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Differentiating brain tumors from tumor-like lesions is a persistent clinical challenge due to 

their overlapping imaging features on conventional radiological scans. Tumor-like lesions 

such as demyelinating diseases, infections, or post-traumatic changes often mimic 

neoplastic growths in appearance, leading to potential misdiagnosis and inappropriate 

treatment decisions. To address this issue, we propose a novel machine-learning-based 

diagnostic framework that integrates Magnetic Resonance Spectroscopy (MRS) and 

structural Magnetic Resonance Imaging (MRI) through a confidence-weighted fusion 

strategy: Final Diagnosis = 0.7 × MRS + 0.3 × MRI. This weighting reflects the higher 

metabolic specificity of MRS, while retaining MRI’s anatomical detail. Each modality is 

processed through a specialized pipeline. The MRS pipeline involves image-to-numeric 

transformation, noise filtering, metabolite concentration-based feature extraction, expert-

guided feature selection, and a rule-based classifier. The MRI pipeline includes skull 

stripping, a novel Dynamic Image Thresholding method, multidimensional feature 

extraction (statistical, volumetric, shape-based), and correlation-based feature selection 

with a rule-based classifier. Our integrated system achieved 90% classification accuracy on 

a clinically validated dataset, effectively distinguishing between tumors and tumor-like 

lesions. Despite the small dataset (n=50) from a single center, stratified cross-validation 

yielded consistent results (90% accuracy), demonstrating robustness. Future external 

validation is planned. By introducing a confidence-informed multimodal fusion strategy, 

the framework provides both high diagnostic accuracy and interpretability, supporting more 

reliable and informed clinical decision-making in neuro-oncology. 
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1. INTRODUCTION

Brain lesions are a magnified difference, mass, or injury in 

the brain's tissue due to tumors, infections, metastasis, or 

injury. They are difficult to categorize by clinical radiopathy 

because they are so different in origin and nature. Brain lesions 

are areas of abnormal tissue in the brain caused by tumors, 

infections, inflammation, and other types of trauma. They are 

incredibly challenging to classify in clinical radiological 

practice because of their differing kinds of locations, types of 

formation, and aggressiveness. Accurate and prompt diagnosis 

is paramount since early differentiation between brain tumors 

and tumor-like lesions will influence the treatment approach 

as well as the prognosis and will minimize mortality [1]. 

However, it is still quite challenging to differentiate lesion 

types accurately due to the overlapping visual appearances and 

the deficiencies of existing imaging methods. 

While MEGRI and CT are well known for diagnosing brain 

lesions, MRI with high-resolution anatomical imaging is now 

mainly used. It identifies deformation of the tissues, such as 

repositioning, swelling, or texture change. Although MRI is 

used extensively, the distinction of true tumors from tumor-

like lesions such as abscesses or vascular malformations may 

be difficult. In addition, some tumors, such as gliomas and 

metastases, exhibit indistinguishable imaging appearances, 

which makes clinical treatment decisions difficult [2-4]. 

Magnetic Resonance Spectroscopy (MRS) offers 

complementary metabolic information based on tissue 

biochemistry. It measures levels of metabolites, such as Acetyl 

Aspartate (NAA), choline, creatine, and myoinositol, that may 

detect lesions not visible on structural imaging. For example, 

decreased NAA and increased choline levels could suggest 

tumor activity. Although MRS exhibits potential utility for 

detecting and following intracranial neoplasm, its clinical use 

remains modest because of the complexity of data and the non-

standardized analysis procedure [5]. 

MRI and MRS take advantage of the complementary nature 

of the information provided by MRI, primarily anatomical 

detail, and MRS, mainly biochemical information. They have 

been demonstrated to significantly enhance diagnostic 

performance compared to MRI alone, particularly in tumor vs. 

non-tumor separation in pediatric and adult populations [6]. 

The main contributions of this research can be summarized 

as follows: 

New integration of MRI and MRS: We introduce a new 

framework incorporating MRI and MRS data to classify 
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tumors and tumor-like lesions. However, based on our 

knowledge, none of the previous work with both modalities, 

MRI and MRS, has been widely investigated as a means to 

classify brain lesions automatically. 

Dual-Classification algorithms: The proposed method 

adopts distinct classification models for MRI and MRS data, 

enabling each modality to be treated separately based on its 

advantages. The output from both algorithms is combined with 

a weighted fusion approach to produce the final decision. 

Confidence-Level Output: Besides its classification output 

(tumor and tumor-like lesion), our algorithms also provide a 

confidence level for this diagnosis. Such a confidence level, 

derived from a weighted summation of MRI and MRS based 

on it, is clinically significant, enabling clinicians to determine 

the reliability of the output for between and more robust 

diagnosis decisions [7]. 

Enhanced Diagnostic Accuracy: Our model exhibits 

superior diagnostic accuracy by integrating structure and 

metabolism information, recording a 90% overall 

classification accuracy. 

Machine learning provides a powerful means for the 

analysis and fusion of multimodal imaging data that can 

facilitate such integration. Recent studies have shown that 

hybrid models, especially those that integrate rule-based logic 

and deep learning, can achieve excellent accuracy and 

interpretable predictive features for clinical use. This paper 

introduces a new dual-stream rule-based machine learning 

framework, which performs MRI and MRS data separately 

and fuses their output based on a confidence-weighted model. 

This schema improves classification accuracy and furnishes 

decision-aiding results otherwise interpretable by clinicians 

[7, 8]. 

2. BACKGROUND AND RELATED WORK

The classification of brain lesions constitutes a central task 

in clinical radiology, owing to the complexity of their 

structure, heterogeneity, and similarity of features across 

different lesion types. Early diagnosis is essential, especially 

to differentiate between malignant and benign tumors like 

lesions (e.g., abscesses, demyelinating plaques). Conventional 

diagnostic methods depend to a great extent on MRI, which 

offers a detailed anatomical representation. Common MRI 

sequences, such as T1-weighted, T2-weighted, and FLAIR 

sequences, are typically employed to identify the presence of 

abnormal brain tissue according to contrast and intensity 

patterns. However, MRI alone often cannot definitively 

categorize lesion subtypes because non-specific structural 

appearances are frequent. For example, gliomas and 

metastases are known to have similar morphological 

representations, thus making differential diagnosis difficult 

[9]. 

Early machine learning (ML) techniques have been used for 

MRI-based lesion analysis to enhance interpretability and 

classification performance. Such methods are usually based on 

hand-crafted features, such as intensity histograms, edge 

profiles, and texture features extracted from Gray-Level 

Cooccurrence Matrices (GLCM), and classifiers such as 

Support Vector Machines (SVM), k-nearest Neighbors (kNN), 

and Decision Trees. However, these models would not 

generalize well when trained on a heterogeneous dataset that 

includes both tumor and tumor-mimicking pathologies and 

thus may not be directly applicable in practice. 

Deep learning methodologies, particularly convolutional 

neural networks (CNNs) have demonstrated better results than 

traditional methods, as CNNs can learn hierarchical 

representations from imaging data. Saeedi et al. [6] reported 

that CNN-based methods outperformed traditional methods, 

with the highest classification accuracy of 96.47% on the brain 

tumor datasets, high sensitivity, and recall, according to 

certain benchmarking. Deep learning methods, however, 

generally rely on large labeled datasets that are hard to come 

by in neuroimaging, and they are computationally expensive 

and complicated to interpret, two of the significant drawbacks 

to clinical translation. This poses a usability limitation for their 

routine use in clinical practices. 

In an attempt to overcome the restrictions of solely 

structural imaging, MRS has been proposed as a supplement 

to improve the DBM interpretation. MRS can quantify 

biochemical markers in the tissue, providing a different 

perspective on the metabolic status of brain lesions. 

Metabolites of clinical relevance are N-acetylaspartate 

(NAA), which includes information about axonal function; 

choline, which is associated with the turnover in cell 

membranes; creatine, responsible for cellular energy; and 

myo-inositol related to glial activity. A decrease in NAA and 

an increase in choline are usually due to neoplastic tissue—

tumoral evaluation. With the application of MRS, we can 

differentiate high-grade tumors from benign lesions and 

evaluate their response to treatment. Nevertheless, while 

demonstrating its potential as a diagnostic tool, MRS has 

limited clinical use mainly due to differences in acquisition 

protocols, access to scanners, signal-to-noise ratio issues, and 

the absence of established analysis workflows [10]. 

Some studies have used ML models on MRS data, reaching 

promising but modality-specific results. Ekşi et al. [11] 

discriminated between multiple sclerosis lesions and low-

grade tumors by MRS using artificial neural networks (ANNs) 

and linear discriminant analysis (LDA) with high diagnosis 

accuracy. However, such models often rely on 'clean', high-

quality MRS data and do not extrapolate to multimodal 

settings. Further, their model's lack of structural MRI 

information makes it less applicable for in-practice diagnostic 

systems where multimodal evidence is required. 

In practice, several recent works have attempted to use a 

hybrid or an ensemble to enhance the performance of lesion 

classification. Malarvizhi et al. [12], as well as (B) 

Quantitative Blood Oxygen Level Dependent (qBOLD) and 

Vascular Architecture Mapping (VAM) imaging on MRI in 

combination with ML for enhanced diagnostic performance. 

They reached an accuracy of 87.5%; however, their method 

involved a large amount of preprocessing and was 

computationally intensive and, therefore, not applicable to the 

routine clinical environment. Similarly, Ullah et al. [13] 

proposed a deep learning model using Bayesian optimization 

with a classification accuracy of up to 99.80%. However, the 

model was highly overfit, with significant manual tuning and 

a resource-intensive computational environment, and it was 

not readily available in all clinical settings. 

Most of the above methods are based on a single modality 

(either DC or CT) and are not interpretable, scalable, or do not 

report confidence levels. Only a few studies have suggested 

combining MRI and MRS utilizing a unified machine learning 

framework in brain lesion classification [12]. In addition, 

confidence estimation of classification outputs is often left 

unmentioned, though its importance for enabling clinical 

decision-making under uncertainty has been recently 
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indicated. 

Our proposed framework solves these issues through a dual-

stream rule-based classification pipeline that combines MRI's 

structural imaging capabilities with MRS's metabolic profiling 

strength. Both modalities are handled separately, with their 

preprocessing, feature extraction, and classification pipelines. 

The MRI data are first skull-stripped, noise-reduced, 

statistically and volumetrically. The MRS spectra are 

converted numerically, denoised independently, and scanned 

for metabolite-based statistical feature transmission. A rule-

based model is then applied to the two independent modalities, 

and their outputs are combined with a weighted confidence 

function: Final Result = 0.7MRS output + 0.3MRI output. 

The complete model detects the lesion class and provides 

confidence to aid in clinical decisions. Our model achieved a 

classification accuracy of 90% when tested on a multimodal 

brain lesion dataset, proving its efficacy and practicality. This 

allows for the design of new real-time, interpretable, and 

multimodal diagnostic systems that can be incorporated 

directly into radiology laboratory operations.  

3. METHODOLOGY

The proposed methodology aims to distinguish between two 

different categories of brain lesions, such as brain tumors and 

tumor-like lesions. MRI and MRS data are structured into 

several stages. These include data collection, preprocessing, 

feature extraction, selection, and classification. Additionally, 

the results from MRI and MRS classifiers are fused to produce 

a final diagnostic decision with a confidence level. Both MRS 

and MRI are used in parallel to process the image data, extract 

features, and apply classification algorithms, as illustrated in 

Figure 1. The results from both methods are then combined to 

provide a final diagnosis. The section below describes the 

overall proposed methodology. 

Figure 1. Overall proposed system diagnosis 

3.1 Data collection 

This study used 50 patients from the Al-Andalus Oncology 

Centre for data collection. In this dataset, patients with brain 

tumors and tumor-like lesions were scanned with both MRS 

and MRI scans. The 50 patients had an average age of 37 years 

for women and 40 years for men, and they included 23 male 

and 27 female patients. All data, including the MRI and MRS 

scans, were collected using a 1.5 Tesla scanner. The patient 

metadata includes general patient information; clinical details 

were available online at the "Brain lesion MRI and co-related 

MRS spectroscopy dataset." FLAIR (Fluid-Attenuated 

Inversion Recovery) images were used in this study because 

they can be highly effective in detecting brain lesions and 

tumors. Spectra obtained with the MRS data were based on the 

biochemical composition of brain tissue and primarily 

contained N-acetylaspartate (NAA), creatine, choline, and 

myo-inositol. 

3.2 MRI data preprocessing 

The MRI data preprocessing consists of several essential 

steps designed to prepare the raw MRI scans for better feature 

extraction and classification: 

Skull Stripping: The first step in preprocessing is skull 

stripping, which removes non-brain tissues from the MRI 

images. The skull stripping step is essential to identify the 

region of interest that helps to focus only on the brain tissue 

for tumor detection and classification. Automated skull-

stripping tools, such as FMRIB Software Library (FSL) [14-

16], were used in this paper. 

Noise Reduction: The raw MRI images often contain noise 

that can interfere with accurate tumor classification, leading to 

a misclassification result. A mean filter was applied for this 

purpose, for it is efficient and requires low processing power 

[17]. This reduction helps preserve the brain tissue's structural 

integrity while minimizing interfering variations within MRI 

data. 

Algorithm 1. Dynamic Image Thresholding (DIT) 

Input 3D MRI image (raw_mri_image) 

Output Binary mask M of segmented lesion regions 

Begin 

Step 1 
Compute Statistics: Calculate the mean (μ) and 

standard deviation (σ) of intensities in the relevant. 

Step 2 
Calculate Threshold: Set the threshold value T = μ + 

1.3 × σ.   

Step 3 

Apply Threshold: Create an empty mask M (same 

dimensions as I). For each pixel (or voxel) 

IF I(x) > T, THEN set M(x) = 1 (mark as lesion);   

   ELSE set M(x) = 0 (mark as background). 

– This results in a preliminary binary mask of all

pixels exceeding the threshold. 

Step 4 
Return the final mask M, which highlights the regions 

where the image intensity was above μ + 1.3σ. 

End 

Dynamic Image Thresholding (DIT) as illustrated in 

Algorithm 1: The brain abnormalities are segmented based on 

our proposed DIT method, and it has several advantages 

compared to the traditional lesion segmentation method. First, 

it considers all brain abnormalities, even outside brain tumors. 

Second, it is more robust to identify non-tumor brain lesions 

because they often consist of several abnormality regions all 

over the brain by counting the number of infected areas. At the 

same time, they are mostly limited to only one brain tumor and 
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many areas of brain lesions. This segmentation method is 

based on calculating the mean pixel density and the standard 

deviation for the 3D brain region. The thresholding formula is: 

DIT Threshold = Mean Pixel Density of whole 3D brain 

volumes + 1.35 × Standard Deviation of Pixel Density for 

whole 3D brain volumes. 

To validate the visual validity of proposed Dynamic Image 

Thresholding method, clinical expert in neuroimaging was 

consulted who had over ten years exportation experience in 

visualizing a neuroimaging system. A series of MRI scans that 

run on varying DIT threshold values (e.g. 1.0, 1.35 and 1.7) in 

Figures 2-4 respectively. Below are these figures which were 

availed to the expert to make a comparative study. 

Figure 2. Sample of images with a DIT factor of 1 

Figure 3. Sample of images with a DIT factor of 1.35 
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Figure 4. Sample of images with a DIT factor of 1.7 

The expert was allowed to assess the segmentation results 

on the basis of the abnormal region detection clarity, contrast 

enhancement and anatomical consistency. The assessment of 

which threshold-factor was optimal to properly segment brain 

abnormalities without discarding information or inducing 

artefacts was established. The judgment of the expert helped 

to choose a certain value, which could be considered as a 

valuable threshold value in order to segment brain 

abnormalities. 

The specialist making the decision that the 1.35 threshold 

factor was the most appropriate one. In succession, this value 

yielded the best lesion segmentation without any 

underestimation, such as it occurred with factor 1.0 (edges of 

the lesions and deep extensions of tissues were overlooked) or 

overestimation, as in the case with factor 1.7 (the edges of the 

lesions and deep extensions of tissues were not overlooked), 

as assessed by the expert. The 1.35 factor gained a balanced 

demarcation that do not alter the morphology of the lesions 

leaving behind the integrity of the neighboring healthy 

structures. The given qualitative validation is used to 

emphasize the soundness of this approach and its future 

usability in the classification tasks. 

Nevertheless, the validation of this expert based proved that 

the DIT method is an appropriate preprocessing procedure to 

determine and isolate the relevant brain abnormalities before 

further examination. 

Thus, the DIT factor of 1.35 is identified as the ideal 

threshold, offering the best representation of lesions with 

minimal interference from noise and without over-enhancing 

image features that could compromise the clarity of the 

diagnostic results. 

However, the adaptive thresholding approach of DIT offers 

a precise segmentation of the brain's abnormal regions, 

highlighting the areas that may indicate potential lesions or 

abnormalities. The segmented regions in the threshold image 

are marked by distinct differences in intensity, making the 

abnormal areas stand out more clearly when compared to the 

original image. 

This adaptive thresholding technique helps to identify brain 

abnormalities by setting a dynamic threshold that accounts for 

the variation in pixel densities across different brain regions 

and is adaptive for multiple cases.   

3.3 MRS data preprocessing 

The preprocessing of MRS imaging is a more intricate 

process, as the raw spectral data as an image requires several 

transformations before it can be used for classification: 

Data Conversion: The first step is to convert the raw spectral 

data from MRS scans as an image format to numerical data to 

be processed for classification. The MRS spectral images are 

then converted into a data array, representing the intensity 

values of the raw spectra. 

Noise Removal and Signal Correction: Through the data 

conversion process, the MRS data is prone to noise and 

distortions; several methods, including a mean smoothing 

filter, were applied to remove these artifacts. The data is also 

normalized to correct for variations in signal intensity that may 

arise from differences between scanner devices [18]. 

Spectral Alignment: The next step involves aligning the 

spectral peaks of metabolites across all samples. This ensures 

that each metabolite, such as N-acetyl aspartate (NAA), 

choline, and creatine, is consistently located at the same 

frequency across all patients' data to facilitate feature 

extraction. 

By replicating the above processing steps, Figure 5 

illustrates the performance of MRS processing. The left image 

represents the original MRS image, where the spectral peaks 

correspond to various chemical components in the brain tissue, 

such as choline (Ch), creatine (Cr), N-acetylaspartate (NAA), 

and others. These peaks are influenced by factors such as 

metabolite concentration and tissue characteristics. However, 
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in its raw form, the data lacks a readable numerical value and 

requires further analysis. 

Figure 5. MRS image conversion to numerical data 

The right image demonstrates the transformed MRS data, 

where the spectrum has been converted into a numerical plot, 

allowing for clearer feature extraction. The peaks of interest 

are now marked and quantified in the plot, with each 

representing the concentration of specific metabolites. This 

conversion from raw data to numerical values is crucial for 

feature extraction. 

3.4 Feature extraction 

Once the MRI and MRS data have been preprocessed, key 

tumor and tumor-like lesion classification features are 

extracted. The features extracted from both modalities are 

grouped into two categories: statistical features (which 

describe the general characteristics of the data) and 

volumetric/structural features (which represent the shape and 

size of detected abnormalities). All features were chosen based 

on clinical consultation with a specialist with ten years of 

experience in the field. 

3.4.1 MRI feature extraction 

Intensity Features: Intensity features refer to the brightness 

levels of the MRI images. These values are significant in 

identifying the areas of brain abnormal tissue, such as tumors 

or lesions. The features, such as mean, maximum, and 

minimum pixel intensity values for each segmented brain 

region, are extracted [18]. 

Texture Features: Texture features describe the spatial 

arrangement of brain tissue. These include measures of 

contrast and homogeneity, which help to characterize the 

structural patterns of brain abnormalities such as tumors or 

tumor-like lesions. Tumors or other brain lesion tissue have 

their textures, making these features useful for classification. 

Volumetric Features: Volumetric analysis is performed on 

the segmented brain abnormalities using dynamic image 

thresholding. The volumetric feature includes extracting the 

total volume of the segmented abnormal regions, the number 

of connected components within the brain abnormalities, and 

the surface area of the segmented brain abnormalities. These 

features provide essential information about the size and 

distribution of brain abnormalities. 

3.4.2 MRS feature extraction 

Metabolite concentration features: The primary features 

extracted from the MRS data are the concentrations of key 

metabolites, including N-acetylaspartate (NAA), choline, 

creatine, and myo-inositol. These metabolites serve as 

biomarkers for various tumor types. Elevated choline levels, 

for instance, often indicate high cellular turnover in tumors, 

while decreasing NAA levels are associated with neuronal 

damage [19]. 

Spectral ratios: Ratios of metabolite concentrations (e.g., 

NAA/Choline, NAA/Creatine) are also extracted. These ratios 

are known to have diagnostic value in distinguishing between 

tumor types. For example, gliomas often have a low NAA to 

Choline ratio. 

Statistical features: In addition to metabolite 

concentrations, we extract statistical features, such as the mean 

and maximum value of the metabolite intensities within the 

spectral range. These features capture the variability and 

distribution of metabolic activity in the brain tissue [7]. 

3.5 Feature selection 

Feature selection reduces the dataset's dimensionality and 

improves the classification models' performance. This study 

employs two stages of feature selection for each of the MRI 

and MRS data: 

MRI feature selection: Features are ranked based on their 

medical importance, and a correlation analysis using Pearson 

correlation is used to measure linear correlation among 

variables to identify which features have the strongest 

correlation with the presence of a tumor. Features that are 

highly correlated with the target variable (tumor vs. Tumor-

like lesion) are selected for classification. 

MRS Feature Selection: Similarly, for MRS data, we rank 

features based on their performance in distinguishing tumor 

from non-tumor tissues. Features related to the most 

significant metabolites, such as NAA, choline, and creatine, 

are prioritized. Additionally, Pearson correlation is used to 

identify the most informative spectral feature. 

Table 1 and Table 2 illustrate the top-ranked MRI and MRS 

features with clinical relevance respectively. The feature 

selection process highlighted clinically relevant predictors 

from both MRI and MRS using Pearson correlation. Among 

MRI features, Max Pixel Intensity (r = 0.687) and Number of 

Segmented Regions (r = 0.635) showed strong correlations, 

indicating their value in identifying tumor characteristics and 

lesion patterns. In contrast, MRS features demonstrated even 

higher correlations, with Choline Level (r = 0.967) and 

NAA/Choline Ratio (r = 0.900) showing strong associations 

with tumor metabolism. These results support the confidence-

weighted fusion strategy (0.7 × MRS, 0.3 × MRI), 

emphasizing MRS’s superior diagnostic contribution and the 

clinical validity of the selected features. 

Table 1. Top-ranked MRI features with clinical relevance 

Feature Name Clinical Relevance Pearson Correlation 

Max Pixel Intensity The strong signal could be due to necrosis, bleeding or malignant tumor activity. 0.687 

Number of Segmented 

Regions 

Multiple abnormal areas suggest tumor-like lesions (e.g., abscesses, 

demyelination). 
0.635 

Largest Lesion Area Size is an important variant to distinguish dash of tumors and benign lesions. 0.545 
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Table 2. Top-ranked MRS features with clinical relevance 

Feature Name Clinical Relevance Pearson Correlation 

Choline (Cho) Level Increased with a high grade tumor driven by higher cell membrane turnover. 0.967 

NAA/Choline Ratio Reduced in tumor; drawn upon tumor vs. non-tumor. 0.900 

Creatine Level Produces baseline substance; its level may evoke tumor metabolism. 0.887 

3.6 Classification algorithms 

Two separate classification algorithms were used for more 

robust and accurate classification performance. First, for the 

MRI data and second, for the MRS data. Allowing each 

modality to be processed independently before the results are 

fused to generate the classification result with a level of 

confidence [20]. 

3.6.1 MRI classification 

A rule-based classification algorithm was used for MRI 

classification. Using our proposed DIT segmentation method, 

this algorithm differentiates between tumor and non-tumor 

lesion abnormalities based on the area segmentation. The 

highest correlated extracted features were the number of 

segmentation areas, the maximum level of pixel density, and 

the size of the biggest segmented area. A threshold-based 

classification approach categorizes a tumor as a non-tumor 

lesion. The classifier uses pre-established thresholds, refined 

through medical consultation from an expert with ten years of 

experience, to make the final decision. 

3.6.2 MRS classification 

Similarly, the MRS data is classified using a rule-based 

classification model. This model classifies the spectra into 

tumor or non-tumor categories based on the extracted 

metabolite features and their ratios. The classification is 

supported by the concentration levels of key biomarkers, with 

tumor lesions showing distinct metabolic values compared to 

tumor-like lesions of brain tissue [21]. 

3.6.3 Result fusion and final decision 

Once the MRI and MRS classifiers produce their results, the 

final step combines the outputs using a weighted fusion 

strategy. The results from the two classifiers are combined 

based on a weighting rule chosen based on medical 

consultation and proven by high-performance accuracy. The 

weighted fusion strategy equation: Final Decision= MRS 

Result Weight*0.7+ MRI Result Weight*0.3. 

This weight distribution reflects the relative importance of 

each imaging modality in tumor classification. The MRS 

provides valuable metabolic data for diagnosis criteria to 

determine the destination between tumor and tumor-like 

lesions. At the same time, MRI, which includes structural 

information, is used to calculate the final confidence level.  

Although MRS provides higher diagnostic confidence 

(70%) due to its metabolic specificity, it does not capture 

structural or anatomical information. MRI, while contributing 

only 30% in terms of classification accuracy, provides critical 

spatial and morphological context—such as lesion size, shape, 

edema, and tissue boundaries—which MRS cannot offer. 

By combining both, we create a complementary and more 

robust diagnostic model. MRI may reveal structural 

abnormalities that are not yet metabolically active or help 

localize MRS signals more precisely. This synergy often 

improves the clinical reliability and generalizability of the 

system, particularly in heterogeneous or early-stage 

pathologies. This approach ensures that the final decision 

incorporates the strengths of both imaging modalities, 

providing a more robust and reliable diagnosis. 

4. RESULTS AND DISCUSSION

A dataset with 50 patients (23 male, 27 female) with an 

average age of 38 was used to test the proposed methodology. 

To evaluate the robustness of the proposed classification 

framework, a 5-fold cross-validation approach was used. This 

method helps to minimize the impact of potential sampling 

bias and overfitting, especially given the limited dataset size. 

For brain tumor classification, the proposed method achieves 

an outstanding accurate performance of 90%, It is noteworthy 

that our study of 50 cases identified in one center represents 

the challenge of insufficient MRS in Iraqi clinical practice. 

Limitations, including logistics and ethics, limited uptake to 

only one hospital. To reduce bias and evaluate model stability, 

we performed stratified 5-fold cross-validation. Consistency 

across folds in this approach indicated the internal validity of 

our method. However, we acknowledge that the 

generalizability of the model is limited. Where possible, we 

will seek external validation through regional collaborations 

or publicly available datasets. As illustrated in Table 3, the 

combination of MRS and MRI data shows promise and 

efficiency. The results indicate that the proposed classification 

approach is more reliable, robust, and accurate than models 

based solely on individual imaging modalities. 

Table 3. Contains the confusion matrix summary of the 

model's performance 

Actual/Predicted Tumor Tumor-Like Lesion 

Tumor 9 2 

Tumor-like Lesion 0 10 

True Positives (TP): 9 (Correctly classified as tumors) 

True Negatives (TN): 10 (Correctly classified as tumor-like 

lesions) 

False Positives (FP): 1 (Tumor-like lesion misclassified as 

a tumor) 

False Negatives (FN): 0 (Tumor misclassified as a tumor-

like lesion) 

Table 4 illustrate the performance comparison highlights 

the effectiveness of combining MRI and MRS modalities for 

brain lesion classification. The fusion model (MRI + MRS) 

achieved the highest overall accuracy (90%), along with 

excellent sensitivity (85%) and perfect specificity (100%), 

indicating a balanced and robust diagnostic performance. 

Individually, MRS outperformed MRI, with an accuracy of 

85% and specificity of 90%, reflecting its superior ability to 

detect metabolic abnormalities characteristic of tumors. MRI 

alone showed comparatively lower performance (75% 

accuracy, 80% sensitivity, and 70% specificity), likely due to 

structural similarities between tumor and tumor-like lesions. 

These results validate the decision to assign greater weight 

to MRS (0.7) in the confidence-weighted fusion strategy and 

emphasize the benefit of multimodal integration in improving 
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diagnostic reliability. 

Table 4. Performance comparison of fusion and standalone 

MRI and MRS modality 

Modality Accuracy Sensitivity Specificity 

MRI and MRS 90% 85% 100% 

MRI alone 75% 80% 70% 

MRS alone 85% 80% 90% 

Additionally, the model is highly confident in classifying 

what is needed for clinical decisions. Clinicians can have the 

ability to provide a confidence level of better diagnosis 

decisions. 

Figure 6 visually represents the combination of both 

imaging modalities into a single widow’s plication user 

interface, showing how accurate classification will be when 

integrating both modalities. 

Figure 6. The user interface 

Experimental pipeline was run on a high-performance 

personal computer device containing Intel Core i9-14900HX 

CPU @ 2.20 GHz, 16 GB RAM, and a 64-bit Windows 11 Pro 

operating system. The entire processing and analysis were 

performed in MATLAB R2022a and this was used to perform 

data preprocessing, feature extraction, classification, and 

visualization. The total processing time per patient, including 

MRI preprocessing, feature extraction, and MRS spectral 

alignment, was approximately 18–22 seconds, depending on 

data quality and scan size. The MRS spectral alignment step 

was among the most computationally intensive, typically 

requiring 5–7 seconds due to peak normalization and 

alignment routines. Nonetheless, the whole pipeline works 

well and can be appropriate in terms of providing support in 

diagnosis in situations close to real-time. In this way the 

system could be customized according to hospital PACS 

systems. 

Together, MRI and MRS data provide a significant step 

forward toward brain tumor classification. MRI is beneficial 

for Barin Imaging and provides structural information. 

Comparing it with MRS is essential for differentiating 

different tumor types and lesions. The simultaneous 

introduction of these two imaging modalities in a single ML 

algorithm enhances their diagnostic accuracy and improves the 

information available regarding the tumor characteristics [22]. 

The final classification is based on a confusion matrix 

displaying the true positives, false positives, true negatives, 

and false negatives. The model will be included in this figure 

as a marker of its ability to gauge the effectiveness of 

separating tumor and non-tumor cases. 

5. CONCLUSION

This study demonstrates the feasibility of combining MRS 

and MRI data for tumor classification with machine learning. 

Clinical decision-making can be more robust and reliable for 

diagnosing brain tumors using the proposed algorithm, which 

has achieved a classification accuracy of 90% and predicts the 

confidence level. 

However, rule-based classification algorithms are practical 

for classification in this study. Despite that, there is scope for 

further improvement by exploiting better ML algorithms, such 

as deep learning methods like convolutional neural networks 

(CNNs). Theoretically, these models could readily capture 

additional data complexity and improve system performance. 

One limitation of this study is the use of data collected 

exclusively from a single medical center (Al-Andalus 

Oncology Centre), which may introduce institutional or 

population-specific bias. To mitigate this concern, we 
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employed cross-validation to evaluate model stability; 

however, future work will focus on validating the framework 

using multicenter datasets to reduce the risk of bias inherent in 

single-center studies. 

Furthermore, future work in this direction will be dedicated 

to expanding the dataset, improving feature extraction, and 

investigating more sophisticated machine-learning techniques 

that enhance the model's performance. Combining structural 

and biochemical information can significantly help with the 

early detection and treatment of brain tumors. 

A positively classified brain scan and the classification's 

confidence level represent a final diagnosis output. It will then 

illustrate how the confidence level affects the ultimate clinical 

choice. 
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