCTION

Manufacturing systems have changed over time as new

technologies have been introduced. The First Industrial

Revolution used steam power to operate machines [1]. The

Second added electricity and allowed for mass production [2].

The Third brought automation with the help of computers [3].

Today, in the Fourth Industrial Revolution, known as Industry

4.0, machines are connected to computers and networks [4].

These systems are called Cyber-Physical Manufacturing

Systems. They combine physical equipment with sensors,

controllers, and software. This allows for real-time monitoring

and control of production [5]. These changes have made

manufacturing more efficient and flexible [6]. However, they

have also increased the complexity of control. Writing control

programs for such systems is now more difficult. It requires

precise, reliable, and fast solutions that can handle complex

and dynamic processes [7, 8].

As manufacturing systems have become more complex, the

task of creating reliable control programs has become more

demanding [9, 10]. In many cases, engineers still rely on

heuristic methods to perform this task. This approach is based

on the expert’s intuition, experience, and manual effort [11,

12]. The process begins with writing a requirement

specification that describes the expected behavior of the

system. Based on this specification, the expert designs a

control program using their knowledge of the system. The

program is then tested in a simulator to check if it behaves as

expected. If the simulation reveals errors, the expert must go

back, modify the program, and test it again. Once the

simulation confirms that the program is correct, the code is

transferred to the programmable logic controller. Although

this method is simple and widely used in practice, it is slow,

difficult to maintain, and prone to human error. Each update

requires repeating the same steps, which makes the approach

inefficient, especially for systems that change frequently or

involve many components.

To address the limitations of heuristic methods, some

researchers and engineers use formal methods to design

control programs. Unlike heuristic approaches, which rely on

intuition and manual programming, formal methods are based

on mathematical models and systematic reasoning [13]. In this

approach [11], the expert begins by identifying the

components of the system and defining the constraints. These

constraints describe both the desired actions and the conditions

that must be avoided. The expert builds two separate models:

one for the global behavior of the system and another for the

constraints. These models are then combined to produce a

Ingénierie des Systèmes d’Information
Vol. 30, No. 6, June, 2025, pp. 1597-1607

Journal homepage: http://iieta.org/journals/isi

1597

https://orcid.org/0009-0002-9040-3462
https://orcid.org/0000-0002-1528-7855
https://orcid.org/0000-0002-3923-2162
https://crossmark.crossref.org/dialog/?doi=10.18280/isi.300618&domain=pdf

single formal representation of the control logic. Techniques

such as Supervisory Control Theory and model checking are

commonly used at this stage. The formal model is then verified

to ensure that it satisfies all requirements. If errors are found,

it must be corrected and verified again. Once validated, the

model is used to generate the control program that will be

transferred to the PLC. Although formal methods improve

precision and reduce ambiguity, they require strong

mathematical knowledge and significant development time.

As a result, they are difficult to apply in industrial settings,

especially when the system is large or complex [14, 15].

In this work, we present a first step toward a new vision:

enabling computers to understand manufacturing

requirements written in natural language and generate control

programs automatically. Our goal is to give computers the

ability to identify key components such as actuators, pre-

actuators, and sensors from a written specification. We aim to

use the speed, consistency, and processing power of computers

to reduce the time and effort needed for manual programming.

This vision supports the idea of fully automating the code

generation process, where the user only needs to describe the

system’s behavior in simple terms. The computer will then

extract the necessary information and generate the control

logic without requiring expert intervention. Our pilot study is

focused on building the foundation for this approach by

training models that can extract key components from

manufacturing specifications.

After identifying the components of the system, the next

step is to generate the control logic for each one. In our

approach, each detected component is linked to a predefined

code function that describes its behavior. These functions are

stored in a library and are called when the corresponding

component is found in the specification. This method makes

the system modular and easy to scale. It follows a divide-and-

conquer logic, where the overall control program is built by

combining the code of each part. This approach helps reduce

development time and improves code structure and

consistency. The rest of this paper is organized as follows.

Section 2 presents related work. Section 3 explains the

methodology, including dataset creation, model fine-tuning,

and code generation. Section 4 discusses the results. Section 5

concludes the paper and outlines future work, highlighting

how this dataset and tool can support researchers in

automating code generation for manufacturing systems.

2. RELATED WORK

Control program development in manufacturing has

traditionally followed two main approaches: heuristic methods

and formal methods. Both have been used extensively in

industry and academia. Each offers specific advantages but

also presents important limitations. To better understand the

motivations behind our proposed AI-based system, this section

reviews the key principles and challenges of both methods.

First, we describe the heuristic approach, which is based on the

expert’s manual experience. Then, we present formal methods,

which use mathematical modeling to ensure system

correctness.

2.1 Heuristic methods

Heuristic methods refer to the traditional way of designing

control programs based on the personal knowledge, intuition,

and experience of the engineer. This approach does not rely on

formal models or systematic reasoning. Instead, the expert

interprets the system requirements and translates them into

control logic manually. Heuristic methods are widely used in

industrial environments because they are flexible and easy to

apply in simple systems. They allow engineers to design

solutions quickly when the system is small and well

understood. However, as system complexity increases, relying

only on intuition becomes more difficult and less reliable.

While heuristic methods are common in industrial settings,

the process they follow is manual and iterative. It begins with

the expert writing an informal requirement specification that

describes the expected behavior of the system. Based on this

description, the expert manually creates a control program

using their experience and domain knowledge. The program is

then tested through simulation to check whether it behaves as

intended. If the simulation reveals errors, the expert revises the

program and repeats the test. This cycle continues until the

logic is considered correct. Finally, the validated program is

transferred to the programmable logic controller (PLC), which

is often referred to as the brain of the manufacturing system.

The PLC executes the control logic using standard

programming languages defined by the IEC 61131-3 standard

[16]. These include three graphical languages, Ladder

Diagram (LD), Function Block Diagram (FBD), and

Sequential Function Chart (SFC) and two textual languages

Instruction List (IL) and Structured Text (ST). The overall

heuristic workflow is illustrated in Figure 1.

Figure 1. Workflow for control program development using

heuristic methods

Heuristic methods are often used in universities and in small

systems where the number of components is limited. In these

simple cases, the expert can understand the requirement easily

and write the control logic without difficulty. However, when

the system becomes more complex, this method reaches its

1598

limits. It becomes harder to understand the interactions

between components. Writing and testing the program takes

more time. Since the process is manual, it is also more likely

to include errors. Another limitation is related to maintenance.

When changes are needed, it is often difficult to modify the

program correctly, especially if it was written by someone else.

In addition, learning to program in this way takes time and

requires experience. For these reasons, heuristic methods are

not suitable for large and dynamic systems that need reliability,

consistency, and fast updates. This limitation has led to the

development of formal methods, which aim to improve control

program design through structured modeling and verification.

2.2 Formal methods

Formal methods offer a clear and structured approach for

designing control programs. They rely on mathematical

models to precisely describe how a system should behave and

the rules it must follow [17, 18]. These methods are

particularly valuable when safety, correctness, and reliability

are important. Unlike heuristic methods, which depend mainly

on human experience, formal methods allow the control logic

to be verified and tested before the system is implemented.

This verification step helps reduce errors during operation and

makes the system easier to maintain and update later.

The process begins with a requirement specification, a clear

description of what the system is expected to achieve. From

this specification, an expert identifies the system components

and defines two important types of constraints. Liveness

constraints specify outcomes that the system must eventually

achieve, such as moving a robotic arm to a precise location.

Safety constraints define conditions that the system must avoid,

such as activating two conflicting actions simultaneously [17,

18]. Using this information, two formal models are created.

The first model, called the behavior model, describes step-by-

step how the system operates. The second model, called the

constraint model, clearly defines all the liveness and safety

constraints. Together, these models provide a complete and

precise description of the system’s allowed behaviors.

These models are often represented using formal tools such

as finite automata, Petri nets, or GRAFCET diagrams. From

these representations, controllers are developed in two main

stages. First, local controllers are created for each component

individually, ensuring they comply with their own specific

constraints. Next, the local controllers are combined with

global constraints to form distributed controllers, which

coordinate the entire system. This combination process is

known as controller synthesis and is commonly performed

using Supervisory Control Theory or similar techniques. The

result is a robust control strategy that only allows the system

to behave in ways permitted by the original specification.

After creating these distributed controllers, they undergo a

verification step to confirm that all requirements are met under

every possible scenario. For complex systems that involve

timing or multiple processes running simultaneously, model

checking is performed. Model checking uses specialized tools

such as UPPAAL or SUPREMICA to systematically explore

the system’s state space and detect any problems, including

potential deadlocks or violations of safety and liveness

constraints. If any issues are found, the constraints or models

are revised, and the synthesis and verification steps are

repeated until the controllers satisfy all requirements fully.

Once the verification step is successfully completed, the

validated controllers are translated into Grafcet diagrams or

other suitable programming formats. These diagrams can be

directly deployed onto programmable logic controllers. This

step ensures that the system operates exactly as designed,

minimizing the need for further debugging during

commissioning. The complete workflow for developing

control programs using formal methods from initial

specification through to final PLC implementation is shown in

Figure 2.

Figure 2. Workflow for control program development using

formal methods

Formal methods provide significant advantages for control

system design. They enable the early detection of design errors,

guarantee correctness by construction, and clearly trace the

link between the original specifications and the implemented

control code. They are particularly valuable for safety-critical

systems, such as robotic work cells and transport automation,

where unexpected behaviors could lead to serious hazards or

costly operational failures.

However, formal methods also have limitations. Building

accurate formal models is time-consuming and requires

specialized skills in system modeling and formal logic. As the

complexity of a system grows, the number of possible states

that need to be checked increases rapidly. This rapid increase,

known as combinatorial explosion, can make the verification

process slow or even infeasible. Due to these challenges,

formal methods are most commonly applied in academic

research or in smaller industrial systems where the modeling

effort is manageable.

In previous research, our team has successfully applied

formal methods in practical settings, specifically for discrete-

event modeling and controller synthesis using model-checking

tools like SUPREMICA and UPPAAL [17, 18].

Although formal methods continue to offer a reliable

approach for ensuring correctness, their complexity and

scalability issues have limited wider adoption in industry.

Recent research therefore explores combining formal methods

1599

with artificial intelligence techniques. AI-based approaches

can reduce manual modeling effort, improve scalability, and

increase flexibility in the control design process. The next

section examines these promising new directions, focusing on

how AI can automate key stages of control program

development.

3. METHODOLOGY

Control designers often face significant challenges when

developing programs for Automated Production Systems.

These systems consist of many components that must operate

together in a coordinated way. This complexity often makes

programming the entire system as a whole impractical.

Designers commonly apply the divide and conquer principle:

they break down the system into smaller units and control each

component separately. However, applying this strategy

requires identifying all components described in the

requirement specification. While humans find this task

relatively easy, it poses a significant challenge for computers,

which necessitates advanced AI techniques.

To address this challenge, we propose a structured AI-based

pipeline. This pipeline transforms a natural language

requirement specification into a set of extracted components,

each linked to its predefined control behavior. Our goal is to

convert unstructured, human-written text into structured

control logic elements for reuse and assembly. This approach

reduces dependence on manual interpretation and forms the

foundation for generating control programs. Figure 3

illustrates the pipeline’s structure. It presents the complete

process, from requirement specifications through data

preparation, model training, and component extraction. The

pipeline then uses predefined logic blocks to define the control

behavior of each identified element.

Figure 3. Overview of the proposed pipeline

Our work focuses on the early stages of this pipeline. It

involves creating a labeled dataset, designing a custom

annotation tool, and fine-tuning BERT models in both Base

and Large configurations for component extraction. We

evaluate these models for their ability to identify key control

components such as sensors, actuators, and pre-actuators. We

then use the extracted components to generate their associated

control logic using predefined templates. This structure

supports the long-term goal of automating control program

generation from natural language input.

Developing this capability requires training data that

accurately represents how control designers express system

behavior and describe industrial components. To obtain such

data, we first searched for existing datasets containing

requirement specifications used in industrial automation. Our

objective was to find examples that reflect the language and

structure typically used in practice. However, most available

datasets are designed for general-purpose language tasks, they

do not include technical vocabulary or structured descriptions

of industrial devices. To address this gap, we developed the

AutoFactory dataset [19]. We specifically designed it to

support training models that translate natural language

specifications into control programs.

Manufacturing systems consist of multiple components that

work together to perform specific tasks [20]. These

components include actuators, pre-actuators, and sensors.

Each component performs a distinct function, and its behavior

must be clearly described in the requirement specification. To

create training data suitable for this study, a collection of

requirement specifications was manually written based on

realistic industrial examples. Each specification was drafted

by experienced control designers using structured language

and precise technical terminology. One example describes a

double-acting cylinder that extends until it reaches the front

limit switch, then retracts to the back limit switch. A visual

representation of this operation is shown in Figure 4.

Figure 4. Visual representation of a double-acting cylinder

operation

After creating the initial set of requirement specifications,

we expanded the dataset using large language models.

Although each specification was written manually by a control

designer, we observed that the same system behavior can be

written in many different ways. In real projects, control

designers often describe systems using their own wording and

writing style. Some may write long descriptions, others may

keep them short or omit certain details. Our goal is to give the

control designer full freedom to write the requirement

specification in English without having to follow strict rules.

Even if the text contains small mistakes or inconsistent

phrasing, the model should still be able to understand the

meaning and generate the correct control logic. To prepare the

system for this variability, we used language models to

generate multiple versions of each specification with different

writing styles.

To generate these variations, we used three large language

models [21]: ChatGPT Pro, Claude Pro, and Mistral Pro.

These models were selected because they produce more

accurate and consistent outputs than free versions. They are

1600

better at preserving the technical meaning of the original

specification while allowing changes in sentence structure or

vocabulary. For each requirement specification written by the

control designer, we provided a prompt asking the models to

produce multiple variations of the same description. This step

is important because machines need to see many forms of the

same idea in order to learn how to generalize. An example of

the prompt and the generated variations is shown in Figure 5.

Each version keeps the same system behavior but uses a

different way of expressing it.

Figure 5. Prompt and example outputs generated by LLM

After generating the variations, we performed a cleaning

step to remove duplicates and incorrect outputs. Since the

models generate text by prediction, repeating the process

multiple times for the same input can sometimes produce

identical or nearly identical results. To reduce redundancy, we

used a Python script to automatically detect and eliminate

repeated requirement specifications. This helped ensure that

each entry in the dataset was unique and meaningful. Once this

step was complete, we selected a portion of the dataset for

manual review. Each specification was checked by a control

designer to confirm that the content was accurate, the

terminology was correct, and the structure was consistent. Any

specification that did not meet these criteria was either

corrected or removed.

After preparing the dataset, the next step was to annotate the

key components in each requirement specification. This

labeling process involved identifying entities such as actuators,

pre-actuators, and sensors, which serve as essential input for

training the extraction model. While several annotation tools

exist, we encountered significant limitations. Many tools

operate on external servers, which raises concerns about data

privacy. Others restrict tag customization, offer limited export

options, or rely on complex interfaces that are difficult to use

in practice. Some are not open-source, while others require a

paid license, making them unsuitable for our workflow.

To address these issues, we developed a dedicated labeling

tool called AutoLabel-NER, designed specifically for

manufacturing requirement specifications. The tool allows

users to import raw text, define and customize tags, and

annotate components efficiently. When an entity is labeled, the

tool automatically highlights similar terms across the text,

which accelerates the annotation process. It also provides

progress tracking and supports multiple export formats. The

interface of the tool is shown in Figure 6.

Figure 6. Interface of AutoLabel-NER

Once the labeling process was completed, the annotated

dataset was used to train a model for component extraction.

The goal was to enable the system to automatically identify

entities such as actuators, pre-actuators, and sensors in new

requirement specifications. For this task, we fine-tuned the

BERT model [22], which has shown strong performance in

sequence labeling tasks such as named entity recognition.

BERT was chosen for its ability to capture contextual

relationships in text using a deep bidirectional transformer

architecture. As shown in Table 1, BERT-Base includes 12

layers, 768 hidden units, and 12 self-attention heads, with a

total of 110 million parameters. These settings offer a balance

between model capacity and computational efficiency. The

model was fine-tuned using our labeled dataset with a token-

level classification objective, allowing it to learn how

technical terms map to their corresponding component

categories across a range of writing styles.

Table 1. Characteristics of pre-trained BERT base and large

Feature Description

Release Date October 11, 2018

Parameters
Base: 110M

Large: 340M

Layers / Hidden Dimensions /

Self-Attention Heads

Base: 12 / 768 / 12

Large: 24 / 1024 / 16

Training Time
Base: 8 × V100 × 12d

Large: 280 × V100 × 1d

Performance
Outperforming SOTA in Oct

2018

Pre-Training Data
BooksCorpus + English

Wikipedia = 16 GB

Method
Bidirectional Transformer,

MLM and NSP

To make the fine-tuning of BERT effective and reliable, the

main training settings, called hyperparameters, were carefully

optimized for this task. These include the learning rate, batch

size, and number of training epochs. We used a grid search,

which systematically tests different combinations, to identify

the settings that offered the best balance between accuracy,

stability, and efficiency. The final values, summarized in

Table 2, were determined based on ablation experiments

performed on the AutoFactory dataset.

The learning rate was tested across several values, and

5×10⁻⁵ consistently delivered the most stable convergence and

highest F1 scores during these experiments. Batch sizes of 16

1601

and 32 were selected because they provided efficient use of

memory while maintaining stable model updates, which is

important given the variable sentence lengths in the dataset.

Although five training epochs were initially tested, the

ablation results showed that three were sufficient to reach peak

performance while avoiding overfitting. These optimized

settings allowed the fine-tuned models to adapt effectively to

the AutoFactory dataset while maintaining strong performance

on unseen specifications.

Table 2. Hyperparameters and their values used in fine-tuning

Hyperparameter Description Values

Learning Rate
The step size for model updates during training. It controls how much to change the model in

response to the estimated error each time the model weights are updated.

[1e-4, 1e-5,

5e-5]

Train Batch Size
The number of samples processed before the model is updated. A larger batch size means more

memory is required but can lead to more stable updates.
[16, 32]

Eval Batch Size
The number of samples processed during evaluation. Similar to the train batch size, but used

during the validation phase.
[16, 32]

Number of Training

Epochs

The number of complete passes through the entire training dataset. More epochs can lead to

better learning but also risk overfitting.
3

Tensorboard Logging

Directory
The directory for storing TensorBoard logs, which are used for visualizing the training process. "runs"

Evaluate During

Training

A setting to enable evaluation of the model during the training process to monitor its

performance.
TRUE

Early Stopping
A technique to stop training when the model’s performance stops improving, to prevent

overfitting.
TRUE

After training, the models were evaluated on a separate

portion of the labeled dataset. Four metrics were used to assess

performance: evaluation loss, precision, recall, and F1 score.

Evaluation loss indicates how well the model fits the

validation data. Precision is defined as the proportion of

correctly predicted labels among all predicted labels:

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(1)

Recall measures the proportion of correctly predicted labels

among all actual labels:

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(2)

The F1 score combines precision and recall into a single

measure:

F1 Score =
2 × Precision × Recall

Precision + Recall
(3)

These metrics were computed at regular intervals during

training and used to identify the best-performing model. Both

BERT-Base and BERT-Large were fine-tuned using a fixed

learning rate of 5 × 10-5 and a batch size of 16. These values

were selected to ensure stable learning and efficient

convergence. The evaluation results were stored in summary

tables, and training curves were generated to visualize how

performance metrics evolved across training steps.

After the components were detected in the requirement

specification, the system assigned a function to each one.

These functions were selected from a predefined library. Each

entry in the library describes how a specific component

behaves in an industrial system. For example, a cylinder may

be linked to a function that defines how it extends and retracts,

while a sensor may be linked to a function that checks its state.

By assigning the correct function to each detected component,

the system was able to recreate the behavior described in the

original text.

Once all functions were assigned, the system combined

them in the correct order to build the control logic. The final

logic was then converted into Structured Text, following the

IEC 61131-3 standard used in programmable logic controllers.

This approach was designed to be modular. Each function can

be reused, and new ones can be added without changing the

rest of the system. This makes the method flexible and scalable.

Control designers can describe different systems in natural

language, and the same pipeline can generate structured and

consistent code for each one.

This completes the core of the proposed pipeline. The

component detection stage has been fully implemented and

evaluated, and the results confirm that the system can reliably

identify the key elements in natural language specifications.

The final stage, which involves assembling complete logic

structures and generating executable code for different types

of industrial tasks, is still in development. We are currently

building a diverse set of reusable control functions to cover a

wide range of manufacturing scenarios.

4. RESULTS AND DISCUSSION

The results presented in this section highlight the

effectiveness of the proposed approach for extracting key

components from natural language specifications in

manufacturing systems. Using a dataset of over 2000

annotated descriptions written by control designers, we

evaluate the ability of pretrained language models to identify

entities such as actuators, pre-actuators, and sensors with high

precision. Our analysis focuses on the structure of the dataset,

the distribution of entity classes, the setup of the training

process, and the comparative performance of BERT-Base and

BERT-Large models. Through a series of figures and tables,

we discuss the progression of training, the quality of

predictions, and the trade-offs observed between model

complexity and performance.

The dataset used in this study comprises 2135 natural

language specifications written in English, each describing the

intended behavior of components in automated manufacturing

systems. To enable machine learning models to process this

information, each specification was manually annotated using

the BIO (Begin, Inside, Outside) tagging scheme. This format,

consistent with the CoNLL-2003 standard [23], allows each

1602

token in the text to be tagged as either part of an entity (such

as an actuator or sensor) or as general descriptive content.

Three functional entity types were considered: actuators, pre-

actuators, and sensors. All other tokens were labeled as "O",

indicating that they do not represent a technical component.

The final dataset contains over 76000 tokens distributed across

training, validation, and test sets. The detailed breakdown is

provided in Table 3.

Table 3. Annotated data distribution across training,

validation, and test sets

Category Train Validation Test Total

Specifications 1708 213 214 2135

Sentences 3416 426 428 4270

Tokens 61065 7686 7669 76420

Actuators 1708 213 214 2135

Pre-Actuators 1708 213 214 2135

Sensors 3416 426 428 4270

Others 40385 5101 5073 50559

This distribution reveals that sensors are the most frequently

occurring labeled entities, while actuators and pre-actuators

appear in equal numbers. However, more than two-thirds of

the tokens are labeled as "others", reflecting the descriptive

nature of industrial specifications where control logic is

embedded within broader contextual instructions.

To further illustrate the entity composition of the dataset,

Figure 7 presents the distribution of labeled tokens across the

four categories: actuators, pre-actuators, sensors, and others.

As the figure shows, the "others" category dominates the

dataset, accounting for over 66% of all tokens. This is

expected, as requirement specifications in manufacturing

often contain auxiliary information such as conditions, timings,

and structural details that are not tied to specific components.

Among the functional entities, sensors appear most frequently,

followed by balanced counts of actuators and pre-actuators.

This distribution poses a learning challenge, as models must

accurately distinguish relatively sparse entities within a

majority of general-purpose language.

Figure 7. Distribution of labeled tokens by entity class

To ensure consistent evaluation and reliable generalization,

the dataset was randomly divided into three subsets: 80% for

training, 10% for validation, and 10% for testing. This split

preserves the distribution of entity types across all partitions,

which is essential to avoid bias during model assessment. The

training set exposes the model to a diverse set of examples,

while the validation and test sets allow for monitoring

generalization and evaluating performance on unseen data.

The proportions allocated to each subset are shown in Figure

8.

Figure 8. Proportions of training, validation, and test sets in

the dataset

Table 4. Token-level annotations with part-of-speech and

named entity labels [19]

Token POS
POS

ID
NER Label

NER

ID

This DT 4 O 0

setup NN 8 O 0

involves VBZ 19 O 0

a DT 4 O 0

double-

acting
JJ 7 B-ACTUATOR 1

cylinder NN 8 I-ACTUATOR 2

controlled VBZ 18 O 0

by IN 6 O 0

a DT 4 O 0

5/2-way JJ 7
B-

PREACTUATOR
3

solenoid NN 8 I-PREACTUATOR 4

valve NN 8 I-PREACTUATOR 4

. . 1 O 0

The DT 4 O 0

cylinder NN 8 O 0

moves VBZ 19 O 0

forward RB 13 O 0

to TO 14 O 0

the DT 4 O 0

FL NNP 9 B-SENSOR 5

limit NN 8 I-SENSOR 6

switch NN 8 I-SENSOR 6

and CC 2 O 0

then RB 13 O 0

retracts VBZ 19 O 0

to TO 14 O 0

the DT 4 O 0

BL NNP 9 B-SENSOR 5

limit NN 8 I-SENSOR 6

switch NN 8 I-SENSOR 6

. . 1 O 0

To illustrate how specifications were annotated, Table 4

presents a labeled example taken directly from the dataset [19].

Each token is associated with its corresponding part-of-speech

(POS) tag and named entity label using the BIO scheme. This

format enables the model to identify not only the type of

component (e.g., actuator or sensor) but also its span within

the sentence. While the structure is compatible with CoNLL-

2003 conventions, the vocabulary and domain-specific terms

reflect the language commonly used by control designers. This

approach allows the model to learn technical patterns in

1603

realistic industrial contexts.

After building and annotating the dataset, the next step was

to set up the training and evaluation process. This part of the

study aimed to test whether the models could correctly identify

the main components mentioned in the specifications. These

components include actuators, pre-actuators, and sensors. To

perform this task, two models were used: BERT-Base and

BERT-Large. BERT was chosen because it is designed to

understand the meaning of words in context, which is

important when identifying technical terms in full sentences.

It has also shown strong performance in tasks where each word

in a sentence must be labeled, such as named entity recognition.

Both versions of BERT were fine-tuned on the annotated

dataset. Fine-tuning means taking a model that has already

learned from general English texts and continuing its training

on a specific dataset, so it can adapt to the language and

structure of the domain.

To fine-tune the models on the annotated dataset, a

systematic grid search was conducted to identify the optimal

training configuration. We explored different combinations of

learning rates and batch sizes for both BERT-Base and BERT-

Large while keeping the number of training epochs fixed at

three. This setup ensured a fair comparison of model capacity

under consistent training conditions. The learning rates tested

were 1e-5, 3e-5, and 5e-5, and batch sizes of 16 and 32 were

evaluated. Each model was trained to minimize evaluation loss

and maximize precision, recall, and F1 score.

Table 5 presents the full results of the grid search. BERT-

Base achieved its best performance with a learning rate of 5e-

5 and batch size of 16, reaching an F1 score of 0.9711,

precision of 0.9778, and recall of 0.9688. BERT-Large also

performed well, with its highest F1 score of 0.9667 under the

same learning rate and batch size. These results confirm that

both models can accurately detect components in

manufacturing specifications, with BERT-Base showing

slightly more stable performance across configurations.

Table 5. Grid search results for BERT-Base and BERT-Large fine-tuned on the AutoFactory dataset

Model Epochs Learning Rate Batch Size Evaluation Loss F1 Score Precision Recall

BERT Base 3

0.00001 16 0.0931 0.9494 0.9421 0.9569

0.00003 16 0.0651 0.9642 0.9594 0.9670

0.00005 16 0.0446 0.9711 0.9778 0.9688

0.00001 32 0.0998 0.9453 0.9371 0.9536

0.00003 32 0.0566 0.9663 0.9634 0.9672

0.00005 32 0.0634 0.9659 0.9631 0.9678

BERT Large 3

0.00001 16 0.0973 0.9528 0.9463 0.9595

0.00003 16 0.0582 0.9637 0.9679 0.9597

0.00005 16 0.0746 0.9667 0.9628 0.9707

0.00001 32 0.0931 0.9498 0.9464 0.9532

0.00003 32 0.0684 0.9613 0.9618 0.9608

0.00005 32 0.0810 0.9582 0.9594 0.9571

During training, we monitored key performance metrics to

evaluate how well the model was learning over time. These

metrics included evaluation loss, precision, recall, and F1

score. Figure 9 shows how BERT-Base progressed across

these indicators throughout 801 training steps. In the early

stages, the model exhibited rapid improvements in both recall

and precision, reflecting its ability to capture component

patterns from the training data. Around step 200, performance

stabilized, and the F1 score consistently remained above 0.96

in the later stages of training. The evaluation loss decreased

steadily, indicating improved generalization. These results

suggest that BERT-Base effectively adapted to the domain and

was able to extract relevant entities from technical language

with high accuracy.

Figure 9. Performance metrics during training – BERT-base

To assess the influence of model capacity, we also tracked

the performance of BERT-Large using the same training

configuration. As shown in Figure 10, BERT-Large reached

high scores early in training and exhibited stable

improvements over time. While its F1 score surpassed 0.96

after approximately 200 steps, the overall curve showed more

fluctuation compared to BERT-Base, particularly in the earlier

and middle phases of training. Despite these variations, the

model achieved competitive results, with its final F1 score

nearing that of BERT-Base. The evaluation loss also followed

a downward trend, confirming the model’s ability to

generalize well. These results indicate that BERT-Large

benefits from its greater capacity to model complex patterns,

but this also comes with a slightly less stable training curve.

Figure 10. Performance metrics during training – BERT-large

1604

To provide a clear summary of performance, we compared

the best evaluation metrics achieved by each model using a

grouped bar chart. As shown in Figure 11, BERT-Base slightly

outperformed BERT-Large across most metrics. It reached the

highest F1 score of 0.9711, along with strong precision, recall,

and a lower evaluation loss. While BERT-Large also delivered

competitive results, its peak scores remained slightly lower

under the same training conditions. This outcome suggests that

BERT-Base offers a strong balance between performance and

stability for the task. However, it is worth noting that BERT-

Large has greater capacity and may yield better results if

trained with a different learning rate, batch size, or number of

epochs. Further hyperparameter tuning and model-specific

adjustments could improve its performance in future work.

Figure 11. Best evaluation metrics: BERT-base vs BERT-

large

Figure 12. Overlay comparison of BERT-base and BERT-

large across four metrics

To better understand how the two models evolve over time,

we plotted their training curves together for all key metrics: F1

score, precision, recall, and evaluation loss. Figure 12 provides

this side-by-side visualization. The results show that both

models followed similar learning patterns, with BERT-Base

displaying slightly more stable trajectories across most metrics.

BERT-Large showed stronger performance in some early

stages but exhibited greater variability, especially in precision

and recall. Despite these fluctuations, its scores converged

closely with those of BERT-Base by the final training steps.

This overlay comparison confirms that both models are

capable of capturing the structure of technical language in

manufacturing specifications, but BERT-Base maintained a

more consistent learning behavior throughout the training

process.

The results obtained from the component extraction step

demonstrate that the BERT models are capable of accurately

identifying actuators, pre-actuators, and sensors from

structured technical descriptions. This confirms that the

system can process manufacturing requirements written in

natural language and extract the functional elements necessary

for automation. The extraction process is now stable and

precise, providing a reliable foundation for the next phase of

our work.

Figure 13. Pipeline showing component extraction and code

generation from natural language specification

As shown in Figure 13, once the key components are

identified by the model, the system can proceed to structure

them into meaningful control logic. We are currently

developing the module responsible for generating function

definitions and control routines based on these extracted

elements. This step aims to automatically produce Structured

Text code that conforms to industrial standards. By extending

the system in this direction, we move closer to fully

automating the translation of requirement specifications into

executable PLC programs. scenarios.

5. CONCLUSION AND FUTURE WORK

Writing control programs for manufacturing systems

requires time, precision, and expert knowledge. This process

often begins with a requirement specification written in natural

language and ends with manually developed code for

programmable logic controllers. As systems become more

complex, this manual approach becomes difficult to scale and

maintain. The work presented in this study addresses this

challenge by exploring how artificial intelligence can support

control designers by interpreting natural language

specifications and automating part of the code generation

process.

In this study, we introduced a step-by-step approach that

allows computers to understand and process natural language

specifications in manufacturing. The system starts by

identifying important components such as actuators, pre-

actuators, and sensors. To do this, we trained two BERT

models on a dataset created specifically for this task. Once the

components are detected, each one is linked to a function that

describes how it should behave. These functions are then

combined to form a complete control program. The final code

is written in Structured Text, a language used in industrial

automation. This method reduces manual effort, improves

consistency, and prepares the way for future automation of

control program development.

The results showed that both BERT-Base and BERT-Large

were able to detect components from specifications with high

accuracy. BERT-Base achieved the highest F1 score of 0.9711,

while BERT-Large reached 0.9667 under the same training

settings. Both models performed well in terms of precision and

1605

recall, confirming their ability to generalize across different

writing styles. BERT-Base demonstrated a more stable

learning curve, while BERT-Large showed greater capacity

but with some variation during training. These results confirm

that pretrained language models can understand technical

language and extract useful information from it with very good

performance.

While the system successfully detects key components such

as actuators, pre-actuators, and sensors from natural language

specifications, the full pipeline is not yet complete. At this

stage, the system stops after identifying components and

assigning corresponding functions. It does not yet build the

complete control logic or generate fully structured and

validated control code. Another limitation is that the dataset,

although built from realistic examples, may not cover all ways

control designers write specifications in different industrial

settings. These limitations define the current boundary of the

work and highlight areas for future improvement.

The next stage of this work will complete the development

of the pipeline so that it can produce fully validated control

programs ready for industrial use. The pipeline will take a

natural language requirement specification as input and

automatically generate Structured Text code as output. It will

include logic assembly, simulation, and formal verification to

ensure the generated programs are correct and reliable. The

Structured Text will comply with the IEC 61131-3 standard

and will be exported as project files compatible with Siemens

TIA Portal and Schneider EcoStruxure. This will allow

engineers to test, simulate, and deploy the generated programs

directly in their existing industrial workflows, making the

system easy to adopt.

Following these improvements, the dataset will be

expanded to cover all manufacturing scenes available in

Factory I/O, a 3D simulation platform for industrial

automation. For each scene, multiple requirement

specifications will be written by different designers. These will

include augmented variations for linguistic diversity, detailed

tag tables, screenshots from multiple angles, and the original

3D scene files. This expansion will allow the pipeline to be

tested from end to end, starting with natural language input and

ending with deployment-ready code that can be validated in

simulation and industrial development environments.

In parallel, the AutoLabel-NER tool will be upgraded to

include semi-automatic annotation. This feature will allow the

tool to suggest labels based on model predictions, which

human annotators can quickly confirm or correct. This

upgrade will speed up dataset creation and improve labeling

consistency, helping accelerate model training and evaluation.

In the longer term, we plan to develop a full prototype tool

that integrates all stages of control program generation into a

single system. This tool will combine component extraction,

logic mapping, simulation, and formal verification in one

unified interface. These developments will lead to a robust

toolchain that converts natural language specifications into

tested, ready-to-use control code for both virtual and real

manufacturing systems.

TRAINING ENVIRONMENT

The models were fine-tuned on a local machine equipped

with an NVIDIA GeForce RTX 5080 GPU, an Intel Core i9

14th-generation processor, 64 GB of DDR5 RAM, and a 1 TB

SSD. The experiments were conducted on Windows 11 using

Python 3.12.7. Training was performed using the Simple

Transformers library built on top of Hugging Face

Transformers.

REFERENCES

[1] Boppana, V.R. (2024). Industry 4.0: Revolutionizing the

future of manufacturing and automation. Available at

SSRN 5135027. https://doi.org/10.2139/ssrn.5135027

[2] Winch, G.M. (2022). Projecting for sustainability

transitions: Advancing the contribution of Peter Morris.

Engineering Project Organization Journal, 11(2): 16.

https://doi.org/10.25219/epoj.2022.00101

[3] Groumpos, P.P. (2021). A critical historical and

scientific overview of all industrial revolutions. IFAC-

PapersOnLine, 54(13): 464-471.

https://doi.org/10.1016/j.ifacol.2021.10.492

[4] Aoun, A., Ilinca, A., Ghandour, M., Ibrahim, H. (2021).

A review of Industry 4.0 characteristics and challenges,

with potential improvements using blockchain

technology. Computers & Industrial Engineering, 162:

107746. https://doi.org/10.1016/j.cie.2021.107746

[5] Ryalat, M., ElMoaqet, H., AlFaouri, M. (2023). Design

of a smart factory based on cyber-physical systems and

Internet of Things towards Industry 4.0. Applied

Sciences, 13(4): 2156.

https://doi.org/10.3390/app13042156

[6] Javaid, M., Haleem, A., Singh, R.P., Suman, R. (2022).

Enabling flexible manufacturing system (FMS) through

the applications of Industry 4.0 technologies. Internet of

Things and Cyber-Physical Systems, 2: 49-62.

https://doi.org/10.1016/j.iotcps.2022.05.005

[7] Xia, C., Liu, Y., Xia, T., Jin, X., Xu, C., Zeng, P. (2022).

Control-communication-computing co-design in cyber-

physical production system. IEEE Internet of Things

Journal, 10(6): 5194-5204.

https://doi.org/10.1109/JIOT.2022.3221932

[8] Napoleone, A., Negri, E., Macchi, M., Pozzetti, A.

(2023). How the technologies underlying cyber-physical

systems support the reconfigurability capability in

manufacturing: A literature review. International Journal

of Production Research, 61(9): 3122-3144.

https://doi.org/10.1080/00207543.2022.2074323

[9] Oluyisola, O.E., Bhalla, S., Sgarbossa, F., Strandhagen,

J.O. (2022). Designing and developing smart production

planning and control systems in the Industry 4.0 era: A

methodology and case study. Journal of Intelligent

Manufacturing, 33(1): 311-332.

https://doi.org/10.1007/s10845-021-01808-w

[10] Sahoo, S., Lo, C.Y. (2022). Smart manufacturing

powered by recent technological advancements: A

review. Journal of Manufacturing Systems, 64: 236-250.

https://doi.org/10.1016/j.jmsy.2022.06.008

[11] Boudribila, A., Tajer, A., Boulghasoul, Z. (2024). From

natural language to code: AI automation in cyber-

physical manufacturing systems. In 2024 World

Conference on Complex Systems (WCCS),

Mohammedia, Morocco, pp. 1-6.

https://doi.org/10.1109/WCCS62745.2024.10765530

[12] Boudribila, A., Chadi, M.-A., Tajer, A., Boulghasoul, Z.

(2023). Large language models and adversarial

reinforcement learning to automate PLCs programming:

A preliminary investigation. In 2023 9th International

1606

Conference on Control, Decision and Information

Technologies (CoDIT), Rome, Italy, pp. 650-655.

https://doi.org/10.1109/CoDIT58514.2023.10284185

[13] Deshmukh, J.V., Sankaranarayanan, S. (2019). Formal

techniques for verification and testing of cyber-physical

systems. In Design Automation of Cyber-Physical

Systems, pp. 69-105. https://doi.org/10.1007/978-3-030-

13050-3_4

[14] Lecomte, T., Déharbe, D., Prun, É., Mottin, E. (2017).

Applying a formal method in industry: A 25-year

trajectory. In Formal Methods: Foundations and

Applications Methods. Springer, Cham, pp. 70-87.

https://doi.org/10.1007/978-3-319-70848-5_6

[15] Garavel, H., Ter Beek, M.H., Van De Pol, J. (2020). The

2020 expert survey on formal methods. In International

Conference on Formal Methods for Industrial Critical

Systems, pp. 3-69. https://doi.org/10.1007/978-3-030-

58298-2_1

[16] Fischer, J., Vogel-Heuser, B., Huber, C., Felger, M., &

Bengel, M. (2021). Reuse assessment of IEC 61131-3

control software modules using metrics - An industrial

case study. In 2021 IEEE 19th International Conference

on Industrial Informatics (INDIN), Palma de Mallorca,

Spain, pp. 1-8.

https://doi.org/10.1109/INDIN45523.2021.9557357

[17] Qamsane, Y., Tajer, A., Philippot, A. (2017). Towards an

approach of synthesis, validation and implementation of

distributed control for AMS by using events ordering

relations. International Journal of Production Research,

55(21): 6235-6253.

https://doi.org/10.1080/00207543.2017.1333648

[18] Qamsane, Y., Tajer, A., Philippot, A. (2017). A synthesis

approach to distributed supervisory control design for

manufacturing systems with Grafcet implementation.

International Journal of Production Research, 55(15):

4283-4303.

https://doi.org/10.1080/00207543.2016.1235804

[19] Boudribila, A. (2025). AutoFactory. Hugging Face.

https://doi.org/10.57967/hf/5011

[20] Leng, J., Wang, D., Shen, W., Li, X., Liu, Q., Chen, X.

(2021). Digital twins-based smart manufacturing system

design in Industry 4.0: A review. Journal of

Manufacturing Systems, 60: 119-137.

https://doi.org/10.1016/j.jmsy.2021.05.011

[21] Brown, T., Mann, B., Ryder, N., Subbiah, M., et al.

(2020). Language models are few-shot learners. Part of

Advances in Neural Information Processing Systems 33

(NeurIPS 2020).

[22] Devlin, J., Chang, M. W., Lee, K., Toutanova, K. (2019).

BERT: Pre-training of deep bidirectional transformers

for language understanding. In Proceedings of the 2019

Conference of the North American Chapter of the

Association for Computational Linguistics: Human

Language Technologies, Minneapolis, Minnesota, pp.

4171-4186. https://doi.org/10.18653/v1/N19-1423

[23] Sang, E.F.T.K., De Meulder, F. (2003). Introduction to

the CoNLL-2003 shared task: Language-independent

named entity recognition. arXiv preprint cs/0306050.

https://doi.org/10.48550/arXiv.cs/0306050

1607

