Z‘ I El' A International Information and

Engineering Technology Association

Ingénierie des Systémes d’Information
Vol. 30, No. 6, June, 2025, pp. 1597-1607

Journal homepage: http://iieta.org/journals/isi

Automatic Generation of PLC Control Code from Natural Language Requirement |

Specifications

Check for
updates

Abderrahmane Boudribila®?* >, Abdelouahed Tajer'®, Zakaria Boulghasoul*

1 Systems Engineering and Applications Laboratory, Cadi Ayyad University, Marrakech 40000, Morocco
2 LAMIGEP, Moroccan School of Engineering Sciences, Marrakech 40000, Morocco

Corresponding Author Email: a.boudribila.ced@uca.ac.ma

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/isi.300618

ABSTRACT

Received: 24 April 2025
Revised: 26 May 2025
Accepted: 8 June 2025
Available online: 30 June 2025

Keywords:

code generation, IEC 61131-3, industrial
automation, large language models (LLMs),
manufacturing systems, named entity
recognition (NER), natural language
processing (NLP), programmable logic
controllers (PLCs)

Developing control programs for manufacturing systems is time-consuming and requires
expert control designers. While manual programming is common, it becomes complex as
systems grow, leading to long development times, frequent errors, and difficult
maintenance. To address these issues, researchers have introduced formal methods like
Supervisory Control Theory (SCT) and model checking to improve precision and
verification. Although these are some of the most advanced approaches, they are difficult
to use in practice because they are time-consuming, require high mathematical expertise,
and face scalability problems such as combinatorial explosion in large systems. This study
aims to overcome these limitations by presenting an Al-based system that automatically
generates programmable logic controller (PLC) code from natural language requirement
specifications. The approach uses AutoFactory, a dataset of annotated specifications, and
fine-tunes two Bidirectional Encoder Representations from Transformers (BERT)-based
models to extract actuators, pre-actuators, and sensors before generating International
Electrotechnical Commission (IEC)61131-3 Structured Text (ST) code. BERT-Base
achieved an F1 score of 0.9711, showing reliable component extraction. The study proves
that transformer models can accurately detect control components and initiate logic
generation. These results confirm that Al can assist and augment control designers by
automating extraction and initial coding. Future work will complete the pipeline to deliver

verified IEC 61131-3 code ready for industrial deployment.

1. INTRODUCTION

Manufacturing systems have changed over time as new
technologies have been introduced. The First Industrial
Revolution used steam power to operate machines [1]. The
Second added electricity and allowed for mass production [2].
The Third brought automation with the help of computers [3].
Today, in the Fourth Industrial Revolution, known as Industry
4.0, machines are connected to computers and networks [4].
These systems are called Cyber-Physical Manufacturing
Systems. They combine physical equipment with sensors,
controllers, and software. This allows for real-time monitoring
and control of production [5]. These changes have made
manufacturing more efficient and flexible [6]. However, they
have also increased the complexity of control. Writing control
programs for such systems is now more difficult. It requires
precise, reliable, and fast solutions that can handle complex
and dynamic processes [7, 8].

As manufacturing systems have become more complex, the
task of creating reliable control programs has become more
demanding [9, 10]. In many cases, engineers still rely on
heuristic methods to perform this task. This approach is based
on the expert’s intuition, experience, and manual effort [11,
12]. The process begins with writing a requirement

1597

specification that describes the expected behavior of the
system. Based on this specification, the expert designs a
control program using their knowledge of the system. The
program is then tested in a simulator to check if it behaves as
expected. If the simulation reveals errors, the expert must go
back, modify the program, and test it again. Once the
simulation confirms that the program is correct, the code is
transferred to the programmable logic controller. Although
this method is simple and widely used in practice, it is slow,
difficult to maintain, and prone to human error. Each update
requires repeating the same steps, which makes the approach
inefficient, especially for systems that change frequently or
involve many components.

To address the limitations of heuristic methods, some
researchers and engineers use formal methods to design
control programs. Unlike heuristic approaches, which rely on
intuition and manual programming, formal methods are based
on mathematical models and systematic reasoning [13]. In this
approach [11], the expert begins by identifying the
components of the system and defining the constraints. These
constraints describe both the desired actions and the conditions
that must be avoided. The expert builds two separate models:
one for the global behavior of the system and another for the
constraints. These models are then combined to produce a

https://orcid.org/0009-0002-9040-3462
https://orcid.org/0000-0002-1528-7855
https://orcid.org/0000-0002-3923-2162
https://crossmark.crossref.org/dialog/?doi=10.18280/isi.300618&domain=pdf

single formal representation of the control logic. Techniques
such as Supervisory Control Theory and model checking are
commonly used at this stage. The formal model is then verified
to ensure that it satisfies all requirements. If errors are found,
it must be corrected and verified again. Once validated, the
model is used to generate the control program that will be
transferred to the PLC. Although formal methods improve
precision and reduce ambiguity, they require strong
mathematical knowledge and significant development time.
As a result, they are difficult to apply in industrial settings,
especially when the system is large or complex [14, 15].

In this work, we present a first step toward a new vision:
enabling computers to understand manufacturing
requirements written in natural language and generate control
programs automatically. Our goal is to give computers the
ability to identify key components such as actuators, pre-
actuators, and sensors from a written specification. We aim to
use the speed, consistency, and processing power of computers
to reduce the time and effort needed for manual programming.
This vision supports the idea of fully automating the code
generation process, where the user only needs to describe the
system’s behavior in simple terms. The computer will then
extract the necessary information and generate the control
logic without requiring expert intervention. Our pilot study is
focused on building the foundation for this approach by
training models that can extract key components from
manufacturing specifications.

After identifying the components of the system, the next
step is to generate the control logic for each one. In our
approach, each detected component is linked to a predefined
code function that describes its behavior. These functions are
stored in a library and are called when the corresponding
component is found in the specification. This method makes
the system modular and easy to scale. It follows a divide-and-
conquer logic, where the overall control program is built by
combining the code of each part. This approach helps reduce
development time and improves code structure and
consistency. The rest of this paper is organized as follows.
Section 2 presents related work. Section 3 explains the
methodology, including dataset creation, model fine-tuning,
and code generation. Section 4 discusses the results. Section 5
concludes the paper and outlines future work, highlighting
how this dataset and tool can support researchers in
automating code generation for manufacturing systems.

2. RELATED WORK

Control program development in manufacturing has
traditionally followed two main approaches: heuristic methods
and formal methods. Both have been used extensively in
industry and academia. Each offers specific advantages but
also presents important limitations. To better understand the
motivations behind our proposed Al-based system, this section
reviews the key principles and challenges of both methods.
First, we describe the heuristic approach, which is based on the
expert’s manual experience. Then, we present formal methods,
which use mathematical modeling to ensure system
correctness.

2.1 Heuristic methods

Heuristic methods refer to the traditional way of designing
control programs based on the personal knowledge, intuition,

1598

and experience of the engineer. This approach does not rely on
formal models or systematic reasoning. Instead, the expert
interprets the system requirements and translates them into
control logic manually. Heuristic methods are widely used in
industrial environments because they are flexible and easy to
apply in simple systems. They allow engineers to design
solutions quickly when the system is small and well
understood. However, as system complexity increases, relying
only on intuition becomes more difficult and less reliable.

While heuristic methods are common in industrial settings,
the process they follow is manual and iterative. It begins with
the expert writing an informal requirement specification that
describes the expected behavior of the system. Based on this
description, the expert manually creates a control program
using their experience and domain knowledge. The program is
then tested through simulation to check whether it behaves as
intended. If the simulation reveals errors, the expert revises the
program and repeats the test. This cycle continues until the
logic is considered correct. Finally, the validated program is
transferred to the programmable logic controller (PLC), which
is often referred to as the brain of the manufacturing system.
The PLC executes the control logic using standard
programming languages defined by the IEC 61131-3 standard
[16]. These include three graphical languages, Ladder
Diagram (LD), Function Block Diagram (FBD), and
Sequential Function Chart (SFC) and two textual languages
Instruction List (IL) and Structured Text (ST). The overall
heuristic workflow is illustrated in Figure 1.

I Physical Manufacturing !

® | System
db |
EXPERT An expert writes a requirement specification

outlining the desired system behavior

Requirement

Specification

The expert designs a control program

Control Program

If the simulation reveals errors

Simulates its behaviour

the expert must modify the control program
and simulate it again

_

Transfer the code to the PLC

Figure 1. Workflow for control program development using
heuristic methods

Heuristic methods are often used in universities and in small
systems where the number of components is limited. In these
simple cases, the expert can understand the requirement easily
and write the control logic without difficulty. However, when
the system becomes more complex, this method reaches its

limits. It becomes harder to understand the interactions
between components. Writing and testing the program takes
more time. Since the process is manual, it is also more likely
to include errors. Another limitation is related to maintenance.
When changes are needed, it is often difficult to modify the
program correctly, especially if it was written by someone else.
In addition, learning to program in this way takes time and
requires experience. For these reasons, heuristic methods are
not suitable for large and dynamic systems that need reliability,
consistency, and fast updates. This limitation has led to the
development of formal methods, which aim to improve control
program design through structured modeling and verification.

2.2 Formal methods

Formal methods offer a clear and structured approach for
designing control programs. They rely on mathematical
models to precisely describe how a system should behave and
the rules it must follow [17, 18]. These methods are
particularly valuable when safety, correctness, and reliability
are important. Unlike heuristic methods, which depend mainly
on human experience, formal methods allow the control logic
to be verified and tested before the system is implemented.
This verification step helps reduce errors during operation and
makes the system easier to maintain and update later.

The process begins with a requirement specification, a clear
description of what the system is expected to achieve. From
this specification, an expert identifies the system components
and defines two important types of constraints. Liveness
constraints specify outcomes that the system must eventually
achieve, such as moving a robotic arm to a precise location.
Safety constraints define conditions that the system must avoid,
such as activating two conflicting actions simultaneously [17,
18]. Using this information, two formal models are created.
The first model, called the behavior model, describes step-by-
step how the system operates. The second model, called the
constraint model, clearly defines all the liveness and safety
constraints. Together, these models provide a complete and
precise description of the system’s allowed behaviors.

These models are often represented using formal tools such
as finite automata, Petri nets, or GRAFCET diagrams. From
these representations, controllers are developed in two main
stages. First, local controllers are created for each component
individually, ensuring they comply with their own specific
constraints. Next, the local controllers are combined with
global constraints to form distributed controllers, which
coordinate the entire system. This combination process is
known as controller synthesis and is commonly performed
using Supervisory Control Theory or similar techniques. The
result is a robust control strategy that only allows the system
to behave in ways permitted by the original specification.

After creating these distributed controllers, they undergo a
verification step to confirm that all requirements are met under
every possible scenario. For complex systems that involve
timing or multiple processes running simultaneously, model
checking is performed. Model checking uses specialized tools
such as UPPAAL or SUPREMICA to systematically explore
the system’s state space and detect any problems, including
potential deadlocks or violations of safety and liveness
constraints. If any issues are found, the constraints or models
are revised, and the synthesis and verification steps are
repeated until the controllers satisfy all requirements fully.

Once the verification step is successfully completed, the
validated controllers are translated into Grafcet diagrams or

1599

other suitable programming formats. These diagrams can be
directly deployed onto programmable logic controllers. This
step ensures that the system operates exactly as designed,
minimizing the need for further debugging during
commissioning. The complete workflow for developing
control programs using formal methods from initial
specification through to final PLC implementation is shown in
Figure 2.

! Physical Manutacturing
1

Ve e — = =

EXPERT An oxpert wites a requsement spaciication
oullining the dosired system behavior

Requirement
Specification

) 0\
The expert dentfies the Define giobal safety and

Define local safety and
sysiem components [

Local safety and
Gomponent Exirection liveness constraints
Synthesize local control models from each

[component and localconstaints
Lo J

Local
Controllers Synthesis
LCito LC,

Combine local controllers under global safety
and liveness constraints

Global
Controllers Synthesis
DCito DC,

Uppaal
Model Checker

i not OK.

Model Checking

Grafcat Interpretation

Transfer the coda to the PLC
[s

Figure 2. Workflow for control program development using
formal methods

Formal methods provide significant advantages for control
system design. They enable the early detection of design errors,
guarantee correctness by construction, and clearly trace the
link between the original specifications and the implemented
control code. They are particularly valuable for safety-critical
systems, such as robotic work cells and transport automation,
where unexpected behaviors could lead to serious hazards or
costly operational failures.

However, formal methods also have limitations. Building
accurate formal models is time-consuming and requires
specialized skills in system modeling and formal logic. As the
complexity of a system grows, the number of possible states
that need to be checked increases rapidly. This rapid increase,
known as combinatorial explosion, can make the verification
process slow or even infeasible. Due to these challenges,
formal methods are most commonly applied in academic
research or in smaller industrial systems where the modeling
effort is manageable.

In previous research, our team has successfully applied
formal methods in practical settings, specifically for discrete-
event modeling and controller synthesis using model-checking
tools like SUPREMICA and UPPAAL [17, 18].

Although formal methods continue to offer a reliable
approach for ensuring correctness, their complexity and
scalability issues have limited wider adoption in industry.
Recent research therefore explores combining formal methods

with artificial intelligence techniques. Al-based approaches
can reduce manual modeling effort, improve scalability, and
increase flexibility in the control design process. The next
section examines these promising new directions, focusing on
how Al can automate key stages of control program
development.

3. METHODOLOGY

Control designers often face significant challenges when
developing programs for Automated Production Systems.
These systems consist of many components that must operate
together in a coordinated way. This complexity often makes
programming the entire system as a whole impractical.
Designers commonly apply the divide and conquer principle:
they break down the system into smaller units and control each
component separately. However, applying this strategy
requires identifying all components described in the
requirement specification. While humans find this task
relatively easy, it poses a significant challenge for computers,
which necessitates advanced Al techniques.

To address this challenge, we propose a structured Al-based
pipeline. This pipeline transforms a natural language
requirement specification into a set of extracted components,
each linked to its predefined control behavior. Our goal is to
convert unstructured, human-written text into structured
control logic elements for reuse and assembly. This approach
reduces dependence on manual interpretation and forms the
foundation for generating control programs. Figure 3
illustrates the pipeline’s structure. It presents the complete
process, from requirement specifications through data
preparation, model training, and component extraction. The
pipeline then uses predefined logic blocks to define the control
behavior of each identified element.

- ™ Export Verficatian and
' | @il Removal of Duplicates
| Examplas of

Augmented Uniabeled
i Sgﬁﬂc‘;ﬂﬁ'}s LLMs Speniete “Requirements Specifications
| Requirement .
' Specification '
Unlabeled Dala
Labeling Tool
Component Fineluner; Transformer Augnenied | . lLabeled)
Extraction Mudel Models Specifications Remuremv,nl; Spicificalions.
«_ ™ Human Annotation
Wb via AutoLabal-NER
| Labeled Data
Match components to
Control - y
Component Define Execution Build Control Simulate Simulation and
Mapping Oder > Sequence logic * CodeAssembly o T ickon
Design

PLC
| Implementation

Deploy Final J
Code to PLC

: @ PLC Operates Sy

| Manufacturing |
System

Figure 3. Overview of the proposed pipeline

Our work focuses on the early stages of this pipeline. It
involves creating a labeled dataset, designing a custom
annotation tool, and fine-tuning BERT models in both Base
and Large configurations for component extraction. We
evaluate these models for their ability to identify key control
components such as sensors, actuators, and pre-actuators. We
then use the extracted components to generate their associated

1600

control logic using predefined templates. This structure
supports the long-term goal of automating control program
generation from natural language input.

Developing this capability requires training data that
accurately represents how control designers express system
behavior and describe industrial components. To obtain such
data, we first searched for existing datasets containing
requirement specifications used in industrial automation. Our
objective was to find examples that reflect the language and
structure typically used in practice. However, most available
datasets are designed for general-purpose language tasks, they
do not include technical vocabulary or structured descriptions
of industrial devices. To address this gap, we developed the
AutoFactory dataset [19]. We specifically designed it to
support training models that translate natural language
specifications into control programs.

Manufacturing systems consist of multiple components that
work together to perform specific tasks [20]. These
components include actuators, pre-actuators, and sensors.
Each component performs a distinct function, and its behavior
must be clearly described in the requirement specification. To
create training data suitable for this study, a collection of
requirement specifications was manually written based on
realistic industrial examples. Each specification was drafted
by experienced control designers using structured language
and precise technical terminology. One example describes a
double-acting cylinder that extends until it reaches the front
limit switch, then retracts to the back limit switch. A visual
representation of this operation is shown in Figure 4.

| Back Limit [Front Limit
v v

[Move rorward)3 B ove soci |

/

VAV

)

Figure 4. Visual representation of a double-acting cylinder
operation

After creating the initial set of requirement specifications,
we expanded the dataset using large language models.
Although each specification was written manually by a control
designer, we observed that the same system behavior can be
written in many different ways. In real projects, control
designers often describe systems using their own wording and
writing style. Some may write long descriptions, others may
keep them short or omit certain details. Our goal is to give the
control designer full freedom to write the requirement
specification in English without having to follow strict rules.
Even if the text contains small mistakes or inconsistent
phrasing, the model should still be able to understand the
meaning and generate the correct control logic. To prepare the
system for this variability, we used language models to
generate multiple versions of each specification with different
writing styles.

To generate these variations, we used three large language
models [21]: ChatGPT Pro, Claude Pro, and Mistral Pro.
These models were selected because they produce more
accurate and consistent outputs than free versions. They are

better at preserving the technical meaning of the original
specification while allowing changes in sentence structure or
vocabulary. For each requirement specification written by the
control designer, we provided a prompt asking the models to
produce multiple variations of the same description. This step
is important because machines need to see many forms of the
same idea in order to learn how to generalize. An example of
the prompt and the generated variations is shown in Figure 5.
Each version keeps the same system behavior but uses a
different way of expressing it.

| am working on data augmentation for a manufacturing systems dataset. Please generate
3 paraphrased versions of the following technical sentence. The meaning must remain
identical, and all technical terms should be accurate (e.g., terms like "double-acting
cylinder,” “dual acting cylinder,” “5/2 bistable pneumatic valve,” “Front Limit (FL),” “Back
Limit (BL)"). You may vary the sentence structure and use correct synonym phrases, but
the technical behavior, component names, and action sequence must be preserved.

Sentence to paraphrase:

"The system consists of a double-acting cylinder, which is controlled by a 5/2 bistable
pneumatic valve. This cylinder moves forward until it reaches its limit switch Front Limit
(FL), and then it moves back to its limit switch Back Limit (BL)."

m Here are three paraphrased versions of the sentence:

1. "The system features a double-acting cylinder, regulated by a 5/2 bistable pneumatic
valve. This cylinder advances until it hits its Front Limit (FL) switch, after which it
retracts to its Back Limit (BL) switch."

I

. "A double-acting cylinder, managed by a 5/2 bistable pneumatic valve, is part of the
system. The cylinder extends forward until it activates the Front Limit (FL) switch, then
reverses to the Back Limit (BL) switch.”

w

. "The system includes a double-acting cylinder, operated by a 5/2 bistable pneumatic
valve. This cylinder progresses forward to engage the Front Limit (FL) switch and then
retreats to the Back Limit (BL) switch."

Figure 5. Prompt and example outputs generated by LLM

After generating the variations, we performed a cleaning
step to remove duplicates and incorrect outputs. Since the
models generate text by prediction, repeating the process
multiple times for the same input can sometimes produce
identical or nearly identical results. To reduce redundancy, we
used a Python script to automatically detect and eliminate
repeated requirement specifications. This helped ensure that
each entry in the dataset was unique and meaningful. Once this
step was complete, we selected a portion of the dataset for
manual review. Each specification was checked by a control
designer to confirm that the content was accurate, the
terminology was correct, and the structure was consistent. Any
specification that did not meet these criteria was either
corrected or removed.

After preparing the dataset, the next step was to annotate the
key components in each requirement specification. This
labeling process involved identifying entities such as actuators,
pre-actuators, and sensors, which serve as essential input for
training the extraction model. While several annotation tools
exist, we encountered significant limitations. Many tools
operate on external servers, which raises concerns about data
privacy. Others restrict tag customization, offer limited export
options, or rely on complex interfaces that are difficult to use
in practice. Some are not open-source, while others require a
paid license, making them unsuitable for our workflow.

To address these issues, we developed a dedicated labeling
tool called AutoLabel-NER, designed specifically for
manufacturing requirement specifications. The tool allows
users to import raw text, define and customize tags, and
annotate components efficiently. When an entity is labeled, the
tool automatically highlights similar terms across the text,
which accelerates the annotation process. It also provides
progress tracking and supports multiple export formats. The
interface of the tool is shown in Figure 6.

1601

double-acting cylinder [/
5/2-way solenoid valve
FL limit switch [SENSO
BL limit switch [SENSO
start push button [SENS
stop push button [SENE
start button [SENSOR]
KM1 [ACTUATOR] (Tok

The double-actin

and then retractsxeTUAToR
pReAcTATOR

The conveyor beSENSOR

Pressing the SiaI0

motor KM1, siog

Bl The cylinder moves forward untl it reaches the FLLIFIESWItER

110 another Itis contralied by a I8 BUSHBUEN and a 65 HUSH BUtion
. causing the bet to move. Pressing the slop biion de-energizes

The single-acting
solenoid vake is
valve. allowing a|
cyinder

% it reaches tne FLLHHISWIGH when the
B starl buttan energizes the solenoid

ffing off the air supply and refracting the
¢ BVaNE The cylinder maves forward Lt

E locaion to anolher. This system is

|1t actvates a confactor ihat energizes

| deaciivates the confactor, cuting pawes

2| e start bulton is pressed, the solenoid
it switch. Vehen the slog buton is
1] e[| PY10retract o the B it swilch

contactor [PREACTUAT
stop button [SENSOR] |
KM1 [ACTUATOR] (Tok
single-acting cylinder [A
3/2-way solenoid valve
FL limit switch [SENSO

The manuactusig
it reaches the Fl
The mamdacuil
operated using &
molor KM1, caus
to motor K1 an

BL limit switch [SENSO
start button [SENSOR]
stop button [SENSOR] (

[rerrr—p——y double-acting cylinder [
T 5/2-way solenoid valve
FL limit switch [SENSO

The system feat
valve Is energizel
pressed, the sok

BL limit switch [SENSO
start push button [SENE
stop push button [SENE
start button [SENSCR]
contactor [PREACTUAT
KM1 [ACTUATOR] (Tok

ACTUATOR PREACTUATOR

PP . |
e) =2

Theme set toight

Figure 6. Interface of AutoLabel-NER

Once the labeling process was completed, the annotated
dataset was used to train a model for component extraction.
The goal was to enable the system to automatically identify
entities such as actuators, pre-actuators, and sensors in new
requirement specifications. For this task, we fine-tuned the
BERT model [22], which has shown strong performance in
sequence labeling tasks such as named entity recognition.
BERT was chosen for its ability to capture contextual
relationships in text using a deep bidirectional transformer
architecture. As shown in Table 1, BERT-Base includes 12
layers, 768 hidden units, and 12 self-attention heads, with a
total of 110 million parameters. These settings offer a balance
between model capacity and computational efficiency. The
model was fine-tuned using our labeled dataset with a token-
level classification objective, allowing it to learn how
technical terms map to their corresponding component
categories across a range of writing styles.

Table 1. Characteristics of pre-trained BERT base and large

Feature Description

Release Date October 11,2018
Parameters Base: 110M
Large: 340M

Base: 12/768 /12
Large: 24 /1024 /16
Base: 8 x V100 x 12d

Large: 280 x V100 x 1d
Outperforming SOTA in Oct
2018
BooksCorpus + English
Wikipedia = 16 GB
Bidirectional Transformer,
MLM and NSP

Layers / Hidden Dimensions /
Self-Attention Heads

Training Time
Performance
Pre-Training Data

Method

To make the fine-tuning of BERT effective and reliable, the
main training settings, called hyperparameters, were carefully
optimized for this task. These include the learning rate, batch
size, and number of training epochs. We used a grid search,
which systematically tests different combinations, to identify
the settings that offered the best balance between accuracy,
stability, and efficiency. The final values, summarized in
Table 2, were determined based on ablation experiments
performed on the AutoFactory dataset.

The learning rate was tested across several values, and
5%107* consistently delivered the most stable convergence and
highest F1 scores during these experiments. Batch sizes of 16

and 32 were selected because they provided efficient use of
memory while maintaining stable model updates, which is
important given the variable sentence lengths in the dataset.
Although five training epochs were initially tested, the
ablation results showed that three were sufficient to reach peak

performance while avoiding overfitting. These optimized
settings allowed the fine-tuned models to adapt effectively to
the AutoFactory dataset while maintaining strong performance
on unseen specifications.

Table 2. Hyperparameters and their values used in fine-tuning

Hyperparameter Description Values
Learnine Rate The step size for model updates during training. It controls how much to change the model in [le-4, 1e-5,
& response to the estimated error each time the model weights are updated. Se-5]
Train Batch Size The number of samples proc_essed 1b'efore the model is updated. A larger batch size means more [16, 32]
memory is required but can lead to more stable updates.
Eval Batch Size The number of samples processed d}lrlng evalgathn. Similar to the train batch size, but used [16,32]
during the validation phase.
Number of Training The number of complete passes through the entire training dataset. More epochs can lead to 3
Epochs better learning but also risk overfitting.
Tensog)iciaeli(tio];}(])gglng The directory for storing TensorBoard logs, which are used for visualizing the training process. "runs"
Evaluate During A setting to enable evaluation of the model during the training process to monitor its TRUE
Training performance.
Farly Stopping A technique to stop training when the model’s performance stops improving, to prevent TRUE

overfitting.

After training, the models were evaluated on a separate
portion of the labeled dataset. Four metrics were used to assess
performance: evaluation loss, precision, recall, and F1 score.
Evaluation loss indicates how well the model fits the
validation data. Precision is defined as the proportion of
correctly predicted labels among all predicted labels:

TP

_— 1
TP + FP M

Precision =

Recall measures the proportion of correctly predicted labels
among all actual labels:

TP

Recall = m

2

The F1 score combines precision and recall into a single
measure:

2 X Precision X Recall

3)

F1S =
core Precision + Recall

These metrics were computed at regular intervals during
training and used to identify the best-performing model. Both
BERT-Base and BERT-Large were fine-tuned using a fixed
learning rate of 5 %< 107 and a batch size of 16. These values
were selected to ensure stable learning and efficient
convergence. The evaluation results were stored in summary
tables, and training curves were generated to visualize how
performance metrics evolved across training steps.

After the components were detected in the requirement
specification, the system assigned a function to each one.
These functions were selected from a predefined library. Each
entry in the library describes how a specific component
behaves in an industrial system. For example, a cylinder may
be linked to a function that defines how it extends and retracts,
while a sensor may be linked to a function that checks its state.
By assigning the correct function to each detected component,
the system was able to recreate the behavior described in the
original text.

Once all functions were assigned, the system combined
them in the correct order to build the control logic. The final

1602

logic was then converted into Structured Text, following the
IEC 61131-3 standard used in programmable logic controllers.
This approach was designed to be modular. Each function can
be reused, and new ones can be added without changing the
rest of the system. This makes the method flexible and scalable.
Control designers can describe different systems in natural
language, and the same pipeline can generate structured and
consistent code for each one.

This completes the core of the proposed pipeline. The
component detection stage has been fully implemented and
evaluated, and the results confirm that the system can reliably
identify the key elements in natural language specifications.
The final stage, which involves assembling complete logic
structures and generating executable code for different types
of industrial tasks, is still in development. We are currently
building a diverse set of reusable control functions to cover a
wide range of manufacturing scenarios.

4. RESULTS AND DISCUSSION

The results presented in this section highlight the
effectiveness of the proposed approach for extracting key
components from natural language specifications in
manufacturing systems. Using a dataset of over 2000
annotated descriptions written by control designers, we
evaluate the ability of pretrained language models to identify
entities such as actuators, pre-actuators, and sensors with high
precision. Our analysis focuses on the structure of the dataset,
the distribution of entity classes, the setup of the training
process, and the comparative performance of BERT-Base and
BERT-Large models. Through a series of figures and tables,
we discuss the progression of training, the quality of
predictions, and the trade-offs observed between model
complexity and performance.

The dataset used in this study comprises 2135 natural
language specifications written in English, each describing the
intended behavior of components in automated manufacturing
systems. To enable machine learning models to process this
information, each specification was manually annotated using
the BIO (Begin, Inside, Outside) tagging scheme. This format,
consistent with the CoNLL-2003 standard [23], allows each

token in the text to be tagged as either part of an entity (such
as an actuator or sensor) or as general descriptive content.
Three functional entity types were considered: actuators, pre-
actuators, and sensors. All other tokens were labeled as "O",
indicating that they do not represent a technical component.
The final dataset contains over 76000 tokens distributed across
training, validation, and test sets. The detailed breakdown is
provided in Table 3.

Table 3. Annotated data distribution across training,
validation, and test sets

Category Train Validation Test Total
Specifications 1708 213 214 2135
Sentences 3416 426 428 4270
Tokens 61065 7686 7669 76420
Actuators 1708 213 214 2135
Pre-Actuators 1708 213 214 2135
Sensors 3416 426 428 4270
Others 40385 5101 5073 50559

This distribution reveals that sensors are the most frequently
occurring labeled entities, while actuators and pre-actuators
appear in equal numbers. However, more than two-thirds of
the tokens are labeled as "others", reflecting the descriptive
nature of industrial specifications where control logic is
embedded within broader contextual instructions.

To further illustrate the entity composition of the dataset,
Figure 7 presents the distribution of labeled tokens across the
four categories: actuators, pre-actuators, sensors, and others.
As the figure shows, the "others" category dominates the
dataset, accounting for over 66% of all tokens. This is
expected, as requirement specifications in manufacturing
often contain auxiliary information such as conditions, timings,
and structural details that are not tied to specific components.
Among the functional entities, sensors appear most frequently,
followed by balanced counts of actuators and pre-actuators.
This distribution poses a learning challenge, as models must
accurately distinguish relatively sparse entities within a
majority of general-purpose language.

Entity Types : B Actuators [Pre-Actuators @ Sensors B Others

Entity Types

Actuators I 2135

Pre-Actuators 2135

Sensors 4270

o QQ 000
A I A

£
O
&

Entity Count Distribution

Figure 7. Distribution of labeled tokens by entity class

To ensure consistent evaluation and reliable generalization,
the dataset was randomly divided into three subsets: 80% for
training, 10% for validation, and 10% for testing. This split
preserves the distribution of entity types across all partitions,
which is essential to avoid bias during model assessment. The

1603

training set exposes the model to a diverse set of examples,
while the validation and test sets allow for monitoring
generalization and evaluating performance on unseen data.
The proportions allocated to each subset are shown in Figure
8.

Test Set

) Validation Set 40

B Training Set

Figure 8. Proportions of training, validation, and test sets in
the dataset

Table 4. Token-level annotations with part-of-speech and
named entity labels [19]

POS NER

Token POS D NER Label D
This DT 4 (0] 0
setup NN 8 (0] 0
involves VBZ 19 (0] 0
a DT 4 O 0
double- i 7 B-ACTUATOR 1

acting
cylinder NN 8 I-ACTUATOR 2
controlled VBZ 18 (0] 0
by IN 6 (0] 0
a DT 4 O 0
B-

>/2-way 3 7 PREACTUATOR 3
solenoid NN 8 I-PREACTUATOR 4
valve NN 8 I-PREACTUATOR 4
1 (0] 0
The DT 4 (0] 0
cylinder NN 8 o 0
moves VBZ 19 (0] 0
forward RB 13 o 0
to TO 14 o 0
the DT 4 o 0
FL NNP 9 B-SENSOR 5
limit NN 8 I-SENSOR 6
switch NN 8 I-SENSOR 6
and CC 2 (0] 0
then RB 13 (0] 0
retracts VBZ 19 (0] 0
to TO 14 o 0
the DT 4 o 0
BL NNP 9 B-SENSOR 5
limit NN 8 I-SENSOR 6
switch NN 8 I-SENSOR 6
1 (0] 0

To illustrate how specifications were annotated, Table 4
presents a labeled example taken directly from the dataset [19].
Each token is associated with its corresponding part-of-speech
(POS) tag and named entity label using the BIO scheme. This
format enables the model to identify not only the type of
component (e.g., actuator or sensor) but also its span within
the sentence. While the structure is compatible with CoNLL-
2003 conventions, the vocabulary and domain-specific terms
reflect the language commonly used by control designers. This
approach allows the model to learn technical patterns in

realistic industrial contexts.

After building and annotating the dataset, the next step was
to set up the training and evaluation process. This part of the
study aimed to test whether the models could correctly identify
the main components mentioned in the specifications. These
components include actuators, pre-actuators, and sensors. To
perform this task, two models were used: BERT-Base and
BERT-Large. BERT was chosen because it is designed to
understand the meaning of words in context, which is
important when identifying technical terms in full sentences.
It has also shown strong performance in tasks where each word

in a sentence must be labeled, such as named entity recognition.

Both versions of BERT were fine-tuned on the annotated
dataset. Fine-tuning means taking a model that has already
learned from general English texts and continuing its training
on a specific dataset, so it can adapt to the language and
structure of the domain.

To fine-tune the models on the annotated dataset, a

systematic grid search was conducted to identify the optimal
training configuration. We explored different combinations of
learning rates and batch sizes for both BERT-Base and BERT-
Large while keeping the number of training epochs fixed at
three. This setup ensured a fair comparison of model capacity
under consistent training conditions. The learning rates tested
were le-5, 3e-5, and 5e-5, and batch sizes of 16 and 32 were
evaluated. Each model was trained to minimize evaluation loss
and maximize precision, recall, and F1 score.

Table 5 presents the full results of the grid search. BERT-
Base achieved its best performance with a learning rate of Se-
5 and batch size of 16, reaching an F1 score of 0.9711,
precision of 0.9778, and recall of 0.9688. BERT-Large also
performed well, with its highest F1 score of 0.9667 under the
same learning rate and batch size. These results confirm that
both models can accurately detect components in
manufacturing specifications, with BERT-Base showing
slightly more stable performance across configurations.

Table 5. Grid search results for BERT-Base and BERT-Large fine-tuned on the AutoFactory dataset

Model Epochs Learning Rate Batch Size

Evaluation Loss F1 Score Precision Recall

0.00001 16
0.00003 16
0.00005 16
BERT Base 3 0.00001 3
0.00003 32
0.00005 32
0.00001 16
0.00003 16
0.00005 16
BERT Large 3 0.00001 3
0.00003 32
0.00005 32

0.0931 0.9494 0.9421 0.9569
0.0651 0.9642 0.9594 0.9670
0.0446 0.9711 0.9778 0.9688
0.0998 0.9453 0.9371 0.9536
0.0566 0.9663 0.9634 0.9672
0.0634 0.9659 0.9631 0.9678
0.0973 0.9528 0.9463 0.9595
0.0582 0.9637 0.9679 0.9597
0.0746 0.9667 0.9628 0.9707
0.0931 0.9498 0.9464 0.9532
0.0684 0.9613 0.9618 0.9608
0.0810 0.9582 0.9594 0.9571

During training, we monitored key performance metrics to
evaluate how well the model was learning over time. These
metrics included evaluation loss, precision, recall, and F1
score. Figure 9 shows how BERT-Base progressed across
these indicators throughout 801 training steps. In the early
stages, the model exhibited rapid improvements in both recall
and precision, reflecting its ability to capture component
patterns from the training data. Around step 200, performance
stabilized, and the F1 score consistently remained above 0.96
in the later stages of training. The evaluation loss decreased
steadily, indicating improved generalization. These results
suggest that BERT-Base effectively adapted to the domain and
was able to extract relevant entities from technical language
with high accuracy.

Performance Metrics During Training - BERT-Base

PP VP Y S SN
& ‘

e -

08

o
@

—e— Evaluslon Less
—e— Prerisiar
hecal

FL St

Seare { | oss

o
=

92

X

400 500 800 700 BoU
Training Step

Figure 9. Performance metrics during training — BERT-base

To assess the influence of model capacity, we also tracked
the performance of BERT-Large using the same training
configuration. As shown in Figure 10, BERT-Large reached
high scores early in training and exhibited stable
improvements over time. While its F1 score surpassed 0.96
after approximately 200 steps, the overall curve showed more
fluctuation compared to BERT-Base, particularly in the earlier
and middle phases of training. Despite these variations, the
model achieved competitive results, with its final F1 score
nearing that of BERT-Base. The evaluation loss also followed
a downward trend, confirming the model’s ability to
generalize well. These results indicate that BERT-Large
benefits from its greater capacity to model complex patterns,
but this also comes with a slightly less stable training curve.

Performance Metrics During Training - BERT-Large

720 AN et et et

i e Lualuatcn Loss

Recall
F1 seue

Score [Loss

400 500 BCG 700 800
Trairing Step

Figure 10. Performance metrics during training — BERT-large

To provide a clear summary of performance, we compared
the best evaluation metrics achieved by each model using a
grouped bar chart. As shown in Figure 11, BERT-Base slightly
outperformed BERT-Large across most metrics. It reached the
highest F1 score of 0.9711, along with strong precision, recall,
and a lower evaluation loss. While BERT-Large also delivered
competitive results, its peak scores remained slightly lower
under the same training conditions. This outcome suggests that
BERT-Base offers a strong balance between performance and
stability for the task. However, it is worth noting that BERT-
Large has greater capacity and may yield better results if
trained with a different learning rate, batch size, or number of
epochs. Further hyperparameter tuning and model-specific
adjustments could improve its performance in future work.

Best Evaluation Metrics: BERT-Base vs BERT-Large
05721

I U.%w I |

F1 Score Precision

0.9664 _0.0/07 mmm BERT-Basc

I BERT-Large

Recall Evaluation Loss

Metric Value
5

3
=

0.0745

Figure 11. Best evaluation metrics: BERT-base vs BERT-
large

r1Score Pracision

o . P W oy ¥ A oty e
(.
PN
won
s
3 =
4 wa
o
— e — e
SFRT Lurge BERT L
.0
) T so e e w0 a0 sw mE 70 a0
i S g
Reall Evalualion Luss
10 - 10
e — BCATBace
BEMLa e
ca- 8
6 i
4 4
o
@ |
— e S A A
SEMLarge
o e

W AU A s s
oini

raini 3 s

Figure 12. Overlay comparison of BERT-base and BERT-
large across four metrics

To better understand how the two models evolve over time,
we plotted their training curves together for all key metrics: F1
score, precision, recall, and evaluation loss. Figure 12 provides
this side-by-side visualization. The results show that both
models followed similar learning patterns, with BERT-Base
displaying slightly more stable trajectories across most metrics.
BERT-Large showed stronger performance in some early
stages but exhibited greater variability, especially in precision
and recall. Despite these fluctuations, its scores converged
closely with those of BERT-Base by the final training steps.
This overlay comparison confirms that both models are
capable of capturing the structure of technical language in
manufacturing specifications, but BERT-Base maintained a
more consistent learning behavior throughout the training

1605

process.

The results obtained from the component extraction step
demonstrate that the BERT models are capable of accurately
identifying actuators, pre-actuators, and sensors from

structured technical descriptions. This confirms that the
system can process manufacturing requirements written in
natural language and extract the functional elements necessary
for automation. The extraction process is now stable and
precise, providing a reliable foundation for the next phase of
our work.

Figure 13. Pipeline showing component extraction and code
generation from natural language specification

As shown in Figure 13, once the key components are
identified by the model, the system can proceed to structure
them into meaningful control logic. We are currently
developing the module responsible for generating function
definitions and control routines based on these extracted
elements. This step aims to automatically produce Structured
Text code that conforms to industrial standards. By extending
the system in this direction, we move closer to fully
automating the translation of requirement specifications into
executable PLC programs. scenarios.

5. CONCLUSION AND FUTURE WORK

Writing control programs for manufacturing systems
requires time, precision, and expert knowledge. This process
often begins with a requirement specification written in natural
language and ends with manually developed code for
programmable logic controllers. As systems become more
complex, this manual approach becomes difficult to scale and
maintain. The work presented in this study addresses this
challenge by exploring how artificial intelligence can support
control designers by interpreting natural language
specifications and automating part of the code generation
process.

In this study, we introduced a step-by-step approach that
allows computers to understand and process natural language
specifications in manufacturing. The system starts by
identifying important components such as actuators, pre-
actuators, and sensors. To do this, we trained two BERT
models on a dataset created specifically for this task. Once the
components are detected, each one is linked to a function that
describes how it should behave. These functions are then
combined to form a complete control program. The final code
is written in Structured Text, a language used in industrial
automation. This method reduces manual effort, improves
consistency, and prepares the way for future automation of
control program development.

The results showed that both BERT-Base and BERT-Large
were able to detect components from specifications with high
accuracy. BERT-Base achieved the highest F1 score 0f 0.9711,
while BERT-Large reached 0.9667 under the same training
settings. Both models performed well in terms of precision and

recall, confirming their ability to generalize across different
writing styles. BERT-Base demonstrated a more stable
learning curve, while BERT-Large showed greater capacity
but with some variation during training. These results confirm
that pretrained language models can understand technical
language and extract useful information from it with very good
performance.

While the system successfully detects key components such
as actuators, pre-actuators, and sensors from natural language
specifications, the full pipeline is not yet complete. At this
stage, the system stops after identifying components and
assigning corresponding functions. It does not yet build the
complete control logic or generate fully structured and
validated control code. Another limitation is that the dataset,
although built from realistic examples, may not cover all ways
control designers write specifications in different industrial
settings. These limitations define the current boundary of the
work and highlight areas for future improvement.

The next stage of this work will complete the development
of the pipeline so that it can produce fully validated control
programs ready for industrial use. The pipeline will take a
natural language requirement specification as input and
automatically generate Structured Text code as output. It will
include logic assembly, simulation, and formal verification to
ensure the generated programs are correct and reliable. The
Structured Text will comply with the IEC 61131-3 standard
and will be exported as project files compatible with Siemens
TIA Portal and Schneider EcoStruxure. This will allow
engineers to test, simulate, and deploy the generated programs
directly in their existing industrial workflows, making the
system easy to adopt.

Following these improvements, the dataset will be
expanded to cover all manufacturing scenes available in
Factory 1/O, a 3D simulation platform for industrial
automation. For each scene, multiple requirement
specifications will be written by different designers. These will
include augmented variations for linguistic diversity, detailed
tag tables, screenshots from multiple angles, and the original
3D scene files. This expansion will allow the pipeline to be
tested from end to end, starting with natural language input and
ending with deployment-ready code that can be validated in
simulation and industrial development environments.

In parallel, the AutoLabel-NER tool will be upgraded to
include semi-automatic annotation. This feature will allow the
tool to suggest labels based on model predictions, which
human annotators can quickly confirm or correct. This
upgrade will speed up dataset creation and improve labeling
consistency, helping accelerate model training and evaluation.

In the longer term, we plan to develop a full prototype tool
that integrates all stages of control program generation into a
single system. This tool will combine component extraction,
logic mapping, simulation, and formal verification in one
unified interface. These developments will lead to a robust
toolchain that converts natural language specifications into
tested, ready-to-use control code for both virtual and real
manufacturing systems.

TRAINING ENVIRONMENT

The models were fine-tuned on a local machine equipped
with an NVIDIA GeForce RTX 5080 GPU, an Intel Core 19
14th-generation processor, 64 GB of DDR5 RAM, anda 1 TB
SSD. The experiments were conducted on Windows 11 using

1606

Python 3.12.7. Training was performed using the Simple
Transformers library built on top of Hugging Face
Transformers.

REFERENCES
[1] Boppana, V.R. (2024). Industry 4.0: Revolutionizing the
future of manufacturing and automation. Available at
SSRN 5135027. https://doi.org/10.2139/ssrn.5135027
Winch, G.M. (2022). Projecting for sustainability
transitions: Advancing the contribution of Peter Morris.
Engineering Project Organization Journal, 11(2): 16.
https://doi.org/10.25219/ep0j.2022.00101

Groumpos, P.P. (2021). A critical historical and
scientific overview of all industrial revolutions. IFAC-
PapersOnLine, 54(13): 464-471.
https://doi.org/10.1016/j.ifacol.2021.10.492

Aoun, A, Ilinca, A., Ghandour, M., Ibrahim, H. (2021).
A review of Industry 4.0 characteristics and challenges,
with potential improvements using blockchain
technology. Computers & Industrial Engineering, 162:
107746. https://doi.org/10.1016/j.cie.2021.107746
Ryalat, M., EIMoagqet, H., AlFaouri, M. (2023). Design
of a smart factory based on cyber-physical systems and
Internet of Things towards Industry 4.0. Applied
Sciences, 13(4): 2156.
https://doi.org/10.3390/app13042156

Javaid, M., Haleem, A., Singh, R.P., Suman, R. (2022).
Enabling flexible manufacturing system (FMS) through
the applications of Industry 4.0 technologies. Internet of
Things and Cyber-Physical Systems, 2: 49-62.
https://doi.org/10.1016/j.i0tcps.2022.05.005

Xia, C., Liu, Y., Xia, T., Jin, X., Xu, C., Zeng, P. (2022).
Control-communication-computing co-design in cyber-
physical production system. IEEE Internet of Things
Journal, 10(6): 5194-5204.
https://doi.org/10.1109/J10T.2022.3221932

Napoleone, A., Negri, E., Macchi, M., Pozzetti, A.
(2023). How the technologies underlying cyber-physical
systems support the reconfigurability capability in
manufacturing: A literature review. International Journal
of Production Research, 61(9): 3122-3144.
https://doi.org/10.1080/00207543.2022.2074323
Oluyisola, O.E., Bhalla, S., Sgarbossa, F., Strandhagen,
J.0. (2022). Designing and developing smart production
planning and control systems in the Industry 4.0 era: A
methodology and case study. Journal of Intelligent
Manufacturing, 33(1): 311-332.
https://doi.org/10.1007/s10845-021-01808-w

Sahoo, S., Lo, C.Y. (2022). Smart manufacturing
powered by recent technological advancements: A
review. Journal of Manufacturing Systems, 64: 236-250.
https://doi.org/10.1016/j.jmsy.2022.06.008

Boudribila, A., Tajer, A., Boulghasoul, Z. (2024). From
natural language to code: Al automation in cyber-
physical manufacturing systems. In 2024 World
Conference on Complex Systems (WCCS),
Mohammedia, Morocco, pp- 1-6.
https://doi.org/10.1109/WCCS62745.2024.10765530
Boudribila, A., Chadi, M.-A., Tajer, A., Boulghasoul, Z.
(2023). Large language models and adversarial
reinforcement learning to automate PLCs programming;:
A preliminary investigation. In 2023 9th International

(2]

(3]

(4]

(3]

(6]

(7]

(9]

[11]

[12]

[13]

[15]

[16]

[17]

Conference on Control, Decision and Information
Technologies (CoDIT), Rome, Italy, pp. 650-655.
https://doi.org/10.1109/CoDIT58514.2023.10284185
Deshmukh, J.V., Sankaranarayanan, S. (2019). Formal
techniques for verification and testing of cyber-physical
systems. In Design Automation of Cyber-Physical
Systems, pp. 69-105. https://doi.org/10.1007/978-3-030-
13050-3 4

Lecomte, T., Déharbe, D., Prun, E., Mottin, E. (2017).
Applying a formal method in industry: A 25-year
trajectory. In Formal Methods: Foundations and
Applications Methods. Springer, Cham, pp. 70-87.
https://doi.org/10.1007/978-3-319-70848-5 6

Garavel, H., Ter Beek, M.H., Van De Pol, J. (2020). The
2020 expert survey on formal methods. In International
Conference on Formal Methods for Industrial Critical
Systems, pp. 3-69. https://doi.org/10.1007/978-3-030-
58298-2 1

Fischer, J., Vogel-Heuser, B., Huber, C., Felger, M., &
Bengel, M. (2021). Reuse assessment of IEC 61131-3
control software modules using metrics - An industrial
case study. In 2021 IEEE 19th International Conference
on Industrial Informatics (INDIN), Palma de Mallorca,
Spain, pp- 1-8.
https://doi.org/10.1109/INDIN45523.2021.9557357
Qamsane, Y., Tajer, A., Philippot, A. (2017). Towards an
approach of synthesis, validation and implementation of
distributed control for AMS by using events ordering
relations. International Journal of Production Research,
55(21): 6235-6253.

1607

[18]

(21]

[22]

(23]

https://doi.org/10.1080/00207543.2017.1333648
Qamsane, Y., Tajer, A., Philippot, A. (2017). A synthesis
approach to distributed supervisory control design for
manufacturing systems with Grafcet implementation.
International Journal of Production Research, 55(15):
4283-4303.
https://doi.org/10.1080/00207543.2016.1235804
Boudribila, A. (2025). AutoFactory. Hugging Face.
https://doi.org/10.57967/ht/5011

Leng, J., Wang, D., Shen, W., Li, X., Liu, Q., Chen, X.
(2021). Digital twins-based smart manufacturing system
design in Industry 4.0: A review. Journal of
Manufacturing Systems, 60: 119-137.
https://doi.org/10.1016/j.jmsy.2021.05.011

Brown, T., Mann, B., Ryder, N., Subbiah, M., et al.
(2020). Language models are few-shot learners. Part of
Advances in Neural Information Processing Systems 33
(NeurIPS 2020).

Devlin, J., Chang, M. W, Lee, K., Toutanova, K. (2019).
BERT: Pre-training of deep bidirectional transformers
for language understanding. In Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Minneapolis, Minnesota, pp.
4171-4186. https://doi.org/10.18653/v1/N19-1423

Sang, E.F.T.K., De Meulder, F. (2003). Introduction to
the CoNLL-2003 shared task: Language-independent
named entity recognition. arXiv preprint cs/0306050.
https://doi.org/10.48550/arXiv.cs/0306050

