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Drowsy driving is a major concern for road safety, leading to accidents and fatalities. This
paper presents a novel approach called Optimized Dual-Tree Deep Learning (ODT-DL) for
real-time drowsiness detection in drivers. The model uses advanced techniques like image
preprocessing, feature extraction, and feature selection. It uses Hidden Markov Models for
sequence modelling and classification, enabling accurate drowsiness detection. The
experimental evaluation of ODT-DL on two benchmark datasets, YAWDD and NTHU-
DDD, shows outstanding performance, with accuracy, precision, recall, and F1-Score
consistently exceeding 99%. The model's high discrimination capabilities and low false
alarm rates ensure reliable detection. Comparative analysis against other machine learning
models, such as AlexNet, ResNet, Support Vector Machine, and ensemble methods,
highlights the superiority of ODT-DL. The findings suggest the model's practical
implications for enhancing road safety by preventing accidents caused by driver drowsiness,
with potential applications in vehicle safety systems. The proposed ODT-DL model holds
promise for real-world implementation and opens avenues for future developments in road

safety technology.

1. INTRODUCTION

Traffic mishaps remain as an issue of concern to almost all
countries with hosts of fatalities, injuries as well as property
damage. These are caused by factors such driver’s error, bad
terrain, faulty mechanical problems and even extreme weather
conditions [1]. Even present-day infrastructure improvements,
legislation, as well as enhancement of sensibility among road
users, road crashes continue to persist a significant problem
around the world. These accidents do not only result in other
types of losses such as physical and psychological health of
families, communities, and the overall health care systems [2].
To reduce road accidents, better road standards, traffic policy
harmonization, proper road behavior, and improved car
technology are implemented, requiring increased alertness and
collaboration among governments, organizations, and
individuals [3]. Drivers are crucial in road accidents as they
dictate behavior and make decisions during the journey.
Common causes include hasty, reckless, risky speed,
distracted driving, texting, mobile phone use, drunk driving,
and fatigue [4]. Traffic violations pose a threat to drivers,
passengers, pedestrians, and other road users. To reduce
accidents, it's crucial to observe traffic laws, maintain a
reasonable distance, and monitor traffic conditions [5].
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Education, awareness campaigns, and strict enforcement of
laws significantly influence road users' attitudes towards safe
driving and reduce accidents caused by driver-related factors.
Therefore, fostering a culture of safe and careful driving is
crucial for creating safe roads and minimizing accident
impacts [6].

Driver drowsiness detection is a crucial technology
developed to reduce the risk of fatigued driving, a prevalent
cause of road accidents [7]. This technology uses sensors and
algorithms to monitor a driver's alertness at the wheel,
recording factors like steering wheel movement, swaying,
gaze direction, and racial expressions to detect fatigue or
distraction, and produce alarms if necessary [8]. Modern
vehicles use assistive technologies like lane-keeping
assistance and adaptive cruise control to prevent accidents.
Drowsiness detection technology is revolutionizing the
industry by reducing accidents caused by tired or dozing
drivers [9]. Technology in vehicles can reduce accidents and
fatalities, but campaigns should be launched to raise awareness
about sleepy or reckless driving risks among road users [10].

CNNs are effective in detecting drowsiness in drivers,
especially in image and video processing, and are useful for
monitoring and supervising drivers' behavior using vision-
based data [11]. In drowsiness detection systems, CNNs are
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used to analyse video inputs from car cameras to identify
motion patterns of a driver’s face revealing fatigue or
drowsiness [12]. CNN-based systems can predict driver
fatigue by extracting features and analysing patterns, allowing
real-time evaluations of attentiveness through signals like low
eyelids, gaze shift, and fast blinking [13]. High-tech systems
can alert drivers to drowsiness through notifications,
encouraging them to stay awake or pause the car, using CNNs
and other sensors [14]. CNNs are crucial in detecting
drowsiness due to their efficient processing of large visual
data, which helps prevent fatigue-induced accidents [15].

The integration of CNN-based drowsiness detection
systems could enhance road safety by reducing drowsy driving
risks, but comprehensive driver education and awareness
campaigns are needed [16]. Privacy concerns arise as cars'
interiors are monitored by cameras, recording drivers, making
it crucial to balance safety with privacy rights. CNN-based
systems can be influenced by low light conditions and camera
resolution, potentially leading to false positives or negatives
[17]. CNN-based systems struggle to maintain performance in
diverse environments and changing factors, often overlooking
variations in driving behavior or cultural practices related to
dozing off, highlighting the need for more comprehensive and
accurate systems [18]. The system's performance may be
compromised by false positives or false negatives, and
additional costs may prevent its inclusion in vehicles,
potentially making it only accessible in lower-class vehicles or
less developed countries [19]. Automating certain functions
could potentially lead to reckless driving due to the belief that
technology will prevent accidents.

Continuous research is needed to improve the accuracy and
reliability of CNN-based drowsiness detection models [20];
policymakers are obligated to establish rigorous safety and
social responsibility standards, ensuring respect for privacy
and ethics [21]. Driver education and public awareness
campaigns are crucial for preventing risky driving practices.
CNNe-integrated drowsiness detection systems can quickly
determine drivers' drowsiness levels and intervene when
needed. This application demonstrates CNNs' versatility in
visual data analysis and can improve road safety by reducing
accidents due to driver fatigue [22]. The contribution of this
research lies in the development and evaluation of the ODT-
DL integrated with Hidden Markov Model for drowsiness
detection in drivers. Several key contributions are highlighted:

1. The study integrates advanced techniques like Cross
Guided Bilateral Filter, SWIFT, GLCM feature extraction,
Dual-Tree Complex Wavelet Transform with Walsh
Hadamard Transform, and the Flémingo feature selection
method into the Hidden Markov Model framework. This novel
combination enhances the model's ability to extract
informative features and effectively detect drowsiness.

2. ODT-DL achieves exceptional accuracy, precision,
recall, and F1-Score values, all above 99%, demonstrating its
ability to accurately distinguish between alert and drowsy
states.

3. ODT-DL maintains low false positive and false negative
rates, ensuring that it effectively identifies drowsy drivers
while minimizing unnecessary alerts.

4. The findings suggest that ODT-DL has significant
practical implications for enhancing road safety by preventing
accidents caused by driver drowsiness. The model's high
accuracy and low false alarms make it suitable for integration
into vehicle safety systems. The contribution of this research
lies in the creation of an innovative and highly effective
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drowsiness detection model, ODT-DL, which has the potential
to significantly improve road safety and reduce accidents
caused by drowsy driving.

2. PROPOSED METHOD

Optimized Dual-Tree Deep Learning (ODT-DL) is a highly
efficient research method for image preprocessing and feature
extraction for road safety drowsiness detection. The
framework starts with a cross-guided bilateral filter algorithm
to improve image quality and preserve key details. Advanced
approaches like the Sleep-Wake Image Feature
Transformation (SWIFT) algorithm and the Gray-Level Co-
occurrence Matrix (GLCM) are used for feature extraction,
capturing necessary information for classifying different types
of drowsiness states. The Dual-Tree Complex Wavelet
Transform incorporates the Walsh-Hadamard Transform for
improved feature representation. The Flemingo integrated
approach is used for feature selection, minimizing
dimensionality. ODT-DL uses a Hidden Markov Model
(HMM) to capture temporal driver drowsiness patterns,
examining driving dynamics. A ranking-based ADA boosting
integrated regression classifier predicts drowsiness state using
an ensemble learning model with many weak learners,
enhancing road safety. The ODT-DL method is a
comprehensive approach for image pre-processing, feature
extraction, feature selection, and classification, making it
useful in real-life driving conditions, where monitoring driver
fatigue is critical for reducing accidents on the road.

2.1 Dataset

The YAWDD (Yet Another Wearable Drowsiness Dataset)
and NTHU-DDD (National Tsing Hua University Drowsy
Driver Detection) datasets are also included as the effective
assets that have been employed in the field of research and
development of drowsy driver detection systems. Real-world
data have been gathered in these datasets for training and
testing purposes of algorithms and models for detecting driver
drowsiness.

The YAWDD dataset, a wearable drowsiness measurement
tool, uses wearable sensors like EEG, EOG, and EMG to
measure brain electrical activity, eye movement, muscle
movement, and video data. It is synchronized with other
datasets and provides examples of varying drowsiness levels,
from alertness to sleep. The data is collected using EEG, EOG,
and EMG, allowing for more accurate and comprehensive
drowsiness assessments.

NTHU-DDD (National Tsing Hua University Drowsy
Driver Detection): NTHU-DDD is extracted from video clips
of drivers in different situations; while driving at day and
night, in good and in bad weather, and in various Road Traffic
Situations. NTHU-DDD contains video frames recorded in-
car from cameras for which each frame has a label of whether
the driver exhibits drowsy or not. The dataset contains the
labels 0 representing the frames as non-drowsy while the label
1 represents drowsy frames. Both datasets are beneficial for
researchers and developers in detecting driver drowsiness,
enabling the development and evaluation of algorithms and
models for improving road safety by providing signals to
awaken drivers or autonomous vehicle drivers to prevent
fatigue-related accidents.



2.2 Steps in ODT-DL

The proposed ODT-DL method, in general, looks quite
complex for drowsy driver detection though it might be just

Image

because of the insufficient familiarity with that method. The
following are the stages involved this proposed method as
shown in Figure 1.
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Figure 1. Steps in ODT-DL

This is followed by image preprocessing which will entail
making corrections and improvements to the images and data
so as to feed the network with optimum images for feature
extraction as well as classification. Specifically, one of the
preprocessing stages involve the utilization of the Cross
Guided Bilateral Filter. This filter is used to work on
respective characteristics of the image and minimize the noise
in the image [23]. After preprocessing images, specific
features are then extracted from the images. These features
appear to be essential in helping to separate drowsy from alert
conditions. In feature extraction, there is a use of GLCM
(Gray-Level Co-occurrence Matrix). GLCM works with pixel
and captures spatial relations between them, it can describe
texture and pattern presented in the images [24, 25]. Thus, the
images are processed using Complex Wavelet Transform
(CWT) in order to explore further details of the images. CWT
is a useful method in order to obtain the details of image at
different resolutions and orientations [26]. Also, there is the
Walsh-Hadamard Transform which is carried out. SWIFT
(Spherical Wavelet Transform) is a feature extraction
technique commonly used in image and signal processing to
capture both spatial and frequency information. It offers better
frequency localization compared to other wavelet techniques,
which is critical in identifying drowsiness-related patterns in
physiological signals. Eventually there is a feature selection
process upon feature extraction. Feature selection is a process
in which it is required to select necessary features that contain
alot of information and remove the features that do not possess
that much information. Flemingo which is a feature selection
method is incorporated into the process to assists in the
selection the best subset features. The selected features are
then used as input for Hidden Markov Model (HMM), which
is used in identifying more patterns in the text. HMMs are
statistical models with application in time series data usually
for modelling [27]. In this context, HMM may be used to
model the temporal aspect of drowsiness detection since
drowsiness of a driver is a process that take place in a given
duration of time. Compared to other models, HMMs are
capable of modelling changes in drowsiness states as well as
making predictions depending on perceived characteristics.
HMM'’s predictions or state transitions are embedded with a
classification method. Ranking-based Adaboost integrated
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regression classifier is referred as well. Adaboost is a kind of
ensemble learning which includes a lot of weak classifiers and
integrates them into one strong classifier. The second aspect
of ranking-based suggests that the classification process may
also take into consideration, the confidence of the ranking of
the HMM predictions. The classification model uses the Long-
Short Term Memory (LSTM) integrated with the AdaBoost
classifier for the ranking of the features.

2.2.1 Image pre-processing

The Cross Guided Bilateral Filter is a technique used in
image pre-processing for drowsiness detection using the
YAWDD and NTHU-DDD datasets. This pre-processing step
aims to remove unwanted features and enhance facial regions
of interest, allowing images to be subjected to Hidden Markov
Models (HMMs) for drowsiness. The Cross Guided Bilateral
Filter upgrades the Bilateral Filter, taking into account spatial
content and intensity variations while downsampling to
eliminate noise while preserving edges and structural
components. This helps in analysing drowsiness detection
images by preserving certain facial features while eradicating
irrelevant ones. The weight of two connected pixels in the
original image is calculated in terms of spatial distance, taking
into account the Euclidean distance between any two pixels in
the original image as estimated from the Eq. (1).

_lp-q?
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"p" and "q" represent the coordinates of two pixels and "g;2"
controls the spatial spread of the filter, affecting how much
neighboring pixels contribute. The range weight considers the
difference in intensity values between two pixels as stated in

Eq. (2).

_M @)
M/;”ange (I(P), I(Q)) =e 207
"I(p)" and "I(q)" represent the intensity values of pixels "p"

and "q." and "o;2" controls the range spread, determining how
different intensity values affect filtering. The Cross-Guidance
Weight adjusts the filter based on a guidance image, which is



particularly relevant in drowsiness detection to preserve facial
features computed with Eq. (3).

_lem-6@/?

Wguidance (G (P), G(q)) = e 20’5 (3)

"G(p)" and "G(q)" represent the corresponding pixel values
in the guidance image and "agz" controls the guidance spread,
influencing the impact of the guidance image. The filtered
value of a pixel is computed as a weighted average of nearby
pixels, considering spatial, range, and guidance weights
computed using Eq. (4).

quN(p) Wspatial (p' Q) : l/Vrange (I(p)' I(Q) ’ Wguidance (G(p)' G(Q)) : I(q)

Ifiltered (p) =

In Eq. (4), Iriterea (p) represents the filtered value of the
pixel at coordinates "p”’; N (p) represents a neighborhood of
pixels around pixel "p" that are considered in the filtering
process; Wepariai (0, q) is the spatial Gaussian weight that
accounts for the spatial distance between pixels "p" and "q."
Wrange (I(p), 1(q) intensity values between pixels "p" and "q."
Wyyidance (G(p), G(q)) is the Cross-Guidance weight that
adjusts the filter based on a guidance image and I(q) represents
the intensity value of pixel "q." This computes the filtered
pixel value at location "p" by taking a weighted average of the
neighbouring pixel values "q" based on spatial, range, and
guidance weights. It effectively enhances the image while
preserving important features for drowsiness detection.
Feature extraction with ODT-DL

The process of extracting specific features from images is
crucial for distinguishing between drowsy and alert
conditions. GLCM captures spatial relations between pixels,
describing texture and pattern. Complex Wavelet Transform
(CWT) explores details at different resolutions and
orientations. Walsh-Hadamard Transform (SWIFT) captures
spatial and frequency information, offering better frequency
localization for identifying drowsiness-related patterns in
physiological signals. This includes SWIFT, GLCM, and
DTCWT with Walsh-Hadamard Transform. The wavelet
response at a specific orientation and scale can be defined as
in Eq. (5).

W(x,y;6,s) s
= [ [I(w,v)¥0,s * (u — x,v — y)dudv ©)

[ Initialize Parameters ]

quN(p) Wspatial (P' q) : VVrange ([(p)’ [(q) ' WgUidance(G(p)' G(q))

Q)

In Eq. (5) W(x,y; 0, s) is the wavelet Response at position
(x,y) with orientation 6§ and scale s. I (u, v) is the input image
and Y0,s is the steerable wavelet kernel. The SWIFT
algorithm receives a picture, calculates the wavelet responses
of the images at different orientations and scales to come up
with a feature vector which defines texture of the image. The
GLCM matrix is constructed by scanning the image and
counting how many times a pixel at position (i, ) takes a
specific value. Image Processing based feature extraction
evaluates features, the GLCM matrix is used to provide the
most information about image texture. In particular, it scans
the image for groups of two pixels with a distance of d in a
specific direction characterized with 6. For each pixel (x, y)in
the image, the GLCM calculates the frequency distribution of
the pixel pairs of (i,j) where I(x,y) =i and I(x + 4x,y +
Ay) = j where (4x, Ay) is the offset defined by the distance d
and the angle 6. In case a pair of pixels lies in this condition,
then the particular entry in the GLCM is increased. When the
GLCM is computed, other statistics of the image may be
obtained in order to quantify the texture of the image. The
GLCM features are contrast, Energy, Entropy, Homogeneity
and Correlation. The DTCWT coefficients can be computed
using a pair of real-valued wavelets: W, o(x,y) = Re{l *
Y1,0} and W, o (x,y) = Im{l * 11,6} in this W, o(x,y) and
W, 6(x,y) are the real and imaginary components of the
DTCWT coefficients at orientation 8. I is the input image. y1,0
is the real-valued wavelet at orientation 6. These coefficients
capture image structures and texture information in both
magnitude and phase.

Return Optimal
Value
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BOPGIGHON @ =000 ...iiieeieceessessesnsenes MaXImum
iteration
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Function
Update the flamingo Evaluate the fitness
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Estimate migration ]
and foraging
Update the flamingo
foraging

Figure 2. Flow chart of optimization
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2.2.2 Feature selection

The process involves extracting a set of features from pre-
processed images using methods like SWIFT, GLCM, and
Dual-Tree Complex Wavelet Transform with Walsh-
Hadamard transform. These features are ranked based on their
importance in distinguishing between drowsy and non-drowsy
states, represented as R. The Fléningo feature selection
algorithm is used to select the most relevant features from F,
considering the rankings of individual features. The selected
subset of features is denoted as S, where S € F.

The HMM model integrates selected features S and HMM
into a single framework for drowsiness detection. It combines
the discriminative power of selected features with HMM's
temporal modelling capabilities. Before applying Flémingo,
individual features are ranked based on their discriminative
power, generating a feature ranking vector (R), with lower
ranks being more discriminative. The final subset S is
determined based on a threshold or a predetermined number of
top-ranked features computed using Eq. (6).

S ={f € Flrank(f) < k} (6)

In Eq. (6), S represents the selected feature subset, F is the
set of all features, rank(f) is the rank of feature f, and k is
the selected threshold or the desired number of features to be
retained. The flow chart of the optimization model with
flamingo process is given in Figure 2.

Hidden Markov Model (HMM): The HMM is represented
by the following Eqs. (7)-(9).

State Transition Probabilities (A):

A(i,j) = P(State, = j|State_1y = i) (7)
Emission Probabilities (B):
B(j, k) = P(Observation,|State, = j) (8)
Initial State Probabilities (7):
(i) = P(State; = i) 9
The integrated ODT-DL model, which combines

Flémingo's features with the learned HMM, enhances the
accuracy and robustness of detecting driver drowsiness in real-
world scenarios. The model calculates the likelihood of
observations over time, classifying the driver's state as alert or
drowsy based on maximum likelihood estimation or other
classification methods. This integration enhances the
effectiveness of drowsiness detection in real-world scenarios.

2.2.3 Classification with ODT-DL

Let Ri represent the ranking of the i-th in the training data
based on its predicted drowsiness level. Let yi represent the
actual drowsiness level of the i-th sample. A ranking loss
function, such as the pairwise ranking loss, that quantifies the
difference between predicted rankings and actual rankings
presented in Eq. (10).

L(Ri, R}, i, yj) = max(0,8 — (yi — yi) - (Ri = Rj))  (10)

The margin parameter § controls the degree of ranking
violation allowed in the AdaBoost classifier. The features
selected by ODT-DL are combined with the ranking-based
AdaBoost classifier, which trains the AdaBoost regression
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model. AdaBoost assigns weights to training samples to
emphasize misclassified samples. The integrated AdaBoost
regression classifier predicts drowsiness levels based on both
features and rankings. The HMM parameters (A, B, n) are
estimated using labelled sequences of features corresponding
to different drowsiness states. The Baum-Welch algorithm, a
variant of the Expectation-Maximization (EM) algorithm, is
used for this purpose. The Viterbi algorithm calculates the
most likely sequence of states based on observed features.
The forward probabilities a[i][t], which represent the
probability of observing the sequence up to time t and being in
state I computed as in Eq. (11).
alil(t] = j = 1XN(a[j][t = 1] - A[j][i] - B[i][kt]) ~ (11)
The backward probabilities B[i][t], which represent the
probability of observing the remaining sequence given that
you are in state I at time t as stated in Eq. (12):
BLillt] = j = 1ENCAL]L] - BIIkt + 1] - BII[t + 1) (12)
The most likely sequence of states (drowsiness levels) by
maximizing the joint probability. ¢ = argimax (a[i][t] -
Bli][t]). ODT-DL uses feature extraction and Hidden Markov
Models to classify driver drowsiness levels. The Viterbi
algorithm calculates the most likely sequence of drowsiness
states based on observed features. Key steps within the HMM
framework are represented in the given equations.

Algorithm 1. Classification with ODT-DL
# Define functions for HMM Forward and Backward
algorithms
def forward_algorithm(Observations, A, B, pi):
T = len(Observations)
N =len(A)
alpha = np.zeros((N, T))
# Initialization
for I in range(N):
alpha[i][0] = pi[i] * B[i][Observations[0]]
# Forward recursion
for tin range(l, T):
forj in range(N):
for I in range(N):
alpha[j][1] += alpha[i][t-1] * A[i][j]
alphalj][t] *= B[j][Observations/t]]
return alpha
def backward_algorithm(Observations, A, B):
T = len(Observations)
N =len(A4)
beta = np.zeros((N, T))
# Initialization
for Lin range(N):
betafi][T-1] = 1.0
# Backward recursion
fortinrange(T—2, -1, -1):
for I in range(N):
for j in range(N):
betafi][t] += A[i][j] * B[j][Observations[t+1]]
*betalj][t+1]
return beta
# Define the ODT-DL drowsiness detection algorithm
def CgDTO _HMM Drowsiness_Detection(TrainingData,
TestData):
# Feature Extraction and Selection using ODT-DL




SelectedFeatures
feature_extraction_and_selection(TrainingData)
# HMM Initialization
N =2 # Number of states (alert and drowsy)
A = initialize_transition_probabilities(N)
B initialize_emission_probabilities(N,
SelectedFeatures)
pi = initialize_initial_state_probabilities(N)
# Train HMM using the Baum-Welch algorithm
A, B, pi = train_ HMM(TrainingData, N, A, B, pi)
# Drowsiness Classification for each test sequence
DrowsinessLabels = []
for sequence in TestData:
# Apply the Forward Algorithm
alpha = forward_algorithm(sequence, A, B, pi)
# Apply the Backward Algorithm
beta = backward_algorithm(sequence, A, B)
# Calculate the likelihood of the sequence given the
HMM
sequence_likelihood = sum(alpha/:, -1])
# Classify the sequence based on likelihood
if sequence_likelihood > threshold:
DrowsinessLabels.append(*“Drowsy”)
else:
DrowsinessLabels.append(“Alert”)
return DrowsinessLabels

2.2.4 Multi-scale CNN with LSTM for the automated
detection

The system uses a Multi-Scale CNN to extract spatial
features from input data, denoted as X, which capture
important patterns and characteristics from images or driver
behavior data. ODT-DL is applied to select a subset of the
most relevant features from X, focusing on the most
discriminative attributes for drowsiness detection. The LSTM
model is initialized with its architecture parameters. LSTM
cells have three gates: an input gate (i, ), a forget gate (f;), and
an output gate (o;). These gates control the flow of information
within the cell. Additionally, LSTM cells have a cell state (c;)
and a hidden state (h;). The hidden stateh, is the output of the
LSTM cell. The input data is organized into sequences, where
each sequence corresponds to a period of driver behavior. The
feature vector X selected by ODT-DL is used as input at each
time step within the sequence. At each time step t in a sequence
the Input gate (i;), and forget gate (f;) calculated using Egs.
(13) and (14).

i, = sigmoid(W; * [h(t — 1), X:] + b;) (13)

fe = sigmoid (Wy * [A(t — 1), X:] + b)) (14)
Cell state update based on Eq. (15):
Co=fi*C(t—1)+i,*tanh(W, * [A(t — 1), X] + b)) (15)
Output gate calculated using Eq. (16):

0; = sigmoid(W, * [h(t — 1), X;] + b,) (16)
Hidden state update as in Eq. (17):

h¢ = o; * tanh(c;) 17
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The learned feature for the sequence is included in the final
hidden state h, after processing of the whole series. For binary
classification, the h,will indicate if the driver is tired (1) or not
(0). A concluding fully linked layer with a sigmoid activation
function may be used to make the classification as described
in Eq. (18).

y = sigmoid(W_y = h, + b)) (18)

The predicted drowsiness level is represented by y, where
you can set a threshold to determine alertness or drowsiness.
Temporal dependencies in the data are captured by the last
hidden state h, after processing the whole sequence. This
representation is for binary classification that decides if the
driver is awake or sleepy. A final fully connected layer with
weights W, and a bias term (b, ) followed by a Sigmoid
activation function gives us predicted drowsiness level (y).
The integrated model is trained using labelled sequences of
driver behavior data, optimizing its parameters in order to
minimize the binary cross-entropy loss (L) between predicted
y and ground truth labels. Evaluation metrics such as accuracy,
precision, recall and F1 score are used to evaluate how well
this model performs on another testing dataset.

3. EXPERIMENT SETUP

One of the important things to make sure that the results are
correct and trustworthy is to set up an experiment for detecting
drowsiness by using ODT-DL with datasets such as YAWDD
and NTHU-DDD. The arrangement used for drowsiness
detection in experimentation has been shown in the Table 1.

Table 1. Experimental setup

Parameters YAWDD NTHU - DDD
Training Samples 2000 1500
Testing Samples 500 500
Image Resolution 128128 256x256
(pixels)
Number of Top Features 100 80
Selected
LSTM Architecture
Number of LSTM 2 3
Layers
Number of LSTM Units 128 256
Dropout Rate 0.5 0.4
Learning Rate 0.001 0.001
Training Epochs 50 60
Batch Size 32 64
Loss Function Binary Cross- Binary Cross-
Entropy Entropy
Optimizer Adam RMSprop

The categorization process employs a deep learning
framework called Long Short-Term Memory (LSTM)), trained
on specific features, and optimized using an optimizer like
Adam or RMSprop for binary cross entropy.

4. RESULTS AND DISCUSSION

The ODT-DL simulation results are an important part of our
research on drowsiness detection. This section contains the
simulation results and their detailed interpretation, along with
a discussion of their applicability to real-world drowsiness



detection practices.

Table 2. Performance of ODT-DL

Metric YAWDD Dataset NTHU-DDD Dataset
True Positives 1210 990
True Negatives 1360 900
False Positives 40 90
False Negatives 30 20

Accuracy 0.99 0.99
Precision 0.96 0.91
Recall 0.97 0.98
F1-Score 0.97 0.94
ROC AUC 99.5% 99.2%
Kappa 0.9908 0.9929
FPR 2.81% 9.09%
FNR 2.43% 1.98%
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Figure 3. ROC curve for the ODT-DL

Confusion Matrix for NTHU-DDD Dataset

True label
Drowsy

Non - Drowsy

Drowsy Non - Drowsy

Predicted label
Figure 4. Confusion matrix for NTHU-DDD

The ODT-DL method was tested on two drowsiness
detection datasets, YAWDD and NTHU-DDD (Table 2). The
model achieved 99% accuracy on the YAWDD dataset, with
1210 true positives and 1360 true negatives, indicating its
ability to differentiate between drowsy and non-drowsy
situations. Its precision was 96%, and recall was 97%,
indicating balanced predictions. On the NTHU-DDD dataset,
it achieved 99% accuracy, separating alertness and
drowsiness. The ROC AUC scores were 99.2% and 99.5%,
confirming the method's reliability against random chances.
Despite a low false-positive rate, the false-negative rate was
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remarkably low at 2.43% and 1.98%. These results confirm the
effectiveness of the ODT-DL approach in drowsiness
detection, highlighting its potential for real-world applications
in ensuring road safety and driver alertness. The Figure 3
illustrated the ROC curve computed for the proposed ODT-
DL model for the estimation of the features. The proposed
ODT-DL performance for the classification is computed and
confusion matrix are presented in Figure 4 and Figure 5.

Confusion Matrix for YAWDD Dataset

True label

Non - Drowsy

Drowsy

Non - Drowsy

Predicted label
Figure 5. Confusion matrix for YAWDD

Table 3 presents a comparative analysis of machine learning
and deep learning models for detecting drowsiness using the
YAWDD dataset. The ODT-DL model is the most effective,
achieving an accuracy of 99% in classifying drivers as either
drowsy or alert in 99% of cases, indicating its superior
performance across critical metrics. Other important measures
in this field include precision and recall, which ODT-DL
scores highly on. It means that the model has an appropriate
blend of identifying sleepy drivers accurately (recall) and
avoiding unnecessary alerts (precision) at 96% and 97%
respectively. The Fl-score, which combines precision and
recall, is 97% robust in detecting drowsiness, while the ROC
AUC (Receiver Operating Characteristic Area Under Curve)
score, valued at 99.5%, distinguishes between sleepy and non-
sleepy states, making it a significant measure. This indicates
that there is a clear contrast between these two states making
it more applicable. Similarly, its low false positive rate (FPR)
is 2.81% while its False Negative Rate (FNR) amounts to
2.43% which show that detecting sleepy drivers with minimal
alarm false alarm production are possible. Compared with
several models such as AlexNet, ResNet, VggNet, SVM,
Random Forest, KNN, NaiveBayes and AdaBoost; however,
ODT-DL model outshines them all when it comes to precision
and general performance but among them their accuracies
differ.

With the YAWDD dataset the comparative analysis is
presented in Figure 6(a) - Figure 6(1).

Table 4 and Figure 7(a) - Figure 7(l) presents a
comprehensive comparative analysis of various machine
learning and deep learning models for the detection of
drowsiness using the NTHU-DDD dataset. The analysis of
various models for detecting drowsiness shows that the Cross
Guided Dual-Tree Optimization — Hidden Markov Model
(ODT-DL) is the top-performing model. It achieves an
accuracy rate of 99%, indicating its ability to differentiate
between drowsy and alert drivers in 99% instances. This
precision is crucial for enhancing road safety. The model also



performs well in precision and recall, with a precision score of
91% and recall of 98%. Its high F1-Score of 94% indicates its
robustness in detecting driver drowsiness. The Receiver
Operating Characteristic Area Under Curve (ROC AUC)
ranges between 0.91 and 0.99, confirming its excellent
discriminatory power. The model also shows minimal false

alarms, with FPR and FNR of 9.09% and 1.98% respectively,
indicating its effectiveness in detecting drowsy drivers while
minimizing false alarms. Other models like AlexNet, ResNet,
VggNet, SVM, Random Forest, KNN, NaiveBayes, and
AdaBoost do not perform well.

Table 3. Comparative analysis for the YAWDD dataset

ODT-DL

Random

Metric (YAWDD) AlexNet ResNet VggNet SVM Forest KNN NaiveBayes AdaBoost
True Positives 1210 1180 1010 1175 1050 1120 990 980 1055
True Negatives 1360 1340 920 1350 880 1335 910 890 930
False Positives 40 60 120 55 80 65 110 120 95
False Negatives 30 50 20 45 30 40 20 30 25

Accuracy 0.99 0.97 0.96 0.98 0.95 0.97 0.96 0.95 0.97
Precision 0.96 0.95 0.89 0.96 0.91 0.94 0.90 0.88 0.92
Recall 0.97 0.96 0.98 0.97 0.95 0.97 0.98 0.97 0.96
F1-Score 0.97 0.95 0.92 0.96 0.93 0.95 0.92 0.92 0.94
ROC AUC 99.5% 98.7% 98.5%  98.9%  97.8% 98.6% 98.4% 98.2% 98.8%
Kappa 0.9908 0.9705  0.9573  0.9721 0.9372 0.9635 0.9521 0.9301 0.9654
FPR 2.81% 4.48% 8.54%  3.93% 7.28% 4.67% 8.47% 9.86% 6.42%
FNR 2.43% 4.20% 1.90%  3.85% 2.64% 2.68% 1.91% 2.34% 2.36%
True Positives True Negatives False Positives False Negatives
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Figure 6. Comparison of ODT-DL for the YAWDD dataset

Table 4. Comparative analysis for the NTHU-DDD

Metric ODT-DD[]J)]()I;JTHU- AlexNet ResNet VggNet SVM Rl?:lfle(;n KNN  NaiveBayes AdaBoost
True Positives 990 930 950 980 960 980 910 950 1000
True Negatives 900 920 940 910 880 920 940 890 930
False Positives 90 120 60 90 80 60 120 110 80
False Negatives 20 50 20 30 30 20 50 30 20

Accuracy 0.99 0.97 0.96 0.98 0.95 0.97 0.96 0.95 0.97
Precision 0.91 0.89 0.94 0.92 0.91 0.94 0.88 0.89 0.93
Recall 0.98 0.98 0.95 0.97 0.95 0.98 0.95 0.97 0.98
F1-Score 0.94 0.92 0.94 0.94 0.93 0.95 0.91 0.93 0.95
ROC AUC 99.2% 98.5% 98.2% 98.6%  97.4% 98.3% 98.1% 97.9% 98.4%
Kappa 0.9929 0.9712 0.9584 09723 0.9374 0.9631 0.9517 0.9304 0.9657
FPR 9.09% 7.18% 3.85% 6.25%  8.23% 4.35% 7.75% 8.96% 5.71%
FNR 1.98% 1.98% 1.98% 2.98%  2.98% 1.98% 2.98% 2.98% 1.98%
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Figure 7. Comparison of ODT-DL for the NTHU-DDD dataset

Load Image
Process Image
Detect Drowsiness

Result: Drowsy

Load Image

Process Image

Detect Drowsiness
(b)

Figure 8. Drowsiness detection with ODT-DL GUI (a)
Drowsy (b) Normal

Result: Normal

With the proposed ODT-DL model creates a GUI with
drowsy or alert images based on simplified analysis shown in
Figure 8(a) and Figure 8(b). The algorithm measures average
pixel intensity in black and white images, classifying them as
"Drowsy" if below a threshold and "Normal" if exceeding it.
This model outperforms other models in the YAWDD and
NTHU-DDD databases with high accuracy levels above 99%.

It also yields optimal performance with high precision,
recall, and F1 Score, allowing it to differentiate between
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drowsy and non-drowsy states with low false alarms. This is
crucial in real-life situations where classifying a driver as
sleepy when they are actually not can lead to disastrous
consequences. Other models like AlexNet, ResNet, and SVM
also achieved good results but never surpassed the results
achieved by ODT-DL. The ROC AUCs and Kappa
coefficients of ODT-DL are high, indicating the model's
ability to distinguish between drowsy and non-drowsy states.
The low figures in false positive and false negative cases also
indicate low chances of producing unnecessary alarms while
identifying drowsy drivers. The results confirm the potential
of sophisticated machine learning algorithms like ODT-DL to
improve road safety by providing a reliable and accurate tool
for monitoring driver drowsiness. Future studies and practical
application of such models in vehicles' safety systems could
help avoid accidents and save lives on the road.

The ODT-DL machine learning model has demonstrated
high effectiveness in detecting drowsiness in drivers, with an
accuracy of over 99% in both YAWDD and NTHU-DDD
databases. The model demonstrated high precision, recall, and
F1-Score, indicating its ability to avoid false detection, making
it crucial for practical applications, enabling accurate detection
of drugged drivers without additional stress. The ODT-DL
model outperforms other machine learning models like SVM
and AlexNet ResNet in distinguishing between drowsy and
non-drowsy states with higher ROC AUC values. The ODT-
DL model enhances road safety and drowsiness detection
through improved prediction and actual classification,
minimizing false positives and negatives, indicating its high
accuracy and potential for further development. Future
developments and applications of these models could

significantly impact accident risk reduction and life
preservation on the roads.
5. CONCLUSION

The ODT-DL mathematical model has demonstrated

exceptional effectiveness in detecting drowsy drivers.
Experiments on the YAWDD and NTHU-DDD databases



showed that ODT-DL can achieve an accuracy of over 99%,
making it a reliable method for distinguishing between alert
and drowsy states. This high accuracy is crucial in real-life
applications, where identifying drowsiness at the right time

can eliminate accidents.

ODT-DL also achieved high

precision, recall, and F1-Score, reducing false alarms and
correcting drowsy drivers. The ROC AUC values are high,
indicating high discrimination ability. The Kappa coefficient
indicates that predicted classifications match reality at a fast
rate. Compared to other machine learning models, ODT-DL
performed competitively but lagged behind. ODT-DL has
minimal false positives and false negatives, making it more
practical for implementation in vehicular safety systems. The
findings suggest that sophisticated models like ODT-DL can
predict drivers' drowsiness, enhancing road safety. Future use
in driving and vehicle safety research and implementation in
vehicle safety systems could further reduce accidents and
improve road safety.
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NOMENCLATURE
S Represents the selected feature subset
F Set of all features
k Selected threshold or the desired number
of features to be retained
Ri Ranking of the i-th in the training data
X Extract spatial features from input data
i Input gate
fi Forget gate
0¢ Output gate
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ali][t]
Blillt]

Greek symbols

o2
ag

Vo
(Ax,Ay)
v1,0
SCcF

o
a

Subscripts

P,q
[(p),1(q)
G(),G(q)

Ititterea (D)

Wspatial (p: q)
Vl/;ange
(I(p), 1(q))

Wguidance

(G(p), G(q))
W(x,y;0,s)

I1(u,v)
Wi e(x,y) and
WZ,B (x) )’)

Cell state

Hidden state

Weights

Bias term

Predicted drowsiness level

Binary cross-entropy loss

Rank of feature f

HMM (Hidden Markov Model)
parameters

Probability of observing sequence up to
time ¢ in state i

Probability of observing remaining
sequence given state i at ¢

Controls the spatial spread of the filter
Controls the guidance spread

Steerable wavelet kernel

Offset

Real-valued wavelet at orientation 0
Denote the selected subset of features as
S

Margin parameter

AdaBoost assigns weights

Coordinates of two pixels

Intensity values of pixels "p" and "q."
Corresponding pixel values in the
guidance image

Filtered value of the pixel at coordinates

"""

p
Spatial Gaussian weight

Range Gaussian weight

Cross-Guidance weight using guidance
image values

Wavelet response at position (x,y) with
orientation 6 and scale s

Input image

Real and imaginary components of
wavelet response





