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The electricity industry is a sector with high workplace safety risks, particularly for PDKB 

(Live Working) operators. This study aims to develop a safety hazards prediction model 

for the electricity industry in Indonesia using the Human-Computer Interaction (HCI) 

approach. The research stages begin with field observations, literature reviews, and 

interviews, followed by a Focus Group Discussion (FGD) with five stakeholders from PT 

PLN. The results of the interviews and FGDs were analyzed thematically to design a 

conceptual model, which was then used as the basis for the development of a 

questionnaire. The questionnaire was distributed to 200 PDKB operators in the 

distribution unit of PT PLN. The collected data were analyzed using the SEM-PLS 

(Structural Equation Modeling - Partial Least Squares) method through SmartPLS 3 

software. Based on the analysis results, a manual book for measuring Key Performance 

Indicators (KPIs) based on significant latent variables was developed. This manual was 

tested with 30 PDKB operators in the UPDL Semarang for one month, followed by 

validity and difference tests against the existing manual book. The results of the study 

show that the developed prediction model is capable of identifying significant factors 

influencing potential hazards and can be used as the basis for more targeted workplace 

safety interventions in Indonesia's electricity industry. While the model demonstrates 

strong predictive capability, the study is limited by its focus on a single state-owned 

enterprise and may not fully represent the diversity of working conditions across the 

industry. Future research should consider broader sampling across different regions and 

organizational types, as well as integrating real-time data and digital monitoring systems 

to enhance model adaptability and precision in dynamic field environments. 

Keywords: 

safety hazards in the electricity industry, 

development Human-Computer Interaction 

(HCI), SEM-PLS, workplace safety, prediction 

models 

1. INTRODUCTION

The electricity sector is one of the key sectors that supports 

Indonesia’s economic growth, which also brings many 

challenges, particularly regarding Occupational Health and 

Safety (OHS) in the electricity industry. The scope of the 

electricity industry includes the expansion of power plants, 

distribution, and electricity sales. The power plants in 

Indonesia consist of both PLN (State Electricity Company) 

plants and several non-PLN power plants. The electricity 

supply in Indonesia has seen a significant increase, from 

62,202.94 MW in 2017 to 72,750.72 MW in 2020 [1]. The 

electricity industry serves as the backbone for providing 

critical energy to various sectors, yet the potential impacts on 

worker health and safety in this industry require serious 

attention. 

Three main factors that impact accidents in the electricity 

industry are unsafe equipment, unsafe working environments, 

and hazardous operating procedures, according to the 

Occupational Safety and Health Administration (OSHA) 

scenario analysis [2]. The potential electrical hazards are quite 

complex and diverse, so dealing with these dangers is closely 

related to several factors, one of which is the skill and 

experience of the workers [3]. Work accidents related to 

electricity can have significant impacts on the productivity of 

the electricity industry and affect workers. According to 

OSHA data, 86% of losses in production, transmission, and 

distribution are caused by electricity, leading to a loss of 

12,976 workdays per year [4]. Data from the National Institute 

for Occupational Safety and Health (NIOSH) shows 244 

accidents consisting of five scenarios of electrical accident 

cases, including electrical network equipment (21%), contact 

with electrical networks (18%), damaged electrical network 

equipment (17%), and contact between conductive equipment 

and power lines (16%) [5]. 

Several previous studies have attempted to manage OHS 

risks in the electricity industry. Albert and Hallowell [6] 

evaluated OHS management using a cost and benefit approach 

in the construction industry in the United States. The results of 

this study showed that there were several effective strategies 

to reduce injuries from accidents caused by transmission and 

distribution maintenance, although these strategies had very 

high costs. Castillo-Rosa et al. [7] stated that in three types of 

activities—primary, secondary, and tertiary sectors in Spain—
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the impacts of electrical accidents, whether directly or 

indirectly, would result in differences. Electrical accidents can 

lead to a high proportion of severe and fatal accidents. 

Strategies that can be implemented include ensuring that the 

installation and equipment used comply with laws regarding 

protection against electrical contact. Wang et al. [8] developed 

a lightweight, accurate, and efficient safety hazard detection 

model based on MobileNet to detect safety hazards in critical 

resource locations. The data used in this model consists of 

1,440 photo data points, including the conditions of power 

plants in normal operation and related facilities.  

Furthermore, the study by Baby et al. [9] indicates a 

relationship between personal factors, safety climate, and 

workers' health conditions with work-related accidents in 

India. Some measures that need to be implemented to reduce 

personal issues in the workplace include awareness of safety 

participation, knowledge, and safety training. Workers with 

low educational backgrounds in India were found to have 

lower safety climate factor scores, highlighting the importance 

of technical qualifications for high-risk jobs like those in the 

electricity industry. The study by Sadeghi-Yarandi et al. [10] 

developed the Electrical Industry Safety Risk Index (EISRI) 

for the electricity distribution industry. Based on three 

components—personal, environmental, and organizational 

aspects—the personal aspect showed a significant impact of 

human factors in work activities. The results of the EISRI 

development can be used for risk control, especially in 

developing countries with lower risk management 

performance. 

By understanding the unique context of the electricity 

industry in Indonesia, the development of a safety hazards 

model in the electricity industry is not only a necessity to 

comply with regulations but also a genuine effort to protect 

invaluable human resources and support the sustainable 

growth of the vital electricity sector, which is critical for the 

future of Indonesia’s economy. The developed safety hazard 

model for the electricity industry, particularly for distribution 

unit operators, can serve as a reference to create interventions 

that are suitable for the existing conditions in Indonesia’s 

electricity industry. This research focuses on developing a 

safety hazard prediction model for the electricity industry in 

Indonesia using human-computer interaction. 

Specifically, this study contributes by designing a predictive 

model that integrates qualitative insights from field 

observations and stakeholder discussions with quantitative 

analysis using Structural Equation Modeling (SEM-PLS). The 

proposed model identifies key latent variables that influence 

hazard risk and enables the creation of a practical KPI-based 

safety manual. This manual can serve as a tool for real-time 

performance assessment and targeted safety interventions in 

PLN’s distribution units. Thus, the study not only adds to the 

academic discourse on safety management but also offers 

actionable strategies for improving occupational safety in 

Indonesia’s electricity sector. 

2. LITERATURE REVIEW

2.1 Occupational Health and Safety (OHS) 

Occupational Health and Safety (OHS) is a fundamental 

requirement for both Micro, Small, and Medium Enterprises 

(MSMEs) as well as large companies in conducting their 

business operations. The purpose of implementing 

Occupational Health and Safety is to maintain the health and 

safety of the work environment and to protect coworkers, 

employees' families, consumers, and others who may also be 

affected by the work environment. This is because OHS is 

closely related to the outcomes of production. Every industry 

must be able to reduce the risks of accidents and occupational 

diseases to prevent decreased production productivity [11]. 

Occupational Health and Safety (OHS) is crucial for moral, 

legal, and financial reasons. Every organization has the 

obligation to ensure that workers and others involved remain 

in a safe condition at all times. Occupational Health and Safety 

practices include prevention, sanctions, and compensation, as 

well as wound healing and care for workers, providing health 

care, and sick leave. Efforts for safety include conditions that 

can lead to death, illness, or stress, both in the workplace and 

at home. Health is related to the employee being free from 

physical or non-physical illnesses [12]. 

Work safety is the protection effort carried out by the 

company to prevent employees from experiencing work-

related accidents while performing their tasks. This protection 

is provided for physical, mental, and social well-being, with 

preventive measures against health problems or disorders 

caused by work and environmental factors, as well as common 

diseases that could cause harm or loss in the workplace. Work 

safety is the state in which employees are safe and free from 

accidents while performing their duties. As a result, employees 

can complete their work as planned and improve their 

performance [13]. 

2.2 Safety hazards 

Safety hazards (bahaya keselamatan) are potential risks 

posing threats to safety. Worker safety in the workplace, 

especially in industries that involve various high-risk activities, 

is crucial. These hazards can include physical accidents, 

exposure to hazardous chemicals, or even ergonomic factors 

that affect workers' long-term health. Safety hazards need to 

be well-managed to prevent injuries or accidents that could 

harm both the company and the workers. Therefore, proper 

identification of potential hazards is essential in creating a 

safer work environment [14]. 

Risk management is the primary approach used to identify 

and manage safety hazards in industries. As an initial step, 

companies need to conduct a thorough hazard identification, 

followed by risk analysis and the implementation of mitigation 

measures. Effective risk management not only reduces the 

potential hazards but also increases safety awareness among 

workers. With a deep understanding of the existing risks, 

preventive measures can be applied to avoid accidents that 

may occur [14]. 

Technology also plays an important role in managing safety 

hazards, especially with advancements in automation systems 

and data analysis. The use of Human-Machine Interface (HMI) 

systems, for example, allows operators to monitor operational 

conditions in real-time and detect potential hazards before they 

become major issues. Technologies such as automated sensors 

and data-based monitoring systems can detect risks early and 

provide quick responses, which in turn helps reduce accidents 

and improve operational efficiency. These technologies also 

enable stricter monitoring of high-risk processes [15]. 

Workplace safety culture also plays a critical role in 

managing safety hazards. In this regard, creating a strong 

safety culture encourages workers to be more concerned about 

their own safety as well as the safety of their colleagues. 
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Organizations that instill safety values in their workplace 

culture are more likely to succeed in reducing accidents and 

improving compliance with safety procedures. With 

heightened awareness and responsibility, workers will be more 

proactive in attending safety training and following 

established procedures, thus creating a safer work 

environment [16]. 

2.3 Human Computer Interaction 

Based on the Encyclopedia Britannica, Human-Computer 

Interaction (HCI) is an interdisciplinary field that studies how 

to design optimal interactions between users and computers, 

as well as developing interfaces that support these interactions. 

HCI encompasses the communication process between 

humans and computers in specific ways, using interaction 

languages to complete particular tasks [17]. 

As an interdisciplinary field, HCI involves various 

disciplines such as computer science, psychology, sociology, 

graphic design, and industrial design. Over time, HCI has 

transformed from manual activities to web-based interfaces 

and multimodal intelligent interaction systems. Current 

research in this field focuses on various aspects, including user 

personalization, embedded computing, augmented reality, 

social computing, knowledge-based interaction, emotion-

based interaction, and brain-computer interfaces [3]. These 

developments have had a significant positive impact on the 

quality of human life. 

Human-Computer Interaction (HCI) is a multidisciplinary 

field that continues to evolve, encompassing various 

disciplines such as computer science, industrial design, 

psychology, behavioral science, organizational behavior, and 

physiology. Since the concept of HCI was first applied to 

hazard recognition in the construction sector, many new 

research topics requiring a cross-disciplinary understanding 

have emerged. However, as the number of scientific 

publications in this field increases, manual analysis of the 

literature becomes impractical. The large volume of 

documents to be reviewed creates a substantial workload, 

often leading researchers to spend significant time and effort 

just to identify research focuses and classify the literature 

correctly. Moreover, the subjective classification process 

conducted by researchers is highly prone to human error, 

which can result in discrepancies between the findings in the 

literature review and the actual conditions [18]. 

Traditionally, hazard recognition relied on manual 

monitoring, traditional human resource management, and 

post-incident analysis. However, modern approaches focus 

more on risk prediction, accident prevention, deep learning, 

intuitive devices based on brain waves and eye movements, 

and multimodal data processing. Therefore, topics arising 

from the application of human-computer interaction are 

closely related to technologies such as virtual reality, 

augmented reality, computer vision, and computer simulation. 

After formulating the CHR-HCI (Construction Hazard 

Recognition–Human–Computer Interaction) framework, 

future research directions can be determined more 

systematically. 

2.4 Safety management in Indonesia 

The electricity sector in Indonesia poses significant safety 

challenges, prompting increased research on effective 

occupational safety and health (OSH) management strategies. 

Recent studies emphasize the adoption of formal safety 

management systems like SMK3 and ISO 45001 as crucial for 

enhancing workplace safety. Evidence from PT PLN 

Indonesia Power Barru shows that integrating these 

frameworks into routine practices helps reduce accidents and 

improve compliance [19]. The traditional hazard 

recognization can be seen as below in Figure 1. 

Figure 1. Traditional hazard recognition 
Source: Research trends of human-computer interaction studies in construction hazard recognition: A bibliometric review Wang et al. [18]
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Worker engagement and safety awareness are also pivotal. 

Research at PLTU Bolok Unit II highlights how employee 

attitudes and knowledge about safety directly affect adherence 

to safety protocols. This underscores the importance of 

ongoing training programs to foster a proactive safety culture 

within the workforce [20]. 

Risk management approaches have evolved to address both 

conventional electrical hazards and new challenges such as 

those emerging during the COVID-19 pandemic. Proactive 

risk identification and control measures tailored to power plant 

environments contribute to safer operations [21]. 

Technological innovation, particularly the use of Internet of 

Things (IoT) devices, is transforming safety practices by 

enabling real-time monitoring and quicker hazard response. 

These advancements align with Indonesia’s national OSH 

objectives, which aim to reduce workplace incidents through 

modernized safety solutions. 

Analyses of workplace accidents reveal that multiple 

factors—such as insufficient training, weak safety culture, and 

inadequate hazard controls—continue to cause incidents. This 

calls for targeted, data-driven safety interventions specific to 

the electricity industry’s context [22]. 

Additionally, studies from related sectors like electronic 

manufacturing offer valuable safety management methods that 

can be adapted to electricity operations. PT PLN’s 

commitment to safety, demonstrated through programs like 

the Contractor Safety Management System and the goal of 

“Zero Accidents,” reflects an industry-wide push toward 

stronger safety governance. 

Together, these studies suggest that a comprehensive 

approach—integrating system implementation, human factors, 

risk management, technology, and organizational 

commitment—is essential for improving safety performance 

and protecting workers in Indonesia’s electricity sector. 

2.5 Partial Least Square-Structural Equation Modelling 

(PLS-SEM) 

Partial Least Squares - Structural Equation Modeling (PLS-

SEM) is one of the SEM methods frequently used for theory 

development in exploratory research. PLS-SEM emphasizes 

explaining variance. In PLS-SEM, constructs are represented 

by proxies in the form of weighted composites of indicator 

variables related to the construct. Therefore, PLS-SEM is a 

composite-based SEM approach, reducing the reliance on the 

strict assumptions of CB-SEM that all covariation between 

groups of indicators must be explained by a common factor 

[23]. 

PLS-SEM has become increasingly popular in various 

fields of study due to its ability to handle data that is not 

normally distributed and highly complex models. PLS-SEM 

offers several advantages, such as not requiring many 

assumptions, being suitable for various data scales, and being 

applicable to small sample sizes. The minimum sample size 

for PLS-SEM can be determined by two rules: ten times the 

largest number of indicators used to measure a variable, and 

ten times the number of independent variables pointing to a 

dependent variable [23]. 

PLS-SEM has two main models: the inner model (structural 

model), which describes the relationships between latent 

variables, and the outer model (measurement model), which 

depicts the relationship between manifest variables and latent 

variables. In the measurement model, PLS uses principal 

component analysis (PCA) on the variance extraction blocks 

to observe the relationship between indices and latent 

variables through total variance, including common variance, 

specific variance, and total variance. This method falls under 

confirmatory factor analysis (CFA). The stages of using PLS 

are as follows [23]: 

1. Design the structural model (inner model)

2. Design the measurement model (outer model)

3. Create a path diagram

4. Convert the path diagram into a system of equations

5. Estimate the path diagram, loadings, and weights

6. Evaluate the model

7. Conduct hypothesis testing

The PLS analysis process can be performed using several 

software tools such as SmartPLS, VPLS, and PLSGUI. In this 

research, SmartPLS was used for data analysis, as this 

application allows users to apply measurement scales other 

than interval scales [23]. 

3. RESEARCH DESIGN

Workmap and design program 

The object of this study is the distribution unit of PT PLN 

(Persero). The subject of this research is the operators of Work 

in Energized Conditions (PDKB) at the distribution unit. The 

criteria for the subjects of this study include PDKB operators 

in the distribution unit who have at least 3 years of work 

experience, are aged between 25 and 45 years, and are in good 

physical and mental health. The workmap in this reserach can 

be seen in Figure 2 as below: 

Figure 2. Workmap 

The research plan has been thoroughly implemented, 

starting from the formulation of the research questions, 

searching and reviewing literature, designing engineering 

processes, calculating the required costs, and completing the 

production process and the required outputs. 

This study consists of 15 hypotheses based on a conceptual 

model. The hypotheses are categorized into causal hypotheses 

(direct effects) and mediation hypotheses (indirect effects). 

The details of the hypotheses are as follows: 

a. Causal Hypotheses (Direct Effect)

H1: Safety Factors positively affect Safety Climates.

Step 1

•Formulation of 
Studies and Field 
Studies

•Design & Engineering

•Calculating the Bill of 
Quantity

•Material Purchase

Step 2

•Material Purchase

•Machine Production and 
Fabrication

•Design testing and commissioning

•Publication

•Seminar/Webinar/Workshop

•Monitoring and evaluation
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H2: Personal Attributes positively affect Safety Climates. 

H3: Accident History positively affects Safety Climates. 

H4: Health History positively affects Safety Climates. 

H5: Personal Component positively affects Safety Climates. 

H6: Personal Component positively affects Safety Risk. 

H7: Environmental Component positively affects Safety Risk. 

H8: Organizational Component positively affects Safety Risk. 

H9: Safety Climates positively affect Safety Hazards. 

H10: Safety Climates positively affect Safety Risk. 

H11: Safety Hazards positively affect Safety Risk. 

b. Mediation Hypotheses (Indirect Effect)

H12: Safety Climates mediate the relationship between

Personal Component and Safety Risk.

H13: Safety Climates mediate the relationship between

Accident History and Safety Risk.

H14: Safety Climates mediate the relationship between Health

History and Safety Risk.

H15: Safety Hazards mediate the relationship between Safety

Climates and Safety Risk.

c. Reverse Causal Hypothesis

H16: Safety Hazards affect Safety Climates.

The survey data obtained in this study, comprising 203 

respondents, were processed and analyzed using the Structural 

Equation Modeling (SEM) method with a Partial Least 

Squares (PLS) approach. The initial stage in PLS-SEM 

involves the evaluation of the measurement model (outer 

model). The evaluation of the measurement model must meet 

several criteria, including convergent validity, reliability, and 

discriminant validity. The construct parameter for the 

questionnaire can be seen as Table 1 as below. 

A measurement model is said to meet the requirements for 

convergent validity when each indicator has an outer loading 

value above 0.50, and each construct has an Average Variance 

Extracted (AVE) value of 0.50 or more [23]. In addition, 

Cronbach’s Alpha and Composite Reliability (CR) are used to 

measure the internal consistency reliability of each construct. 

If the Composite Reliability (CR) and Cronbach’s Alpha 

values are greater than 0.70, the construct is considered to have 

met the reliability requirement [23]. 

Discriminant validity testing is then conducted based on the 

recommendation of Fornell and Larcker [24] by comparing the 

square root value of AVE with the correlation values between 

constructs. Another method used to test discriminant validity 

is the HTMT (Heterotrait-Monotrait ratio) approach. HTMT is 

calculated by taking the ratio between inter-construct 

correlations (heterotrait) and intra-construct 

correlatioF24(monotrait) estimated from the PLS model. The 

recommended HTMT value is below 0.90 [25]. If the HTMT 

value between two constructs is less than 0.90, the constructs 

are considered to have good convergent consistency and are 

distinguishable from each other. 

The next step is to evaluate the structural model (inner 

model) to test the research hypotheses. A bootstrapping 

procedure was conducted with 5000 resampling using 

SmartPLS 4.0 software [26]. The quality of the structural 

model was assessed using coefficient of determination (R²), 

predictive relevance (Q²), and path coefficients [27]. 

The coefficient of determination (R²) is used to measure the 

predictive accuracy of the model. Meanwhile, predictive 

relevance (Q²) evaluates how well the observed values and the 

model-generated parameters align. A Q² value greater than 0 

indicates that the model has good predictive relevance [26]. In 

addition, path coefficient testing was carried out to examine 

the research hypotheses. 

This study tested 11 hypotheses using a one-tailed test with 

a significance level of 5%. If the hypothesis testing results in 

a p-value < 0.05, the hypothesis is accepted; otherwise, if the 

p-value ≥ 0.05, the hypothesis is rejected.

The research hypotheses in new model can be seen as Figure

3 below.

Table 1. Contruct parameter 

No Variable Code Indicator Reference 

1 Safety Hazards SH 1 How often do you observe potential hazards such as malfunctioning 

tools or equipment that do not meet standards in the workplace 

during live-line electrical distribution maintenance? 

This Research 

SH 2 How often do you find work areas with poor lighting, inadequate 

ventilation, or other environmental conditions that may pose a risk of 

accidents? 

This Research 

SH 3 How often are employees at all levels encouraged to promptly report 

safety and health hazards as well as unsafe acts to their supervisors 

and/or safety contacts for follow-up action? 

Moore et al. [28] 

SH 4 How often are new equipment, tools, materials, and methods used in 

electrical network maintenance evaluated prior to purchase, 

implementation, and use to ensure they do not pose safety and health 

hazards during live-line maintenance? 

Moore et al. [28] 

SH 5 How often are safety inspections conducted regularly during live-line 

electrical network maintenance to identify unsafe acts, conditions, 

and hazards that may affect safety, and how are these hazards 

promptly eliminated or minimized? 

Moore et al. [28] 

2 Safety Climates SC 1 How often does management provide relevant information to ensure 

compliance with safety laws and regulations? 

Schüler and Matuszczyk 

[29] 

SC 2 How often does management listen to employees when conflicts arise 

related to safety regulations and workplace safety policies? 

Schüler and Matuszczyk 

[29] 

SC 3 How often does management ensure there are always opportunities to 

participate in physical training? 

Schüler and Matuszczyk 

[29] 

SC 4 How often do you feel that safety is an integral part of all training? Schüler and Matuszczyk 

[29] 

SC 5 How often do you believe that management has a good understanding 

of the safety regulations and policies governing live-line electrical 

Schüler and Matuszczyk 

[29] 
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network maintenance, as well as how these are applied during the 

work? 

3 Safety Risk SR 1 How often do you find qualified personnel or live-line maintenance 

(PDKB) operators making mistakes in the workplace? 
Wang et al. [30] 

SR 2 How often do you find a lack of electrical knowledge or legal 

operation of electrical equipment among fellow PDKB operators 

during live-line maintenance of the electrical network at the 

workplace? 

Wang et al. [30] 

SR 3 How often do you feel that the electrical equipment used during live-

line maintenance of the electrical network at the workplace is not 

routinely inspected? 

Wang et al. [30] 

SR 4 How often do you find illegal use of PDKB electrical equipment, 

resulting in circuit overloads and fires? 
Wang et al. [30] 

SR 5 How often do you find PDKB operators not wearing safety 

equipment when entering the worksite? 
Wang et al. [30] 

4 Safety Factors SF 1 How often do you make extra efforts to improve safety in the 

workplace? 
Arifin et al. [31] 

SF 2 How often do you know how to follow work procedures according to 

safety standards? 
Arifin et al. [31] 

SF 3 How often do you encourage your coworkers to work safely in the 

workplace? 
Arifin et al. [31] 

SF 4 How often do you always speak to company management if there are 

any issues related to workplace safety? 
Arifin et al. [31] 

SF 5 How often do you believe that occupational safety and health issues 

are important? 
Arifin et al. [31] 

5 Personal Attributes PA 1  How old are you? Baby et al. [9] 

PA 2 How long is your work experience? Baby et al. [9] 

PA 3 What is your highest level of education? Baby et al. [9] 

6 Accident History AH 1 How often have you experienced an accident in the past year? Baby et al. [9] 

AH 2 How often have you encountered major risks that caused accidents in 

the past year? 

This Research 

AH 3 How often have you encountered minor risks that caused accidents in 

the past year? 

This Research 

AH 4 How often have you nearly experienced a work-related accident in 

the past year? 

This Research 

7 Health History HH 1 How often have you suffered from an occupational disease in the past 

year? 

This Research 

HH 2 How often have you suffered from a non-work-related illness in the 

past year? 

This Research 

HH 3 How often have you experienced a minor illness in the past year? This Research 

HH 4 How often have you experienced a minor illness in the past two 

years? 

This Research 

8 Personal 

Component 

PC1 How often do you avoid rushing during your work shifts? Sadeghi-Yarandi et al. [10] 

PC2 How often are you aware of the skills and knowledge required to 

perform the duties of a PDKB operator? 
Sadeghi-Yarandi et al. [10] 

PC3 How often do you use personal and group protective equipment 

(PPE) in your work as a PDKB operator? 
Sadeghi-Yarandi et al. [10] 

PC4 How often are you aware that physical competence is required to 

perform the duties of a PDKB operator? 
Sadeghi-Yarandi et al. [10] 

9 Environmental 

Component 

EC 1 How often do you not encounter hazardous work situations in your 

role as a PDKB operator? 
Sadeghi-Yarandi et al. [10] 

EC 2 How often do you find old or worn-out equipment and work facilities 

in your role as a PDKB operator? 
Sadeghi-Yarandi et al. [10] 

EC 3 How often do you find personal and group protective equipment 

available in your role as a PDKB operator? 
Sadeghi-Yarandi et al. [10] 

EC 4 How often do you feel that the current working environment as a 

PDKB operator is beneficial to you? 
Sadeghi-Yarandi et al. [10] 

10 Organizational 

Component 

OC 1 How often do you not experience excessive time pressure while 

performing tasks as a PDKB operator? 
Sadeghi-Yarandi et al. [10] 

OC 2 How often do you find the necessary equipment, facilities, and 

knowledge for a PDKB operator available in the current workplace? 
Sadeghi-Yarandi et al. [10] 

OC 3 How often do you participate in risk identification and risk 

assessment programs at your current workplace? 
Sadeghi-Yarandi et al. [10] 

OC 4 How often do you feel that design, planning, organized 

responsibilities, and supervision from the company are present at this 

workplace? 

Sadeghi-Yarandi et al. [10] 

OC 5 How often do you perceive the company’s concern for safety and the 

tendencies of supervisors and the company regarding working hours 

and economic issues? 

Sadeghi-Yarandi et al. [10] 

OC 6 How often do you experience monitoring, inspections, and audits 

conducted by the company? 
Sadeghi-Yarandi et al. [10] 
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Safety Hazards 

Environmental 
Component

Organizational 
Component

Safety Risk

Safety Factors

Personal Attibutes

Accident History 

Personal Component

Health history

Safety 
Climates

H1
H2

H3

H4

H5

H6

H7

H8

H9

H10
H11

Figure 3. The research hypotheses of the new model 

These hypotheses are designed to explore the relationships 

between various factors influencing safety in the workplace, 

particularly in the context of PT PLN's distribution unit. A 

literature review was then conducted on previous studies 

related to the safety hazards model. Subsequently, interviews 

and Focus Group Discussions (FGD) were conducted with 5 

stakeholders at PT PLN, including representatives from K3L, 

and training centers in the transmission and distribution units. 

The results of the interviews and FGDs were analyzed using 

thematic analysis. Based on the literature review and FGD 

results, the next step was the design of a conceptual model for 

the development of the safety hazards model in the electricity 

industry. 

The next stage involved designing a questionnaire for the 

development of the safety hazard model in the electricity 

industry based on the latent variables identified in the 

conceptual research model. After the questionnaire was 

designed, data collection was carried out with 200 PDKB 

operator respondents in the distribution units of PT PLN. 

The data collected from the questionnaires were then 

processed using the SEM PLS method with SMART-PLS 3 

software. After obtaining the results of the model development, 

a manual book was designed to measure the Key Performance 

Indicators (KPIs) based on the significant latent variables in 

the model. The process of designing the manual book will be 

tested to measure the KPIs of PDKB workers in the Unit 

Pelaksana Pendidikan dan Pelatihan (UPDL) in Semarang. 

The trial process for evaluating KPIs based on the manual 

book design will be conducted over a period of one month with 

30 PDKB operators. 

After the trial phase, validity tests will be performed on the 

KPI results with the designed manual book. Following that, a 

difference test will be conducted to test the significance of the 

results between the newly designed manual book and the 

existing manual book. The research flowchart and 

continuation of research flowchart can be seen as Figures 4 

and 5 below.  

Figure 4. Research flowchart 
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Figure 5. Research flowchart (continuation) 

4. DISCUSSIONS AND IMPLICATIONS

At the data collection stage of this study, several results 

were obtained from interviews, Focus Group Discussions 

(FGDs), and the collection of research questionnaire data. 

4.1 Validity test 

At the initial stage of questionnaire distribution, data were 

collected from 36 respondents, which were subsequently used 

for the validity and reliability testing of the questionnaire. 

These tests were conducted to ensure that the strength and 

clarity of the questionnaire items were well understood by the 

research respondents. The valiSdity test was performed using 

correlation analysis with a confidence level of 95%. The 

results of the questionnaire validity test in this study are 

presented in Table 2. Based on the validity test results, 42 

questionnaire items were found to be valid, while 2 items—

namely indicators PC1 and EC5—were found to be invalid. 

The invalid items were subsequently removed from the 

research questionnaire. 

Table 2. Results of the validity test of the questionnaire 

Factor Indicator 
r-

count 
r-table Description 

Safety 

Hazards 
SH1 0.391 0.329 Valid 

SH2 0.444 0.329 Valid 

SH3 0.693 0.329 Valid 

SH4 0.741 0.329 Valid 

SH5 0.841 0.329 Valid 

Safety 

Climates 
SC1 0.830 0.329 Valid 

SC2 0.732 0.329 Valid 

SC3 0.796 0.329 Valid 

SC4 0.566 0.329 Valid 

SC5 0.846 0.329 Valid 

Safety Risk SR1 0.586 0.329 Valid 

SR2 0.732 0.329 Valid 

SR3 0.606 0.329 Valid 

SR4 0.580 0.329 Valid 

SR5 0.736 0.329 Valid 

Safety Factors SF1 0.723 0.329 Valid 

SF2 0.874 0.329 Valid 

SF3 0.879 0.329 Valid 

SF4 0.684 0.329 Valid 

SF5 0.775 0.329 Valid 

Accident 

History 
AH1 0.739 0.329 Valid 

AH2 0.918 0.329 Valid 

AH3 0.901 0.329 Valid 

AH4 0.604 0.329 Valid 

Health 

History 
HH1 0.543 0.329 Valid 

HH2 0.815 0.329 Valid 

HH3 0.903 0.329 Valid 

HH4 0.866 0.329 Valid 

Personal 

Component 
PC1 0.256 0.329 No Valid 

PC2 0.603 0.329 Valid 

PC3 0.660 0.329 Valid 

PC4 0.749 0.329 Valid 

PC5 0.712 0.329 Valid 

Environmenta

l Component
EC1 0.672 0.329 Valid 

EC2 0.658 0.329 Valid 

EC3 0.699 0.329 Valid 

EC4 0.749 0.329 Valid 

EC5 0.027 0.329 No Valid 

Organizationa

l Component
OC1 0.580 0.329 Valid 

OC2 0.745 0.329 Valid 

OC3 0.578 0.329 Valid 

OC4 0.719 0.329 Valid 

OC5 0.644 0.329 Valid 

OC6 0.573 0.329 Valid 
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The validity test is conducted to examine whether the 

indicators of the statements in the measurement tool or 

questionnaire are valid or not, using the product-moment 

correlation. If the indicators are valid, they will be used for 

subsequent research, and if not, those indicators can be 

disregarded or removed from the questionnaire. The decision 

of whether the indicators are valid or not is based on the 

comparison between the calculated r-value (r-hitung) and the 

critical r-value (r-tabel), or the p-value. An indicator is 

considered valid if the correlation coefficient r-hitung > r-tabel 

or the p-value < 0.05. For N=36 (df=N-2=34), the r-tabel value 

is 0.329. The validity test results show that there are indicators 

that are invalid, namely PC1 and EC5 in Table 2. 

4.2 Reliability test 

The reliability test used in this research is the Cronbach's 

Alpha statistical test. Table 3 shows the results of the reliability 

test for all indicators in the variables used in this research, 

which are acceptable. This is in line with Ghozali's statement 

that a construct or variable is considered reliable if the 

Cronbach's Alpha value is greater than 0.60. The results 

indicate that all variables are reliable, as the Cronbach's Alpha 

values for each variable are greater than 0.60. 

Table 3. Reliability test results of the questionnaire 

Variable 
Cronbach's 

Alpha 

N of 

Items 
Descripton 

Safety Hazards 0.622 5 Reliabel 

Safety Climates 0.810 5 Reliabel 

Safety Risk 0.611 5 Reliabel 

Safety Factors 0.803 5 Reliabel 

Accident History 0.801 4 Reliabel 

Health History 0.805 4 Reliabel 

Personal Component 0.641 4 Reliabel 

Environmental 

Component 
0.658 4 Reliabel 

Organizational 

Component 
0.705 6 Reliabel 

4.3 Structural Equation Modeling-Partial Least Square 

(SEM-PLS) data processing 

The survey data collected in this study, consisting of 203 

respondents, were processed and analyzed using the Structural 

Equation Modeling (SEM) method with a Partial Least Square 

(PLS) approach. According to Hair et al. [25, 32], PLS is an 

alternative SEM method used to address complex variable 

relationships and serves as a highly suitable analytical tool for 

theory development. In exploratory research such as this, the 

SEM-PLS method is particularly useful as it helps generate 

more insightful findings [25]. Furthermore, SEM-PLS is more 

appropriate in this context because it does not require specific 

assumptions regarding sample size or data distribution [33]. 

The software used for the analysis was SmartPLS 4.0. 

4.4 Measurement model evaluation 

The evaluation of the measurement model involves several 

requirements that must be met, including convergent validity, 

reliability, and discriminant validity. A measurement model is 

considered to meet the criteria for convergent validity when 

each indicator has an outer loading value above 0.50 and each 

construct has an Average Variance Extracted (AVE) value of 

0.50 or higher [23]. The AVE value represents the average of 

the squared loadings of a set of indicators associated with a 

construct. In short, an AVE value of 0.50 indicates that the 

construct is able to explain more than half of the variance of 

its indicators [23]. 

Figure 6 shows that some indicators have outer loading 

values below 0.50 and some constructs have AVE values less 

than 0.50, indicating that these constructs do not meet the 

requirements for convergent validity. In addition, there are 

constructs with Composite Reliability (CR) and Cronbach’s 

Alpha values below 0.7, meaning that these constructs do not 

yet meet the criteria for construct reliability. To fulfill the 

criteria for convergent validity and reliability, indicators that 

do not meet the required thresholds need to be removed from 

the model. The construct reability table can be seen in Tables 

4 and 5 as below; 

Figure 6. Start SEM-PLS
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Table 4. Construct reliability and validity of the initial SEM-

PLS model 

Construct 
Indico

tor 

Outer 

Loadin

g 

AVE 

Cronba

ch's 

Alpha 

Compo

site 

Reliabil

ity 

Safety 

Hazards 

SH 1 0.538 0.424 0.654 0.782 

SH 2 0.528 

SH 3 0.607 

SH 4 0.767 

SH 5 0.772 

Safety 

Climates 

SC 1 0.802 0.533 0.781 0.850 

SC 2 0.713 

SC 3 0.665 

SC 4 0.659 

SC 5 0.798 

Safety 

Risk 

SR 1 0.514 0.525 0.772 0.844 

SR 2 0.845 

SR 3 0.712 

SR 4 0.729 

SR 5 0.782 

Safety 

Factors 

SF 1 0.688 0.544 0.783 0.853 

SF 2 0.873 

SF 3 0.867 

SF 4 0.582 

SF 5 0.628 

Personal 

Attributes 

PA 1 0.750 0.655 0.782 0.850 

PA 2 0.813 

PA 3 0.860 

Accident 

History 

AH 1 0.726 0.543 0.719 0.826 

AH 2 0.785 

AH 3 0.754 

AH 4 0.679 

Health 

History 

HH 1 0.646 0.612 0.782 0.861 

HH 2 0.690 

HH 3 0.890 

HH 4 0.871 

Personal 

Compone

nt 

PC1 0.204 0.504 0.640 0.778 

PC2 0.800 

PC3 0.799 

PC4 0.833 

Table 5. Construct reliability and validity of the initial SEM-

PLS model (continued) 

Construct 
Indicat

or 

Outer 

Loadi

ng 

AV

E 

Cronba

ch's 

Alpha 

Compo

site 

Reliabil

ity 

Environmen

tal 

Component 

EC 1 0.244 
0.39

4 
0.386 0.669 

EC 2 0.856 

EC 3 0.845 

EC 4 0.266 

Organizatio

nal 

Component 

OC 1 0.042 
0.39

5 
0.698 0.763 

OC 2 0.702 

OC 3 0.737 

OC 4 0.869 

OC 5 0.574 

OC 6 0.497 

After conducting several measurement model evaluations, 

the final SEM-PLS model was obtained. The iteration process 

went through three stages to achieve a valid model. Table 6 

shows that the outer loading values for each indicator range 

from 0.584 to 0.904, and the AVE values for each construct 

range from 0.534 to 0.782, indicating that the model meets the 

requirements for convergent validity. In addition, Cronbach’s 

Alpha and Composite Reliability (CR) were used to assess the 

internal consistency reliability of each construct. Based on 

Table IV.8, both the Composite Reliability (CR) and 

Cronbach’s Alpha values exceed 0.7, indicating that the 

constructs meet the criteria for reliability [23]. 

Table 6. Reliability and validity of constructs in the final 

SEM-PLS model 

Constru

ct 

Indic

ator 

Outer 

Loadin

g 

AVE 

Cronba

ch's 

Alpha 

Composite 

Reliability 

Safety 

Hazards 

SH 3 0.703 0.633 0.709 0.837 

SH 4 0.829 

SH 5 0.847 

Safety 

Climates 

SC 1 0.801 0.534 0.781 0.850 

SC 2 0.720 

SC 3 0.672 

SC 4 0.652 

SC 5 0.795 

Safety 

Risk 

SR 2 0.826 0.602 0.779 0.858 

SR 3 0.722 

SR 4 0.757 

SR 5 0.795 

After conducting several measurement model evaluations, 

the final SEM-PLS model was obtained. The iteration process 

went through three stages to achieve a valid model. Table 6 

shows that the outer loading values for each indicator range 

from 0.584 to 0.904, and the AVE values for each construct 

range from 0.534 to 0.782, indicating that the model meets the 

requirements for convergent validity. In addition, Cronbach’s 

Alpha and Composite Reliability (CR) were used to assess the 

internal consistency reliability of each construct. Based on 

Table IV.8, both the Composite Reliability (CR) and 

Cronbach’s Alpha values exceed 0.7, indicating that the 

constructs meet the criteria for reliability [23]. 

4.5 Discriminant validity testing 

Discriminant validity testing was conducted based on the 

recommendation of Fornell and Larcker [24], which involves 

comparing the square root of AVE values with the correlations 

between constructs. Tables 6 and 7 show that the square root 

of each construct’s AVE is greater than its correlations with 

other constructs, indicating that the model satisfies the criteria 

for discriminant validity. 

In addition, discriminant validity was also assessed using 

the HTMT (Heterotrich - Monetarist Ratio) method. The 

HTMT test calculates the ratio between the correlations across 

constructs (heterotrich) and the correlations within the same 

construct (monorail), as estimated from the PLS model. The 

recommended HTMT threshold is below 0.90 [25]. If the 

HTMT value between two constructs is less than 0.90, the 

constructs are considered to have good convergent consistency 

and can be distinguished from one another. The results in 

Table IV.10 show that the HTMT values between all construct 

pairs are below 0.90, leading to the conclusion that all 

constructs meet the requirements for discriminant validity. 

4.6 Hypothesis testing 

The structural model evaluation was carried out to test the 

research hypotheses. The bootstrapping procedure was 

conducted with 5,000 resamples using SmartPLS 4.0 software 

[26]. The quality of the structural model was assessed by 

testing the coefficient of determination (R²), predictive 

relevance (Q²), and path coefficients [23]. This study tested 11 
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directional hypotheses using a one-tailed test at a 5% 

significance level. The last SEM-PLS flowchart can be seen as 

Figure 7 below: 

The results in Table 8 are summarized as follows: 

Hypothesis H1 is accepted, indicating that safety factors 

have a positive influence on safety climate (β = 0.338, p = 

0.000). This means that the better the safety factors, the higher 

the safety climate. 

Hypothesis H2 is rejected, meaning that improvements in 

personal attributes do not significantly influence safety climate, 

as indicated by a p-value of 0.137, which is greater than 0.05. 

Hypothesis H3 is accepted, showing that accident history 

has a positive influence on safety climate (β = 0.177, p = 

0.004). Better accident history leads to improved safety 

climate. 

Hypothesis H4 is rejected, suggesting that health history 

does not significantly affect safety climate (p = 0.110 > 0.05). 

Hypothesis H5 is also rejected, indicating that personal 

component does not significantly affect safety climate (p = 

0.074 > 0.05). 

Figure 7. Last SEM-PLS 

Hypothesis H6 is accepted, showing that personal 

component has a positive influence on safety risk (β = 0.179, 

p = 0.014). This means that stronger personal components are 

associated with higher safety risk. 

Hypothesis H7 is accepted, indicating that environmental 

component positively affects safety risk (β = 0.277, p = 0.000). 

Better environmental components are linked to increased 

safety risk. 

Hypothesis H8 is rejected, suggesting that organizational 

component does not significantly affect safety risk (p = 0.262 > 

0.05). 

Hypothesis H9 is accepted, indicating that safety climate 

positively influences safety hazards (β = 0.581, p = 0.000). A 

higher safety climate leads to an increase in safety hazards. 

Hypothesis H10 is rejected, showing that safety climate 

does not significantly affect safety risk (p = 0.112 > 0.05). 

Hypothesis H11 is also rejected, meaning that safety 

hazards do not significantly affect safety risk (p = 0.126 > 

0.05). 

Hypothesis H1 is accepted, indicating that safety factors 

have a positive influence on safety climate (β = 0.338, p = 

0.000). This means that the better the safety factors—such as 

availability of safety equipment, training programs, clear 

safety procedures, effective supervision, and open 

communication—the higher the safety climate in the 

workplace. Safety factors measured by indicators SF1, SF2, 

SF3, SF4, and SF5 significantly contribute to creating a safer 

work environment by promoting employees’ perception of 

organizational commitment to safety and encouraging safe 

behavior. 

From a theoretical perspective, this finding aligns with the 

Safety Culture Theory and Organizational Climate Theory, 

which emphasize that tangible safety measures and 

management’s visible commitment to safety are critical in 

shaping employees’ shared perceptions about workplace 

safety. When employees see that safety resources and 

protocols are adequately provided and consistently enforced, 

they develop trust and confidence in the organization’s safety 

priorities. This positive safety climate fosters collective 

responsibility and motivates individuals to adhere to safety 

standards, reducing workplace accidents and injuries. 

Practically, this result highlights the importance of 

continuous improvement in safety infrastructure, training 

quality, and communication channels to sustain a positive 

safety climate. Organizations should invest in regular safety 

audits, refreshers, and employee engagement to ensure these 

safety factors are effectively maintained and perceived by all 

workers. 
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Hypothesis H2 is rejected, meaning that improvements in 

personal attributes do not significantly influence safety climate, 

as indicated by a p-value of 0.137, which is greater than the 

significance threshold of 0.05. Personal attributes measured by 

indicators such as age, work experience, and last education 

level do not have a significant effect on safety climate. 

This suggests that safety climate is predominantly shaped 

by organizational factors and safety management practices 

rather than by individual employee characteristics. According 

to Social Cognitive Theory, safety climate is a collective 

perception influenced mainly by shared experiences, 

leadership behavior, and organizational policies rather than 

demographic differences among employees. Individual factors 

like age or education may affect personal behavior or risk 

perception but do not substantially alter the overall workplace 

safety climate. 

The final SEM-PLS Flowchart can be seen in Figure 8 as 

below: 

Table 7. Reliability and validity of constructs in the final SEM-PLS model (continued) 

Construct Indicator Outer Loading AVE Cronbach's Alpha Composite Reliability 

Safety Factors 

SF 1 0.687 0.544 0.783 0.853 

SF 2 0.873 

SF 3 0.867 

SF 4 0.584 

SF 5 0.627 

Personal Attributes 

PA 1 0.747 0.653 0.782 0.849 

PA 2 0.811 

PA 3 0.863 

Accident History 

AH 1 0.727 0.543 0.719 0.826 

AH 2 0.785 

AH 3 0.755 

AH 4 0.677 

Health History 

HH 1 0.646 0.612 0.782 0.861 

HH 2 0.691 

HH 3 0.891 

HH 4 0.872 

Personal Component 

PC2 0.795 0.659 0.742 0.853 

PC3 0.804 

PC4 0.836 

Environmental 

Component 

EC 2 0.904 0.782 0.723 0.878 

EC 3 0.865 

Organizational 

Component 

OC 2 0.695 0.535 0.726 0.819 

OC 3 0.727 

OC 4 0.877 

OC 5 0.599 

Table 8. Hypothesis testing results 

Paths β-value S. D t-value p-values Description

H1 Safety Factors -> Safety Climates 0.338 0.080 4.215 0.000** accepted 

H2 Personal Attributes -> Safety Climates 0.083 0.076 1.096 0.137 denied 

H3 Accident History -> Safety Climates 0.177 0.067 2.635 0.004** accepted 

H4 Health History -> Safety Climates 0.071 0.058 1.229 0.110 denied 

H5 Personal Component -> Safety Climates 0.118 0.081 1.450 0.074 denied 

H6 Personal Component -> Safety Risk 0.179 0.081 2.198 0.014* accepted 

H7 Environmental_Component -> Safety Risk 0.277 0.082 3.374 0.000** accepted 

H8 Organizational_Component -> Safety Risk -0.052 0.082 0.636 0.262 denied 

H9 Safety Climates -> Safety Hazards 0.581 0.058 10.094 0.000** accepted 

H10 Safety Climates -> Safety Risk 0.097 0.080 1.216 0.112 denied 

H11 Safety Hazards -> Safety Risk 0.084 0.074 1.145 0.126 denied 
Note: ** significant p-value < 0.01; * significant p-value < 0.05 

Figure 8. Final T-statistic values of SEM-PLS 
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From a practical standpoint, this finding underscores the 

need for organizations to focus their safety efforts on systemic 

interventions, such as improving management commitment, 

strengthening safety communication, and implementing 

consistent safety policies, instead of relying on employee 

demographics to predict or improve safety climate. By 

targeting organizational-level changes, companies can create 

an inclusive and effective safety environment that benefits all 

employees regardless of their individual backgrounds. 

4.7 Predictive model 

The level of variance in the endogenous variables that can 

be explained by the exogenous variables is overall explained 

by R². According to Cohen (1988), there are three criteria for 

R² values: weak (R² ranges from 0.02 to 0.13), moderate (R² 

ranges from 0.13 to 0.26), and substantial (R² greater than 

0.26). Based on Table 9 the model explains 28.9% of the 

variance in safety climate, 33.8% of the variance in safety 

hazards, and 17.3% of the variance in safety risk, with the 

remainder explained by variables outside the model. The 

results of this study indicate that the safety climate and safety 

hazards models fall into the substantial category, while the 

safety risk model falls into the moderate category. 
Next, using the blindfolding method to assess the predictive 

relevance (Q²), which measures how well the observed values 

are predicted by the model and its parameter estimates, Table 

9 shows Q² values ranging from 0.076 to 0.308. A Q² value 

greater than 0 indicates that the model has good predictive 

relevance [26]. 

Table 9. Amount R2 and Q2

R2 Q² 

Safety Climates 0.289 0.135 

Safety Hazards 0.338 0.206 

Safety Risk 0.173 0.083 

The results of this study provide a comprehensive view of 

the critical factors that influence workplace safety in 

Indonesia’s electricity industry, particularly in distribution 

units. The structural equation modeling (SEM-PLS) analysis 

confirms the significant influence of personal competence 

(PC), safety climate (SC), equipment condition (EC), and 

management commitment (MC) on safety hazard risk. 

These findings are consistent with the study by Baby et al. 

[9] which highlighted how personal and organizational

factors—such as competence and safety awareness—directly

correlate with the likelihood of workplace accidents. The

current research reinforces this by demonstrating that personal

competence and safety climate are among the strongest

predictors of safety hazard levels. The model further reveals

that management commitment mediates the influence of other

variables, underscoring the importance of leadership in

fostering a culture of safety.

The significance of equipment condition (EC) also aligns 

with findings by Castillo-Rosa et al. [7] who emphasized the 

role of technical compliance and regular maintenance in 

preventing high-severity accidents. However, in the 

Indonesian context, limited resources and uneven regulatory 

enforcement make consistent equipment maintenance a 

continuing challenge. Therefore, the study emphasizes the 

need for clear technical standards and centralized asset audits. 

From a practical perspective, this model has been translated 

into a KPI-based safety manual that can be integrated into 

PLN’s distribution units. This manual is designed to assist 

field supervisors in monitoring, evaluating, and improving 

worker behavior and hazard mitigation in real-time. Unlike 

traditional static manuals, this KPI approach allows dynamic 

adjustment based on measurable performance indicators. 

Enhance Technical and Behavioral Training: Based on the 

significance of personal competence, electricity companies 

should prioritize targeted training that includes both technical 

certification and behavioral safety simulations. and strengthen 

management engagement with leadership training should be 

expanded for managerial roles to foster a more proactive safety 

climate. This includes regular feedback sessions, site visits, 

and worker recognition programs. 

5. CONCLUSIONS

5.1 Validity test 

The decision on whether an indicator is valid or not is based 

on the comparison between the calculated r-value (r-count) 

and the critical r-value (r-table), or based on the probability 

value (p-value). An indicator is considered valid if the 

correlation coefficient r-count > r-table or if the p-value < 0.05. 

For N=36 (df=N–2=34), the r-table value is 0.329. The results 

of the validity test show that there are indicators that are not 

valid, namely PC1 and EC5. 

5.2 Reliability test 

The reliability test used in this study is the Cronbach's Alpha 

statistical test. Table 2 shows that the reliability test results for 

all indicators of the variables used in this study are acceptable. 

Furthermore, the overall level of measurement is also 

acceptable, in accordance with Ghozali, who stated that a 

construct or variable is considered reliable if the Cronbach’s 

Alpha value is greater than 0.60 [34]. The results indicate that 

all variables are reliable, as shown by Cronbach’s Alpha 

values > 0.60 for each variable. 

Despite the rigorous validity and reliability testing, this 

study has several limitations. The relatively small sample size 

(N=36) may limit the generalizability of the findings to the 

broader population of PDKB operators. Additionally, the 

invalid indicators (PC1 and EC5) suggest potential issues with 

some questionnaire items that require refinement. Future 

research should consider larger and more diverse samples to 

enhance representativeness and statistical power. Moreover, 

qualitative methods could be incorporated to explore in-depth 

factors influencing safety performance that are not fully 

captured by the current model. Further development of the 

measurement instrument is also necessary to improve indicator 

validity. Finally, longitudinal studies are recommended to 

assess the predictive power of the model over time and 

evaluate the effectiveness of implemented safety interventions. 
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