%HA

International Information and
Engineering Technology Association

Ingénierie des Systémes d’Information
Vol. 30, No. 6, June, 2025, pp. 1579-1587

Journal homepage: http://iieta.org/journals/isi

A Confidence-Weighted Rule-Based
Using MRI and MRS

Sura Riyadh Saleh', Suhad A. Yousif?

Framework for Multimodal Brain Lesion Classification |

Check for
updates

Y Informatics Institute for Postgraduate Studies, Iragi Commission for Computers and Informatics, Baghdad 11101, Iraq
2 Department of Computer Science, College of Science, Al-Nahrain University, Baghdad 64074, Iraq

Corresponding Author Email: Phd202120693@iips.edu.iq

Copyright: ©2025 The authors. This article is
(http://creativecommons.org/licenses/by/4.0/).

published by IIETA and is licensed under the CC BY 4.0 license

https://doi.org/10.18280/isi.300616

ABSTRACT

Received: 16 May 2025
Revised: 17 June 2025
Accepted: 24 June 2025
Available online: 30 June 2025

Keywords:
multimodal brain lesion classification, MRS
metabolite ratios, MRI and rule-based fusion

Differentiating brain tumors from tumor-like lesions is a persistent clinical challenge due to
their overlapping imaging features on conventional radiological scans. Tumor-like lesions
such as demyelinating diseases, infections, or post-traumatic changes often mimic
neoplastic growths in appearance, leading to potential misdiagnosis and inappropriate
treatment decisions. To address this issue, we propose a novel machine-learning-based
diagnostic framework that integrates Magnetic Resonance Spectroscopy (MRS) and
structural Magnetic Resonance Imaging (MRI) through a confidence-weighted fusion
strategy: Final Diagnosis = 0.7 x MRS + 0.3 x MRI. This weighting reflects the higher
metabolic specificity of MRS, while retaining MRI’s anatomical detail. Each modality is
processed through a specialized pipeline. The MRS pipeline involves image-to-numeric
transformation, noise filtering, metabolite concentration-based feature extraction, expert-
guided feature selection, and a rule-based classifier. The MRI pipeline includes skull
stripping, a novel Dynamic Image Thresholding method, multidimensional feature
extraction (statistical, volumetric, shape-based), and correlation-based feature selection
with a rule-based classifier. Our integrated system achieved 90% classification accuracy on
a clinically validated dataset, effectively distinguishing between tumors and tumor-like
lesions. Despite the small dataset (n=50) from a single center, stratified cross-validation
yielded consistent results (90% accuracy), demonstrating robustness. Future external
validation is planned. By introducing a confidence-informed multimodal fusion strategy,
the framework provides both high diagnostic accuracy and interpretability, supporting more
reliable and informed clinical decision-making in neuro-oncology.

1. INTRODUCTION

be difficult. In addition, some tumors, such as gliomas and
metastases, exhibit indistinguishable imaging appearances,

Brain lesions are a magnified difference, mass, or injury in
the brain's tissue due to tumors, infections, metastasis, or
injury. They are difficult to categorize by clinical radiopathy
because they are so different in origin and nature. Brain lesions
are areas of abnormal tissue in the brain caused by tumors,
infections, inflammation, and other types of trauma. They are
incredibly challenging to classify in clinical radiological
practice because of their differing kinds of locations, types of
formation, and aggressiveness. Accurate and prompt diagnosis
is paramount since early differentiation between brain tumors
and tumor-like lesions will influence the treatment approach
as well as the prognosis and will minimize mortality [1].
However, it is still quite challenging to differentiate lesion
types accurately due to the overlapping visual appearances and
the deficiencies of existing imaging methods.

While MEGRI and CT are well known for diagnosing brain
lesions, MRI with high-resolution anatomical imaging is now
mainly used. It identifies deformation of the tissues, such as
repositioning, swelling, or texture change. Although MRI is
used extensively, the distinction of true tumors from tumor-
like lesions such as abscesses or vascular malformations may
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which makes clinical treatment decisions difficult [2-4].

Magnetic Resonance Spectroscopy (MRS)  offers
complementary metabolic information based on tissue
biochemistry. It measures levels of metabolites, such as Acetyl
Aspartate (NAA), choline, creatine, and myoinositol, that may
detect lesions not visible on structural imaging. For example,
decreased NAA and increased choline levels could suggest
tumor activity. Although MRS exhibits potential utility for
detecting and following intracranial neoplasm, its clinical use
remains modest because of the complexity of data and the non-
standardized analysis procedure [5].

MRI and MRS take advantage of the complementary nature
of the information provided by MRI, primarily anatomical
detail, and MRS, mainly biochemical information. They have
been demonstrated to significantly enhance diagnostic
performance compared to MRI alone, particularly in tumor vs.
non-tumor separation in pediatric and adult populations [6].

The main contributions of this research can be summarized
as follows:

New integration of MRI and MRS: We introduce a new
framework incorporating MRI and MRS data to classify
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tumors and tumor-like lesions. However, based on our
knowledge, none of the previous work with both modalities,
MRI and MRS, has been widely investigated as a means to
classify brain lesions automatically.

Dual-Classification algorithms: The proposed method
adopts distinct classification models for MRI and MRS data,
enabling each modality to be treated separately based on its
advantages. The output from both algorithms is combined with
a weighted fusion approach to produce the final decision.

Confidence-Level Output: Besides its classification output
(tumor and tumor-like lesion), our algorithms also provide a
confidence level for this diagnosis. Such a confidence level,
derived from a weighted summation of MRI and MRS based
on it, is clinically significant, enabling clinicians to determine
the reliability of the output for between and more robust
diagnosis decisions [7].

Enhanced Diagnostic Accuracy: Our model exhibits
superior diagnostic accuracy by integrating structure and
metabolism  information, recording a 90% overall
classification accuracy.

Machine learning provides a powerful means for the
analysis and fusion of multimodal imaging data that can
facilitate such integration. Recent studies have shown that
hybrid models, especially those that integrate rule-based logic
and deep learning, can achieve excellent accuracy and
interpretable predictive features for clinical use. This paper
introduces a new dual-stream rule-based machine learning
framework, which performs MRI and MRS data separately
and fuses their output based on a confidence-weighted model.
This schema improves classification accuracy and furnishes
decision-aiding results otherwise interpretable by clinicians
[7, 8].

2. BACKGROUND AND RELATED WORK

The classification of brain lesions constitutes a central task
in clinical radiology, owing to the complexity of their
structure, heterogeneity, and similarity of features across
different lesion types. Early diagnosis is essential, especially
to differentiate between malignant and benign tumors like
lesions (e.g., abscesses, demyelinating plaques). Conventional
diagnostic methods depend to a great extent on MRI, which
offers a detailed anatomical representation. Common MRI
sequences, such as T1-weighted, T2-weighted, and FLAIR
sequences, are typically employed to identify the presence of
abnormal brain tissue according to contrast and intensity
patterns. However, MRI alone often cannot definitively
categorize lesion subtypes because non-specific structural
appearances are frequent. For example, gliomas and
metastases are known to have similar morphological
representations, thus making differential diagnosis difficult
[9].

Early machine learning (ML) techniques have been used for
MRI-based lesion analysis to enhance interpretability and
classification performance. Such methods are usually based on
hand-crafted features, such as intensity histograms, edge
profiles, and texture features extracted from Gray-Level
Cooccurrence Matrices (GLCM), and classifiers such as
Support Vector Machines (SVM), k-nearest Neighbors (kNN),
and Decision Trees. However, these models would not
generalize well when trained on a heterogeneous dataset that
includes both tumor and tumor-mimicking pathologies and
thus may not be directly applicable in practice.
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Deep learning methodologies, particularly convolutional
neural networks (CNNs) have demonstrated better results than
traditional methods, as CNNs can learn hierarchical
representations from imaging data. Saeedi et al. [6] reported
that CNN-based methods outperformed traditional methods,
with the highest classification accuracy of 96.47% on the brain
tumor datasets, high sensitivity, and recall, according to
certain benchmarking. Deep learning methods, however,
generally rely on large labeled datasets that are hard to come
by in neuroimaging, and they are computationally expensive
and complicated to interpret, two of the significant drawbacks
to clinical translation. This poses a usability limitation for their
routine use in clinical practices.

In an attempt to overcome the restrictions of solely
structural imaging, MRS has been proposed as a supplement
to improve the DBM interpretation. MRS can quantify
biochemical markers in the tissue, providing a different
perspective on the metabolic status of brain lesions.
Metabolites of clinical relevance are N-acetylaspartate
(NAA), which includes information about axonal function;
choline, which is associated with the turnover in cell
membranes; creatine, responsible for cellular energy; and
myo-inositol related to glial activity. A decrease in NAA and
an increase in choline are usually due to neoplastic tissue—
tumoral evaluation. With the application of MRS, we can
differentiate high-grade tumors from benign lesions and
evaluate their response to treatment. Nevertheless, while
demonstrating its potential as a diagnostic tool, MRS has
limited clinical use mainly due to differences in acquisition
protocols, access to scanners, signal-to-noise ratio issues, and
the absence of established analysis workflows [10].

Some studies have used ML models on MRS data, reaching
promising but modality-specific results. Eksi et al. [11]
discriminated between multiple sclerosis lesions and low-
grade tumors by MRS using artificial neural networks (ANNs)
and linear discriminant analysis (LDA) with high diagnosis
accuracy. However, such models often rely on 'clean', high-
quality MRS data and do not extrapolate to multimodal
settings. Further, their model's lack of structural MRI
information makes it less applicable for in-practice diagnostic
systems where multimodal evidence is required.

In practice, several recent works have attempted to use a
hybrid or an ensemble to enhance the performance of lesion
classification. Malarvizhi et al. [12], as well as (B)
Quantitative Blood Oxygen Level Dependent (QBOLD) and
Vascular Architecture Mapping (VAM) imaging on MRI in
combination with ML for enhanced diagnostic performance.
They reached an accuracy of 87.5%; however, their method
involved a large amount of preprocessing and was
computationally intensive and, therefore, not applicable to the
routine clinical environment. Similarly, Ullah et al. [13]
proposed a deep learning model using Bayesian optimization
with a classification accuracy of up to 99.80%. However, the
model was highly overfit, with significant manual tuning and
a resource-intensive computational environment, and it was
not readily available in all clinical settings.

Most of the above methods are based on a single modality
(either DC or CT) and are not interpretable, scalable, or do not
report confidence levels. Only a few studies have suggested
combining MRI and MRS utilizing a unified machine learning
framework in brain lesion classification [12]. In addition,
confidence estimation of classification outputs is often left
unmentioned, though its importance for enabling clinical
decision-making under uncertainty has been recently



indicated.

Our proposed framework solves these issues through a dual-
stream rule-based classification pipeline that combines MRI's
structural imaging capabilities with MRS's metabolic profiling
strength. Both modalities are handled separately, with their
preprocessing, feature extraction, and classification pipelines.
The MRI data are first skull-stripped, noise-reduced,
statistically and volumetrically. The MRS spectra are
converted numerically, denoised independently, and scanned
for metabolite-based statistical feature transmission. A rule-
based model is then applied to the two independent modalities,
and their outputs are combined with a weighted confidence
function: Final Result = 0.7MRS output + 0.3MRI output.

The complete model detects the lesion class and provides
confidence to aid in clinical decisions. Our model achieved a
classification accuracy of 90% when tested on a multimodal
brain lesion dataset, proving its efficacy and practicality. This
allows for the design of new real-time, interpretable, and
multimodal diagnostic systems that can be incorporated
directly into radiology laboratory operations.

3. METHODOLOGY

The proposed methodology aims to distinguish between two
different categories of brain lesions, such as brain tumors and
tumor-like lesions. MRI and MRS data are structured into
several stages. These include data collection, preprocessing,
feature extraction, selection, and classification. Additionally,
the results from MRI and MRS classifiers are fused to produce
a final diagnostic decision with a confidence level. Both MRS
and MRI are used in parallel to process the image data, extract
features, and apply classification algorithms, as illustrated in
Figure 1. The results from both methods are then combined to
provide a final diagnosis. The section below describes the

overall proposed methodology.
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Final result= MRS Result*0.7+ MRI Result*0.3

Figure 1. Overall proposed system diagnosis
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3.1 Data collection

This study used 50 patients from the Al-Andalus Oncology
Centre for data collection. In this dataset, patients with brain
tumors and tumor-like lesions were scanned with both MRS
and MRI scans. The 50 patients had an average age of 37 years
for women and 40 years for men, and they included 23 male
and 27 female patients. All data, including the MRI and MRS
scans, were collected using a 1.5 Tesla scanner. The patient
metadata includes general patient information; clinical details
were available online at the "Brain lesion MRI and co-related
MRS spectroscopy dataset." FLAIR (Fluid-Attenuated
Inversion Recovery) images were used in this study because
they can be highly effective in detecting brain lesions and
tumors. Spectra obtained with the MRS data were based on the
biochemical composition of brain tissue and primarily
contained N-acetylaspartate (NAA), creatine, choline, and
myo-inositol.

3.2 MRI data preprocessing

The MRI data preprocessing consists of several essential
steps designed to prepare the raw MRI scans for better feature
extraction and classification:

Skull Stripping: The first step in preprocessing is skull
stripping, which removes non-brain tissues from the MRI
images. The skull stripping step is essential to identify the
region of interest that helps to focus only on the brain tissue
for tumor detection and classification. Automated skull-
stripping tools, such as FMRIB Software Library (FSL) [14-
16], were used in this paper.

Noise Reduction: The raw MRI images often contain noise
that can interfere with accurate tumor classification, leading to
a misclassification result. A mean filter was applied for this
purpose, for it is efficient and requires low processing power
[17]. This reduction helps preserve the brain tissue's structural
integrity while minimizing interfering variations within MRI
data.

Algorithm 1. Dynamic Image Thresholding (DIT)

Input 3D MRI image (raw_mri_image)
Output Binary mask M of segmented lesion regions
Begin
Step 1 Compute Statistics: Calculate the mean (p) and
standard deviation (o) of intensities in the relevant.
Calculate Threshold: Set the threshold value T = p +
Step2 1356,
Apply Threshold: Create an empty mask M (same
dimensions as I). For each pixel (or voxel)
IF I(x) > T, THEN set M(x) = 1 (mark as lesion);
Step 3 ELSE set M(x) = 0 (mark as background).
— This results in a preliminary binary mask of all
pixels exceeding the threshold.
Step 4 Return the final mask M, which highlights the regions
where the image intensity was above p + 1.30.
End

Dynamic Image Thresholding (DIT) as illustrated in
Algorithm 1: The brain abnormalities are segmented based on
our proposed DIT method, and it has several advantages
compared to the traditional lesion segmentation method. First,
it considers all brain abnormalities, even outside brain tumors.
Second, it is more robust to identify non-tumor brain lesions
because they often consist of several abnormality regions all
over the brain by counting the number of infected areas. At the
same time, they are mostly limited to only one brain tumor and



many areas of brain lesions. This segmentation method is
based on calculating the mean pixel density and the standard
deviation for the 3D brain region. The thresholding formula is:
DIT Threshold = Mean Pixel Density of whole 3D brain
volumes + 1.35 x Standard Deviation of Pixel Density for
whole 3D brain volumes.
To validate the visual validity of proposed Dynamic Image

Thresholding method, clinical expert in neuroimaging was
consulted who had over ten years exportation experience in
visualizing a neuroimaging system. A series of MRI scans that
run on varying DIT threshold values (e.g. 1.0, 1.35 and 1.7) in
Figures 2-4 respectively. Below are these figures which were
availed to the expert to make a comparative study.

Figure 3. Sample of images with a DIT factor of 1.35
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Figure 4. Sample of images with a DIT factor of 1.7

The expert was allowed to assess the segmentation results
on the basis of the abnormal region detection clarity, contrast
enhancement and anatomical consistency. The assessment of
which threshold-factor was optimal to properly segment brain
abnormalities without discarding information or inducing
artefacts was established. The judgment of the expert helped
to choose a certain value, which could be considered as a
valuable threshold wvalue in order to segment brain
abnormalities.

The specialist making the decision that the 1.35 threshold
factor was the most appropriate one. In succession, this value
yielded the best lesion segmentation without any
underestimation, such as it occurred with factor 1.0 (edges of
the lesions and deep extensions of tissues were overlooked) or
overestimation, as in the case with factor 1.7 (the edges of the
lesions and deep extensions of tissues were not overlooked),
as assessed by the expert. The 1.35 factor gained a balanced
demarcation that do not alter the morphology of the lesions
leaving behind the integrity of the neighboring healthy
structures. The given qualitative validation is used to
emphasize the soundness of this approach and its future
usability in the classification tasks.

Nevertheless, the validation of this expert based proved that
the DIT method is an appropriate preprocessing procedure to
determine and isolate the relevant brain abnormalities before
further examination.

Thus, the DIT factor of 1.35 is identified as the ideal
threshold, offering the best representation of lesions with
minimal interference from noise and without over-enhancing
image features that could compromise the clarity of the
diagnostic results.

However, the adaptive thresholding approach of DIT offers
a precise segmentation of the brain's abnormal regions,
highlighting the areas that may indicate potential lesions or
abnormalities. The segmented regions in the threshold image
are marked by distinct differences in intensity, making the
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abnormal areas stand out more clearly when compared to the
original image.

This adaptive thresholding technique helps to identify brain
abnormalities by setting a dynamic threshold that accounts for
the variation in pixel densities across different brain regions
and is adaptive for multiple cases.

3.3 MRS data preprocessing

The preprocessing of MRS imaging is a more intricate
process, as the raw spectral data as an image requires several
transformations before it can be used for classification:

Data Conversion: The first step is to convert the raw spectral
data from MRS scans as an image format to numerical data to
be processed for classification. The MRS spectral images are
then converted into a data array, representing the intensity
values of the raw spectra.

Noise Removal and Signal Correction: Through the data
conversion process, the MRS data is prone to noise and
distortions; several methods, including a mean smoothing
filter, were applied to remove these artifacts. The data is also
normalized to correct for variations in signal intensity that may
arise from differences between scanner devices [18].

Spectral Alignment: The next step involves aligning the
spectral peaks of metabolites across all samples. This ensures
that each metabolite, such as N-acetyl aspartate (NAA),
choline, and creatine, is consistently located at the same
frequency across all patients' data to facilitate feature
extraction.

By replicating the above processing steps, Figure 5
illustrates the performance of MRS processing. The left image
represents the original MRS image, where the spectral peaks
correspond to various chemical components in the brain tissue,
such as choline (Ch), creatine (Cr), N-acetylaspartate (NAA),
and others. These peaks are influenced by factors such as
metabolite concentration and tissue characteristics. However,



in its raw form, the data lacks a readable numerical value and
requires further analysis.
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Figure 5. MRS image conversion to numerical data

The right image demonstrates the transformed MRS data,
where the spectrum has been converted into a numerical plot,
allowing for clearer feature extraction. The peaks of interest
are now marked and quantified in the plot, with each
representing the concentration of specific metabolites. This
conversion from raw data to numerical values is crucial for
feature extraction.

3.4 Feature extraction

Once the MRI and MRS data have been preprocessed, key
tumor and tumor-like lesion -classification features are
extracted. The features extracted from both modalities are
grouped into two categories: statistical features (which
describe the general characteristics of the data) and
volumetric/structural features (which represent the shape and
size of detected abnormalities). All features were chosen based
on clinical consultation with a specialist with ten years of
experience in the field.

3.4.1 MRI feature extraction

Intensity Features: Intensity features refer to the brightness
levels of the MRI images. These values are significant in
identifying the areas of brain abnormal tissue, such as tumors
or lesions. The features, such as mean, maximum, and
minimum pixel intensity values for each segmented brain
region, are extracted [18].

Texture Features: Texture features describe the spatial
arrangement of brain tissue. These include measures of
contrast and homogeneity, which help to characterize the
structural patterns of brain abnormalities such as tumors or
tumor-like lesions. Tumors or other brain lesion tissue have
their textures, making these features useful for classification.

Volumetric Features: Volumetric analysis is performed on
the segmented brain abnormalities using dynamic image
thresholding. The volumetric feature includes extracting the
total volume of the segmented abnormal regions, the number
of connected components within the brain abnormalities, and
the surface area of the segmented brain abnormalities. These

features provide essential information about the size and
distribution of brain abnormalities.

3.4.2 MRS feature extraction

Metabolite concentration features: The primary features
extracted from the MRS data are the concentrations of key
metabolites, including N-acetylaspartate (NAA), choline,
creatine, and myo-inositol. These metabolites serve as
biomarkers for various tumor types. Elevated choline levels,
for instance, often indicate high cellular turnover in tumors,
while decreasing NAA levels are associated with neuronal
damage [19].

Spectral ratios: Ratios of metabolite concentrations (e.g.,
NAA/Choline, NAA/Creatine) are also extracted. These ratios
are known to have diagnostic value in distinguishing between
tumor types. For example, gliomas often have a low NAA to
Choline ratio.

Statistical ~ features: In  addition to metabolite
concentrations, we extract statistical features, such as the mean
and maximum value of the metabolite intensities within the
spectral range. These features capture the variability and
distribution of metabolic activity in the brain tissue [7].

3.5 Feature selection

Feature selection reduces the dataset's dimensionality and
improves the classification models' performance. This study
employs two stages of feature selection for each of the MRI
and MRS data:

MRI feature selection: Features are ranked based on their
medical importance, and a correlation analysis using Pearson
correlation is used to measure linear correlation among
variables to identify which features have the strongest
correlation with the presence of a tumor. Features that are
highly correlated with the target variable (tumor vs. Tumor-
like lesion) are selected for classification.

MRS Feature Selection: Similarly, for MRS data, we rank
features based on their performance in distinguishing tumor
from non-tumor tissues. Features related to the most
significant metabolites, such as NAA, choline, and creatine,
are prioritized. Additionally, Pearson correlation is used to
identify the most informative spectral feature.

Table 1 and Table 2 illustrate the top-ranked MRI and MRS
features with clinical relevance respectively. The feature
selection process highlighted clinically relevant predictors
from both MRI and MRS using Pearson correlation. Among
MRI features, Max Pixel Intensity (r = 0.687) and Number of
Segmented Regions (r = 0.635) showed strong correlations,
indicating their value in identifying tumor characteristics and
lesion patterns. In contrast, MRS features demonstrated even
higher correlations, with Choline Level (r = 0.967) and
NAA/Choline Ratio (r = 0.900) showing strong associations
with tumor metabolism. These results support the confidence-
weighted fusion strategy (0.7 x MRS, 0.3 x MRI),
emphasizing MRS’s superior diagnostic contribution and the
clinical validity of the selected features.

Table 1. Top-ranked MRI features with clinical relevance

Feature Name

Clinical Relevance

Pearson Correlation

Max Pixel Intensity The strong signal could be due to necrosis, bleeding or malignant tumor activity. 0.687

Number of Segmented Multiple abnormal areas suggest tumor-like lesions (e.g., abscesses, 0.635
Regions demyelination). ’

Largest Lesion Area Size is an important variant to distinguish dash of tumors and benign lesions. 0.545
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Table 2. Top-ranked MRS features with clinical relevance

Feature Name

Clinical Relevance

Pearson Correlation

Choline (Cho) Level Increased with a high grade tumor driven by higher cell membrane turnover. 0.967
NAA/Choline Ratio Reduced in tumor; drawn upon tumor vs. non-tumor. 0.900
Creatine Level Produces baseline substance; its level may evoke tumor metabolism. 0.887

3.6 Classification algorithms

Two separate classification algorithms were used for more
robust and accurate classification performance. First, for the
MRI data and second, for the MRS data. Allowing each
modality to be processed independently before the results are
fused to generate the classification result with a level of
confidence [20].

3.6.1 MRI classification

A rule-based classification algorithm was used for MRI
classification. Using our proposed DIT segmentation method,
this algorithm differentiates between tumor and non-tumor
lesion abnormalities based on the area segmentation. The
highest correlated extracted features were the number of
segmentation areas, the maximum level of pixel density, and
the size of the biggest segmented area. A threshold-based
classification approach categorizes a tumor as a non-tumor
lesion. The classifier uses pre-established thresholds, refined
through medical consultation from an expert with ten years of
experience, to make the final decision.

3.6.2 MRS classification

Similarly, the MRS data is classified using a rule-based
classification model. This model classifies the spectra into
tumor or non-tumor categories based on the extracted
metabolite features and their ratios. The classification is
supported by the concentration levels of key biomarkers, with
tumor lesions showing distinct metabolic values compared to
tumor-like lesions of brain tissue [21].

3.6.3 Result fusion and final decision

Once the MRI and MRS classifiers produce their results, the
final step combines the outputs using a weighted fusion
strategy. The results from the two classifiers are combined
based on a weighting rule chosen based on medical
consultation and proven by high-performance accuracy. The
weighted fusion strategy equation: Final Decision= MRS
Result Weight*0.7+ MRI Result Weight*0.3.

This weight distribution reflects the relative importance of
each imaging modality in tumor classification. The MRS
provides valuable metabolic data for diagnosis criteria to
determine the destination between tumor and tumor-like
lesions. At the same time, MRI, which includes structural
information, is used to calculate the final confidence level.

Although MRS provides higher diagnostic confidence
(70%) due to its metabolic specificity, it does not capture
structural or anatomical information. MRI, while contributing
only 30% in terms of classification accuracy, provides critical
spatial and morphological context—such as lesion size, shape,
edema, and tissue boundaries—which MRS cannot offer.

By combining both, we create a complementary and more
robust diagnostic model. MRI may reveal structural
abnormalities that are not yet metabolically active or help
localize MRS signals more precisely. This synergy often
improves the clinical reliability and generalizability of the
system, particularly in heterogeneous or early-stage
pathologies. This approach ensures that the final decision
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incorporates the strengths of both imaging modalities,
providing a more robust and reliable diagnosis.

4. RESULTS AND DISCUSSION

A dataset with 50 patients (23 male, 27 female) with an
average age of 38 was used to test the proposed methodology.
To evaluate the robustness of the proposed classification
framework, a 5-fold cross-validation approach was used. This
method helps to minimize the impact of potential sampling
bias and overfitting, especially given the limited dataset size.
For brain tumor classification, the proposed method achieves
an outstanding accurate performance of 90%, It is noteworthy
that our study of 50 cases identified in one center represents
the challenge of insufficient MRS in Iraqi clinical practice.
Limitations, including logistics and ethics, limited uptake to
only one hospital. To reduce bias and evaluate model stability,
we performed stratified 5-fold cross-validation. Consistency
across folds in this approach indicated the internal validity of
our method. However, we acknowledge that the
generalizability of the model is limited. Where possible, we
will seek external validation through regional collaborations
or publicly available datasets. As illustrated in Table 3, the
combination of MRS and MRI data shows promise and
efficiency. The results indicate that the proposed classification
approach is more reliable, robust, and accurate than models
based solely on individual imaging modalities.

Table 3. Contains the confusion matrix summary of the
model's performance

Tumor-Like Lesion
2
10

Actual/Predicted Tumor
Tumor 9
Tumor-like Lesion 0

True Positives (TP): 9 (Correctly classified as tumors)

True Negatives (TN): 10 (Correctly classified as tumor-like
lesions)

False Positives (FP): 1 (Tumor-like lesion misclassified as
a tumor)

False Negatives (FN): 0 (Tumor misclassified as a tumor-
like lesion)

Table 4 illustrate the performance comparison highlights
the effectiveness of combining MRI and MRS modalities for
brain lesion classification. The fusion model (MRI + MRS)
achieved the highest overall accuracy (90%), along with
excellent sensitivity (85%) and perfect specificity (100%),
indicating a balanced and robust diagnostic performance.

Individually, MRS outperformed MRI, with an accuracy of
85% and specificity of 90%, reflecting its superior ability to
detect metabolic abnormalities characteristic of tumors. MRI
alone showed comparatively lower performance (75%
accuracy, 80% sensitivity, and 70% specificity), likely due to
structural similarities between tumor and tumor-like lesions.

These results validate the decision to assign greater weight
to MRS (0.7) in the confidence-weighted fusion strategy and
emphasize the benefit of multimodal integration in improving



diagnostic reliability.

Table 4. Performance comparison of fusion and standalone
MRI and MRS modality

Additionally, the model is highly confident in classifying
what is needed for clinical decisions. Clinicians can have the
ability to provide a confidence level of better diagnosis
decisions.

Figure 6 visually represents the combination of both

Modality Accuracy Sensitivity  Specificity imaging modalities into a single widow’s plication user
MRI and MRS 90% 85% 100% interface, showing how accurate classification will be when

MRI alone 75% 80% 70% integrating both modalities.
MRS alone 85% 80% 90%
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Figure 6. The user interface

Experimental pipeline was run on a high-performance
personal computer device containing Intel Core i9-14900HX
CPU @ 2.20 GHz, 16 GB RAM, and a 64-bit Windows 11 Pro
operating system. The entire processing and analysis were
performed in MATLAB R2022a and this was used to perform
data preprocessing, feature extraction, classification, and
visualization. The total processing time per patient, including
MRI preprocessing, feature extraction, and MRS spectral
alignment, was approximately 18-22 seconds, depending on
data quality and scan size. The MRS spectral alignment step
was among the most computationally intensive, typically
requiring 5-7 seconds due to peak normalization and
alignment routines. Nonetheless, the whole pipeline works
well and can be appropriate in terms of providing support in
diagnosis in situations close to real-time. In this way the
system could be customized according to hospital PACS
systems.

Together, MRI and MRS data provide a significant step
forward toward brain tumor classification. MRI is beneficial
for Barin Imaging and provides structural information.
Comparing it with MRS is essential for differentiating
different tumor types and lesions. The simultaneous
introduction of these two imaging modalities in a single ML
algorithm enhances their diagnostic accuracy and improves the
information available regarding the tumor characteristics [22].
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The final classification is based on a confusion matrix
displaying the true positives, false positives, true negatives,
and false negatives. The model will be included in this figure
as a marker of its ability to gauge the effectiveness of
separating tumor and non-tumor cases.

5. CONCLUSION

This study demonstrates the feasibility of combining MRS
and MRI data for tumor classification with machine learning.
Clinical decision-making can be more robust and reliable for
diagnosing brain tumors using the proposed algorithm, which
has achieved a classification accuracy of 90% and predicts the
confidence level.

However, rule-based classification algorithms are practical
for classification in this study. Despite that, there is scope for
further improvement by exploiting better ML algorithms, such
as deep learning methods like convolutional neural networks
(CNNs). Theoretically, these models could readily capture
additional data complexity and improve system performance.

One limitation of this study is the use of data collected
exclusively from a single medical center (Al-Andalus
Oncology Centre), which may introduce institutional or
population-specific bias. To mitigate this concern, we



employed cross-validation to evaluate model

stability;

however, future work will focus on validating the framework
using multicenter datasets to reduce the risk of bias inherent in
single-center studies.

Furthermore, future work in this direction will be dedicated
to expanding the dataset, improving feature extraction, and
investigating more sophisticated machine-learning techniques
that enhance the model's performance. Combining structural
and biochemical information can significantly help with the
early detection and treatment of brain tumors.

A positively classified brain scan and the classification's
confidence level represent a final diagnosis output. It will then
illustrate how the confidence level affects the ultimate clinical
choice.
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