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The electricity industry is a sector with high workplace safety risks, particularly for PDKB
(Live Working) operators. This study aims to develop a safety hazards prediction model
for the electricity industry in Indonesia using the Human-Computer Interaction (HCI)
approach. The research stages begin with field observations, literature reviews, and
interviews, followed by a Focus Group Discussion (FGD) with five stakeholders from PT
PLN. The results of the interviews and FGDs were analyzed thematically to design a
conceptual model, which was then used as the basis for the development of a
questionnaire. The questionnaire was distributed to 200 PDKB operators in the
distribution unit of PT PLN. The collected data were analyzed using the SEM-PLS
(Structural Equation Modeling - Partial Least Squares) method through SmartPLS 3
software. Based on the analysis results, a manual book for measuring Key Performance
Indicators (KPIs) based on significant latent variables was developed. This manual was
tested with 30 PDKB operators in the UPDL Semarang for one month, followed by
validity and difference tests against the existing manual book. The results of the study
show that the developed prediction model is capable of identifying significant factors
influencing potential hazards and can be used as the basis for more targeted workplace
safety interventions in Indonesia's electricity industry. While the model demonstrates
strong predictive capability, the study is limited by its focus on a single state-owned
enterprise and may not fully represent the diversity of working conditions across the
industry. Future research should consider broader sampling across different regions and
organizational types, as well as integrating real-time data and digital monitoring systems
to enhance model adaptability and precision in dynamic field environments.

1. INTRODUCTION

related to several factors, one of which is the skill and
experience of the workers [3]. Work accidents related to

The electricity sector is one of the key sectors that supports
Indonesia’s economic growth, which also brings many
challenges, particularly regarding Occupational Health and
Safety (OHS) in the electricity industry. The scope of the
electricity industry includes the expansion of power plants,
distribution, and electricity sales. The power plants in
Indonesia consist of both PLN (State Electricity Company)
plants and several non-PLN power plants. The electricity
supply in Indonesia has seen a significant increase, from
62,202.94 MW in 2017 to 72,750.72 MW in 2020 [1]. The
electricity industry serves as the backbone for providing
critical energy to various sectors, yet the potential impacts on
worker health and safety in this industry require serious
attention.

Three main factors that impact accidents in the electricity
industry are unsafe equipment, unsafe working environments,
and hazardous operating procedures, according to the
Occupational Safety and Health Administration (OSHA)
scenario analysis [2]. The potential electrical hazards are quite
complex and diverse, so dealing with these dangers is closely
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electricity can have significant impacts on the productivity of
the electricity industry and affect workers. According to
OSHA data, 86% of losses in production, transmission, and
distribution are caused by electricity, leading to a loss of
12,976 workdays per year [4]. Data from the National Institute
for Occupational Safety and Health (NIOSH) shows 244
accidents consisting of five scenarios of electrical accident
cases, including electrical network equipment (21%), contact
with electrical networks (18%), damaged electrical network
equipment (17%), and contact between conductive equipment
and power lines (16%) [5].

Several previous studies have attempted to manage OHS
risks in the electricity industry. Albert and Hallowell [6]
evaluated OHS management using a cost and benefit approach
in the construction industry in the United States. The results of
this study showed that there were several effective strategies
to reduce injuries from accidents caused by transmission and
distribution maintenance, although these strategies had very
high costs. Castillo-Rosa et al. [7] stated that in three types of
activities—primary, secondary, and tertiary sectors in Spain—


https://crossmark.crossref.org/dialog/?doi=10.18280/ijsse.150518&domain=pdf

the impacts of electrical accidents, whether directly or
indirectly, would result in differences. Electrical accidents can
lead to a high proportion of severe and fatal accidents.
Strategies that can be implemented include ensuring that the
installation and equipment used comply with laws regarding
protection against electrical contact. Wang et al. [8] developed
a lightweight, accurate, and efficient safety hazard detection
model based on MobileNet to detect safety hazards in critical
resource locations. The data used in this model consists of
1,440 photo data points, including the conditions of power
plants in normal operation and related facilities.

Furthermore, the study by Baby et al. [9] indicates a
relationship between personal factors, safety climate, and
workers' health conditions with work-related accidents in
India. Some measures that need to be implemented to reduce
personal issues in the workplace include awareness of safety
participation, knowledge, and safety training. Workers with
low educational backgrounds in India were found to have
lower safety climate factor scores, highlighting the importance
of technical qualifications for high-risk jobs like those in the
electricity industry. The study by Sadeghi-Yarandi et al. [10]
developed the Electrical Industry Safety Risk Index (EISRI)
for the electricity distribution industry. Based on three
components—personal, environmental, and organizational
aspects—the personal aspect showed a significant impact of
human factors in work activities. The results of the EISRI
development can be used for risk control, especially in
developing countries with lower risk management
performance.

By understanding the unique context of the electricity
industry in Indonesia, the development of a safety hazards
model in the electricity industry is not only a necessity to
comply with regulations but also a genuine effort to protect
invaluable human resources and support the sustainable
growth of the vital electricity sector, which is critical for the
future of Indonesia’s economy. The developed safety hazard
model for the electricity industry, particularly for distribution
unit operators, can serve as a reference to create interventions
that are suitable for the existing conditions in Indonesia’s
electricity industry. This research focuses on developing a
safety hazard prediction model for the electricity industry in
Indonesia using human-computer interaction.

Specifically, this study contributes by designing a predictive
model that integrates qualitative insights from field
observations and stakeholder discussions with quantitative
analysis using Structural Equation Modeling (SEM-PLS). The
proposed model identifies key latent variables that influence
hazard risk and enables the creation of a practical KPI-based
safety manual. This manual can serve as a tool for real-time
performance assessment and targeted safety interventions in
PLN’s distribution units. Thus, the study not only adds to the
academic discourse on safety management but also offers
actionable strategies for improving occupational safety in
Indonesia’s electricity sector.

2. LITERATURE REVIEW
2.1 Occupational Health and Safety (OHS)

Occupational Health and Safety (OHS) is a fundamental
requirement for both Micro, Small, and Medium Enterprises

(MSMEs) as well as large companies in conducting their
business operations. The purpose of implementing
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Occupational Health and Safety is to maintain the health and
safety of the work environment and to protect coworkers,
employees' families, consumers, and others who may also be
affected by the work environment. This is because OHS is
closely related to the outcomes of production. Every industry
must be able to reduce the risks of accidents and occupational
diseases to prevent decreased production productivity [11].

Occupational Health and Safety (OHS) is crucial for moral,
legal, and financial reasons. Every organization has the
obligation to ensure that workers and others involved remain
in a safe condition at all times. Occupational Health and Safety
practices include prevention, sanctions, and compensation, as
well as wound healing and care for workers, providing health
care, and sick leave. Efforts for safety include conditions that
can lead to death, illness, or stress, both in the workplace and
at home. Health is related to the employee being free from
physical or non-physical illnesses [12].

Work safety is the protection effort carried out by the
company to prevent employees from experiencing work-
related accidents while performing their tasks. This protection
is provided for physical, mental, and social well-being, with
preventive measures against health problems or disorders
caused by work and environmental factors, as well as common
diseases that could cause harm or loss in the workplace. Work
safety is the state in which employees are safe and free from
accidents while performing their duties. As a result, employees
can complete their work as planned and improve their
performance [13].

2.2 Safety hazards

Safety hazards (bahaya keselamatan) are potential risks
posing threats to safety. Worker safety in the workplace,
especially in industries that involve various high-risk activities,
is crucial. These hazards can include physical accidents,
exposure to hazardous chemicals, or even ergonomic factors
that affect workers' long-term health. Safety hazards need to
be well-managed to prevent injuries or accidents that could
harm both the company and the workers. Therefore, proper
identification of potential hazards is essential in creating a
safer work environment [14].

Risk management is the primary approach used to identify
and manage safety hazards in industries. As an initial step,
companies need to conduct a thorough hazard identification,
followed by risk analysis and the implementation of mitigation
measures. Effective risk management not only reduces the
potential hazards but also increases safety awareness among
workers. With a deep understanding of the existing risks,
preventive measures can be applied to avoid accidents that
may occur [14].

Technology also plays an important role in managing safety
hazards, especially with advancements in automation systems
and data analysis. The use of Human-Machine Interface (HMI)
systems, for example, allows operators to monitor operational
conditions in real-time and detect potential hazards before they
become major issues. Technologies such as automated sensors
and data-based monitoring systems can detect risks early and
provide quick responses, which in turn helps reduce accidents
and improve operational efficiency. These technologies also
enable stricter monitoring of high-risk processes [15].

Workplace safety culture also plays a critical role in
managing safety hazards. In this regard, creating a strong
safety culture encourages workers to be more concerned about
their own safety as well as the safety of their colleagues.



Organizations that instill safety values in their workplace
culture are more likely to succeed in reducing accidents and
improving compliance with safety procedures. With
heightened awareness and responsibility, workers will be more
proactive in attending safety training and following
established procedures, thus creating a safer work
environment [16].

2.3 Human Computer Interaction

Based on the Encyclopedia Britannica, Human-Computer
Interaction (HCI) is an interdisciplinary field that studies how
to design optimal interactions between users and computers,
as well as developing interfaces that support these interactions.
HCI encompasses the communication process between
humans and computers in specific ways, using interaction
languages to complete particular tasks [17].

As an interdisciplinary field, HCI involves various
disciplines such as computer science, psychology, sociology,
graphic design, and industrial design. Over time, HCI has
transformed from manual activities to web-based interfaces
and multimodal intelligent interaction systems. Current
research in this field focuses on various aspects, including user
personalization, embedded computing, augmented reality,
social computing, knowledge-based interaction, emotion-
based interaction, and brain-computer interfaces [3]. These
developments have had a significant positive impact on the
quality of human life.

Human-Computer Interaction (HCI) is a multidisciplinary
field that continues to evolve, encompassing various
disciplines such as computer science, industrial design,
psychology, behavioral science, organizational behavior, and
physiology. Since the concept of HCI was first applied to
hazard recognition in the construction sector, many new
research topics requiring a cross-disciplinary understanding
have emerged. However, as the number of scientific
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publications in this field increases, manual analysis of the
literature becomes impractical. The large volume of
documents to be reviewed creates a substantial workload,
often leading researchers to spend significant time and effort
just to identify research focuses and classify the literature
correctly. Moreover, the subjective classification process
conducted by researchers is highly prone to human error,
which can result in discrepancies between the findings in the
literature review and the actual conditions [18].

Traditionally, hazard recognition relied on manual
monitoring, traditional human resource management, and
post-incident analysis. However, modern approaches focus
more on risk prediction, accident prevention, deep learning,
intuitive devices based on brain waves and eye movements,
and multimodal data processing. Therefore, topics arising
from the application of human-computer interaction are
closely related to technologies such as virtual reality,
augmented reality, computer vision, and computer simulation.
After formulating the CHR-HCI (Construction Hazard

Recognition—-Human—Computer  Interaction) framework,
future research directions can be determined more
systematically.

2.4 Safety management in Indonesia

The electricity sector in Indonesia poses significant safety
challenges, prompting increased research on effective
occupational safety and health (OSH) management strategies.
Recent studies emphasize the adoption of formal safety
management systems like SMK3 and ISO 45001 as crucial for
enhancing workplace safety. Evidence from PT PLN
Indonesia Power Barru shows that integrating these
frameworks into routine practices helps reduce accidents and
improve compliance [19]. The traditional hazard
recognization can be seen as below in Figure 1.
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Figure 1. Traditional hazard recognition
Source: Research trends of human-computer interaction studies in construction hazard recognition: A bibliometric review Wang et al. [18]
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Worker engagement and safety awareness are also pivotal.
Research at PLTU Bolok Unit II highlights how employee
attitudes and knowledge about safety directly affect adherence
to safety protocols. This underscores the importance of
ongoing training programs to foster a proactive safety culture
within the workforce [20].

Risk management approaches have evolved to address both
conventional electrical hazards and new challenges such as
those emerging during the COVID-19 pandemic. Proactive
risk identification and control measures tailored to power plant
environments contribute to safer operations [21].

Technological innovation, particularly the use of Internet of
Things (IoT) devices, is transforming safety practices by
enabling real-time monitoring and quicker hazard response.
These advancements align with Indonesia’s national OSH
objectives, which aim to reduce workplace incidents through
modernized safety solutions.

Analyses of workplace accidents reveal that multiple
factors—such as insufficient training, weak safety culture, and
inadequate hazard controls—continue to cause incidents. This
calls for targeted, data-driven safety interventions specific to
the electricity industry’s context [22].

Additionally, studies from related sectors like electronic
manufacturing offer valuable safety management methods that
can be adapted to electricity operations. PT PLN’s
commitment to safety, demonstrated through programs like
the Contractor Safety Management System and the goal of
“Zero Accidents,” reflects an industry-wide push toward
stronger safety governance.

Together, these studies suggest that a comprehensive
approach—integrating system implementation, human factors,
risk  management, technology, and organizational
commitment—is essential for improving safety performance
and protecting workers in Indonesia’s electricity sector.

2.5 Partial Least Square-Structural Equation Modelling
(PLS-SEM)

Partial Least Squares - Structural Equation Modeling (PLS-
SEM) is one of the SEM methods frequently used for theory
development in exploratory research. PLS-SEM emphasizes
explaining variance. In PLS-SEM, constructs are represented
by proxies in the form of weighted composites of indicator
variables related to the construct. Therefore, PLS-SEM is a
composite-based SEM approach, reducing the reliance on the
strict assumptions of CB-SEM that all covariation between
groups of indicators must be explained by a common factor
[23].

PLS-SEM has become increasingly popular in various
fields of study due to its ability to handle data that is not
normally distributed and highly complex models. PLS-SEM
offers several advantages, such as not requiring many
assumptions, being suitable for various data scales, and being
applicable to small sample sizes. The minimum sample size
for PLS-SEM can be determined by two rules: ten times the
largest number of indicators used to measure a variable, and
ten times the number of independent variables pointing to a
dependent variable [23].

PLS-SEM has two main models: the inner model (structural
model), which describes the relationships between latent
variables, and the outer model (measurement model), which
depicts the relationship between manifest variables and latent
variables. In the measurement model, PLS uses principal
component analysis (PCA) on the variance extraction blocks
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to observe the relationship between indices and latent
variables through total variance, including common variance,
specific variance, and total variance. This method falls under
confirmatory factor analysis (CFA). The stages of using PLS
are as follows [23]:

1. Design the structural model (inner model)

2. Design the measurement model (outer model)

3. Create a path diagram

4. Convert the path diagram into a system of equations
5. Estimate the path diagram, loadings, and weights

6. Evaluate the model

7. Conduct hypothesis testing

The PLS analysis process can be performed using several
software tools such as SmartPLS, VPLS, and PLSGUI. In this
research, SmartPLS was used for data analysis, as this
application allows users to apply measurement scales other
than interval scales [23].

3. RESEARCH DESIGN
Workmap and design program

The object of this study is the distribution unit of PT PLN
(Persero). The subject of this research is the operators of Work
in Energized Conditions (PDKB) at the distribution unit. The
criteria for the subjects of this study include PDKB operators
in the distribution unit who have at least 3 years of work
experience, are aged between 25 and 45 years, and are in good
physical and mental health. The workmap in this reserach can
be seen in Figure 2 as below:

Step 2

*Material Purchase
*Machine Production and

S ) Fabrication
* Formulation of * Design testing and commissioning
Studies and Field « Publication

Studies
e Design & Engineering
e Calculating the Bill of
Quantity
¢ Material Purchase

* Seminar/Webinar/Workshop
*Monitoring and evaluation

Figure 2. Workmap

The research plan has been thoroughly implemented,
starting from the formulation of the research questions,
searching and reviewing literature, designing engineering
processes, calculating the required costs, and completing the
production process and the required outputs.

This study consists of 15 hypotheses based on a conceptual
model. The hypotheses are categorized into causal hypotheses
(direct effects) and mediation hypotheses (indirect effects).
The details of the hypotheses are as follows:

a. Causal Hypotheses (Direct Effect)
H1: Safety Factors positively affect Safety Climates.



H2: Personal Attributes positively affect Safety Climates.

H3: Accident History positively affects Safety Climates.

H4: Health History positively affects Safety Climates.

HS5: Personal Component positively affects Safety Climates.
Hé6: Personal Component positively affects Safety Risk.

H7: Environmental Component positively affects Safety Risk.
H8: Organizational Component positively affects Safety Risk.
HO: Safety Climates positively affect Safety Hazards.

H10: Safety Climates positively affect Safety Risk.

H11: Safety Hazards positively affect Safety Risk.

b. Mediation Hypotheses (Indirect Effect)

HI12: Safety Climates mediate the relationship between
Personal Component and Safety Risk.

H13: Safety Climates mediate the relationship between
Accident History and Safety Risk.

H14: Safety Climates mediate the relationship between Health
History and Safety Risk.

H15: Safety Hazards mediate the relationship between Safety
Climates and Safety Risk.

c. Reverse Causal Hypothesis
H16: Safety Hazards affect Safety Climates.

The survey data obtained in this study, comprising 203
respondents, were processed and analyzed using the Structural
Equation Modeling (SEM) method with a Partial Least
Squares (PLS) approach. The initial stage in PLS-SEM
involves the evaluation of the measurement model (outer
model). The evaluation of the measurement model must meet
several criteria, including convergent validity, reliability, and
discriminant validity. The construct parameter for the
questionnaire can be seen as Table 1 as below.

A measurement model is said to meet the requirements for
convergent validity when each indicator has an outer loading
value above 0.50, and each construct has an Average Variance
Extracted (AVE) value of 0.50 or more [23]. In addition,

Cronbach’s Alpha and Composite Reliability (CR) are used to
measure the internal consistency reliability of each construct.
If the Composite Reliability (CR) and Cronbach’s Alpha
values are greater than 0.70, the construct is considered to have
met the reliability requirement [23].

Discriminant validity testing is then conducted based on the
recommendation of Fornell and Larcker [24] by comparing the
square root value of AVE with the correlation values between
constructs. Another method used to test discriminant validity
is the HTMT (Heterotrait-Monotrait ratio) approach. HTMT is
calculated by taking the ratio between inter-construct
correlations (heterotrait) and intra-construct
correlatioF24(monotrait) estimated from the PLS model. The
recommended HTMT value is below 0.90 [25]. If the HTMT
value between two constructs is less than 0.90, the constructs
are considered to have good convergent consistency and are
distinguishable from each other.

The next step is to evaluate the structural model (inner
model) to test the research hypotheses. A bootstrapping
procedure was conducted with 5000 resampling using
SmartPLS 4.0 software [26]. The quality of the structural
model was assessed using coefficient of determination (R?),
predictive relevance (Q?), and path coefficients [27].

The coefficient of determination (R?) is used to measure the
predictive accuracy of the model. Meanwhile, predictive
relevance (Q?) evaluates how well the observed values and the
model-generated parameters align. A Q? value greater than 0
indicates that the model has good predictive relevance [26]. In
addition, path coefficient testing was carried out to examine
the research hypotheses.

This study tested 11 hypotheses using a one-tailed test with
a significance level of 5%. If the hypothesis testing results in
a p-value < 0.05, the hypothesis is accepted; otherwise, if the
p-value > 0.05, the hypothesis is rejected.

The research hypotheses in new model can be seen as Figure
3 below.

Table 1. Contruct parameter

No Variable Code Indicator Reference
1 Safety Hazards SH 1 How often do you observe potential hazards such as malfunctioning
tools or equipment that do not meet standards in the workplace This Research
during live-line electrical distribution maintenance?
SH 2 How often do you find work areas with poor lighting, inadequate
ventilation, or other environmental conditions that may pose a risk of This Research
accidents?
SH 3 How often are employees at all levels encouraged to promptly report
safety and health hazards as well as unsafe acts to their supervisors Moore et al. [28]
and/or safety contacts for follow-up action?
SH 4 How often are new equipment, tools, materials, and methods used in
electrical network maintenance evaluated prior to purchase, Moore et al. [28]
implementation, and use to ensure they do not pose safety and health ’
hazards during live-line maintenance?
SH 5 How often are safety inspections conducted regularly during live-line
electrical network maintenance to identify unsafe acts, conditions, Moore et al. [28]
and hazards that may affect safety, and how are these hazards ’
promptly eliminated or minimized?
2 Safety Climates SC1 How often does management provide relevant information to ensure Schiiler and Matuszczyk
compliance with safety laws and regulations? [29]
SC2 How often does management listen to employees when conflicts arise Schiiler and Matuszczyk
related to safety regulations and workplace safety policies? [29]
SC3 How often does management ensure there are always opportunities to Schiiler and Matuszczyk
participate in physical training? [29]
SC4 How often do you feel that safety is an integral part of all training? Schiiler and Matuszczyk
[29]
SC5 How often do you believe that management has a good understanding Schiiler and Matuszczyk
of the safety regulations and policies governing live-line electrical [29]
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3 Safety Risk

4 Safety Factors

5 Personal Attributes

6 Accident History

7 Health History
8 Personal
Component
9 Environmental
Component
10 Organizational
Component

SR 1

SR 2

SR 3

SR 4
SR'5
SF 1
SF 2
SF 3
SF 4
SF 5
PA1
PA2
PA3
AH 1
AH?2
AH?3
AH 4
HH 1
HH?2

HH3
HH 4

PC1
PC2

PC3

PC4

EC1

EC2

EC3

EC 4

oC1

oC2

OoC3

oC 4

oC5s

OC6

network maintenance, as well as how these are applied during the
work?
How often do you find qualified personnel or live-line maintenance
(PDKB) operators making mistakes in the workplace?

How often do you find a lack of electrical knowledge or legal
operation of electrical equipment among fellow PDKB operators
during live-line maintenance of the electrical network at the
workplace?

How often do you feel that the electrical equipment used during live-
line maintenance of the electrical network at the workplace is not
routinely inspected?

How often do you find illegal use of PDKB electrical equipment,
resulting in circuit overloads and fires?

How often do you find PDKB operators not wearing safety
equipment when entering the worksite?

How often do you make extra efforts to improve safety in the
workplace?

How often do you know how to follow work procedures according to
safety standards?

How often do you encourage your coworkers to work safely in the
workplace?

How often do you always speak to company management if there are
any issues related to workplace safety?

How often do you believe that occupational safety and health issues
are important?

How old are you?

How long is your work experience?

What is your highest level of education?

How often have you experienced an accident in the past year?
How often have you encountered major risks that caused accidents in
the past year?

How often have you encountered minor risks that caused accidents in
the past year?

How often have you nearly experienced a work-related accident in
the past year?

How often have you suffered from an occupational disease in the past
year?

How often have you suffered from a non-work-related illness in the
past year?

How often have you experienced a minor illness in the past year?
How often have you experienced a minor illness in the past two
years?

How often do you avoid rushing during your work shifts?

How often are you aware of the skills and knowledge required to
perform the duties of a PDKB operator?

How often do you use personal and group protective equipment
(PPE) in your work as a PDKB operator?

How often are you aware that physical competence is required to
perform the duties of a PDKB operator?

How often do you not encounter hazardous work situations in your
role as a PDKB operator?

How often do you find old or worn-out equipment and work facilities
in your role as a PDKB operator?

How often do you find personal and group protective equipment
available in your role as a PDKB operator?

How often do you feel that the current working environment as a
PDKB operator is beneficial to you?

How often do you not experience excessive time pressure while
performing tasks as a PDKB operator?

How often do you find the necessary equipment, facilities, and
knowledge for a PDKB operator available in the current workplace?
How often do you participate in risk identification and risk
assessment programs at your current workplace?

How often do you feel that design, planning, organized
responsibilities, and supervision from the company are present at this
workplace?

How often do you perceive the company’s concern for safety and the
tendencies of supervisors and the company regarding working hours
and economic issues?

How often do you experience monitoring, inspections, and audits
conducted by the company?

Wang et al. [30]

Wang et al. [30]

Wang et al. [30]

Wang et al. [30]
Wang et al. [30]
Arifin et al. [31]
Arifin et al. [31]
Arifin et al. [31]
Arifin et al. [31]

Arifin et al. [31]
Baby et al. [9]
Baby et al. [9]
Baby et al. [9]
Baby et al. [9]

This Research

This Research

This Research

This Research

This Research

This Research
This Research

Sadeghi-Yarandi et al. [10]
Sadeghi-Yarandi et al. [10]

Sadeghi-Yarandi et al. [10]
Sadeghi-Yarandi et al. [10]
Sadeghi-Yarandi et al. [10]
Sadeghi-Yarandi et al. [10]
Sadeghi-Yarandi et al. [10]
Sadeghi-Yarandi et al. [10]
Sadeghi-Yarandi et al. [10]
Sadeghi-Yarandi et al. [10]

Sadeghi-Yarandi et al. [10]

Sadeghi-Yarandi et al. [10]

Sadeghi-Yarandi et al. [10]

Sadeghi-Yarandi et al. [10]
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Safety Factors

Personal Attibutes

H1
H2

Accident History 3
H

H4

Health history
H5

Personal Component

H6

Environmental H7

Component

H8

Organizational
Component

Safety H9
Climates

H10
H11

Safety Risk

Figure 3. The research hypotheses of the new model

These hypotheses are designed to explore the relationships
between various factors influencing safety in the workplace,
particularly in the context of PT PLN's distribution unit. A
literature review was then conducted on previous studies
related to the safety hazards model. Subsequently, interviews
and Focus Group Discussions (FGD) were conducted with 5
stakeholders at PT PLN, including representatives from K3L,
and training centers in the transmission and distribution units.
The results of the interviews and FGDs were analyzed using
thematic analysis. Based on the literature review and FGD
results, the next step was the design of a conceptual model for
the development of the safety hazards model in the electricity
industry.

The next stage involved designing a questionnaire for the
development of the safety hazard model in the electricity
industry based on the latent variables identified in the
conceptual research model. After the questionnaire was
designed, data collection was carried out with 200 PDKB
operator respondents in the distribution units of PT PLN.

The data collected from the questionnaires were then
processed using the SEM PLS method with SMART-PLS 3
software. After obtaining the results of the model development,
a manual book was designed to measure the Key Performance
Indicators (KPIs) based on the significant latent variables in
the model. The process of designing the manual book will be
tested to measure the KPIs of PDKB workers in the Unit
Pelaksana Pendidikan dan Pelatihan (UPDL) in Semarang.
The trial process for evaluating KPIs based on the manual
book design will be conducted over a period of one month with
30 PDKB operators.

After the trial phase, validity tests will be performed on the
KPI results with the designed manual book. Following that, a
difference test will be conducted to test the significance of the
results between the newly designed manual book and the
existing manual book. The research flowchart and
continuation of research flowchart can be seen as Figures 4
and 5 below.
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4. DISCUSSIONS AND IMPLICATIONS

At the data collection stage of this study, several results
were obtained from interviews, Focus Group Discussions
(FGDs), and the collection of research questionnaire data.

4.1 Validity test

At the initial stage of questionnaire distribution, data were

collected from 36 respondents, which were subsequently used
for the validity and reliability testing of the questionnaire.
These tests were conducted to ensure that the strength and
clarity of the questionnaire items were well understood by the
research respondents. The valiSdity test was performed using
correlation analysis with a confidence level of 95%. The
results of the questionnaire validity test in this study are
presented in Table 2. Based on the validity test results, 42
questionnaire items were found to be valid, while 2 items—
namely indicators PC1 and EC5—were found to be invalid.
The invalid items were subsequently removed from the
research questionnaire.

Table 2. Results of the validity test of the questionnaire

Factor Indicator - r-table  Description
count
Safety SH1 0391  0.329 Valid
Hazards
SH2 0444  0.329 Valid
SH3 0.693  0.329 Valid
SH4 0.741  0.329 Valid
SH5 0.841  0.329 Valid
Safety el 0.830  0.329 Valid
Climates
SC2 0732 0.329 Valid
SC3 0.796  0.329 Valid
SC4 0.566  0.329 Valid
SC5 0.846  0.329 Valid
Safety Risk SR1 0.586  0.329 Valid
SR2 0732 0.329 Valid
SR3 0.606  0.329 Valid
SR4 0.580  0.329 Valid
SRS 0.736  0.329 Valid
Safety Factors SF1 0.723 0.329 Valid
SF2 0.874  0.329 Valid
SF3 0.879  0.329 Valid
SF4 0.684  0.329 Valid
SF5 0.775  0.329 Valid
Accident AHI1 0739 0.329 Valid
History
AH2 0918  0.329 Valid
AH3 0.901  0.329 Valid
AH4 0.604  0.329 Valid
Health .
: HHI 0.543  0.329 Valid
History
HH2 0.815  0.329 Valid
HH3 0.903  0.329 Valid
HH4 0.866  0.329 Valid
Personal PCI 0256 0329  No Valid
Component
PC2 0.603  0.329 Valid
PC3 0.660  0.329 Valid
PC4 0.749  0.329 Valid
PCS5 0712 0.329 Valid
Environmenta  p ) 0.672  0.329 Valid
1 Component
EC2 0.658  0.329 Valid
EC3 0.699  0.329 Valid
EC4 0.749  0.329 Valid
EC5 0.027  0.329 No Valid
Organizationa o 589 0,329 Valid
1 Component
0C2 0.745  0.329 Valid
0C3 0.578  0.329 Valid
0C4 0719  0.329 Valid
0Cs 0.644  0.329 Valid
0C6 0.573  0.329 Valid




The validity test is conducted to examine whether the
indicators of the statements in the measurement tool or
questionnaire are valid or not, using the product-moment
correlation. If the indicators are valid, they will be used for
subsequent research, and if not, those indicators can be
disregarded or removed from the questionnaire. The decision
of whether the indicators are valid or not is based on the
comparison between the calculated r-value (r-hitung) and the
critical r-value (r-tabel), or the p-value. An indicator is
considered valid if the correlation coefficient r-hitung > r-tabel
or the p-value <0.05. For N=36 (df=N-2=34), the r-tabel value
is 0.329. The validity test results show that there are indicators
that are invalid, namely PC1 and ECS in Table 2.

4.2 Reliability test

The reliability test used in this research is the Cronbach's
Alpha statistical test. Table 3 shows the results of the reliability
test for all indicators in the variables used in this research,
which are acceptable. This is in line with Ghozali's statement
that a construct or variable is considered reliable if the
Cronbach's Alpha value is greater than 0.60. The results
indicate that all variables are reliable, as the Cronbach's Alpha
values for each variable are greater than 0.60.

Table 3. Reliability test results of the questionnaire

. Cronbach's N of .
Variable Alpha Items Descripton
Safety Hazards 0.622 5 Reliabel
Safety Climates 0.810 5 Reliabel
Safety Risk 0.611 5 Reliabel
Safety Factors 0.803 5 Reliabel
Accident History 0.801 4 Reliabel
Health History 0.805 4 Reliabel
Personal Component 0.641 4 Reliabel
Environmental 0.658 4 Reliabel
Component
Organizational 0.705 6 Reliabel
Component

4.3 Structural Equation Modeling-Partial Least Square
(SEM-PLS) data processing

The survey data collected in this study, consisting of 203
respondents, were processed and analyzed using the Structural
Equation Modeling (SEM) method with a Partial Least Square
(PLS) approach. According to Hair et al. [25, 32], PLS is an
alternative SEM method used to address complex variable
relationships and serves as a highly suitable analytical tool for
theory development. In exploratory research such as this, the
SEM-PLS method is particularly useful as it helps generate
more insightful findings [25]. Furthermore, SEM-PLS is more
appropriate in this context because it does not require specific
assumptions regarding sample size or data distribution [33].
The software used for the analysis was SmartPLS 4.0.

4.4 Measurement model evaluation

The evaluation of the measurement model involves several
requirements that must be met, including convergent validity,
reliability, and discriminant validity. A measurement model is
considered to meet the criteria for convergent validity when
each indicator has an outer loading value above 0.50 and each
construct has an Average Variance Extracted (AVE) value of
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0.50 or higher [23]. The AVE value represents the average of
the squared loadings of a set of indicators associated with a
construct. In short, an AVE value of 0.50 indicates that the
construct is able to explain more than half of the variance of
its indicators [23].

Figure 6 shows that some indicators have outer loading
values below 0.50 and some constructs have AVE values less
than 0.50, indicating that these constructs do not meet the
requirements for convergent validity. In addition, there are
constructs with Composite Reliability (CR) and Cronbach’s
Alpha values below 0.7, meaning that these constructs do not
yet meet the criteria for construct reliability. To fulfill the
criteria for convergent validity and reliability, indicators that
do not meet the required thresholds need to be removed from
the model. The construct reability table can be seen in Tables
4 and 5 as below;
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Table 4. Construct reliability and validity of the initial SEM-

PLS model
Indico Outer Cronba C(;glepo
Construct Loadin AVE ch's 1
tor g Alpha Re.llabll
ity
SH 1 0.538 0.424 0.654 0.782
Safety SH 2 0.528
Hazards SH 3 0.607
SH 4 0.767
SH 5 0.772
SC1 0.802 0.533 0.781 0.850
SC2 0.713
Safet
Climat}f/: . SC3  0.665
SC4 0.659
SC5 0.798
SR 1 0.514 0.525 0.772 0.844
Safety SR 2 0.845
Risk SR 3 0.712
SR 4 0.729
SR 5 0.782
SF 1 0.688 0.544 0.783 0.853
Safety SF 2 0.873
Factors SF 3 0.867
SF 4 0.582
SF 5 0.628
Personal PA 1 0.750 0.655 0.782 0.850
Attributes PA 2 0.813
PA3 0.860
AH 1 0.726 0.543 0.719 0.826
Accident AH?2 0.785
History AH 3 0.754
AH 4 0.679
HH 1 0.646 0.612 0.782 0.861
Health HH 2 0.690
History HH 3 0.890
HH 4 0.871
Personal PC1 0.204 0.504 0.640 0.778
Compone PC2 0.800
n‘t’ PC3  0.799
PC4 0.833

Table 5. Construct reliability and validity of the initial SEM-
PLS model (continued)

Compo
Indicat Outel: AV Cronba site
Construct Loadi ch's . .
or n E Alpha Reliabil
g p ity
. EC1 0.244 0.39 0.386 0.669
Environmen 4
tal EC2 0.856
Component EC 3 0.845
EC4 0.266
0.39
oC1 0.042 5 0.698 0.763
Organizatio 0oC2 0.702
nal 0oC3 0.737
Component oCc4 0.869
OoC5 0.574
0C 6 0.497

After conducting several measurement model evaluations,
the final SEM-PLS model was obtained. The iteration process
went through three stages to achieve a valid model. Table 6
shows that the outer loading values for each indicator range
from 0.584 to 0.904, and the AVE values for each construct
range from 0.534 to 0.782, indicating that the model meets the
requirements for convergent validity. In addition, Cronbach’s
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Alpha and Composite Reliability (CR) were used to assess the
internal consistency reliability of each construct. Based on
Table 1V.8, both the Composite Reliability (CR) and
Cronbach’s Alpha values exceed 0.7, indicating that the
constructs meet the criteria for reliability [23].

Table 6. Reliability and validity of constructs in the final
SEM-PLS model

Outer Cronba

Contru e i AvE e o
g Alpha
Safety  SH3 0703 0.633 0709 0.837
Homarys  SH4 0829
SH5  0.847
SC1 0801 0534 0781 0.850
SC2  0.720
Safet
Climaés SC3  0.672
SC4  0.652
SC5  0.795
SR2 0826 0602 0.779 0.858
Safety SR3  0.722
Risk  SR4 0757
SR5  0.795

After conducting several measurement model evaluations,
the final SEM-PLS model was obtained. The iteration process
went through three stages to achieve a valid model. Table 6
shows that the outer loading values for each indicator range
from 0.584 to 0.904, and the AVE values for each construct
range from 0.534 to 0.782, indicating that the model meets the
requirements for convergent validity. In addition, Cronbach’s
Alpha and Composite Reliability (CR) were used to assess the
internal consistency reliability of each construct. Based on
Table IV.8, both the Composite Reliability (CR) and
Cronbach’s Alpha values exceed 0.7, indicating that the
constructs meet the criteria for reliability [23].

4.5 Discriminant validity testing

Discriminant validity testing was conducted based on the
recommendation of Fornell and Larcker [24], which involves
comparing the square root of AVE values with the correlations
between constructs. Tables 6 and 7 show that the square root
of each construct’s AVE is greater than its correlations with
other constructs, indicating that the model satisfies the criteria
for discriminant validity.

In addition, discriminant validity was also assessed using
the HTMT (Heterotrich - Monetarist Ratio) method. The
HTMT test calculates the ratio between the correlations across
constructs (heterotrich) and the correlations within the same
construct (monorail), as estimated from the PLS model. The
recommended HTMT threshold is below 0.90 [25]. If the
HTMT value between two constructs is less than 0.90, the
constructs are considered to have good convergent consistency
and can be distinguished from one another. The results in
Table IV.10 show that the HTMT values between all construct
pairs are below 0.90, leading to the conclusion that all
constructs meet the requirements for discriminant validity.

4.6 Hypothesis testing

The structural model evaluation was carried out to test the
research hypotheses. The bootstrapping procedure was
conducted with 5,000 resamples using SmartPLS 4.0 software
[26]. The quality of the structural model was assessed by
testing the coefficient of determination (R?), predictive
relevance (Q?), and path coefficients [23]. This study tested 11



directional hypotheses using a one-tailed test at a 5%
significance level. The last SEM-PLS flowchart can be seen as
Figure 7 below:

The results in Table 8 are summarized as follows:

Hypothesis H1 is accepted, indicating that safety factors
have a positive influence on safety climate (B = 0.338, p =
0.000). This means that the better the safety factors, the higher
the safety climate.

Hypothesis H2 is rejected, meaning that improvements in
personal attributes do not significantly influence safety climate,
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as indicated by a p-value of 0.137, which is greater than 0.05.

Hypothesis H3 is accepted, showing that accident history
has a positive influence on safety climate (B = 0.177, p =
0.004). Better accident history leads to improved safety
climate.

Hypothesis H4 is rejected, suggesting that health history
does not significantly affect safety climate (p =0.110 > 0.05).

Hypothesis HS is also rejected, indicating that personal
component does not significantly affect safety climate (p =
0.074 > 0.05).
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Figure 7. Last SEM-PLS

Hypothesis H6 is accepted, showing that personal
component has a positive influence on safety risk (B = 0.179,
p = 0.014). This means that stronger personal components are
associated with higher safety risk.

Hypothesis H7 is accepted, indicating that environmental
component positively affects safety risk (B =0.277, p = 0.000).
Better environmental components are linked to increased
safety risk.

Hypothesis HS8 is rejected, suggesting that organizational
component does not significantly affect safety risk (p =0.262 >
0.05).

Hypothesis H9 is accepted, indicating that safety climate
positively influences safety hazards (fp = 0.581, p = 0.000). A
higher safety climate leads to an increase in safety hazards.

Hypothesis H10 is rejected, showing that safety climate
does not significantly affect safety risk (p = 0.112 > 0.05).

Hypothesis H11 is also rejected, meaning that safety
hazards do not significantly affect safety risk (p = 0.126 >
0.05).

Hypothesis H1 is accepted, indicating that safety factors
have a positive influence on safety climate (f = 0.338, p =
0.000). This means that the better the safety factors—such as
availability of safety equipment, training programs, clear
safety procedures, effective supervision, and open
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communication—the higher the safety climate in the
workplace. Safety factors measured by indicators SF1, SF2,
SF3, SF4, and SFS5 significantly contribute to creating a safer
work environment by promoting employees’ perception of
organizational commitment to safety and encouraging safe
behavior.

From a theoretical perspective, this finding aligns with the
Safety Culture Theory and Organizational Climate Theory,
which emphasize that tangible safety measures and
management’s visible commitment to safety are critical in
shaping employees’ shared perceptions about workplace
safety. When employees see that safety resources and
protocols are adequately provided and consistently enforced,
they develop trust and confidence in the organization’s safety
priorities. This positive safety climate fosters collective
responsibility and motivates individuals to adhere to safety
standards, reducing workplace accidents and injuries.

Practically, this result highlights the importance of
continuous improvement in safety infrastructure, training
quality, and communication channels to sustain a positive
safety climate. Organizations should invest in regular safety
audits, refreshers, and employee engagement to ensure these
safety factors are effectively maintained and perceived by all
workers.



Hypothesis H2 is rejected, meaning that improvements in
personal attributes do not significantly influence safety climate,
as indicated by a p-value of 0.137, which is greater than the
significance threshold of 0.05. Personal attributes measured by
indicators such as age, work experience, and last education
level do not have a significant effect on safety climate.

This suggests that safety climate is predominantly shaped
by organizational factors and safety management practices
rather than by individual employee characteristics. According
to Social Cognitive Theory, safety climate is a collective

perception influenced mainly by shared experiences,
leadership behavior, and organizational policies rather than
demographic differences among employees. Individual factors
like age or education may affect personal behavior or risk
perception but do not substantially alter the overall workplace
safety climate.

The final SEM-PLS Flowchart can be seen in Figure 8 as

below:

Table 7. Reliability and validity of constructs in the final SEM-PLS model (continued)

Construct Indicator Outer Loading AVE Cronbach's Alpha Composite Reliability
SF 1 0.687 0.544 0.783 0.853
SF 2 0.873
Safety Factors SF 3 0.867
SF 4 0.584
SF 5 0.627
PA 1 0.747 0.653 0.782 0.849
Personal Attributes PA2 0.811
PA3 0.863
AH 1 0.727 0.543 0.719 0.826
. . AH?2 0.785
Accident History AH 3 0.755
AH 4 0.677
HH 1 0.646 0.612 0.782 0.861
. HH 2 0.691
Health History HH 3 0.891
HH 4 0.872
PC2 0.795 0.659 0.742 0.853
Personal Component PC3 0.804
PC4 0.836
Environmental EC2 0.904 0.782 0.723 0.878
Component EC3 0.865
oC2 0.695 0.535 0.726 0.819
Organizational 0C3 0.727
Component 0oC4 0.877
OC 5 0.599
Table 8. Hypothesis testing results
Paths p-value S.D t-value p-values Description
H1 Safety Factors -> Safety Climates 0.338  0.080 4.215  0.000%** accepted
H2 Personal Attributes -> Safety Climates 0.083 0.076 1.096 0.137 denied
H3 Accident History -> Safety Climates 0.177  0.067 2.635  0.004** accepted
H4 Health History -> Safety Climates 0.071  0.058 1.229 0.110 denied
H5 Personal Component -> Safety Climates 0.118 0.081 1.450 0.074 denied
H6 Personal Component -> Safety Risk 0.179  0.081  2.198 0.014%* accepted
H7  Environmental Component -> Safety Risk ~ 0.277  0.082  3.374  0.000** accepted
H8  Organizational Component -> Safety Risk  -0.052  0.082  0.636 0.262 denied
H9 Safety Climates -> Safety Hazards 0.581  0.058 10.094 0.000%** accepted
H10 Safety Climates -> Safety Risk 0.097 0.080 1.216 0.112 denied
H11 Safety Hazards -> Safety Risk 0.084 0.074 1.145 0.126 denied

Note: ** significant p-value < 0.01; * significant p-value < 0.05

Figure 8. Final T-statistic values of SEM-PLS
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From a practical standpoint, this finding underscores the
need for organizations to focus their safety efforts on systemic
interventions, such as improving management commitment,
strengthening safety communication, and implementing
consistent safety policies, instead of relying on employee
demographics to predict or improve safety climate. By
targeting organizational-level changes, companies can create
an inclusive and effective safety environment that benefits all
employees regardless of their individual backgrounds.

4.7 Predictive model

The level of variance in the endogenous variables that can
be explained by the exogenous variables is overall explained
by R2. According to Cohen (1988), there are three criteria for
R? values: weak (R? ranges from 0.02 to 0.13), moderate (R?
ranges from 0.13 to 0.26), and substantial (R? greater than
0.26). Based on Table 9 the model explains 28.9% of the
variance in safety climate, 33.8% of the variance in safety
hazards, and 17.3% of the variance in safety risk, with the
remainder explained by variables outside the model. The
results of this study indicate that the safety climate and safety
hazards models fall into the substantial category, while the
safety risk model falls into the moderate category.

Next, using the blindfolding method to assess the predictive
relevance (Q?), which measures how well the observed values
are predicted by the model and its parameter estimates, Table
9 shows Q? values ranging from 0.076 to 0.308. A Q? value
greater than 0 indicates that the model has good predictive
relevance [26].

Table 9. Amount R? and Q?
R2 Qz
Safety Climates 0.289  0.135
Safety Hazards 0.338  0.206
Safety Risk 0.173  0.083

The results of this study provide a comprehensive view of
the critical factors that influence workplace safety in
Indonesia’s electricity industry, particularly in distribution
units. The structural equation modeling (SEM-PLS) analysis
confirms the significant influence of personal competence
(PC), safety climate (SC), equipment condition (EC), and
management commitment (MC) on safety hazard risk.

These findings are consistent with the study by Baby et al.
[9] which highlighted how personal and organizational
factors—such as competence and safety awareness—directly
correlate with the likelihood of workplace accidents. The
current research reinforces this by demonstrating that personal
competence and safety climate are among the strongest
predictors of safety hazard levels. The model further reveals
that management commitment mediates the influence of other
variables, underscoring the importance of leadership in
fostering a culture of safety.

The significance of equipment condition (EC) also aligns
with findings by Castillo-Rosa et al. [7] who emphasized the
role of technical compliance and regular maintenance in
preventing high-severity accidents. However, in the
Indonesian context, limited resources and uneven regulatory
enforcement make consistent equipment maintenance a
continuing challenge. Therefore, the study emphasizes the
need for clear technical standards and centralized asset audits.

From a practical perspective, this model has been translated
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into a KPI-based safety manual that can be integrated into
PLN’s distribution units. This manual is designed to assist
field supervisors in monitoring, evaluating, and improving
worker behavior and hazard mitigation in real-time. Unlike
traditional static manuals, this KPI approach allows dynamic
adjustment based on measurable performance indicators.

Enhance Technical and Behavioral Training: Based on the
significance of personal competence, electricity companies
should prioritize targeted training that includes both technical
certification and behavioral safety simulations. and strengthen
management engagement with leadership training should be
expanded for managerial roles to foster a more proactive safety
climate. This includes regular feedback sessions, site visits,
and worker recognition programs.

5. CONCLUSIONS
5.1 Validity test

The decision on whether an indicator is valid or not is based
on the comparison between the calculated r-value (r-count)
and the critical r-value (r-table), or based on the probability
value (p-value). An indicator is considered valid if the
correlation coefficient r-count > r-table or if the p-value < 0.05.
For N=36 (df=N-2=34), the r-table value is 0.329. The results
of the validity test show that there are indicators that are not
valid, namely PC1 and ECS.

5.2 Reliability test

The reliability test used in this study is the Cronbach's Alpha
statistical test. Table 2 shows that the reliability test results for
all indicators of the variables used in this study are acceptable.
Furthermore, the overall level of measurement is also
acceptable, in accordance with Ghozali, who stated that a
construct or variable is considered reliable if the Cronbach’s
Alpha value is greater than 0.60 [34]. The results indicate that
all variables are reliable, as shown by Cronbach’s Alpha
values > 0.60 for each variable.

Despite the rigorous validity and reliability testing, this
study has several limitations. The relatively small sample size
(N=36) may limit the generalizability of the findings to the
broader population of PDKB operators. Additionally, the
invalid indicators (PC1 and EC5) suggest potential issues with
some questionnaire items that require refinement. Future
research should consider larger and more diverse samples to
enhance representativeness and statistical power. Moreover,
qualitative methods could be incorporated to explore in-depth
factors influencing safety performance that are not fully
captured by the current model. Further development of the
measurement instrument is also necessary to improve indicator
validity. Finally, longitudinal studies are recommended to
assess the predictive power of the model over time and
evaluate the effectiveness of implemented safety interventions.
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