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Developing control programs for manufacturing systems is time-consuming and requires 

expert control designers. While manual programming is common, it becomes complex as 

systems grow, leading to long development times, frequent errors, and difficult 

maintenance. To address these issues, researchers have introduced formal methods like 

Supervisory Control Theory (SCT) and model checking to improve precision and 

verification. Although these are some of the most advanced approaches, they are difficult 

to use in practice because they are time-consuming, require high mathematical expertise, 

and face scalability problems such as combinatorial explosion in large systems. This study 

aims to overcome these limitations by presenting an AI-based system that automatically 

generates programmable logic controller (PLC) code from natural language requirement 

specifications. The approach uses AutoFactory, a dataset of annotated specifications, and 

fine-tunes two Bidirectional Encoder Representations from Transformers (BERT)-based 

models to extract actuators, pre-actuators, and sensors before generating International 

Electrotechnical Commission (IEC) 61131‑3 Structured Text (ST) code. BERT‑Base 

achieved an F1 score of 0.9711, showing reliable component extraction. The study proves 

that transformer models can accurately detect control components and initiate logic 

generation. These results confirm that AI can assist and augment control designers by 

automating extraction and initial coding. Future work will complete the pipeline to deliver 

verified IEC 61131‑3 code ready for industrial deployment. 
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1. INTRODUCTION

Manufacturing systems have changed over time as new 

technologies have been introduced. The First Industrial 

Revolution used steam power to operate machines [1]. The 

Second added electricity and allowed for mass production [2]. 

The Third brought automation with the help of computers [3]. 

Today, in the Fourth Industrial Revolution, known as Industry 

4.0, machines are connected to computers and networks [4]. 

These systems are called Cyber-Physical Manufacturing 

Systems. They combine physical equipment with sensors, 

controllers, and software. This allows for real-time monitoring 

and control of production [5]. These changes have made 

manufacturing more efficient and flexible [6]. However, they 

have also increased the complexity of control. Writing control 

programs for such systems is now more difficult. It requires 

precise, reliable, and fast solutions that can handle complex 

and dynamic processes [7, 8]. 

As manufacturing systems have become more complex, the 

task of creating reliable control programs has become more 

demanding [9, 10]. In many cases, engineers still rely on 

heuristic methods to perform this task. This approach is based 

on the expert’s intuition, experience, and manual effort [11, 

12]. The process begins with writing a requirement 

specification that describes the expected behavior of the 

system. Based on this specification, the expert designs a 

control program using their knowledge of the system. The 

program is then tested in a simulator to check if it behaves as 

expected. If the simulation reveals errors, the expert must go 

back, modify the program, and test it again. Once the 

simulation confirms that the program is correct, the code is 

transferred to the programmable logic controller. Although 

this method is simple and widely used in practice, it is slow, 

difficult to maintain, and prone to human error. Each update 

requires repeating the same steps, which makes the approach 

inefficient, especially for systems that change frequently or 

involve many components. 

To address the limitations of heuristic methods, some 

researchers and engineers use formal methods to design 

control programs. Unlike heuristic approaches, which rely on 

intuition and manual programming, formal methods are based 

on mathematical models and systematic reasoning [13]. In this 

approach [11], the expert begins by identifying the 

components of the system and defining the constraints. These 

constraints describe both the desired actions and the conditions 

that must be avoided. The expert builds two separate models: 

one for the global behavior of the system and another for the 

constraints. These models are then combined to produce a 
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single formal representation of the control logic. Techniques 

such as Supervisory Control Theory and model checking are 

commonly used at this stage. The formal model is then verified 

to ensure that it satisfies all requirements. If errors are found, 

it must be corrected and verified again. Once validated, the 

model is used to generate the control program that will be 

transferred to the PLC. Although formal methods improve 

precision and reduce ambiguity, they require strong 

mathematical knowledge and significant development time. 

As a result, they are difficult to apply in industrial settings, 

especially when the system is large or complex [14, 15]. 

In this work, we present a first step toward a new vision: 

enabling computers to understand manufacturing 

requirements written in natural language and generate control 

programs automatically. Our goal is to give computers the 

ability to identify key components such as actuators, pre-

actuators, and sensors from a written specification. We aim to 

use the speed, consistency, and processing power of computers 

to reduce the time and effort needed for manual programming. 

This vision supports the idea of fully automating the code 

generation process, where the user only needs to describe the 

system’s behavior in simple terms. The computer will then 

extract the necessary information and generate the control 

logic without requiring expert intervention. Our pilot study is 

focused on building the foundation for this approach by 

training models that can extract key components from 

manufacturing specifications. 

After identifying the components of the system, the next 

step is to generate the control logic for each one. In our 

approach, each detected component is linked to a predefined 

code function that describes its behavior. These functions are 

stored in a library and are called when the corresponding 

component is found in the specification. This method makes 

the system modular and easy to scale. It follows a divide-and-

conquer logic, where the overall control program is built by 

combining the code of each part. This approach helps reduce 

development time and improves code structure and 

consistency. The rest of this paper is organized as follows. 

Section 2 presents related work. Section 3 explains the 

methodology, including dataset creation, model fine-tuning, 

and code generation. Section 4 discusses the results. Section 5 

concludes the paper and outlines future work, highlighting 

how this dataset and tool can support researchers in 

automating code generation for manufacturing systems. 

2. RELATED WORK

Control program development in manufacturing has 

traditionally followed two main approaches: heuristic methods 

and formal methods. Both have been used extensively in 

industry and academia. Each offers specific advantages but 

also presents important limitations. To better understand the 

motivations behind our proposed AI-based system, this section 

reviews the key principles and challenges of both methods. 

First, we describe the heuristic approach, which is based on the 

expert’s manual experience. Then, we present formal methods, 

which use mathematical modeling to ensure system 

correctness. 

2.1 Heuristic methods 

Heuristic methods refer to the traditional way of designing 

control programs based on the personal knowledge, intuition, 

and experience of the engineer. This approach does not rely on 

formal models or systematic reasoning. Instead, the expert 

interprets the system requirements and translates them into 

control logic manually. Heuristic methods are widely used in 

industrial environments because they are flexible and easy to 

apply in simple systems. They allow engineers to design 

solutions quickly when the system is small and well 

understood. However, as system complexity increases, relying 

only on intuition becomes more difficult and less reliable. 

While heuristic methods are common in industrial settings, 

the process they follow is manual and iterative. It begins with 

the expert writing an informal requirement specification that 

describes the expected behavior of the system. Based on this 

description, the expert manually creates a control program 

using their experience and domain knowledge. The program is 

then tested through simulation to check whether it behaves as 

intended. If the simulation reveals errors, the expert revises the 

program and repeats the test. This cycle continues until the 

logic is considered correct. Finally, the validated program is 

transferred to the programmable logic controller (PLC), which 

is often referred to as the brain of the manufacturing system. 

The PLC executes the control logic using standard 

programming languages defined by the IEC 61131-3 standard 

[16]. These include three graphical languages, Ladder 

Diagram (LD), Function Block Diagram (FBD), and 

Sequential Function Chart (SFC) and two textual languages 

Instruction List (IL) and Structured Text (ST). The overall 

heuristic workflow is illustrated in Figure 1. 

Figure 1. Workflow for control program development using 

heuristic methods 

Heuristic methods are often used in universities and in small 

systems where the number of components is limited. In these 

simple cases, the expert can understand the requirement easily 

and write the control logic without difficulty. However, when 

the system becomes more complex, this method reaches its 
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limits. It becomes harder to understand the interactions 

between components. Writing and testing the program takes 

more time. Since the process is manual, it is also more likely 

to include errors. Another limitation is related to maintenance. 

When changes are needed, it is often difficult to modify the 

program correctly, especially if it was written by someone else. 

In addition, learning to program in this way takes time and 

requires experience. For these reasons, heuristic methods are 

not suitable for large and dynamic systems that need reliability, 

consistency, and fast updates. This limitation has led to the 

development of formal methods, which aim to improve control 

program design through structured modeling and verification. 

 

2.2 Formal methods 

 

Formal methods offer a clear and structured approach for 

designing control programs. They rely on mathematical 

models to precisely describe how a system should behave and 

the rules it must follow [17, 18]. These methods are 

particularly valuable when safety, correctness, and reliability 

are important. Unlike heuristic methods, which depend mainly 

on human experience, formal methods allow the control logic 

to be verified and tested before the system is implemented. 

This verification step helps reduce errors during operation and 

makes the system easier to maintain and update later. 

The process begins with a requirement specification, a clear 

description of what the system is expected to achieve. From 

this specification, an expert identifies the system components 

and defines two important types of constraints. Liveness 

constraints specify outcomes that the system must eventually 

achieve, such as moving a robotic arm to a precise location. 

Safety constraints define conditions that the system must avoid, 

such as activating two conflicting actions simultaneously [17, 

18]. Using this information, two formal models are created. 

The first model, called the behavior model, describes step-by-

step how the system operates. The second model, called the 

constraint model, clearly defines all the liveness and safety 

constraints. Together, these models provide a complete and 

precise description of the system’s allowed behaviors. 

These models are often represented using formal tools such 

as finite automata, Petri nets, or GRAFCET diagrams. From 

these representations, controllers are developed in two main 

stages. First, local controllers are created for each component 

individually, ensuring they comply with their own specific 

constraints. Next, the local controllers are combined with 

global constraints to form distributed controllers, which 

coordinate the entire system. This combination process is 

known as controller synthesis and is commonly performed 

using Supervisory Control Theory or similar techniques. The 

result is a robust control strategy that only allows the system 

to behave in ways permitted by the original specification. 

After creating these distributed controllers, they undergo a 

verification step to confirm that all requirements are met under 

every possible scenario. For complex systems that involve 

timing or multiple processes running simultaneously, model 

checking is performed. Model checking uses specialized tools 

such as UPPAAL or SUPREMICA to systematically explore 

the system’s state space and detect any problems, including 

potential deadlocks or violations of safety and liveness 

constraints. If any issues are found, the constraints or models 

are revised, and the synthesis and verification steps are 

repeated until the controllers satisfy all requirements fully. 

Once the verification step is successfully completed, the 

validated controllers are translated into Grafcet diagrams or 

other suitable programming formats. These diagrams can be 

directly deployed onto programmable logic controllers. This 

step ensures that the system operates exactly as designed, 

minimizing the need for further debugging during 

commissioning. The complete workflow for developing 

control programs using formal methods from initial 

specification through to final PLC implementation is shown in 

Figure 2. 

 

 
 

Figure 2. Workflow for control program development using 

formal methods 

 

Formal methods provide significant advantages for control 

system design. They enable the early detection of design errors, 

guarantee correctness by construction, and clearly trace the 

link between the original specifications and the implemented 

control code. They are particularly valuable for safety-critical 

systems, such as robotic work cells and transport automation, 

where unexpected behaviors could lead to serious hazards or 

costly operational failures. 

However, formal methods also have limitations. Building 

accurate formal models is time-consuming and requires 

specialized skills in system modeling and formal logic. As the 

complexity of a system grows, the number of possible states 

that need to be checked increases rapidly. This rapid increase, 

known as combinatorial explosion, can make the verification 

process slow or even infeasible. Due to these challenges, 

formal methods are most commonly applied in academic 

research or in smaller industrial systems where the modeling 

effort is manageable. 

In previous research, our team has successfully applied 

formal methods in practical settings, specifically for discrete-

event modeling and controller synthesis using model-checking 

tools like SUPREMICA and UPPAAL [17, 18].  

Although formal methods continue to offer a reliable 

approach for ensuring correctness, their complexity and 

scalability issues have limited wider adoption in industry. 

Recent research therefore explores combining formal methods 
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with artificial intelligence techniques. AI-based approaches 

can reduce manual modeling effort, improve scalability, and 

increase flexibility in the control design process. The next 

section examines these promising new directions, focusing on 

how AI can automate key stages of control program 

development. 

3. METHODOLOGY

Control designers often face significant challenges when 

developing programs for Automated Production Systems. 

These systems consist of many components that must operate 

together in a coordinated way. This complexity often makes 

programming the entire system as a whole impractical. 

Designers commonly apply the divide and conquer principle: 

they break down the system into smaller units and control each 

component separately. However, applying this strategy 

requires identifying all components described in the 

requirement specification. While humans find this task 

relatively easy, it poses a significant challenge for computers, 

which necessitates advanced AI techniques. 

To address this challenge, we propose a structured AI-based 

pipeline. This pipeline transforms a natural language 

requirement specification into a set of extracted components, 

each linked to its predefined control behavior. Our goal is to 

convert unstructured, human-written text into structured 

control logic elements for reuse and assembly. This approach 

reduces dependence on manual interpretation and forms the 

foundation for generating control programs. Figure 3 

illustrates the pipeline’s structure. It presents the complete 

process, from requirement specifications through data 

preparation, model training, and component extraction. The 

pipeline then uses predefined logic blocks to define the control 

behavior of each identified element. 

Figure 3. Overview of the proposed pipeline 

Our work focuses on the early stages of this pipeline. It 

involves creating a labeled dataset, designing a custom 

annotation tool, and fine-tuning BERT models in both Base 

and Large configurations for component extraction. We 

evaluate these models for their ability to identify key control 

components such as sensors, actuators, and pre-actuators. We 

then use the extracted components to generate their associated 

control logic using predefined templates. This structure 

supports the long-term goal of automating control program 

generation from natural language input. 

Developing this capability requires training data that 

accurately represents how control designers express system 

behavior and describe industrial components. To obtain such 

data, we first searched for existing datasets containing 

requirement specifications used in industrial automation. Our 

objective was to find examples that reflect the language and 

structure typically used in practice. However, most available 

datasets are designed for general-purpose language tasks, they 

do not include technical vocabulary or structured descriptions 

of industrial devices. To address this gap, we developed the 

AutoFactory dataset [19]. We specifically designed it to 

support training models that translate natural language 

specifications into control programs. 

Manufacturing systems consist of multiple components that 

work together to perform specific tasks [20]. These 

components include actuators, pre-actuators, and sensors. 

Each component performs a distinct function, and its behavior 

must be clearly described in the requirement specification. To 

create training data suitable for this study, a collection of 

requirement specifications was manually written based on 

realistic industrial examples. Each specification was drafted 

by experienced control designers using structured language 

and precise technical terminology. One example describes a 

double-acting cylinder that extends until it reaches the front 

limit switch, then retracts to the back limit switch. A visual 

representation of this operation is shown in Figure 4. 

Figure 4. Visual representation of a double-acting cylinder 

operation 

After creating the initial set of requirement specifications, 

we expanded the dataset using large language models. 

Although each specification was written manually by a control 

designer, we observed that the same system behavior can be 

written in many different ways. In real projects, control 

designers often describe systems using their own wording and 

writing style. Some may write long descriptions, others may 

keep them short or omit certain details. Our goal is to give the 

control designer full freedom to write the requirement 

specification in English without having to follow strict rules. 

Even if the text contains small mistakes or inconsistent 

phrasing, the model should still be able to understand the 

meaning and generate the correct control logic. To prepare the 

system for this variability, we used language models to 

generate multiple versions of each specification with different 

writing styles.  

To generate these variations, we used three large language 

models [21]: ChatGPT Pro, Claude Pro, and Mistral Pro. 

These models were selected because they produce more 

accurate and consistent outputs than free versions. They are 
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better at preserving the technical meaning of the original 

specification while allowing changes in sentence structure or 

vocabulary. For each requirement specification written by the 

control designer, we provided a prompt asking the models to 

produce multiple variations of the same description. This step 

is important because machines need to see many forms of the 

same idea in order to learn how to generalize. An example of 

the prompt and the generated variations is shown in Figure 5. 

Each version keeps the same system behavior but uses a 

different way of expressing it. 

 

 
 

Figure 5. Prompt and example outputs generated by LLM 

 

After generating the variations, we performed a cleaning 

step to remove duplicates and incorrect outputs. Since the 

models generate text by prediction, repeating the process 

multiple times for the same input can sometimes produce 

identical or nearly identical results. To reduce redundancy, we 

used a Python script to automatically detect and eliminate 

repeated requirement specifications. This helped ensure that 

each entry in the dataset was unique and meaningful. Once this 

step was complete, we selected a portion of the dataset for 

manual review. Each specification was checked by a control 

designer to confirm that the content was accurate, the 

terminology was correct, and the structure was consistent. Any 

specification that did not meet these criteria was either 

corrected or removed. 

After preparing the dataset, the next step was to annotate the 

key components in each requirement specification. This 

labeling process involved identifying entities such as actuators, 

pre-actuators, and sensors, which serve as essential input for 

training the extraction model. While several annotation tools 

exist, we encountered significant limitations. Many tools 

operate on external servers, which raises concerns about data 

privacy. Others restrict tag customization, offer limited export 

options, or rely on complex interfaces that are difficult to use 

in practice. Some are not open-source, while others require a 

paid license, making them unsuitable for our workflow. 

To address these issues, we developed a dedicated labeling 

tool called AutoLabel-NER, designed specifically for 

manufacturing requirement specifications. The tool allows 

users to import raw text, define and customize tags, and 

annotate components efficiently. When an entity is labeled, the 

tool automatically highlights similar terms across the text, 

which accelerates the annotation process. It also provides 

progress tracking and supports multiple export formats. The 

interface of the tool is shown in Figure 6. 

 
 

Figure 6. Interface of AutoLabel-NER 

 

Once the labeling process was completed, the annotated 

dataset was used to train a model for component extraction. 

The goal was to enable the system to automatically identify 

entities such as actuators, pre-actuators, and sensors in new 

requirement specifications. For this task, we fine-tuned the 

BERT model [22], which has shown strong performance in 

sequence labeling tasks such as named entity recognition. 

BERT was chosen for its ability to capture contextual 

relationships in text using a deep bidirectional transformer 

architecture. As shown in Table 1, BERT-Base includes 12 

layers, 768 hidden units, and 12 self-attention heads, with a 

total of 110 million parameters. These settings offer a balance 

between model capacity and computational efficiency. The 

model was fine-tuned using our labeled dataset with a token-

level classification objective, allowing it to learn how 

technical terms map to their corresponding component 

categories across a range of writing styles. 

 

Table 1. Characteristics of pre-trained BERT base and large 

 

Feature Description 

Release Date October 11, 2018 

Parameters 
Base: 110M 

Large: 340M 

Layers / Hidden Dimensions / 

Self-Attention Heads 

Base: 12 / 768 / 12 

Large: 24 / 1024 / 16 

Training Time 
Base: 8 × V100 × 12d 

Large: 280 × V100 × 1d 

Performance 
Outperforming SOTA in Oct 

2018 

Pre-Training Data 
BooksCorpus + English 

Wikipedia = 16 GB 

Method 
Bidirectional Transformer, 

MLM and NSP 

 

To make the fine-tuning of BERT effective and reliable, the 

main training settings, called hyperparameters, were carefully 

optimized for this task. These include the learning rate, batch 

size, and number of training epochs. We used a grid search, 

which systematically tests different combinations, to identify 

the settings that offered the best balance between accuracy, 

stability, and efficiency. The final values, summarized in 

Table 2, were determined based on ablation experiments 

performed on the AutoFactory dataset. 

The learning rate was tested across several values, and 

5×10⁻⁵ consistently delivered the most stable convergence and 

highest F1 scores during these experiments. Batch sizes of 16 
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and 32 were selected because they provided efficient use of 

memory while maintaining stable model updates, which is 

important given the variable sentence lengths in the dataset. 

Although five training epochs were initially tested, the 

ablation results showed that three were sufficient to reach peak 

performance while avoiding overfitting. These optimized 

settings allowed the fine-tuned models to adapt effectively to 

the AutoFactory dataset while maintaining strong performance 

on unseen specifications. 

Table 2. Hyperparameters and their values used in fine-tuning 

Hyperparameter Description Values 

Learning Rate 
The step size for model updates during training. It controls how much to change the model in 

response to the estimated error each time the model weights are updated. 

[1e-4, 1e-5, 

5e-5] 

Train Batch Size 
The number of samples processed before the model is updated. A larger batch size means more 

memory is required but can lead to more stable updates. 
[16, 32] 

Eval Batch Size 
The number of samples processed during evaluation. Similar to the train batch size, but used 

during the validation phase. 
[16, 32] 

Number of Training 

Epochs 

The number of complete passes through the entire training dataset. More epochs can lead to 

better learning but also risk overfitting. 
3 

Tensorboard Logging 

Directory 
The directory for storing TensorBoard logs, which are used for visualizing the training process. "runs" 

Evaluate During 

Training 

A setting to enable evaluation of the model during the training process to monitor its 

performance. 
TRUE 

Early Stopping 
A technique to stop training when the model’s performance stops improving, to prevent 

overfitting. 
TRUE 

After training, the models were evaluated on a separate 

portion of the labeled dataset. Four metrics were used to assess 

performance: evaluation loss, precision, recall, and F1 score. 

Evaluation loss indicates how well the model fits the 

validation data. Precision is defined as the proportion of 

correctly predicted labels among all predicted labels: 

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(1) 

Recall measures the proportion of correctly predicted labels 

among all actual labels: 

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(2) 

The F1 score combines precision and recall into a single 

measure: 

F1 Score =
2 × Precision × Recall

Precision + Recall
(3) 

These metrics were computed at regular intervals during 

training and used to identify the best-performing model. Both 

BERT-Base and BERT-Large were fine-tuned using a fixed 

learning rate of 5 × 10-5 and a batch size of 16. These values 

were selected to ensure stable learning and efficient 

convergence. The evaluation results were stored in summary 

tables, and training curves were generated to visualize how 

performance metrics evolved across training steps. 

After the components were detected in the requirement 

specification, the system assigned a function to each one. 

These functions were selected from a predefined library. Each 

entry in the library describes how a specific component 

behaves in an industrial system. For example, a cylinder may 

be linked to a function that defines how it extends and retracts, 

while a sensor may be linked to a function that checks its state. 

By assigning the correct function to each detected component, 

the system was able to recreate the behavior described in the 

original text. 

Once all functions were assigned, the system combined 

them in the correct order to build the control logic. The final 

logic was then converted into Structured Text, following the 

IEC 61131-3 standard used in programmable logic controllers. 

This approach was designed to be modular. Each function can 

be reused, and new ones can be added without changing the 

rest of the system. This makes the method flexible and scalable. 

Control designers can describe different systems in natural 

language, and the same pipeline can generate structured and 

consistent code for each one. 

This completes the core of the proposed pipeline. The 

component detection stage has been fully implemented and 

evaluated, and the results confirm that the system can reliably 

identify the key elements in natural language specifications. 

The final stage, which involves assembling complete logic 

structures and generating executable code for different types 

of industrial tasks, is still in development. We are currently 

building a diverse set of reusable control functions to cover a 

wide range of manufacturing scenarios. 

4. RESULTS AND DISCUSSION

The results presented in this section highlight the 

effectiveness of the proposed approach for extracting key 

components from natural language specifications in 

manufacturing systems. Using a dataset of over 2000 

annotated descriptions written by control designers, we 

evaluate the ability of pretrained language models to identify 

entities such as actuators, pre-actuators, and sensors with high 

precision. Our analysis focuses on the structure of the dataset, 

the distribution of entity classes, the setup of the training 

process, and the comparative performance of BERT-Base and 

BERT-Large models. Through a series of figures and tables, 

we discuss the progression of training, the quality of 

predictions, and the trade-offs observed between model 

complexity and performance. 

The dataset used in this study comprises 2135 natural 

language specifications written in English, each describing the 

intended behavior of components in automated manufacturing 

systems. To enable machine learning models to process this 

information, each specification was manually annotated using 

the BIO (Begin, Inside, Outside) tagging scheme. This format, 

consistent with the CoNLL-2003 standard [23], allows each 
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token in the text to be tagged as either part of an entity (such 

as an actuator or sensor) or as general descriptive content. 

Three functional entity types were considered: actuators, pre-

actuators, and sensors. All other tokens were labeled as "O", 

indicating that they do not represent a technical component. 

The final dataset contains over 76000 tokens distributed across 

training, validation, and test sets. The detailed breakdown is 

provided in Table 3. 

Table 3. Annotated data distribution across training, 

validation, and test sets 

Category Train Validation Test Total 

Specifications 1708 213 214 2135 

Sentences 3416 426 428 4270 

Tokens 61065 7686 7669 76420 

Actuators 1708 213 214 2135 

Pre-Actuators 1708 213 214 2135 

Sensors 3416 426 428 4270 

Others 40385 5101 5073 50559 

This distribution reveals that sensors are the most frequently 

occurring labeled entities, while actuators and pre-actuators 

appear in equal numbers. However, more than two-thirds of 

the tokens are labeled as "others", reflecting the descriptive 

nature of industrial specifications where control logic is 

embedded within broader contextual instructions. 

To further illustrate the entity composition of the dataset, 

Figure 7 presents the distribution of labeled tokens across the 

four categories: actuators, pre-actuators, sensors, and others. 

As the figure shows, the "others" category dominates the 

dataset, accounting for over 66% of all tokens. This is 

expected, as requirement specifications in manufacturing 

often contain auxiliary information such as conditions, timings, 

and structural details that are not tied to specific components. 

Among the functional entities, sensors appear most frequently, 

followed by balanced counts of actuators and pre-actuators. 

This distribution poses a learning challenge, as models must 

accurately distinguish relatively sparse entities within a 

majority of general-purpose language. 

Figure 7. Distribution of labeled tokens by entity class 

To ensure consistent evaluation and reliable generalization, 

the dataset was randomly divided into three subsets: 80% for 

training, 10% for validation, and 10% for testing. This split 

preserves the distribution of entity types across all partitions, 

which is essential to avoid bias during model assessment. The 

training set exposes the model to a diverse set of examples, 

while the validation and test sets allow for monitoring 

generalization and evaluating performance on unseen data. 

The proportions allocated to each subset are shown in Figure 

8. 

Figure 8. Proportions of training, validation, and test sets in 

the dataset 

Table 4. Token-level annotations with part-of-speech and 

named entity labels [19] 

Token POS 
POS 

ID 
NER Label 

NER 

ID 

This DT 4 O 0 

setup NN 8 O 0 

involves VBZ 19 O 0 

a DT 4 O 0 

double-

acting 
JJ 7 B-ACTUATOR 1 

cylinder NN 8 I-ACTUATOR 2 

controlled VBZ 18 O 0 

by IN 6 O 0 

a DT 4 O 0 

5/2-way JJ 7 
B-

PREACTUATOR 
3 

solenoid NN 8 I-PREACTUATOR 4 

valve NN 8 I-PREACTUATOR 4 

. . 1 O 0 

The DT 4 O 0 

cylinder NN 8 O 0 

moves VBZ 19 O 0 

forward RB 13 O 0 

to TO 14 O 0 

the DT 4 O 0 

FL NNP 9 B-SENSOR 5 

limit NN 8 I-SENSOR 6 

switch NN 8 I-SENSOR 6 

and CC 2 O 0 

then RB 13 O 0 

retracts VBZ 19 O 0 

to TO 14 O 0 

the DT 4 O 0 

BL NNP 9 B-SENSOR 5 

limit NN 8 I-SENSOR 6 

switch NN 8 I-SENSOR 6 

. . 1 O 0 

To illustrate how specifications were annotated, Table 4 

presents a labeled example taken directly from the dataset [19]. 

Each token is associated with its corresponding part-of-speech 

(POS) tag and named entity label using the BIO scheme. This 

format enables the model to identify not only the type of 

component (e.g., actuator or sensor) but also its span within 

the sentence. While the structure is compatible with CoNLL-

2003 conventions, the vocabulary and domain-specific terms 

reflect the language commonly used by control designers. This 

approach allows the model to learn technical patterns in 
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realistic industrial contexts. 

After building and annotating the dataset, the next step was 

to set up the training and evaluation process. This part of the 

study aimed to test whether the models could correctly identify 

the main components mentioned in the specifications. These 

components include actuators, pre-actuators, and sensors. To 

perform this task, two models were used: BERT-Base and 

BERT-Large. BERT was chosen because it is designed to 

understand the meaning of words in context, which is 

important when identifying technical terms in full sentences. 

It has also shown strong performance in tasks where each word 

in a sentence must be labeled, such as named entity recognition. 

Both versions of BERT were fine-tuned on the annotated 

dataset. Fine-tuning means taking a model that has already 

learned from general English texts and continuing its training 

on a specific dataset, so it can adapt to the language and 

structure of the domain. 

To fine-tune the models on the annotated dataset, a 

systematic grid search was conducted to identify the optimal 

training configuration. We explored different combinations of 

learning rates and batch sizes for both BERT-Base and BERT-

Large while keeping the number of training epochs fixed at 

three. This setup ensured a fair comparison of model capacity 

under consistent training conditions. The learning rates tested 

were 1e-5, 3e-5, and 5e-5, and batch sizes of 16 and 32 were 

evaluated. Each model was trained to minimize evaluation loss 

and maximize precision, recall, and F1 score. 

Table 5 presents the full results of the grid search. BERT-

Base achieved its best performance with a learning rate of 5e-

5 and batch size of 16, reaching an F1 score of 0.9711, 

precision of 0.9778, and recall of 0.9688. BERT-Large also 

performed well, with its highest F1 score of 0.9667 under the 

same learning rate and batch size. These results confirm that 

both models can accurately detect components in 

manufacturing specifications, with BERT-Base showing 

slightly more stable performance across configurations. 

 

Table 5. Grid search results for BERT-Base and BERT-Large fine-tuned on the AutoFactory dataset 

 
Model Epochs Learning Rate Batch Size Evaluation Loss F1 Score Precision Recall 

BERT Base 3 

0.00001 16 0.0931 0.9494 0.9421 0.9569 

0.00003 16 0.0651 0.9642 0.9594 0.9670 

0.00005 16 0.0446 0.9711 0.9778 0.9688 

0.00001 32 0.0998 0.9453 0.9371 0.9536 

0.00003 32 0.0566 0.9663 0.9634 0.9672 

0.00005 32 0.0634 0.9659 0.9631 0.9678 

BERT Large 3 

0.00001 16 0.0973 0.9528 0.9463 0.9595 

0.00003 16 0.0582 0.9637 0.9679 0.9597 

0.00005 16 0.0746 0.9667 0.9628 0.9707 

0.00001 32 0.0931 0.9498 0.9464 0.9532 

0.00003 32 0.0684 0.9613 0.9618 0.9608 

0.00005 32 0.0810 0.9582 0.9594 0.9571 

 

During training, we monitored key performance metrics to 

evaluate how well the model was learning over time. These 

metrics included evaluation loss, precision, recall, and F1 

score. Figure 9 shows how BERT-Base progressed across 

these indicators throughout 801 training steps. In the early 

stages, the model exhibited rapid improvements in both recall 

and precision, reflecting its ability to capture component 

patterns from the training data. Around step 200, performance 

stabilized, and the F1 score consistently remained above 0.96 

in the later stages of training. The evaluation loss decreased 

steadily, indicating improved generalization. These results 

suggest that BERT-Base effectively adapted to the domain and 

was able to extract relevant entities from technical language 

with high accuracy. 

 

 
 

Figure 9. Performance metrics during training – BERT-base 

To assess the influence of model capacity, we also tracked 

the performance of BERT-Large using the same training 

configuration. As shown in Figure 10, BERT-Large reached 

high scores early in training and exhibited stable 

improvements over time. While its F1 score surpassed 0.96 

after approximately 200 steps, the overall curve showed more 

fluctuation compared to BERT-Base, particularly in the earlier 

and middle phases of training. Despite these variations, the 

model achieved competitive results, with its final F1 score 

nearing that of BERT-Base. The evaluation loss also followed 

a downward trend, confirming the model’s ability to 

generalize well. These results indicate that BERT-Large 

benefits from its greater capacity to model complex patterns, 

but this also comes with a slightly less stable training curve. 

 

 
 

Figure 10. Performance metrics during training – BERT-large 
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To provide a clear summary of performance, we compared 

the best evaluation metrics achieved by each model using a 

grouped bar chart. As shown in Figure 11, BERT-Base slightly 

outperformed BERT-Large across most metrics. It reached the 

highest F1 score of 0.9711, along with strong precision, recall, 

and a lower evaluation loss. While BERT-Large also delivered 

competitive results, its peak scores remained slightly lower 

under the same training conditions. This outcome suggests that 

BERT-Base offers a strong balance between performance and 

stability for the task. However, it is worth noting that BERT-

Large has greater capacity and may yield better results if 

trained with a different learning rate, batch size, or number of 

epochs. Further hyperparameter tuning and model-specific 

adjustments could improve its performance in future work. 

Figure 11. Best evaluation metrics: BERT-base vs BERT-

large 

Figure 12. Overlay comparison of BERT-base and BERT-

large across four metrics 

To better understand how the two models evolve over time, 

we plotted their training curves together for all key metrics: F1 

score, precision, recall, and evaluation loss. Figure 12 provides 

this side-by-side visualization. The results show that both 

models followed similar learning patterns, with BERT-Base 

displaying slightly more stable trajectories across most metrics. 

BERT-Large showed stronger performance in some early 

stages but exhibited greater variability, especially in precision 

and recall. Despite these fluctuations, its scores converged 

closely with those of BERT-Base by the final training steps. 

This overlay comparison confirms that both models are 

capable of capturing the structure of technical language in 

manufacturing specifications, but BERT-Base maintained a 

more consistent learning behavior throughout the training 

process. 

The results obtained from the component extraction step 

demonstrate that the BERT models are capable of accurately 

identifying actuators, pre-actuators, and sensors from 

structured technical descriptions. This confirms that the 

system can process manufacturing requirements written in 

natural language and extract the functional elements necessary 

for automation. The extraction process is now stable and 

precise, providing a reliable foundation for the next phase of 

our work. 

Figure 13. Pipeline showing component extraction and code 

generation from natural language specification 

As shown in Figure 13, once the key components are 

identified by the model, the system can proceed to structure 

them into meaningful control logic. We are currently 

developing the module responsible for generating function 

definitions and control routines based on these extracted 

elements. This step aims to automatically produce Structured 

Text code that conforms to industrial standards. By extending 

the system in this direction, we move closer to fully 

automating the translation of requirement specifications into 

executable PLC programs. scenarios. 

5. CONCLUSION AND FUTURE WORK

Writing control programs for manufacturing systems 

requires time, precision, and expert knowledge. This process 

often begins with a requirement specification written in natural 

language and ends with manually developed code for 

programmable logic controllers. As systems become more 

complex, this manual approach becomes difficult to scale and 

maintain. The work presented in this study addresses this 

challenge by exploring how artificial intelligence can support 

control designers by interpreting natural language 

specifications and automating part of the code generation 

process. 

In this study, we introduced a step-by-step approach that 

allows computers to understand and process natural language 

specifications in manufacturing. The system starts by 

identifying important components such as actuators, pre-

actuators, and sensors. To do this, we trained two BERT 

models on a dataset created specifically for this task. Once the 

components are detected, each one is linked to a function that 

describes how it should behave. These functions are then 

combined to form a complete control program. The final code 

is written in Structured Text, a language used in industrial 

automation. This method reduces manual effort, improves 

consistency, and prepares the way for future automation of 

control program development. 

The results showed that both BERT-Base and BERT-Large 

were able to detect components from specifications with high 

accuracy. BERT-Base achieved the highest F1 score of 0.9711, 

while BERT-Large reached 0.9667 under the same training 

settings. Both models performed well in terms of precision and 
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recall, confirming their ability to generalize across different 

writing styles. BERT-Base demonstrated a more stable 

learning curve, while BERT-Large showed greater capacity 

but with some variation during training. These results confirm 

that pretrained language models can understand technical 

language and extract useful information from it with very good 

performance. 

While the system successfully detects key components such 

as actuators, pre-actuators, and sensors from natural language 

specifications, the full pipeline is not yet complete. At this 

stage, the system stops after identifying components and 

assigning corresponding functions. It does not yet build the 

complete control logic or generate fully structured and 

validated control code. Another limitation is that the dataset, 

although built from realistic examples, may not cover all ways 

control designers write specifications in different industrial 

settings. These limitations define the current boundary of the 

work and highlight areas for future improvement. 

The next stage of this work will complete the development 

of the pipeline so that it can produce fully validated control 

programs ready for industrial use. The pipeline will take a 

natural language requirement specification as input and 

automatically generate Structured Text code as output. It will 

include logic assembly, simulation, and formal verification to 

ensure the generated programs are correct and reliable. The 

Structured Text will comply with the IEC 61131-3 standard 

and will be exported as project files compatible with Siemens 

TIA Portal and Schneider EcoStruxure. This will allow 

engineers to test, simulate, and deploy the generated programs 

directly in their existing industrial workflows, making the 

system easy to adopt. 

Following these improvements, the dataset will be 

expanded to cover all manufacturing scenes available in 

Factory I/O, a 3D simulation platform for industrial 

automation. For each scene, multiple requirement 

specifications will be written by different designers. These will 

include augmented variations for linguistic diversity, detailed 

tag tables, screenshots from multiple angles, and the original 

3D scene files. This expansion will allow the pipeline to be 

tested from end to end, starting with natural language input and 

ending with deployment-ready code that can be validated in 

simulation and industrial development environments. 

In parallel, the AutoLabel-NER tool will be upgraded to 

include semi-automatic annotation. This feature will allow the 

tool to suggest labels based on model predictions, which 

human annotators can quickly confirm or correct. This 

upgrade will speed up dataset creation and improve labeling 

consistency, helping accelerate model training and evaluation. 

In the longer term, we plan to develop a full prototype tool 

that integrates all stages of control program generation into a 

single system. This tool will combine component extraction, 

logic mapping, simulation, and formal verification in one 

unified interface. These developments will lead to a robust 

toolchain that converts natural language specifications into 

tested, ready-to-use control code for both virtual and real 

manufacturing systems. 

TRAINING ENVIRONMENT 

The models were fine-tuned on a local machine equipped 

with an NVIDIA GeForce RTX 5080 GPU, an Intel Core i9 

14th-generation processor, 64 GB of DDR5 RAM, and a 1 TB 

SSD. The experiments were conducted on Windows 11 using 

Python 3.12.7. Training was performed using the Simple 

Transformers library built on top of Hugging Face 

Transformers. 
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