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Drowsy driving is a major concern for road safety, leading to accidents and fatalities. This 

paper presents a novel approach called Optimized Dual-Tree Deep Learning (ODT-DL) for 

real-time drowsiness detection in drivers. The model uses advanced techniques like image 

preprocessing, feature extraction, and feature selection. It uses Hidden Markov Models for 

sequence modelling and classification, enabling accurate drowsiness detection. The 

experimental evaluation of ODT-DL on two benchmark datasets, YAWDD and NTHU-

DDD, shows outstanding performance, with accuracy, precision, recall, and F1-Score 

consistently exceeding 99%. The model's high discrimination capabilities and low false 

alarm rates ensure reliable detection. Comparative analysis against other machine learning 

models, such as AlexNet, ResNet, Support Vector Machine, and ensemble methods, 

highlights the superiority of ODT-DL. The findings suggest the model's practical 

implications for enhancing road safety by preventing accidents caused by driver drowsiness, 

with potential applications in vehicle safety systems. The proposed ODT-DL model holds 

promise for real-world implementation and opens avenues for future developments in road 

safety technology. 
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1. INTRODUCTION

Traffic mishaps remain as an issue of concern to almost all 

countries with hosts of fatalities, injuries as well as property 

damage. These are caused by factors such driver’s error, bad 

terrain, faulty mechanical problems and even extreme weather 

conditions [1]. Even present-day infrastructure improvements, 

legislation, as well as enhancement of sensibility among road 

users, road crashes continue to persist a significant problem 

around the world. These accidents do not only result in other 

types of losses such as physical and psychological health of 

families, communities, and the overall health care systems [2]. 

To reduce road accidents, better road standards, traffic policy 

harmonization, proper road behavior, and improved car 

technology are implemented, requiring increased alertness and 

collaboration among governments, organizations, and 

individuals [3]. Drivers are crucial in road accidents as they 

dictate behavior and make decisions during the journey. 

Common causes include hasty, reckless, risky speed, 

distracted driving, texting, mobile phone use, drunk driving, 

and fatigue [4]. Traffic violations pose a threat to drivers, 

passengers, pedestrians, and other road users. To reduce 

accidents, it's crucial to observe traffic laws, maintain a 

reasonable distance, and monitor traffic conditions [5]. 

Education, awareness campaigns, and strict enforcement of 

laws significantly influence road users' attitudes towards safe 

driving and reduce accidents caused by driver-related factors. 

Therefore, fostering a culture of safe and careful driving is 

crucial for creating safe roads and minimizing accident 

impacts [6].  

Driver drowsiness detection is a crucial technology 

developed to reduce the risk of fatigued driving, a prevalent 

cause of road accidents [7]. This technology uses sensors and 

algorithms to monitor a driver's alertness at the wheel, 

recording factors like steering wheel movement, swaying, 

gaze direction, and racial expressions to detect fatigue or 

distraction, and produce alarms if necessary [8]. Modern 

vehicles use assistive technologies like lane-keeping 

assistance and adaptive cruise control to prevent accidents. 

Drowsiness detection technology is revolutionizing the 

industry by reducing accidents caused by tired or dozing 

drivers [9]. Technology in vehicles can reduce accidents and 

fatalities, but campaigns should be launched to raise awareness 

about sleepy or reckless driving risks among road users [10].  

CNNs are effective in detecting drowsiness in drivers, 

especially in image and video processing, and are useful for 

monitoring and supervising drivers' behavior using vision-

based data [11]. In drowsiness detection systems, CNNs are 
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used to analyse video inputs from car cameras to identify 

motion patterns of a driver’s face revealing fatigue or 

drowsiness [12]. CNN-based systems can predict driver 

fatigue by extracting features and analysing patterns, allowing 

real-time evaluations of attentiveness through signals like low 

eyelids, gaze shift, and fast blinking [13]. High-tech systems 

can alert drivers to drowsiness through notifications, 

encouraging them to stay awake or pause the car, using CNNs 

and other sensors [14]. CNNs are crucial in detecting 

drowsiness due to their efficient processing of large visual 

data, which helps prevent fatigue-induced accidents [15].  

The integration of CNN-based drowsiness detection 

systems could enhance road safety by reducing drowsy driving 

risks, but comprehensive driver education and awareness 

campaigns are needed [16]. Privacy concerns arise as cars' 

interiors are monitored by cameras, recording drivers, making 

it crucial to balance safety with privacy rights. CNN-based 

systems can be influenced by low light conditions and camera 

resolution, potentially leading to false positives or negatives 

[17]. CNN-based systems struggle to maintain performance in 

diverse environments and changing factors, often overlooking 

variations in driving behavior or cultural practices related to 

dozing off, highlighting the need for more comprehensive and 

accurate systems [18]. The system's performance may be 

compromised by false positives or false negatives, and 

additional costs may prevent its inclusion in vehicles, 

potentially making it only accessible in lower-class vehicles or 

less developed countries [19]. Automating certain functions 

could potentially lead to reckless driving due to the belief that 

technology will prevent accidents.  

Continuous research is needed to improve the accuracy and 

reliability of CNN-based drowsiness detection models [20]; 

policymakers are obligated to establish rigorous safety and 

social responsibility standards, ensuring respect for privacy 

and ethics [21]. Driver education and public awareness 

campaigns are crucial for preventing risky driving practices. 

CNN-integrated drowsiness detection systems can quickly 

determine drivers' drowsiness levels and intervene when 

needed. This application demonstrates CNNs' versatility in 

visual data analysis and can improve road safety by reducing 

accidents due to driver fatigue [22]. The contribution of this 

research lies in the development and evaluation of the ODT-

DL integrated with Hidden Markov Model for drowsiness 

detection in drivers. Several key contributions are highlighted: 

1. The study integrates advanced techniques like Cross

Guided Bilateral Filter, SWIFT, GLCM feature extraction, 

Dual-Tree Complex Wavelet Transform with Walsh 

Hadamard Transform, and the Flémingo feature selection 

method into the Hidden Markov Model framework. This novel 

combination enhances the model's ability to extract 

informative features and effectively detect drowsiness. 

2. ODT-DL achieves exceptional accuracy, precision,

recall, and F1-Score values, all above 99%, demonstrating its 

ability to accurately distinguish between alert and drowsy 

states. 

3. ODT-DL maintains low false positive and false negative

rates, ensuring that it effectively identifies drowsy drivers 

while minimizing unnecessary alerts. 

4. The findings suggest that ODT-DL has significant

practical implications for enhancing road safety by preventing 

accidents caused by driver drowsiness. The model's high 

accuracy and low false alarms make it suitable for integration 

into vehicle safety systems. The contribution of this research 

lies in the creation of an innovative and highly effective 

drowsiness detection model, ODT-DL, which has the potential 

to significantly improve road safety and reduce accidents 

caused by drowsy driving. 

2. PROPOSED METHOD

Optimized Dual-Tree Deep Learning (ODT-DL) is a highly 

efficient research method for image preprocessing and feature 

extraction for road safety drowsiness detection. The 

framework starts with a cross-guided bilateral filter algorithm 

to improve image quality and preserve key details. Advanced 

approaches like the Sleep-Wake Image Feature 

Transformation (SWIFT) algorithm and the Gray-Level Co-

occurrence Matrix (GLCM) are used for feature extraction, 

capturing necessary information for classifying different types 

of drowsiness states. The Dual-Tree Complex Wavelet 

Transform incorporates the Walsh-Hadamard Transform for 

improved feature representation. The Flemingo integrated 

approach is used for feature selection, minimizing 

dimensionality. ODT-DL uses a Hidden Markov Model 

(HMM) to capture temporal driver drowsiness patterns, 

examining driving dynamics. A ranking-based ADA boosting 

integrated regression classifier predicts drowsiness state using 

an ensemble learning model with many weak learners, 

enhancing road safety. The ODT-DL method is a 

comprehensive approach for image pre-processing, feature 

extraction, feature selection, and classification, making it 

useful in real-life driving conditions, where monitoring driver 

fatigue is critical for reducing accidents on the road. 

2.1 Dataset 

The YAWDD (Yet Another Wearable Drowsiness Dataset) 

and NTHU-DDD (National Tsing Hua University Drowsy 

Driver Detection) datasets are also included as the effective 

assets that have been employed in the field of research and 

development of drowsy driver detection systems. Real-world 

data have been gathered in these datasets for training and 

testing purposes of algorithms and models for detecting driver 

drowsiness. 

The YAWDD dataset, a wearable drowsiness measurement 

tool, uses wearable sensors like EEG, EOG, and EMG to 

measure brain electrical activity, eye movement, muscle 

movement, and video data. It is synchronized with other 

datasets and provides examples of varying drowsiness levels, 

from alertness to sleep. The data is collected using EEG, EOG, 

and EMG, allowing for more accurate and comprehensive 

drowsiness assessments. 

NTHU-DDD (National Tsing Hua University Drowsy 

Driver Detection): NTHU-DDD is extracted from video clips 

of drivers in different situations; while driving at day and 

night, in good and in bad weather, and in various Road Traffic 

Situations. NTHU-DDD contains video frames recorded in-

car from cameras for which each frame has a label of whether 

the driver exhibits drowsy or not. The dataset contains the 

labels 0 representing the frames as non-drowsy while the label 

1 represents drowsy frames. Both datasets are beneficial for 

researchers and developers in detecting driver drowsiness, 

enabling the development and evaluation of algorithms and 

models for improving road safety by providing signals to 

awaken drivers or autonomous vehicle drivers to prevent 

fatigue-related accidents. 
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2.2 Steps in ODT-DL 

The proposed ODT-DL method, in general, looks quite 

complex for drowsy driver detection though it might be just 

because of the insufficient familiarity with that method. The 

following are the stages involved this proposed method as 

shown in Figure 1. 

Figure 1. Steps in ODT-DL 

This is followed by image preprocessing which will entail 

making corrections and improvements to the images and data 

so as to feed the network with optimum images for feature 

extraction as well as classification. Specifically, one of the 

preprocessing stages involve the utilization of the Cross 

Guided Bilateral Filter. This filter is used to work on 

respective characteristics of the image and minimize the noise 

in the image [23]. After preprocessing images, specific 

features are then extracted from the images. These features 

appear to be essential in helping to separate drowsy from alert 

conditions. In feature extraction, there is a use of GLCM 

(Gray-Level Co-occurrence Matrix). GLCM works with pixel 

and captures spatial relations between them, it can describe 

texture and pattern presented in the images [24, 25]. Thus, the 

images are processed using Complex Wavelet Transform 

(CWT) in order to explore further details of the images. CWT 

is a useful method in order to obtain the details of image at 

different resolutions and orientations [26]. Also, there is the 

Walsh-Hadamard Transform which is carried out. SWIFT 

(Spherical Wavelet Transform) is a feature extraction 

technique commonly used in image and signal processing to 

capture both spatial and frequency information. It offers better 

frequency localization compared to other wavelet techniques, 

which is critical in identifying drowsiness-related patterns in 

physiological signals. Eventually there is a feature selection 

process upon feature extraction. Feature selection is a process 

in which it is required to select necessary features that contain 

a lot of information and remove the features that do not possess 

that much information. Flemingo which is a feature selection 

method is incorporated into the process to assists in the 

selection the best subset features. The selected features are 

then used as input for Hidden Markov Model (HMM), which 

is used in identifying more patterns in the text. HMMs are 

statistical models with application in time series data usually 

for modelling [27]. In this context, HMM may be used to 

model the temporal aspect of drowsiness detection since 

drowsiness of a driver is a process that take place in a given 

duration of time. Compared to other models, HMMs are 

capable of modelling changes in drowsiness states as well as 

making predictions depending on perceived characteristics. 

HMM’s predictions or state transitions are embedded with a 

classification method. Ranking-based Adaboost integrated 

regression classifier is referred as well. Adaboost is a kind of 

ensemble learning which includes a lot of weak classifiers and 

integrates them into one strong classifier. The second aspect 

of ranking-based suggests that the classification process may 

also take into consideration, the confidence of the ranking of 

the HMM predictions. The classification model uses the Long-

Short Term Memory (LSTM) integrated with the AdaBoost 

classifier for the ranking of the features. 

2.2.1 Image pre-processing 

The Cross Guided Bilateral Filter is a technique used in 

image pre-processing for drowsiness detection using the 

YAWDD and NTHU-DDD datasets. This pre-processing step 

aims to remove unwanted features and enhance facial regions 

of interest, allowing images to be subjected to Hidden Markov 

Models (HMMs) for drowsiness. The Cross Guided Bilateral 

Filter upgrades the Bilateral Filter, taking into account spatial 

content and intensity variations while downsampling to 

eliminate noise while preserving edges and structural 

components. This helps in analysing drowsiness detection 

images by preserving certain facial features while eradicating 

irrelevant ones. The weight of two connected pixels in the 

original image is calculated in terms of spatial distance, taking 

into account the Euclidean distance between any two pixels in 

the original image as estimated from the Eq. (1). 

𝑊𝑆𝑝𝑎𝑡𝑖𝑎𝑙(𝑝, 𝑞) =  𝑒
−

|𝑝−𝑞|2

2𝜎𝑟
2 (1) 

"p" and "q" represent the coordinates of two pixels and "𝜎𝑟
2"

controls the spatial spread of the filter, affecting how much 

neighboring pixels contribute. The range weight considers the 

difference in intensity values between two pixels as stated in 

Eq. (2). 

𝑊𝑟𝑎𝑛𝑔𝑒 (𝐼(𝑝), 𝐼(𝑞)) =  𝑒
−

|𝐼(𝑝)−𝐼(𝑞)|2

2𝜎𝑟
2 (2) 

"I(p)" and "I(q)" represent the intensity values of pixels "p" 

and "q." and "𝜎𝑟
2" controls the range spread, determining how

different intensity values affect filtering. The Cross-Guidance 

Weight adjusts the filter based on a guidance image, which is 
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particularly relevant in drowsiness detection to preserve facial 

features computed with Eq. (3). 

 

𝑊𝑔𝑢𝑖𝑑𝑎𝑛𝑐𝑒 (𝐺(𝑝), 𝐺(𝑞)) =  𝑒
−

|𝐺(𝑝)−𝐺(𝑞)|2

2𝜎𝑔
2

 
(3) 

 

"G(p)" and "G(q)" represent the corresponding pixel values 

in the guidance image and "𝜎𝑔
2" controls the guidance spread, 

influencing the impact of the guidance image. The filtered 

value of a pixel is computed as a weighted average of nearby 

pixels, considering spatial, range, and guidance weights 

computed using Eq. (4). 

 

𝐼𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑(𝑝) =
∑ 𝑊𝑠𝑝𝑎𝑡𝑖𝑎𝑙(𝑝, 𝑞) ⋅ 𝑊𝑟𝑎𝑛𝑔𝑒(𝐼(𝑝), 𝐼(𝑞) ⋅ 𝑊𝑔𝑢𝑖𝑑𝑎𝑛𝑐𝑒(𝐺(𝑝), 𝐺(𝑞)) ⋅ I(q)q∈N(p)

∑ 𝑊𝑠𝑝𝑎𝑡𝑖𝑎𝑙(𝑝, 𝑞) ⋅ 𝑊𝑟𝑎𝑛𝑔𝑒(𝐼(𝑝), 𝐼(𝑞) ⋅ Wguidance(G(p), G(q))q∈N(p)

 (4) 

 

In Eq. (4), 𝐼𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑(𝑝) represents the filtered value of the 

pixel at coordinates "p”; 𝑁(𝑝) represents a neighborhood of 

pixels around pixel "p" that are considered in the filtering 

process; 𝑊𝑠𝑝𝑎𝑡𝑖𝑎𝑙(𝑝, 𝑞)  is the spatial Gaussian weight that 

accounts for the spatial distance between pixels "p" and "q." 

𝑊𝑟𝑎𝑛𝑔𝑒(𝐼(𝑝), 𝐼(𝑞) intensity values between pixels "p" and "q." 

𝑊𝑔𝑢𝑖𝑑𝑎𝑛𝑐𝑒(𝐺(𝑝), 𝐺(𝑞)) is the Cross-Guidance weight that 

adjusts the filter based on a guidance image and I(q) represents 

the intensity value of pixel "q." This computes the filtered 

pixel value at location "p" by taking a weighted average of the 

neighbouring pixel values "q" based on spatial, range, and 

guidance weights. It effectively enhances the image while 

preserving important features for drowsiness detection. 

Feature extraction with ODT-DL 

The process of extracting specific features from images is 

crucial for distinguishing between drowsy and alert 

conditions. GLCM captures spatial relations between pixels, 

describing texture and pattern. Complex Wavelet Transform 

(CWT) explores details at different resolutions and 

orientations. Walsh-Hadamard Transform (SWIFT) captures 

spatial and frequency information, offering better frequency 

localization for identifying drowsiness-related patterns in 

physiological signals. This includes SWIFT, GLCM, and 

DTCWT with Walsh-Hadamard Transform. The wavelet 

response at a specific orientation and scale can be defined as 

in Eq. (5). 

 

𝑊(𝑥, 𝑦; 𝜃, 𝑠) 

= ∫ ∫ 𝐼(𝑢, 𝑣)𝜓𝜃, 𝑠 ∗ (𝑢 − 𝑥, 𝑣 − 𝑦)𝑑𝑢𝑑𝑣 
(5) 

 

In Eq. (5) 𝑊(𝑥, 𝑦; 𝜃, 𝑠) is the wavelet Response at position 
(𝑥, 𝑦) with orientation θ and scale s. 𝐼(𝑢, 𝑣) is the input image 

and 𝜓𝜃, 𝑠  is the steerable wavelet kernel. The SWIFT 

algorithm receives a picture, calculates the wavelet responses 

of the images at different orientations and scales to come up 

with a feature vector which defines texture of the image. The 

GLCM matrix is constructed by scanning the image and 

counting how many times a pixel at position (𝑖, 𝑗)  takes a 

specific value. Image Processing based feature extraction 

evaluates features, the GLCM matrix is used to provide the 

most information about image texture. In particular, it scans 

the image for groups of two pixels with a distance of d in a 

specific direction characterized with θ. For each pixel (𝑥, 𝑦)in 

the image, the GLCM calculates the frequency distribution of 

the pixel pairs of (𝑖, 𝑗) where 𝐼(𝑥, 𝑦) = 𝑖  and 𝐼(𝑥 + 𝛥𝑥, 𝑦 +
𝛥𝑦) = 𝑗 where (𝛥𝑥, 𝛥𝑦) is the offset defined by the distance d 

and the angle θ. In case a pair of pixels lies in this condition, 

then the particular entry in the GLCM is increased. When the 

GLCM is computed, other statistics of the image may be 

obtained in order to quantify the texture of the image. The 

GLCM features are contrast, Energy, Entropy, Homogeneity 

and Correlation.  The DTCWT coefficients can be computed 

using a pair of real-valued wavelets: 𝑊1,𝜃(𝑥, 𝑦) = 𝑅𝑒{𝐼 ∗

𝜓1, 𝜃} and 𝑊2,𝜃(𝑥, 𝑦) = 𝐼𝑚{𝐼 ∗ 𝜓1, 𝜃} in this 𝑊1,𝜃(𝑥, 𝑦) and 

𝑊2,𝜃(𝑥, 𝑦)  are the real and imaginary components of the 

DTCWT coefficients at orientation θ. I is the input image. ψ1,θ 

is the real-valued wavelet at orientation θ. These coefficients 

capture image structures and texture information in both 

magnitude and phase. 

 

 
 

Figure 2. Flow chart of optimization  
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2.2.2 Feature selection 

The process involves extracting a set of features from pre-

processed images using methods like SWIFT, GLCM, and 

Dual-Tree Complex Wavelet Transform with Walsh-

Hadamard transform. These features are ranked based on their 

importance in distinguishing between drowsy and non-drowsy 

states, represented as R. The Flémingo feature selection 

algorithm is used to select the most relevant features from F, 

considering the rankings of individual features. The selected 

subset of features is denoted as S, where S ⊆ F. 

The HMM model integrates selected features S and HMM 

into a single framework for drowsiness detection. It combines 

the discriminative power of selected features with HMM's 

temporal modelling capabilities. Before applying Flémingo, 

individual features are ranked based on their discriminative 

power, generating a feature ranking vector (R), with lower 

ranks being more discriminative. The final subset S is 

determined based on a threshold or a predetermined number of 

top-ranked features computed using Eq. (6). 

𝑆 = {𝑓 ∈ 𝐹|𝑟𝑎𝑛𝑘(𝑓) ≤ 𝑘} (6) 

In Eq. (6), 𝑆 represents the selected feature subset, 𝐹 is the 

set of all features, 𝑟𝑎𝑛𝑘(𝑓) is the rank of feature 𝑓, and 𝑘 is 

the selected threshold or the desired number of features to be 

retained. The flow chart of the optimization model with 

flamingo process is given in Figure 2. 

Hidden Markov Model (HMM): The HMM is represented 

by the following Eqs. (7)-(9). 

State Transition Probabilities (A):  

𝐴(𝑖, 𝑗) = 𝑃(𝑆𝑡𝑎𝑡𝑒𝑡 = 𝑗|𝑆𝑡𝑎𝑡𝑒(𝑡−1) = 𝑖) (7) 

Emission Probabilities (B): 

𝐵(𝑗, 𝑘) = 𝑃(𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑘|𝑆𝑡𝑎𝑡𝑒𝑡 = 𝑗) (8) 

Initial State Probabilities (π): 

𝜋(𝑖) = 𝑃(𝑆𝑡𝑎𝑡𝑒1 = 𝑖) (9) 

The integrated ODT-DL model, which combines 

Flémingo's features with the learned HMM, enhances the 

accuracy and robustness of detecting driver drowsiness in real-

world scenarios. The model calculates the likelihood of 

observations over time, classifying the driver's state as alert or 

drowsy based on maximum likelihood estimation or other 

classification methods. This integration enhances the 

effectiveness of drowsiness detection in real-world scenarios. 

2.2.3 Classification with ODT-DL 

Let 𝑅𝑖 represent the ranking of the i-th in the training data 

based on its predicted drowsiness level. Let 𝑦𝑖 represent the 

actual drowsiness level of the i-th sample. A ranking loss 

function, such as the pairwise ranking loss, that quantifies the 

difference between predicted rankings and actual rankings 

presented in Eq. (10). 

L(Ri, Rj, yi, yj) = max(0, δ − (yi − yi) ⋅ (Ri − Rj)) (10) 

The margin parameter δ controls the degree of ranking 

violation allowed in the AdaBoost classifier. The features 

selected by ODT-DL are combined with the ranking-based 

AdaBoost classifier, which trains the AdaBoost regression 

model. AdaBoost assigns weights to training samples to 

emphasize misclassified samples. The integrated AdaBoost 

regression classifier predicts drowsiness levels based on both 

features and rankings. The HMM parameters (A, B, π) are 

estimated using labelled sequences of features corresponding 

to different drowsiness states. The Baum-Welch algorithm, a 

variant of the Expectation-Maximization (EM) algorithm, is 

used for this purpose. The Viterbi algorithm calculates the 

most likely sequence of states based on observed features. 

The forward probabilities 𝛼[𝑖][𝑡] , which represent the 

probability of observing the sequence up to time t and being in 

state I computed as in Eq. (11). 

𝛼[𝑖][𝑡] = 𝑗 = 1∑𝑁(𝛼[𝑗][𝑡 − 1] ⋅ 𝐴[𝑗][𝑖] ⋅ 𝐵[𝑖][𝑘𝑡]) (11) 

The backward probabilities β[i][t], which represent the 

probability of observing the remaining sequence given that 

you are in state I at time t as stated in Eq. (12): 

𝛽[𝑖][𝑡] = 𝑗 = 1∑𝑁(𝐴[𝑖][𝑗] ⋅ 𝐵[𝑗][𝑘𝑡 + 1] ⋅ 𝛽[𝑗][𝑡 + 1]) (12) 

The most likely sequence of states (drowsiness levels) by 

maximizing the joint probability. 𝑞𝑡 = 𝑎𝑟𝑔𝑖max (𝛼[𝑖][𝑡] ⋅
𝛽[𝑖][𝑡]). ODT-DL uses feature extraction and Hidden Markov 

Models to classify driver drowsiness levels. The Viterbi 

algorithm calculates the most likely sequence of drowsiness 

states based on observed features. Key steps within the HMM 

framework are represented in the given equations. 

Algorithm 1. Classification with ODT-DL 

# Define functions for HMM Forward and Backward 

algorithms 

def forward_algorithm(Observations, A, B, pi): 

    T = len(Observations) 

    N = len(A) 

    alpha = np.zeros((N, T)) 

        # Initialization 

    for I in range(N): 

        alpha[i][0] = pi[i] * B[i][Observations[0]] 

     # Forward recursion 

    for t in range(1, T): 

        for j in range(N): 

   for I in range(N): 

 alpha[j][t] += alpha[i][t-1] * A[i][j] 

   alpha[j][t] *= B[j][Observations[t]] 

        return alpha 

def backward_algorithm(Observations, A, B): 

    T = len(Observations) 

    N = len(A) 

    beta = np.zeros((N, T)) 

    # Initialization 

    for I in range(N): 

        beta[i][T-1] = 1.0 

      # Backward recursion 

    for t in range(T – 2, -1, -1): 

        for I in range(N): 

   for j in range(N): 

 beta[i][t] += A[i][j] * B[j][Observations[t+1]] 

* beta[j][t+1]

        return beta 

# Define the ODT-DL drowsiness detection algorithm 

def CgDTO_HMM_Drowsiness_Detection(TrainingData, 

TestData): 

    # Feature Extraction and Selection using ODT-DL 
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    SelectedFeatures = 

feature_extraction_and_selection(TrainingData) 

        # HMM Initialization 

    N = 2  # Number of states (alert and drowsy) 

    A = initialize_transition_probabilities(N) 

    B = initialize_emission_probabilities(N, 

SelectedFeatures) 

    pi = initialize_initial_state_probabilities(N) 

       # Train HMM using the Baum-Welch algorithm 

    A, B, pi = train_HMM(TrainingData, N, A, B, pi) 

      # Drowsiness Classification for each test sequence 

    DrowsinessLabels = [] 

    for sequence in TestData: 

        # Apply the Forward Algorithm 

        alpha = forward_algorithm(sequence, A, B, pi) 

        # Apply the Backward Algorithm 

        beta = backward_algorithm(sequence, A, B) 

         # Calculate the likelihood of the sequence given the 

HMM 

        sequence_likelihood = sum(alpha[:, -1]) 

        # Classify the sequence based on likelihood 

        if sequence_likelihood > threshold: 

            DrowsinessLabels.append(“Drowsy”) 

        else: 

            DrowsinessLabels.append(“Alert”) 

        return DrowsinessLabels 

 

2.2.4 Multi-scale CNN with LSTM for the automated 

detection 

The system uses a Multi-Scale CNN to extract spatial 

features from input data, denoted as X, which capture 

important patterns and characteristics from images or driver 

behavior data. ODT-DL is applied to select a subset of the 

most relevant features from X, focusing on the most 

discriminative attributes for drowsiness detection. The LSTM 

model is initialized with its architecture parameters. LSTM 

cells have three gates: an input gate (𝑖𝑡), a forget gate (𝑓𝑡), and 

an output gate (𝑜𝑡). These gates control the flow of information 

within the cell. Additionally, LSTM cells have a cell state (𝑐𝑡) 

and a hidden state (ℎ𝑡). The hidden stateℎ𝑡 is the output of the 

LSTM cell. The input data is organized into sequences, where 

each sequence corresponds to a period of driver behavior. The 

feature vector X selected by ODT-DL is used as input at each 

time step within the sequence. At each time step t in a sequence 

the Input gate (𝑖𝑡), and forget gate (𝑓𝑡) calculated using Eqs. 

(13) and (14). 

 

𝑖𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑖 ∗ [ℎ(𝑡 − 1), 𝑋𝑡] + 𝑏𝑖) (13) 

 

𝑓𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑓 ∗ [ℎ(𝑡 − 1), 𝑋𝑡] + 𝑏𝑖) (14) 

 

 

Cell state update based on Eq. (15): 

 
𝐶𝑡 = 𝑓𝑡 ∗ 𝐶(𝑡 − 1) + 𝑖𝑡 ∗ 𝑡𝑎𝑛ℎ(𝑊𝑐 ∗ [ℎ(𝑡 − 1), 𝑋𝑡] + 𝑏𝑐) (15) 

 

Output gate calculated using Eq. (16): 

 

𝑜𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑜 ∗ [ℎ(𝑡 − 1), 𝑋𝑡] + 𝑏𝑜) (16) 

 

Hidden state update as in Eq. (17): 

 

ℎ𝑡 = 𝑜𝑡 ∗ 𝑡𝑎𝑛ℎ(𝑐𝑡) (17) 

 

The learned feature for the sequence is included in the final 

hidden state ℎ𝑡 after processing of the whole series. For binary 

classification, the ℎ𝑡will indicate if the driver is tired (1) or not 

(0). A concluding fully linked layer with a sigmoid activation 

function may be used to make the classification as described 

in Eq. (18). 

 

𝑦 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊_𝑦 ∗ ℎ𝑡 + 𝑏𝑦) (18) 

 

The predicted drowsiness level is represented by y, where 

you can set a threshold to determine alertness or drowsiness. 

Temporal dependencies in the data are captured by the last 

hidden state ℎ𝑡  after processing the whole sequence. This 

representation is for binary classification that decides if the 

driver is awake or sleepy. A final fully connected layer with 

weights 𝑊𝑦  and a bias term ( 𝑏𝑦 ) followed by a Sigmoid 

activation function gives us predicted drowsiness level (y). 

The integrated model is trained using labelled sequences of 

driver behavior data, optimizing its parameters in order to 

minimize the binary cross-entropy loss (L) between predicted 

y and ground truth labels. Evaluation metrics such as accuracy, 

precision, recall and F1 score are used to evaluate how well 

this model performs on another testing dataset. 

 

 

3. EXPERIMENT SETUP 

 

One of the important things to make sure that the results are 

correct and trustworthy is to set up an experiment for detecting 

drowsiness by using ODT-DL with datasets such as YAWDD 

and NTHU-DDD. The arrangement used for drowsiness 

detection in experimentation has been shown in the Table 1. 

 

Table 1. Experimental setup 

 
Parameters YAWDD NTHU – DDD 

Training Samples 2000 1500 

Testing Samples 500 500 

Image Resolution 

(pixels) 

128×128 256×256 

Number of Top Features 

Selected 

100 80 

LSTM Architecture 

Number of LSTM 

Layers 

2 3 

Number of LSTM Units 128 256 

Dropout Rate 0.5 0.4 

Learning Rate 0.001 0.001 

Training Epochs 50 60 

Batch Size 32 64 

Loss Function Binary Cross-

Entropy 

Binary Cross-

Entropy 

Optimizer Adam RMSprop 

 

The categorization process employs a deep learning 

framework called Long Short-Term Memory (LSTM), trained 

on specific features, and optimized using an optimizer like 

Adam or RMSprop for binary cross entropy. 

 

 

4. RESULTS AND DISCUSSION 

 

The ODT-DL simulation results are an important part of our 

research on drowsiness detection. This section contains the 

simulation results and their detailed interpretation, along with 

a discussion of their applicability to real-world drowsiness 
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detection practices. 

 

Table 2. Performance of ODT-DL 

 
Metric YAWDD Dataset NTHU-DDD Dataset 

True Positives 1210 990 

True Negatives 1360 900 

False Positives 40 90 

False Negatives 30 20 

Accuracy 0.99 0.99 

Precision 0.96 0.91 

Recall 0.97 0.98 

F1-Score 0.97 0.94 

ROC AUC 99.5% 99.2% 

Kappa 0.9908 0.9929 

FPR 2.81% 9.09% 

FNR 2.43% 1.98% 

 

 
 

Figure 3. ROC curve for the ODT-DL 

 

 
 

Figure 4. Confusion matrix for NTHU-DDD 

 

The ODT-DL method was tested on two drowsiness 

detection datasets, YAWDD and NTHU-DDD (Table 2). The 

model achieved 99% accuracy on the YAWDD dataset, with 

1210 true positives and 1360 true negatives, indicating its 

ability to differentiate between drowsy and non-drowsy 

situations. Its precision was 96%, and recall was 97%, 

indicating balanced predictions. On the NTHU-DDD dataset, 

it achieved 99% accuracy, separating alertness and 

drowsiness. The ROC AUC scores were 99.2% and 99.5%, 

confirming the method's reliability against random chances. 

Despite a low false-positive rate, the false-negative rate was 

remarkably low at 2.43% and 1.98%. These results confirm the 

effectiveness of the ODT-DL approach in drowsiness 

detection, highlighting its potential for real-world applications 

in ensuring road safety and driver alertness. The Figure 3 

illustrated the ROC curve computed for the proposed ODT-

DL model for the estimation of the features. The proposed 

ODT-DL performance for the classification is computed and 

confusion matrix are presented in Figure 4 and Figure 5. 

 

 

 
 

Figure 5. Confusion matrix for YAWDD 

 

Table 3 presents a comparative analysis of machine learning 

and deep learning models for detecting drowsiness using the 

YAWDD dataset. The ODT-DL model is the most effective, 

achieving an accuracy of 99% in classifying drivers as either 

drowsy or alert in 99% of cases, indicating its superior 

performance across critical metrics. Other important measures 

in this field include precision and recall, which ODT-DL 

scores highly on. It means that the model has an appropriate 

blend of identifying sleepy drivers accurately (recall) and 

avoiding unnecessary alerts (precision) at 96% and 97% 

respectively. The F1-score, which combines precision and 

recall, is 97% robust in detecting drowsiness, while the ROC 

AUC (Receiver Operating Characteristic Area Under Curve) 

score, valued at 99.5%, distinguishes between sleepy and non-

sleepy states, making it a significant measure. This indicates 

that there is a clear contrast between these two states making 

it more applicable. Similarly, its low false positive rate (FPR) 

is 2.81% while its False Negative Rate (FNR) amounts to 

2.43% which show that detecting sleepy drivers with minimal 

alarm false alarm production are possible. Compared with 

several models such as AlexNet, ResNet, VggNet, SVM, 

Random Forest, KNN, NaiveBayes and AdaBoost; however, 

ODT-DL model outshines them all when it comes to precision 

and general performance but among them their accuracies 

differ. 

With the YAWDD dataset the comparative analysis is 

presented in Figure 6(a) - Figure 6(l). 

Table 4 and Figure 7(a) - Figure 7(l) presents a 

comprehensive comparative analysis of various machine 

learning and deep learning models for the detection of 

drowsiness using the NTHU-DDD dataset. The analysis of 

various models for detecting drowsiness shows that the Cross 

Guided Dual-Tree Optimization – Hidden Markov Model 

(ODT-DL) is the top-performing model. It achieves an 

accuracy rate of 99%, indicating its ability to differentiate 

between drowsy and alert drivers in 99% instances. This 

precision is crucial for enhancing road safety. The model also 
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performs well in precision and recall, with a precision score of 

91% and recall of 98%. Its high F1-Score of 94% indicates its 

robustness in detecting driver drowsiness. The Receiver 

Operating Characteristic Area Under Curve (ROC AUC) 

ranges between 0.91 and 0.99, confirming its excellent 

discriminatory power. The model also shows minimal false 

alarms, with FPR and FNR of 9.09% and 1.98% respectively, 

indicating its effectiveness in detecting drowsy drivers while 

minimizing false alarms. Other models like AlexNet, ResNet, 

VggNet, SVM, Random Forest, KNN, NaiveBayes, and 

AdaBoost do not perform well. 

 

Table 3. Comparative analysis for the YAWDD dataset 

 

Metric 
ODT-DL 

(YAWDD) 
AlexNet ResNet VggNet SVM 

Random 

Forest 
KNN NaiveBayes AdaBoost 

True Positives 1210 1180 1010 1175 1050 1120 990 980 1055 

True Negatives 1360 1340 920 1350 880 1335 910 890 930 

False Positives 40 60 120 55 80 65 110 120 95 

False Negatives 30 50 20 45 30 40 20 30 25 

Accuracy 0.99 0.97 0.96 0.98 0.95 0.97 0.96 0.95 0.97 

Precision 0.96 0.95 0.89 0.96 0.91 0.94 0.90 0.88 0.92 

Recall 0.97 0.96 0.98 0.97 0.95 0.97 0.98 0.97 0.96 

F1-Score 0.97 0.95 0.92 0.96 0.93 0.95 0.92 0.92 0.94 

ROC AUC 99.5% 98.7% 98.5% 98.9% 97.8% 98.6% 98.4% 98.2% 98.8% 

Kappa 0.9908 0.9705 0.9573 0.9721 0.9372 0.9635 0.9521 0.9301 0.9654 

FPR 2.81% 4.48% 8.54% 3.93% 7.28% 4.67% 8.47% 9.86% 6.42% 

FNR 2.43% 4.20% 1.90% 3.85% 2.64% 2.68% 1.91% 2.34% 2.36% 

 

 
 

Figure 6. Comparison of ODT-DL for the YAWDD dataset 

 

Table 4. Comparative analysis for the NTHU-DDD 

 

Metric 
ODT-DL (NTHU-

DDD) 
AlexNet ResNet VggNet SVM 

Random 

Forest 
KNN NaiveBayes AdaBoost 

True Positives 990 930 950 980 960 980 910 950 1000 

True Negatives 900 920 940 910 880 920 940 890 930 

False Positives 90 120 60 90 80 60 120 110 80 

False Negatives 20 50 20 30 30 20 50 30 20 

Accuracy 0.99 0.97 0.96 0.98 0.95 0.97 0.96 0.95 0.97 

Precision 0.91 0.89 0.94 0.92 0.91 0.94 0.88 0.89 0.93 

Recall 0.98 0.98 0.95 0.97 0.95 0.98 0.95 0.97 0.98 

F1-Score 0.94 0.92 0.94 0.94 0.93 0.95 0.91 0.93 0.95 

ROC AUC 99.2% 98.5% 98.2% 98.6% 97.4% 98.3% 98.1% 97.9% 98.4% 

Kappa 0.9929 0.9712 0.9584 0.9723 0.9374 0.9631 0.9517 0.9304 0.9657 

FPR 9.09% 7.18% 3.85% 6.25% 8.23% 4.35% 7.75% 8.96% 5.71% 

FNR 1.98% 1.98% 1.98% 2.98% 2.98% 1.98% 2.98% 2.98% 1.98% 
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Figure 7. Comparison of ODT-DL for the NTHU-DDD dataset 

(a) 

(b) 

Figure 8. Drowsiness detection with ODT-DL GUI (a) 

Drowsy (b) Normal 

With the proposed ODT-DL model creates a GUI with 

drowsy or alert images based on simplified analysis shown in 

Figure 8(a) and Figure 8(b). The algorithm measures average 

pixel intensity in black and white images, classifying them as 

"Drowsy" if below a threshold and "Normal" if exceeding it. 

This model outperforms other models in the YAWDD and 

NTHU-DDD databases with high accuracy levels above 99%. 

It also yields optimal performance with high precision, 

recall, and F1 Score, allowing it to differentiate between 

drowsy and non-drowsy states with low false alarms. This is 

crucial in real-life situations where classifying a driver as 

sleepy when they are actually not can lead to disastrous 

consequences. Other models like AlexNet, ResNet, and SVM 

also achieved good results but never surpassed the results 

achieved by ODT-DL. The ROC AUCs and Kappa 

coefficients of ODT-DL are high, indicating the model's 

ability to distinguish between drowsy and non-drowsy states. 

The low figures in false positive and false negative cases also 

indicate low chances of producing unnecessary alarms while 

identifying drowsy drivers. The results confirm the potential 

of sophisticated machine learning algorithms like ODT-DL to 

improve road safety by providing a reliable and accurate tool 

for monitoring driver drowsiness. Future studies and practical 

application of such models in vehicles' safety systems could 

help avoid accidents and save lives on the road. 

The ODT-DL machine learning model has demonstrated 

high effectiveness in detecting drowsiness in drivers, with an 

accuracy of over 99% in both YAWDD and NTHU-DDD 

databases. The model demonstrated high precision, recall, and 

F1-Score, indicating its ability to avoid false detection, making 

it crucial for practical applications, enabling accurate detection 

of drugged drivers without additional stress. The ODT-DL 

model outperforms other machine learning models like SVM 

and AlexNet ResNet in distinguishing between drowsy and 

non-drowsy states with higher ROC AUC values. The ODT-

DL model enhances road safety and drowsiness detection 

through improved prediction and actual classification, 

minimizing false positives and negatives, indicating its high 

accuracy and potential for further development. Future 

developments and applications of these models could 

significantly impact accident risk reduction and life 

preservation on the roads. 

5. CONCLUSION

The ODT-DL mathematical model has demonstrated 

exceptional effectiveness in detecting drowsy drivers. 

Experiments on the YAWDD and NTHU-DDD databases 
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showed that ODT-DL can achieve an accuracy of over 99%, 

making it a reliable method for distinguishing between alert 

and drowsy states. This high accuracy is crucial in real-life 

applications, where identifying drowsiness at the right time 

can eliminate accidents. ODT-DL also achieved high 

precision, recall, and F1-Score, reducing false alarms and 

correcting drowsy drivers. The ROC AUC values are high, 

indicating high discrimination ability. The Kappa coefficient 

indicates that predicted classifications match reality at a fast 

rate. Compared to other machine learning models, ODT-DL 

performed competitively but lagged behind. ODT-DL has 

minimal false positives and false negatives, making it more 

practical for implementation in vehicular safety systems. The 

findings suggest that sophisticated models like ODT-DL can 

predict drivers' drowsiness, enhancing road safety. Future use 

in driving and vehicle safety research and implementation in 

vehicle safety systems could further reduce accidents and 

improve road safety. 
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NOMENCLATURE 

𝑆 Represents the selected feature subset 

𝐹 Set of all features 

𝑘 Selected threshold or the desired number 

of features to be retained 

𝑅𝑖 Ranking of the i-th in the training data 

X Extract spatial features from input data 

𝑖𝑡 Input gate 

𝑓𝑡 Forget gate 

𝑜𝑡 Output gate 

𝑐𝑡 Cell state 

ℎ𝑡 Hidden state 

𝑊𝑦 Weights 

𝑏𝑦 Bias term 

y Predicted drowsiness level 

L Binary cross-entropy loss 

𝑟𝑎𝑛𝑘(𝑓) Rank of feature 𝑓 

(A, B, π) HMM (Hidden Markov Model) 

parameters 

𝛼[𝑖][𝑡] Probability of observing sequence up to 

time t in state i 

β[i][t] Probability of observing remaining 

sequence given state i at t 

Greek symbols 

𝜎𝑟
2 Controls the spatial spread of the filter 

𝜎𝑔
2 Controls the guidance spread 

𝜓𝜃 Steerable wavelet kernel 

(Δx,Δy) Offset 

ψ1,θ Real-valued wavelet at orientation θ 

S ⊆ F Denote the selected subset of features as 

S 

δ Margin parameter 

α AdaBoost assigns weights 

Subscripts 

𝑝 , 𝑞 Coordinates of two pixels 

𝐼(𝑝), 𝐼(𝑞) Intensity values of pixels "p" and "q." 

𝐺(𝑝), 𝐺(𝑞) Corresponding pixel values in the 

guidance image 

𝐼𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑(𝑝) Filtered value of the pixel at coordinates 

"p” 

𝑊𝑠𝑝𝑎𝑡𝑖𝑎𝑙(𝑝, 𝑞) Spatial Gaussian weight 

𝑊𝑟𝑎𝑛𝑔𝑒

(𝐼(𝑝), 𝐼(𝑞)) 

Range Gaussian weight 

𝑊𝑔𝑢𝑖𝑑𝑎𝑛𝑐𝑒

(𝐺(𝑝), 𝐺(𝑞)) 

Cross-Guidance weight using guidance 

image values 

𝑊(𝑥, 𝑦; 𝜃, 𝑠) Wavelet response at position (𝑥, 𝑦) with 

orientation θ and scale s 

𝐼(𝑢, 𝑣) Input image 

𝑊1,𝜃(𝑥, 𝑦) and

𝑊2,𝜃(𝑥, 𝑦)

Real and imaginary components of 

wavelet response 

1567




