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Driving stress among motorcyclists is a significant issue that increases the risk of traffic 

accidents and psychological strain, especially in urban areas of developing countries. This 

study aims to identify indicators of driving stress and analyze the impact of road geometry 

and land use on stress levels. The uniqueness of this study lies in integrating real-time 

physiological data from motorcyclists and analyzing road geometry and land use in Banda 

Aceh, Indonesia. Data were collected using wearable technology (Polar Vantage V2) to 

measure heart rate variability and a GoPro MAX 360 camera to capture road geometry 

and land use. The Multiple Indicators Multiple Causes (MIMIC) model was used to 

analyze the effects of these factors on motorcyclist stress. The results showed that heart 

rate levels were highest in office areas, at turns, and in locations with traffic controls such 

as lights and roundabouts. Land use variables, such as SDNN, RMSSD, and TINN, 

significantly influenced the time domain stress model. Road geometric variables 

significantly impacted the frequency domain stress model, including gradients, inclines, 

and bends with LF/HF (FFT) and LF/HF (AR). Findings can be used to educate the public 

and improve road safety assessments in emerging countries like Indonesia. 
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1. INTRODUCTION

Road rage is crucial in understanding the relationship 

between driving stress, risk inclination, and traffic sanctions 

[1]. Although generally overlooked by drivers, [1, 2], asserted 

that it predicts hazardous driving behavior. Tension can 

negatively affect driver performance, increasing the likelihood 

of traffic violations and the risk of road accidents [3-5]. 

Previous research highlighted that driving, a significant part of 

commuting, can be a complex and stress-inducing activity, 

often caused by interactions with other drivers [6, 7]. 

Moreover, prolonged driving can induce a continuous stress 

response [8]. Previous research has explored the influence of 

stress on driving performance, behavior, and road safety [9, 

10]. 

In Indonesia, the accelerating pace of transportation and 

inadequate infrastructure contribute to congestion, longer 

driving times, and increased fatigue, which raise accident risks 

[11]. Continuous driving leads to fatigue and lethargy, 

increasing the likelihood of human error and accidents [12]. 

Aggressive driving, linked to road rage, significantly raises 

accident risks. Drivers who frequently violate traffic rules and 

understand speed limits tend to exhibit more aggressive 

behavior [13, 14]. Studies have identified hostile aggression 

associated with rage [15], and a meta-analysis demonstrates a 

strong correlation between driving rage and accidents [16]. 

Furthermore, drivers often exhibit anger as a coping 

mechanism in response to aggressive behavior from others. 

Research shows an association between anxiety and 

aggressive driving, with 80% of drivers reporting some 

anxiety, particularly among women over 35, where anxiety 

levels are higher than in men [17-19]. 

While problem-focused coping strategies were more 

commonly employed by drivers exhibiting instrumental rather 

than hostile aggression [20], numerous transportation 

challenges, such as traffic congestion, can significantly 

intensify driving stress. When the volume of vehicles 

surpasses the capacity of the road, journey times are adversely 

affected, thereby exacerbating stress levels and increasing the 

likelihood of accidents. As stipulated by Government 

Regulation No. 44 of 1993, article 240, paragraph 2, 

concerning Vehicles and Drivers, the maximum daily driving 

time is set at eight hours; exceeding this limit further 

exacerbates tension levels [21] further increases stress, while 

poor stress management impairs individuals' ability to interact 

with their environment [22]. 

In Indonesia, particularly Banda Aceh, high motorcycle 

dependency has led to greater accident exposure in urban areas 

[23]. As a growing capital city, Banda Aceh has experienced 

rapid development and congestion, contributing to 72% of 
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traffic [23], driven by economic growth and supported by 

government investment in education [24]. With a population 

of 265,111 and a density of 43 people per, traffic pressure 

continues to rise. Motorcycles make up 80% of motorized 

traffic [25], with registrations increasing from 219,532 in 2020 

to 250,154 in 2024, representing 13,95% of all vehicles [25-

28]. This growth aligns with rising accidents involving 

motorcycles, pedestrians, and bicycles [29]. In 2020, there 

were 103,228 traffic incidents and 30,568 deaths in Indonesia, 

mirroring the global trend of road accidents being the leading 

cause of death among those aged 14 to 29 [30]. 

In Indonesia, three people die every hour due to road 

accidents, with 61% caused by human factors, 9% by vehicle 

issues, and 30% by infrastructure and environmental 

conditions [31]. Drivers under work-related stress tend to 

exhibit risky behavior, while those without stress are likelier 

to follow occupational safety practices [31]. Studies show men 

are more prone to unsafe driving than women, though 

experience reduces such tendencies [32]. The diverse traffic 

mix—cars, motorcycles, rickshaws, and more—adds 

complexity to road safety [33]. In Banda Aceh, traffic grows 

by 6% annually, driven by rising living standards and mobility 

demands [34]. Urban transport issues stem from uneven road 

networks, activity concentration, and a shift to private 

transport like motorcycles, prompting infrastructure expansion 

to meet growing regional mobility needs [35]. Additionally, 

extreme stress can trigger physiological responses such as 

increased heart and respiratory rates, dilated pupils, muscle 

contractions, and anxiety, further affecting driver behavior 

[36]. 

Previous research has shown that driving tension directly or 

indirectly contributes to traffic accidents among professional 

drivers [37], with a strong correlation between drivers’ 

physiological responses and stress levels [38]. Meilinda [39] 

found that driving stress is associated with road geometry, 

particularly on curved roads and in office or industrial areas. 

Road design and urban spatial structure significantly influence 

how drivers manage vehicle movement and stress levels. In 

Banda Aceh City, changes in land use due to urban 

development indirectly affect traffic distribution patterns. 

Therefore, this study aims to examine the factors influencing 

motorcycle driving stress in Banda Aceh by analyzing road 

geometry and land use patterns. Data were collected using 

heart rate variability (HRV) and analyzed through a Multiple 

Indicators Multiple Causes (MIMIC) model. 

 

 

2. MATERIALS 

 

2.1 Driving stress 

 

The relationship between driving behavior and stress was 

examined through the use of numerous questionnaire-based 

surveys. Stress, a state of mental or physical tension brought 

on by external and internal factors, is an unavoidable result of 

human existence. It is brought on by a variety of factors, 

including industrialization, urbanization, population growth, 

and various life issues. Travel is closely related to stress. 

Those who use motorized modes frequently experience stress 

due to the duration of their journeys. Factors such as 

congestion, parking issues, interactions with other motorists, 

and concerns regarding safety can all contribute to tension 

among automobile users [40]. Transportation decisions that 

result in challenges such as inadequate availability of green 

space [41] and traffic pollution [42] can also influence the 

stress levels of individuals. Additionally, public transportation 

users may experience anxiety due to factors such as lengthy 

wait periods, overcrowding, high fares, and unpredictability 

regarding routes and schedules. In addition to environmental 

factors, socioeconomic factors such as age, gender, education, 

occupation, income, and driving experience significantly 

impact the stress levels experienced by drivers [43]. 

To evaluate driving stress, various physiological responses, 

such as respiration rate and galvanic skin response, as well as 

instruments like electrocardiogram, electromyogram, 

electrooculogram, electroencephalograms, and pulse 

oximeters, have been utilized [38, 44]. Additionally, the 

conductivity of the skin and pulse rate parameters are strongly 

correlated with driving stress [38]. Among these variables, 

heart rate variable (HRV) is the most effective for assessing a 

driver's condition during travel [38]. HRV analysis, which is 

frequently used to detect actual driving tension, is based on 

heart rate variability, a measure of electrocardiographic 

activity [38, 45, 46]. Previous research has also utilized HRV 

to estimate mental exertion [38]. Research by Meilinda et al. 

[47] found that driving stress in motorcyclists, measured 

through heart rate (HR) and respiration rate (RR), showed 

abnormal values, indicating unsafe driving stress on urban 

arterial roads. Physiological responses to increased stress 

include heightened heart and respiratory rates, pupil dilation, 

muscle contractions, and anxiety [36, 38]. The relationship 

between prolonged driving and cardiovascular health is 

attributed to several mechanisms, such as prolonged sitting 

during driving, which may compromise cardio-metabolic 

health [48, 49]. 

Traffic congestion poses a significant problem worldwide, 

serving as the primary source of driving stress. This issue 

arises due to factors like high population density, continued 

infrastructure expansion, rising motor vehicle usage, and the 

proliferation of rideshare and delivery services [50]. The 

consequences of traffic congestion are far-reaching, affecting 

society, the economy, and the environment. By wasting time 

and energy, reducing productivity, causing pollution and stress, 

and hindering sustainable economic growth [51, 52], these 

effects are extensive and widespread. In response to traffic 

jams, many drivers feel compelled to increase their vehicle 

speed in order to arrive at their destination on time. However, 

driving at a high speed, particularly when anxious or distracted, 

significantly heightens the risk of accidents [38]. 

 

2.2 Heart rate (HR) 

 

Heart rate, also known as the number of heart beats per 

minute, is typically expressed in beats per minute (BPM) [53, 

54]. The wrist, beneath the brows, the side of the neck, and 

above the soles of the feet are among the body parts that can 

be used to measure heart rate; however, the wrist typically 

yields more accurate results [55]. During high-intensity 

activities, such as sports, the pulse rate tends to increase. This 

elevation in heart rate is necessary as the body requires 

oxygen-rich blood during exercise to perform optimally. As 

per the guidelines provided in Pediatrics for Medical Students 

[56], specific heart rate values are presented in Table 1. The 

heart rate variability (HRV), also known as RR interval, refers 

to the duration between two consecutive R waves, which are 

the waves with the greatest amplitude. This variable, HRV, is 

intimately connected to the human autonomic nervous system, 

which consists of two subsystems: the sympathetic and 
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parasympathetic. The sympathetic nervous system triggers a 

faster and stronger heartbeat when the body is undergoing 

strenuous or distressing activities. Conversely, the 

parasympathetic nervous system promotes a slower and 

weaker heartbeat during relaxed and tranquil situations. 

There are two primary methods of measuring HRV: time 

and frequency domain analyses. Time domain analysis is a 

simpler method that involves utilizing mathematical 

calculations to assess variation between multiple RR intervals 

[38]. This approach often employs standard heart rate 

monitoring devices with respiratory variability-supporting 

programs for recording. On the other hand, frequency domain 

analysis uses the Fourier transform and distinctions to 

differentiate between the frequency domains of the 

sympathetic and parasympathetic systems for computation. 

This method provides valuable insights into how the 

autonomic nervous system and the hypothalamus-pituitary-

adrenal (HPA) axis control stress response. Clinically 

significant physiological responses, such as heart rate 

variability, blood pressure, and hormonal responses, including 

cortisol release, are important indicators [57]. In road driving 

scenarios, studies have found that the activation and inhibition 

of sympathetic and parasympathetic nerve activities, 

respectively, are linked to increased rear-end collision risk 

index levels. The results suggest that acute stress-induced 

driver fatigue increases the risk of rear-end collisions [58]. 

Table 1. Normal heart rate 

Age 
Heart Rate While 

Awake (bpm) 

Heart Rate While 

Sleeping (bpm) 

Neonatus (< 28 days) 100-205 90-160 

Baby 100-190 90-160 

Toddler (1-2 years) 98-140 80-120 

Preschool (3-5 years) 80-120 65-100 

Children (6-11 years) 75-118 58-90 

Adult (> 18 years) 60-100 50-90 
Source: Chris Novak dan Peter Gill, 2016 [56] 

3. METHOD

3.1 Study area and data collection 

Figure 1. Area of the study (map created by the authors) 

The study was conducted along the primary arterial road, 

specifically Jl. T. Nyak Arief and Jl. T. Muhammad Daud 

Bereueh. The road was divided into thirty 500-meter segments 

for each respondent. Figure 1 depicts the location of the 

primary arterial road in relation to this research. Over a period 

of approximately three months, from June 26 to August 10, 

2022, a psychological indicators survey instrument was 

compiled for several respondents who were selected as 

research samples. Data collection sessions were scheduled 

during peak hours in the morning, afternoon, and evening, as 

well as on weekdays and weekends, based on the availability 

and approval of the respondents. 

(a)  (b) 

Figure 2. (a) Vantage V2 polar watch [59]; (b) GoPro MAX 

360 [60] 

The instruments utilized in this research comprised a 

Vantage V2 polar watch and a GoPro Max 360 video camera, 

as depicted in Figure 2. The Vantage V2 polar watch was 

employed to acquire GPS data and featured a heart rate sensor. 

The participants donned polar watches equipped with close 

proximity sensors to guarantee accurate detection. These 

sensors then transmitted heartbeat signals to a receiving device 

operating the polar flow application. Conversely, the GoPro 

Max 360 video camera captured footage of various road 

conditions, such as highways, lanes, traffic lights, bridges, 

medians, and overall traffic conditions. Moreover, the sensor 

measured the heart rate of the subject 10 minutes prior to 

driving, serving as the primary condition or "rest condition," 

and while traveling along a predetermined route. The sensor 

then transmitted the heart rate signal to the Polar Vantage V2 

watch, which was extracted using the Flow app. A total of 25 

respondents were selected based on specific criteria, which 

included factors such as being in good health, holding a valid 

motorcycle driving permit, and a balanced representation of 

students and workers, as well as an equal number of males and 

females. Respondents were randomly selected to ensure 

diversity, and their willingness to participate in the research 

study was confirmed. Based on the outcome of the data 

evaluation, 22 datasets were collected, considering factors 

such as land use, road geometric and traffic control, from 25 

respondents. Five hundred fifty (550) datasets were obtained 

for the primary arterial road. 

3.2 Multivariate analysis with MIMIC model 

The multiple-indicators multiple-causes (MIMIC) model is 

commonly employed in transportation research focused on 

travel behavior. This model is used to thoroughly examine 

individual behavior and the psychological perceptions of 

respondents [61]. In a study conducted in Jakarta, the SEM-

MIMIC model was utilized to investigate the relationship 

between public perceptions of transportation system policies. 

Additionally, an in-depth analysis of public acceptance of 
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transportation policies in Jakarta was conducted using the 

multiple-samples multiple indicators multiple-causes (MS-

MIMIC) model [62, 63]. The objective of this analysis was to 

demonstrate the connection between travel behavior and 

public perception of transportation policy. The MIMIC model 

consists of structural equations and measurement models, as 

outlined in Eqs. (1) and (2). 

 

ηi = Β ηi + Γzi + 
i
 (1) 

 

yi = Λ ηi + ζi (2) 

 

where, yi is a vector of perception indicators (unobserved 

variables), zi is a vector of observed variables i, 𝛣, 𝛤, 𝑎𝑛𝑑 𝛬 

matrices of regression coefficients that must be estimated 

(unknown parameters), and i and 𝜁 i are vectors of 

measurement error. The Maximum Likelihood Estimator 

(MLE) method is implemented to determine unknown 

parameters, and its programming is executed using the 

SIMPLIS common language, as specified in reference [64]. 

Furthermore, the program is executed using LISREL 10.20 

software. The MIMIC model incorporates unseen latent 

variables, which are assessed through various indicators and 

predicted by different causes. By conducting a thorough 

examination of each score of the research variables, the 

structural equation modeling (SEM) data analysis enables a 

comprehensive evaluation of the constructs. The 

questionnaires or statements used in the study are considered 

as either manifest or latent indicators of the variables being 

measured [65].  

The MIMIC model establishes the connections between 

observable and unobservable variables by minimizing the 

distance between the sample covariance and the model-

predicted covariance matrix. SEM analysis is particularly 

effective in addressing non-experimental research problems. 

The general SEM model comprises two components: the 

measurement component, which links the tested variables to 

the latent variables through a confirmatory factor model, and 

the structural component, which connects the latent variables 

through a set of equations simultaneously [65, 66]. In addition, 

it is common practice in the field of SEM to evaluate the 

validity and reliability of measurement instruments through 

confirmatory factor analysis [66, 67]. Specifically, this 

analysis is conducted in two stages: exploratory factor analysis 

and confirmatory factor analysis. Exploratory factor analysis 

is used to identify potential factors in the data, while 

confirmatory factor analysis is used to test and refine 

theoretical models over time [67, 68]. 

 

3.3 Data analysis method 

 

The HRV parameters were preliminarily analyzed using 

Kubios HRV 3.5.0 software, followed by further analysis and 

calibration via the MIMIC method. This method employs the 

Maximum Likelihood Estimator in LISREL 9.2 software to 

estimate the parameters. The MIMIC model is designed to test 

the null hypothesis of the model and determine the vectors of 

indicator variables (y) linked by a latent variable () and a 

covariate (x). The model comprises two equations, one of 

which examines the relationship between (x) and () and the 

other confirms the relationship between (y) and (). To 

evaluate the model's viability and the parameters' accuracy, 

Goodness of Fit (GoF) model testing will be performed. The 

GoF assessment will involve several metrics, including GFI (> 

90%), AGFI (> 90%), CFI (> 90%), RMSEA (≤ 0.08), and T 

test for parameter significance <5% [61, 62, 69, 70]. 

 

4. RESULTS 

 

4.1 Distribution of respondent’s demographics 

 

The data collected from the participants primarily consisted 

of demographic information, including their age, gender, 

education level, occupation, travel purpose or intention, 

monthly family income, motorcycle ownership, and 

possession of a two-wheeled driving license. The participants 

were predominantly male (56%), with the majority falling 

within the age range of 20 to 29 years. Females made up the 

remaining 44%, with their ages ranging from 17 to 19 years. 

In terms of education, most participants (68%) were 

undergraduate graduates, while primary school 

graduates/equivalents accounted for 28%. In terms of 

occupation, the respondents were divided into private 

employees (16%), self-employed individuals (4%), students 

(40%), and others (40%). The primary travel purposes of the 

participants varied, including business or work, education, 

shopping, and vacation, and accounted for 8%, 24%, 36%, and 

32%, respectively. The frequency of daily trips ranged from 2 

to more than 5 times a day, with 44% of participants making 2 

trips, 40% making 3 trips, 8% making 4 trips, and 8% making 

more than 5 trips. Monthly family income was distributed 

across different brackets, with 48% earning between 3 to 4.9 

million IDR (1 USD approximately 15,880 IDR), 20% each 

earning between 5 to 6.9 million and 7 to 9.9 million, 8% 

earning between 1 to 2.9 million, and 4% earning more than 

10 million. Motorcycle ownership varied, with 28% owning 1 

unit, 12% owning 2 units, 44% owning 3 units, 4% owning 4 

units, and 16% owning no units. Furthermore, each participant 

possessed a driving license. 

The assessment of autonomic nervous system activity was 

carried out by analyzing HRV parameters. The parameters 

examined included the RR, standard deviation of normal to 

regular RR intervals (SDNN), mean root square of successive 

differences RR intervals (RMSSD), and Triangular 

interpolation (TINN). Additionally, the balance between 

sympathetic and parasympathetic nervous system activities 

was evaluated using the Low Frequency (LF)/High Frequency 

(HF) ratio derived from fast Fourier transform (FFT) analysis. 

The values were calculated using the widely recognized 

Kubios HRV 3.5.0 software (www.kubios.com), which is a 

scientific lite version of the software. It is free HRV analysis 

software that offers limited functionality and is intended for 

non-commercial use only. This software supports RR data 

from HR monitors and provides basic HRV analysis features. 

 

4.2 Distribution of respondent’s HRVs 

 

The assessment of autonomic nervous system activity was 

carried out by analyzing HRV parameters. The parameters 

examined included the RR, standard deviation of normal to 

regular RR intervals (SDNN), mean root square of successive 

differences RR intervals (RMSSD), and Triangular 

interpolation (TINN). Additionally, the balance between 

sympathetic and parasympathetic nervous system activities 

was evaluated using the Low Frequency (LF)/High Frequency 

(HF) ratio derived from fast Fourier transform (FFT) analysis. 

The values were calculated using the widely recognized 

Kubios HRV 3.5.0 software (www.kubios.com), which is a 
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scientific lite version of the software. It is free HRV analysis 

software that offers limited functionality and is intended for 

non-commercial use only. This software supports RR data 

from HR monitors and provides basic HRV analysis features. 

 

Table 2. The average value of the parameter HRV 

 

Indicators 
Mean of 

HR 
Mean of RR 

SDNN 

(ms) 
RMSSD (ms) TINN (ms) 

LF/HF 

(FFT) 

LF/HF 

(AR) 

Land Use 

Education area 93.056 650.382 19.710 10.715 83.800 9.016 10.173 

Office 94.029 644.113 12.000 6.407 50.540 9.439 20.947 

Housing area 93.174 650.340 7.747 4.288 25.176 6.063 21.380 

Security and safety 92.533 657.485 16.060 8.764 58.260 14.240 17.569 

Trading 93.789 647.818 11.685 5.737 39.738 8.883 55.247 

Worship 92.813 655.578 7.530 5.406 27.813 4.253 11.898 

Green open space 93.647 648.517 8.325 6.803 31.000 4.888 13.055 

Health center/hospital 93.221 651.748 12.336 4.879 35.320 15.003 22.061 

Road Geometric 

Straight 92.836 653.517 15.538 8.782 63.991 9.332 11.610 

Turns/bends 94.244 644.782 11.601 5.655 37.814 9.335 63.376 

Bends and climbs 93.302 650.651 7.869 5.214 22.560 6.829 12.832 

Derivative 93.821 647.475 7.672 4.551 26.445 8.931 21.577 

Incline 93.568 648.875 7.303 4.465 25.200 6.179 27.404 

Turn and derivative 93.863 646.422 6.093 4.478 21.800 2.578 22.478 

Traffic Control 

N/A 93.198 651.255 11.467 6.823 44.361 6.412 26.929 

Traffic Light 94.137 644.169 12.290 5.951 44.152 14.456 28.430 

Roundabout 92.172 663.535 13.846 7.575 40.880 5.901 13.649 

Traffic light and Roundabout 94.976 640.256 9.992 5.130 34.590 11.692 29.322 

Table 2 presents a comparison of heart rate across various 

land use conditions and road geometric features. The data 

indicates that office areas recorded the highest heart rate at 

94.03 beats per minute, while areas designated for security and 

safety areas had the lowest, at 90.99 beats per minute. In terms 

of road geometric conditions, U-turns, curvature, and straight 

roads recorded the maximum and minimum heart rates of 

94.24 bpm and 92.84 bpm, respectively. Additionally, traffic 

control elements such as traffic lights and roundabouts 

recorded a maximum heart rate of 94.98 beats per minute. 

The findings demonstrate how an individual's degree of 

physical activity and heart health can be impacted by the 

surrounding environment, including land use and road features. 

Stress hormones like cortisol and adrenaline can be released 

by drivers' autonomic nervous system in response to stress. 

This may result in an elevated heart rate as the body reacts to 

an anxious or tense circumstance [71]. The location with the 

highest heart rate, 94.03 bpm on average, was the office area. 

High levels of physical activity or stress from the workplace 

setting, such as rush-hour traffic, parking space constraints, 

and more frequent encounters with pedestrians and other 

vehicles, may be the cause of this. The driver typically has a 

high heart rate as a result. At an average heart rate of 90.99 

bpm, the security and safety zones reported the lowest heart 

rates. A lower heart rate may be influenced by the less stressful 

atmosphere and more controlled traffic in certain places. 

Turns also had the highest heart rate, average 94.24 bpm, on 

record. This is brought on by abrupt direction shifts and 

turning that requires more physical effort. However, with an 

average heart rate of 92.84 bpm, the lowest heart rate was 

observed on a straight road. This is because drivers can keep a 

more constant speed on straight roads because there is less 

variance in their physical activity when driving on them. With 

an average heart rate of 94.98 bpm, this study also revealed 

that traffic management features including roundabouts and 

traffic lights had the greatest heart rates. This is brought on by 

circumstances that call for an immediate reaction and elevated 

tension when dealing with these factors. Several drivers at the 

intersection are the cause of the abrupt lane changes [36]. 

When changing lanes that need their attention, drivers 

experience driving stress, as shown by earlier studies [40]. 

However, this study discovered that limiting traffic 

regulation to roundabouts can reduce the average heart rate of 

drivers. his is due to the fact that roundabouts are made to 

make traffic flow easier without impediments like red or 

yellow lights, which lessens driver anxiety. Ultimately, there's 

no need to halt or decelerate the vehicle abruptly. Additionally, 

drivers typically do not have to wait for a traffic light to turn 

green, which can reduce frustration and anxiety because 

drivers feel more efficient in their travels. When compared to 

intersections with traffic signals, roundabouts often have 

lower accident rates. This is a result of the constant flow of 

traffic without abrupt stops, which lessens the chance of lateral 

or rear-end crashes. 

Prior studies have also demonstrated that roundabouts, as 

opposed to traffic lights, are more successful in lowering stress 

levels; this may be because roundabouts have shorter wait 

times. Longer waiting times can increase stress levels [38]. Ni, 

Jie, et al. [40] observed that stress levels were elevated by 

delays and speed decreases related to stop-controlled junctions. 

Most significantly, research has shown that, as compared to 

traditional intersections managed by stop lights and signs, 

roundabouts reduce crashes that result in serious injury or 

death by 78-82% [72]. 

 

4.3 Result of MIMIC model 

 

The MIMIC model was employed to investigate the 

relationship between stress variables in both the time and 

frequency domains, and HRV parameters (X variable), as well 

as their connection with land use procedures and road 

geometric (Y variable) indicators. The analyzed HRV 

parameters encompassed RR, the standard deviation of normal 

to regular RR intervals (SDNN), the mean root square of 
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successive differences RR intervals (RMSSD), Triangular 

interpolation (TINN), and the balance between sympathetic 

and parasympathetic nervous system activity represented by 

the Low Frequency (LF)/High Frequency (HF) ratio obtained 

through fast Fourier transform (FFT). These parameters were 

selected due to their sensitivity in capturing physiological 

changes associated with autonomic nervous system responses 

to external driving stimuli. 

In this study, sympathetic, and parasympathetic nervous 

system arousal were considered. The time domain method 

comprised five parameters, RR, and mean HR, which were 

excluded from latent variables due to lack of fit with the model. 

Nonparametric and parametric methods were used, such as the 

LF/HF (FFT) and LF/HF (AR) indicators, respectively. Of the 

various factors, significant effects were observed only for land 

use related to offices and education, as well as road geometric 

factors such as U-turns and curvature with ascents and 

descents. Meanwhile, other variables did not meet model 

criteria and were categorized as insignificant after multiple 

trials. Figure 3 displays the hypothetical model with common 

values, illustrating how land use and road geometric impact 

vehicular stress across time and frequency domains. Causal 

relationships between variables and significance levels were 

depicted with one-way arrows, with *p < 0.10, **p < 0.05, and 

***p < 0.01, respectively. 

 

 
 

Figure 3. MIMIC stress time domain and frequency domain models 

 

Table 3. Calibrated parameters for time domain and frequency domain stress model 

 

Path Across Parameters Loading Coefficients Sig. T-Test (p-Value) 

Stress Time Domain  Office 0.702 *** 

Stress Time Domain  Education Area 0.486 0.002 

Stress Frequency 

Domain  Turns/Bends/Curvatures 0.479 *** 

Stress Frequency 

Domain  
Turns/ Bends/Curvatures with 

Derivative and Incline 
0.597 *** 

Stress Frequency 

Domain  Derivative and Incline 0.821 *** 

SDNN  Stress Time Domain 0.125 *** 

RMSSD  Stress Time Domain 0.102 0.009 

TINN  Stress Time Domain 0.241  

LF/HF (AR)  Stress Frequency Domain 0.204  

LF/HF (FFT)  Stress Frequency Domain -0.052 0.353 

LF/HF (AR)  Stress Time Domain -0.108 0.038 

SDNN  Stress Frequency Domain -0.300 *** 

RMSSD  Stress Frequency Domain -0.251  

TINN  Stress Frequency Domain -0.386 *** 

Note: 

 
= Causal relationships between variables parameters in the model 

*** = Significant at 1% level 

** = Significant at 5% level 

* = Significant at 10% level 
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Table 3 displays the significance values for each parameter. 

It is clear that while there is no significant correlation between 

stress domain frequency and LF/HF (FFT), other variables 

have significant correlations. The Chi-Square correlation is 

used to assess the overall fit of the model, with a recorded 

value of 102.664. The fit of the MIMIC stress model is deemed 

acceptable in both time and frequency domains, with a 

Goodness-of-Fit statistic (GOF), Comparative Fit Index (CFI), 

Adjusted Goodness-of-Fit Index (AGFI), Tucker Lewis Index 

(TLI), and Root Mean Square Error Approximation (RMSEA) 

of 0.954, 0.945, 0.900, 0.900, and 0.080, respectively. 

 

 

5. DISCUSSIONS 

 

Based on the reference range of 60 to 100 beats per minute 

in Table 2, which represents the normal adult heart rate, the 

derived heart rate (HR) value suggests that the driver's overall 

condition is approaching the stress threshold. The term 

bradycardia refers to an irregular heartbeat where the heart's 

rhythm drops to or below 60 beats per minute [73]. Similarly, 

tachycardia is a condition characterized by a heart rate 

exceeding 100 beats per minute [53]. It is worth noting that 

urban areas with geometric curves or bends tend to elicit the 

highest heart rates. Interestingly, the research findings indicate 

that the threshold at which an individual's heart rate falls below 

the normal limit is only 6%. 

This research highlights the relationship between driving 

stress due to the influence of differences in land use and road 

geometry in urban arterial road areas using the heart rate 

variability (HRV) method with two approaches, namely stress 

time domain and stress frequency domain. The evaluation and 

interpretation of heart rate fluctuations is the primary 

distinction between the HRV analysis's stress time and 

frequency domains. The stress time domain focuses more on 

the general fluctuation of heart rate over a certain period, while 

the stress frequency domain focuses more on the distribution 

of heart rate activity in various frequency ranges related to 

autonomic nervous activity. These two approaches can 

provide insights into drivers' physiological reactions of drivers 

to different driving conditions and traffic patterns. 

The empirical results showed the tendency distribution of 

driver characteristic data, with the stress time domain 

significantly affected by the type of office land use. Stress 

based on the heart rate cadence of the driver had a greater 

impact on inanimate objects, such as infrastructure and land 

use, than on the driver. Tension from the nervous system 

tended to significantly affect objects in direct contact with the 

driver, such as geometric conditions of road bends, ascents, 

and descents. Increased stress was attributed to high traffic 

congestion, particularly evident during rush hour when the 

observations were conducted. Therefore, it was assumed that 

office areas also experienced heightened traffic congestion. 

Mixed traffic congestion in these areas during peak hours 

further increased stress levels in drivers. 

This study demonstrates how land use characteristics, like 

traffic density, the kind of driving behaviour, and the 

placement of buildings or other infrastructure, can influence 

the level of activity and distractions experienced by drivers. 

For instance, a high traffic density near offices might lead to 

higher levels of stress and tension, which can be measured by 

a faster heart rate. Stress from driving is highly impacted by 

the office land use variable (standardized coefficient=0.70, p 

< 0.01). Because of the rush hour, loud surroundings, and 

concentration of cars, hectic office spaces might make drivers 

more stressed. The motorist may experience an increase in 

heart rate in response to stress due to all of these factors 

affecting their cardiac rhythm. High traffic and congested 

locations, such industrial districts (non-standardized 

coefficient=0.39, p=0.05, standardized coefficient=0.12), 

might make drivers feel more stressed out. Heavy traffic, truck, 

and mixed-road uses also have a positive and significant 

impact on driving stress [38]. Heavy traffic is frequently seen 

in industrial and office locations, especially during rush hour 

when workers are commuting to and from work. Drivers may 

experience tension and anxiety due to this dense traffic. 

Additionally, driving stress is highly impacted by the 

educational land use variable (standardized coefficient=0.49, 

p=0.002). The driver's route included an elementary school 

and a state institution. The findings indicate that drivers may 

experience stress when operating a vehicle in an educational 

setting because of the requirement to protect children's safety 

and security, particularly in the vicinity of primary schools. 

Stressful situations for drivers include having to watch out for 

pedestrians, potentially careless kids, and unique traffic 

patterns around schools. Areas around schools also often have 

limited parking, which can make drivers spend more time 

relocating their vehicles. Furthermore, drivers may feel more 

stressed because of the busy and boisterous environment 

surrounding schools, particularly at the start and end of the day. 

These factors were obtained from direct observations in the 

field after being carried out several times at the research 

location. 

However, some elements can give the driver a direct 

physical stimulus, like turn in the road (standardized 

coefficient=0.48, p=0.01), turns with derivative and incline 

(standardized coefficient=0.60, p=0.01), and incline 

conditions and derivatives (standardized coefficient=0.82, 

p=0.01). Road conditions, steep inclines, and sharp turns can 

all make it more difficult for drivers to maintain focus, control, 

and motor reaction, which in turn can make them feel more 

stressed. Nervous system-related stress reactions, such 

heightened attention, tense muscles, or elevated adrenaline, 

are more closely linked to the physical state and perception of 

the driving environment by the driver. Road geometry 

conditions that are hazardous or physically taxing can trigger 

this physiological stress response. 

Driving around a bend can be challenging for drivers 

because of derivation and inclination bends. This may be the 

result of the slope decreasing line of sight and obstructing the 

view. Additionally, drivers need to be able to anticipate how 

the car would react to variations in road height. Similar results 

were shown from research [36], which stated that segments 

sharp turns can cause driving stress because the driver 

concentrates on the sharp turns and vehicles from the opposite 

direction. On the other hand, the fact that sharp turns are places 

where dangerous maneuvers cause driving stress is in line with 

previous research [74]. 

Land use conditions therefore have a substantial impact on 

stress based on heart rhythm since they affect the driver's 

degree of activity and distractions. On the other hand, as they 

affect the driver's physical and physiological sensations, road 

geometry can have a substantial impact on stress that is based 

on the nervous system. The combination of these two elements 

creates a convoluted driving environment and influence 

drivers' stress responses around areas with heavy traffic. 

Finally, it should be noted that locations with mixed and 

confused traffic, lane changes, road crossings, sharp turns, and 
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traffic jams all cause the most driving stress. 

This research also emphasizes the importance of the 

interaction between land use conditions and road geometry in 

influencing driver stress levels. The practical implications of 

these findings are highly relevant for urban planning, traffic 

safety, and transportation policy. Identifying areas with a high 

potential for driving stress such as office, industrial, and 

educational zones can support the development of more 

targeted interventions to reduce the psychophysiological 

burden on motorcycle riders. Strategic measures may include 

installing speed-calming devices (e.g., roundabouts or speed 

bumps), improved signage, and better road design in high-risk 

areas such as sharp curves, steep inclines, and congested urban 

corridors. A deeper understanding of how environmental 

factors contribute to driver stress can facilitate the creation of 

safer, more adaptive, and human-centered traffic systems. 

Moreover, the study recommends integrating physiological 

data from drivers such as heart rate variability monitored 

through wearable devices into smart urban traffic management 

systems. This approach enables dynamic identification of 

high-risk road segments and can inform responsive safety 

measures. In the long term, urban zoning policies may 

consider the health implications of stress exposure, especially 

for motorcyclists, and support spatial separation between high-

activity zones (e.g., offices and industrial areas). The study 

also contributes to developing Intelligent Transportation 

Systems (ITS), particularly for two-wheeled vehicles, which 

have often been overlooked in such innovations. Integrating 

biometric data into vehicle design or navigation systems could 

enhance driving safety by providing real-time alerts in high-

stress areas or suggesting alternative routes. Therefore, the 

outcomes of this research not only enrich the academic 

discourse but also offer actionable insights for policymakers 

and urban planners to establish safer and more responsive 

urban transportation networks. 

6. CONCLUSIONS

This research used the MIMIC model to examine the 

relationship between stress in both time and frequency 

domains, as well as HRV parameters (SDNN, RMSSD, TINN, 

LF/HF (FFT), LF/HF(AR)), with factors such as land use and 

road geometry. The study shows that factors like land use and 

road geometry have a significant impact on motorcyclists' 

stress levels. Office areas and sharp turns recorded the highest 

heart rates, indicating higher stress levels. Additionally, land 

use influences time domain stress, while road geometry has a 

greater impact on frequency domain stress. The study found 

that about 6% of heart rates exceeded the normal limit of 100 

bpm, indicating potential stress. These findings emphasize the 

importance of further research to validate the results and assess 

the influence of external factors, such as weather and traffic 

conditions, on motorcyclist stress. 

The implications of these findings for road safety are 

significant. Higher stress in specific areas, such as office zones 

or sharp turns, indicates that these areas may pose a higher risk 

to riders. Therefore, road infrastructure planning and 

improvements, such as redesigning roads and optimizing land 

use, could help reduce stress levels and enhance rider safety. 

The study also highlights the need for policies that can reduce 

stress-inducing factors while ensuring that road infrastructure 

supports riders in minimizing tension during their travels. 

The research further suggests that additional studies are 

required to validate the findings and deepen our understanding 

of driving stress after initial investigations are completed. 

Consistent assessment is also crucial to ensure the 

effectiveness and sustainability of initiatives aimed at reducing 

driving stress. Some limitations of this study include 

significant variations in subjective reactions to stress while 

driving, as well as the influence of external factors like 

weather, traffic, and road conditions, which may affect the 

outcomes. Therefore, future research is expected to take these 

external factors into account and use larger samples to 

generate more comprehensive stress mapping, as well as 

explore the relationship between drivers' stress levels and their 

socioeconomic attributes. 
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