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 This study investigates the thermal behavior of fins with temperature-dependent internal 

heat generation and thermal conductivity using the Taylor series method, a semi-analytical 

technique known for its simplicity and accuracy. Two key scenarios are analyzed: (1) 

internal heat generation as a function of fin temperature, and (2) both internal heat 

generation and thermal conductivity as temperature-dependent. Closed-form analytical 

expressions for temperature distribution and fin efficiency are derived for both cases. 

Results show that increasing the heat generation parameter significantly raises the 

temperature profile, with a peak temperature increase compared to the baseline case. When 

thermal conductivity decreases with temperature, heat accumulation becomes more 

pronounced, reducing fin efficiency. Parametric analysis further reveals that the Taylor 

series method not only matches the accuracy of established numerical methods such as the 

finite difference method (Scilab) but also offers computational simplicity and analytical 

insight. These findings underscore the method’s potential for efficiently solving complex 

nonlinear heat transfer problems in engineering applications. 
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1. INTRODUCTION 

 

The best tool for accelerating the rate of heat transfer is fins. 

They enhance the area of heat transmission and, as we know, 

the quantity of heat transport. Kraus et al. [1] provide a 

thorough examination of this subject. Fins are frequently used 

in factories, including electrical chips, freezing, car air 

conditioning, and chemical manufacturing equipment. Even 

though there are many other kinds of fins, the rectangular fin 

is the most common, most likely because of its straightforward 

form and simple production method. The thermal conductivity 

is considered to be constant for typical fin issues. Nonetheless, 

the impact of temperature on thermal conductivity must be 

regarded when there is a significant temperature difference 

between the fin's base and tip. Feeling the heat created in the 

fin as a function of temperature (from electric current, etc.) is 

also lifelike. 

Using the least squares technique, Aziz and Bouaziz [2] 

forecasted the behavior of a longitudinal fin with internal heat 

production. They contrasted their findings using the dual series 

perturbation, variational iteration, and the homotopy 

perturbation (HPM) approaches. They discovered that this is 

more straightforward than other applicable approaches. The 

ideal fin design was determined by Razani and Ahmadi [3] by 

creating circular fins with random heat dispersion. Unal 

discussed the non-uniform heat production and heat 

transmission coefficients [4]. Convective fins with 

temperature-dependent thermal conductivity were developed 

[5]. Kundu [6] addressed a problem with thermal evaluation 

and design of uniformly thick horizontal fins.  

The homotopy analysis method (HAM) was used [7, 8] to 

solve the nonlinear fin differential equation to assess the fin 

efficiency. Additionally, Ganji et al. [9] used HPM to study 

the temperature distribution for annual fins. Aziz and Khani 

[10] have examined the effects of temperature on a moving fin, 

considering the radiation losses. Bouaziz and Aziz [11] also 

introduced a twofold ideal linearization approach to provide a 

simple and accurate solution for the temperature distribution 

in a straight rectangular convective–radiative fin.  

Recent research on heat transfer in fins with temperature-

dependent properties has focused on improving analytical and 

semi-analytical methods to handle nonlinearities from variable 

thermal conductivity and internal heat generation. For 

example, Kumar et al. [12] used the Hermite collocation 

method to model semi-spherical fins, while Ananth Subray et 

al. [13] applied the Differential Transformation Method (DTM) 

to convective-radiative fins. Studies like Girish et al. [14] 

explored hybrid nanofluids in porous fins, revealing enhanced 

heat transfer and neural network-based models have shown 

promise for accurate temperature prediction Liu et al. [15]. 

These advances support more efficient thermal management 

designs in engineering applications. These are the latest 

developments in the study of temperature-dependent heat 

transfer fins. 

Zhou [16] originally proposed the differential 

transformation method (DTM) idea in 1986 to handle both 

linear and nonlinear initial value issues in electric circuit 

analysis. The primary advantage of this approach is that it may 

be used directly for both linear and nonlinear differential 

equations without the need for linearization, discretization, or 
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perturbation. Ghafoori et al. [17] solved the nonlinear 

oscillation problem using the DTMf. Hassan [18] used DTM 

for various differential equation systems and examined its 

convergence in several linear and nonlinear differential 

equation system cases. Abazari and Abazari [19] solved the 

generalized Hirota–Satsuma coupled KdV problem using the 

DTM and reduced differential transformation technique. 

Rashidi et al. [20] used DTM to solve the mixed convection 

problem concerning an inclined flat plate buried in a porous 

medium; They used the Pade approximation to improve the 

solution's convergence. Abbasov et al. [21] observed 

approximations for the linear and nonlinear equations 

associated with engineering issues. The DTM was applied to a 

few PDEs and their linked counterparts in previous studies 

[22-25]. Kundu et al. [26] used the DTM. to forecast the 

performance of triangular and wet fins. Using analytical 

methods, Hatami and Ganji [27-30] and Hatami et al. [31] 

effectively resolved the heat transmission via porous fins of 

different forms.  

The present paper has applied the Taylor series method to 

find the semi-analytical solution for fin temperature 

distribution and thermal conductivity. The model's semi-

analytical solution may be obtained and compared to 

numerical data to demonstrate the method's high accuracy, 

simplicity, efficacy, and potential. 

 

 

2. MATHEMATICAL FORMULATION AND SEMI-

ANALYTICAL SOLUTION OF THE PROBLEM 

 

Heat transmission only occurs in the horizontal direction (x 

direction) because we assume the temperature change in the 

transfer direction is very small. Figure 1 depicts a schematic 

of the fin's geometry and other characteristics. 
 

 
 

Figure 1. Diagrammatic representation of the fin shape and 

the source of heat production 

 

The differential equation for the present problem may be 

expressed as [2]. 

𝑑2𝑇

𝑑𝑋2 −
ℎ𝑃

𝑘0𝐴
(𝑇 − 𝑇∞) +

𝑞∗

𝑘0
= 0  (1) 

 

The boundary conditions are: 

 

𝐴𝑡 𝑋 = 0,
𝑑𝑇

𝑑𝑋
= 0  (2) 

 

𝐴𝑡 𝑋 = 𝐿, 𝑇 = 𝑇𝑏   (3) 

 

There are two primary scenarios when this issue is resolved. 

The governing equations for these two conditions are 

presented in the next subsections. 

 

2.1 Case 1-Fin with temperature-dependent internal heat 

generation and constant thermal conductivity 

 

In the first scenario, it is considered that the thermal 

conductivity is constant (k0) and the fin's heat production 

fluctuates with temperature as shown in Eq. (4). 

 

𝑞∗ = 𝑞∞
∗ (1 + 𝜀(𝑇 − 𝑇∞)) (4) 

 

where, the internal heat production at temperature 𝑇∞  is 

represented by 𝑞∞
∗ . The dimensionless variables listed below 

are provided. 

 

𝜃 =
(𝑇−𝑇∞)

(𝑇𝑏−𝑇∞)
, 𝑋 =

𝑥

𝐿
, 𝑁2 =

ℎ𝑃𝐿2

𝑘0𝐴
, 𝐺 =

𝑞∞
∗ 𝐴

ℎ𝑃(𝑇𝑏−𝑇∞)
,

𝜀𝐺 = 𝜀(𝑇𝑏 − 𝑇∞)  
(5) 

 

The Eq. (1) becomes in dimensionless form as follows: 

 

𝑑2𝜃(𝑋)

𝑑𝑋2
− 𝑁2𝜃(𝑋) + +𝑁2𝐺(1 + 𝜀𝐺𝜃(𝑋)) = 0 (6) 

 

Boundary conditions are:  

 

X=0,
𝑑𝜃(𝑋)

𝑑𝑋
=0 (7) 

 

X=1 𝜃(𝑋) = 1 (8) 

 

The exact solution of Eq. (6) becomes: 

 

𝜃(𝑋) =
(1−𝐺−𝐺𝜀𝐺) cosh(𝑁√1−𝐺𝜀𝐺 𝑋)

(1−G𝜀𝐺) cosh(𝑁√1−𝐺𝜀𝐺 )
+

𝐺

(1−𝐺𝜀𝐺)
  (9) 

 

2.2 Previous results for Case 1 

 

Previously, this problem was solved using various methods, 

which are summarised in Table 1 below. 

 

Table 1. Analytical expression for the previous results for Case 1 

 
S.No. Temperature Method Ref. 

1 𝜃(𝑋) =
cosh(𝑎𝑋)

cosh (𝑎)
, where 𝑎 = √𝑁2[1 − 𝐺(1 + 𝜀𝐺)] ASM [32] 

2 𝜃(𝑋) = 𝐺 + (1 − 𝐺)
cosh (𝑁1𝑋)

𝑐𝑜𝑠ℎ(𝑁1)
, where 𝑁1 = 𝑁 [1 − 𝜀𝐺𝐺 (1 +

2𝐺𝑠𝑖𝑛ℎ(2𝑁)

(1−𝐺)(2𝑁+sinh (2𝑁))
)]

1

2
 Optimal linearization method [2] 

3 

Θ(2) =
1

2
𝑁2Θ(0) −

1

2
𝑁2𝐺(1 + 𝜀𝐺Θ(0)); Θ(3) =

1

6
𝑁2Θ(1) −

1

6
𝑁2𝐺(1 + 𝜀𝐺Θ(1)) 

Θ(4) =
1

12
𝑁2Θ(2) −

1

12
𝑁2𝐺(1 + 𝜀𝐺Θ(2)); Θ(5) =

1

20
𝑁2Θ(1) −

1

20
𝑁2𝐺(1 +

𝜀𝐺Θ(1)) 

Differential transformation 

method 
[33] 
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All the above methods give only approximate results. But 

our result Eq. (9) is an exact result. 

 

2.3 Case 2-Fin with temperature-dependent internal heat 

generation and thermal conductivity 

 

Both internal heat production and the fin's thermal 

conductivity are thought to be temperature-dependent in the 

second scenario. Assuming that it changes in a linear 

proportion with temperature, we obtain: 

 
𝑘

𝑘0

= [1 + 𝛽(𝑇𝑏 − 𝑇∞)] = [1 + 𝜀𝑐] (10) 

 

Eq. (7) for this condition becomes: 

 
𝑑

𝑑𝑋
[(1 + 𝜀𝑐𝜃(𝑋))

𝑑𝜃(𝑋)

𝑑𝑋
] − 𝑁2𝜃(𝑋) + 𝑁2𝐺(1 +

𝜀𝐺𝜃(𝑋))=0 
(11) 

 

Simplifying the above equation, we get: 

 

𝜃′′(𝑋) =
𝑁2𝜃(𝑋)−𝑁2𝐺(1+𝜀𝐺𝜃(𝑋))−𝜀𝑐𝜃′(𝑋)2

(1+𝜀𝑐𝜃(𝑋))
  (12) 

 

Let us assume that 𝜃(0) =
𝑎 where a is an unknown constant. 

(13) 

 

Using the given boundary condition, we get 𝜃(1)(0) = 0. 

From the successive derivative of Eq. (18), we obtain the 

following results.  

 

𝜃(3)(𝑋) =
𝑁2𝜃(1)(𝑋)−𝑁2𝜀𝐺𝐺𝜃(1)(𝑋)−3𝜀𝑐𝜃(1)(𝑋)𝜃(2)(𝑋)

(1+𝜀𝑐𝜃(𝑋))
  (14) 

 

𝜃(4)(𝑋) =

𝑁2𝜃(2)(𝑋)−𝑁2𝜀𝐺𝐺𝜃(2)(𝑋)

−4𝜀𝑐𝜃(1)(𝑋)𝜃(3)(𝑋)−3𝜀𝑐𝜃(2)(𝑋)2

(1+𝜀𝑐𝜃(𝑋))
  

(15) 

 

𝜃(5)(𝑋) =

𝑁2𝜃(3)(𝑋)−𝑁2𝜀𝐺𝐺𝜃(3)(𝑋)

−5𝜀𝑐𝜃(1)(𝑋)𝜃(4)(𝑋)−10𝜀𝑐𝜃(2)(𝑋)𝜃(3)(𝑋)

(1+𝜀𝑐𝜃(𝑋))
  

(16) 

 

𝜃(6)(𝑋) =

𝑁2𝜃(4)(𝑋)−𝑁2𝜀𝐺𝐺𝜃(4)(𝑋)−6𝜀𝑐𝜃(1)(𝑋)𝜃(5)(𝑋)

−15𝜀𝑐𝜃(2)(𝑋)𝜃(4)(𝑋)−10𝜀𝑐𝜃(3)(𝑋)2

(1+𝜀𝑐𝜃(𝑋))
  

(17) 

 

At X=0, the above expressions become as follows: 

𝜃(2)(0) =
𝑁2𝑎−𝑁2−𝑁2𝐺𝑎𝜀𝐺

1+𝑎𝜀𝑐
, 𝜃(3)(0) = 0  (18) 

 

𝜃(4)(0) =

𝑁2𝜃(2)(0)−𝑁2𝜀𝐺𝐺𝜃(2)(0)

−4𝜀𝑐𝜃(1)(0)𝜃(3)(0)−3𝜀𝑐𝜃(2)(0)2

(1+𝜀𝑐𝜃(0))
,  

𝜃(5)(0) = 0 

(19) 

 

𝜃(6)(0) = 𝜃(4)(0) (
𝑁2−𝑁2𝐺𝜀𝐺−15∈𝑐𝜃(2)(0)

1+𝑎𝜀𝑐
)  (20) 

 

Using Taylor series expansion,  

 

𝜃(𝑋) ≈ 𝜃(0) + 𝜃(1)(0)
𝑋

1!
+ 𝜃(2)(0)

𝑋2

2!
+ 𝜃(3)(0)

𝑋3

3!
+

𝜃(4)(0)
𝑋4

4!
+ 𝜃(6)(0)

𝑋6

6!
  

 

Applying the Eqs. (13)-(20) we get: 

 

𝜃(𝑋) ≈ 𝑎 + 𝜃(2)(0)
𝑋2

2!
+ 𝜃(4)(0)

𝑋4

4!
+ 𝜃(6)(0)

𝑋6

6!
  (21) 

 

where, 𝜃(2)(0), 𝜃(4)(0), 𝜃(6)(0), are given in the Eqs. (18), 

(19) and (20). Using the boundary condition, 𝜃(𝑋 = 1) = 1, 

we get 

 

1 = 𝜃(0) + 𝜃(2)(0)
1

2!
+ 𝜃(4)(0)

1

4!
+ 𝜃(6)(0)

1

6!
  (22) 

 

We can find the value of 𝜃(0) by solving the above equation, 

using wolframalpha.com for the given experimental values of 

other parameters. For the fixed values of the parameters 

𝑁2 = 1, 𝜀𝐺 = 𝜀𝑐 = 𝐺 = 0.2 , the numerical value of a is found 

to be 𝑎 =0.759211, from the equation, we obtain 𝜃(2)(0) =
0.459128,  𝜃(4)(0) =0.272853, 𝜃(6)(0) =-0.098750 and thus 

from equation (15), we obtain the analytical expression of the 

dimensionless temperature 𝜃(𝑋) expressed by: 

 

𝜃(𝑋) = 0.759211 + 0.229564𝑋2 + 0.011369𝑋4

− 0.000137 

 

2.4 Previous results for Case 2 

 

Table 2 below summarizes the several approaches that were 

previously used to solve this problem. 

All of the aforementioned techniques only provide 

approximations. However, the value we obtained from Eq. (9) 

is very simple. 

 

Table 2. Analytical expression for the previous results for Case 2 

 
S.No. Expression of Temperature Method Ref. 

1 
𝜃(𝑋) =

cosh (𝑏𝑋)

cosh (𝑏)
  

where, b is 𝑏2(1 + 𝜀𝑐sech (𝑏)) − 𝑁2 + 𝑁2𝐺(cosh(𝑏) + 𝜀𝐺) = 0  
ASM [32] 

2 

𝜃(𝑋) = 𝐺 + (1 − 𝐺)
𝑐𝑜𝑠ℎ(𝑁2𝑋)

𝑐𝑜𝑠ℎ(𝑁2)
  

where, 𝑁2 = 𝑁1 [1 + 𝜀𝑐 (𝐺 +
2(1−𝐺)(3𝑠𝑖𝑛ℎ(𝑁1)+sinh (3𝑁1))

3(2𝑁1+sinh (2𝑁))cosh (𝑁1)
)]

−1/2
 

𝑁1 = 𝑁 [1 − 𝜀𝐺𝐺 (1 +
2𝐺𝑠𝑖𝑛ℎ(2𝑁)

(1−𝐺)(2𝑁+sinh(2𝑁))
)]

1/2
  

Double optimal linearization method [2] 

3 

Θ(2) =
𝑁2Θ(0)−𝑁2𝐺𝜀𝐺Θ(0)−𝑁2𝐺

2(1+𝜀𝑐Θ(0))
  

Θ(3) = 𝜀𝑐Θ(2)Θ(1) +
𝑁2Θ(1)

6
−

𝑁2𝐺𝜀𝐺Θ(1)

6
  

Θ(4) = −
1

12
𝑁2𝐺𝜀𝐺Θ(2) −

3

4
𝜀𝑐Θ(3)Θ(1) −

2

3
𝜀𝑐Θ2(2) +

1

12
𝑁2Θ(2)  

Differential transformation method [33] 
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3. NUMERICAL SIMULATION 

 

Numerically, the non-linear Eq. (4) is solved for the 

boundary conditions (Eqs. (7) and (8)). To solve the initial 

boundary value problems numerically, we used the Scilab / 

Matlab (Appendix B) software's function pdex1. In Tables 3-

7, the analytical results for the thermal activity were compared 

to simulation data and previously available semi-analytical 

results. This numerical method is compared to the current 

method (Taylor’s) and the analysis data. When we compare, 

our analytical result matches well with the numerical result for 

all the parameter values. 

 

Case 1: 
 

Table 3. Comparison of analytical result and numerical result for dimensionless temperature distribution function θ(X) for 

various parameters when εc=0, εG=G=0.2 
 

𝑿 N=0.5 

 Exact soln. Eq. (9) this work 
Previous results Deviation 

ASM [32] OLM [33] ASM [32] OLM [33] 

0 0.9136 0.9119 0.9137 0.0017 0.0001 

0.2 0.9170 0.9154 0.9171 0.0016 0.0001 

0.4 0.9272 0.9258 0.9273 0.0014 0.0001 

0.6 0.9443 0.9433 0.9444 0.0010 0.0001 

0.8 0.9684 0.9679 0.9686 0.0005 0.0001 

1 0.9999 0.9999 1.0001 0.0000 0.0001 

 Average 0.0010 0.0001 

𝑿 N=10 

 Exact soln. Eq. (9) This work 
Previous results Deviation 

ASM [32] OLM [33] ASM [32] OLM [33] 

0 0.2084 0.0003 0.2001 0.2081 0.0083 

0.2 0.2086 0.0010 0.2003 0.2076 0.0082 

0.4 0.2103 0.0054 0.2024 0.2050 0.0079 

0.6 0.2226 0.0306 0.2165 0.1920 0.0061 

0.8 0.3097 0.1747 0.3145 0.1350 0.0047 

1 0.9281 0.9991 0.9959 0.0710 0.0678 

 Average 0.1698 0.0172 

𝑿 N=20 

 
Exact soln. Eq. (9) This work Previous results Deviation 

 ASM [32] OLM [33] ASM [32] OLM [33] 

0 0.2083 0.0000 0.2000 0.2083 0.0083 

0.2 0.2083 0.0000 0.2000 0.2083 0.0083 

0.4 0.2083 0.0000 0.2000 0.2083 0.0083 

0.6 0.2086 0.0009 0.2003 0.2076 0.0082 

0.8 0.2212 0.0303 0.2164 0.1909 0.0048 

1 0.8561 0.9895 0.9914 0.1335 0.1353 

 Average 0.1928 0.0289 

 

Case 2: 
 

Table 4. Comparison of analytical result and numerical result for dimensionless temperature distribution function θ(X) for 

various parameters when N=1, εG=G=0.4 
 

X 

𝜺𝒄=0.2, a=0.8569 

Num 
Previous results Deviation 

ASM [32] DOLM [33] TSM This work (21) ASM [32] DOLM [33] TSM This work (21) 

0 0.8750 0.8590 0.8569 0.8569 0.0160 0.0021 0.0000 

0.2 0.8800 0.8645 0.8624 0.8624 0.0155 0.0021 0.0000 

0.4 0.8949 0.8810 0.8789 0.8789 0.0139 0.0021 0.0000 

0.6 0.9201 0.9089 0.9068 0.9069 0.0112 0.0021 0.0001 

0.8 0.9558 0.9483 0.9468 0.9470 0.0075 0.0015 0.0002 

1 1.0000 0.9999 1.0000 1.0000 0.0001 0.0001 0.0000 

 Average  0.0107 0.0016 0.0000 

X 
𝜺𝒄=0.4, a=0.8755 

Num 
Previous results Deviation 

ASM [32] DOLM [33] TSM This work (21) ASM [32] DOLM [33] TSM This work (21) 

0 0.9023 0.8734 0.8569 0.8755 0.0289 0.0454 0.0268 

0.2 0.9062 0.8783 0.8624 0.8805 0.0279 0.0438 0.0257 

0.4 0.9181 0.8933 0.8789 0.8954 0.0248 0.0392 0.0227 

0.6 0.9379 0.9183 0.9068 0.9201 0.0196 0.0311 0.0178 

0.8 0.9659 0.9537 0.9468 0.9542 0.0122 0.0191 0.0117 

1 1.0000 0.9999 1.0000 0.9963 0.0001 0.0000 0.0037 

 Average  0.0189 0.0298 0.0181 

X 
𝜺𝒄=0.6, a=0.8866 

Num Previous results Deviation 
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ASM [32] DOLM [33] TSM This work (21) ASM [32] DOLM [33] TSM This work (21) 

0 0.9222 0.8854 0.8848 0.8866 0.0368 0.0006 0.0018 

0.2 0.9254 0.8899 0.8892 0.8911 0.0355 0.0007 0.0019 

0.4 0.9349 0.9034 0.9026 0.9047 0.0315 0.0008 0.0021 

0.6 0.9507 0.9261 0.9253 0.9274 0.0246 0.0008 0.0021 

0.8 0.9730 0.9582 0.9575 0.9595 0.0148 0.0007 0.0020 

1 1.0000 1.0000 1.0000 1.0013 0.0000 0.0000 0.0013 

 Average  0.0239 0.0006 0.0019 

 

Table 5. Comparison of analytical result and numerical result for dimensionless temperature distribution function θ(X) for 

various parameters when N=1, εc=G=0.4 

 

X 

𝜺𝑮=0.2, a=0.8519 

Num 
Previous results Deviation 

ASM [32] DOLM [33] TSM This work (21) ASM [32] DOLM [33] TSM This work (21) 

0 0.8857 0.8526 0.8532 0.8519 0.0331 0.0006 0.0013 

0.2 0.8903 0.8583 0.8588 0.8576 0.0320 0.0005 0.0012 

0.4 0.9042 0.8756 0.8757 0.8749 0.0286 0.0001 0.0008 

0.6 0.9274 0.9047 0.9043 0.9041 0.0227 0.0004 0.0002 

0.8 0.9601 0.9460 0.9454 0.9455 0.0141 0.0006 0.0001 

1 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 

 Average  0.0218 0.0004 0.0006 

X 

𝜺𝑮=0.4, a=0.8731 

Num 
Previous results Deviation 

ASM [32] DOLM [33] TSM This work (21) ASM [32] DOLM [33] TSM This work (21) 

0 0.9023 0.8734 0.8723 0.8731 0.0289 0.0011 0.0011 

0.2 0.9062 0.8783 0.8772 0.8781 0.0279 0.0011 0.0011 

0.4 0.9181 0.8933 0.8920 0.8930 0.0248 0.0013 0.0013 

0.6 0.9379 0.9183 0.9170 0.9181 0.0196 0.0013 0.0013 

0.8 0.9659 0.9537 0.9527 0.9537 0.0122 0.0010 0.0010 

1 1.0000 0.9999 0.9999 1.0001 0.0001 0.0000 0.0000 

 Average  0.0189 0.0010 0.0008 

X 

𝜺𝑮=0.6, a=0.8939 

Num 
Previous results Deviation 

ASM [32] DOLM [33] TSM This work (21) ASM [32] DOLM [33] TSM This work (21) 

0 0.9192 0.8948 0.8937 0.8939 0.0244 0.0011 0.0002 

0.2 0.9225 0.8989 0.8978 0.8980 0.0236 0.0011 0.0002 

0.4 0.9323 0.9114 0.9102 0.9104 0.0209 0.0012 0.0002 

0.6 0.9487 0.9322 0.9311 0.9314 0.0165 0.0011 0.0003 

0.8 0.9718 0.9616 0.9609 0.9611 0.0102 0.0007 0.0002 

1 1.0000 0.9999 1.0000 1.0000 0.0001 0.0001 0.0000 

 Average 0.0160 0.0009 0.0002 

 

Table 6. Comparison of analytical result and numerical result for dimensionless temperature distribution function θ(X) for 

various parameters when N=1, εc=εG=0.4 

 

X 

G=0.2, a=0.7935 

Num 
Previous results Deviation 

ASM [32] DOLM [33] TSM this work (21) ASM [32] DOLM [33] TSM this work (21) 

0 0.8398 0.7910 0.7970 0.7935 0.0488 0.0060 0.0035 

0.2 0.8463 0.7990 0.8047 0.8016 0.0473 0.0057 0.0031 

0.4 0.8660 0.8233 0.8280 0.8258 0.0427 0.0047 0.0022 

0.6 0.8987 0.8642 0.8676 0.8666 0.0345 0.0034 0.0010 

0.8 0.9445 0.9227 0.9244 0.9245 0.0218 0.0017 0.0001 

1 1.0000 1.0000 0.9999 1.0001 0.0000 0.0001 0.0002 

 Average  0.0325 0.0036 0.0017 

X 

G=0.4, a=0.8732 

Num 
Previous results Deviation 

ASM [32] DOLM [33] TSM this work (21) ASM [32] DOLM [33] TSM this work (21) 

0 0.9023 0.8734 0.8723 0.8732 0.0289 0.0011 0.0009 

0.2 0.9062 0.8783 0.8772 0.8782 0.0279 0.0011 0.0010 

0.4 0.9181 0.8933 0.8920 0.8931 0.0248 0.0013 0.0011 

0.6 0.9379 0.9183 0.9170 0.9182 0.0196 0.0013 0.0012 

0.8 0.9659 0.9537 0.9527 0.9541 0.0122 0.0010 0.0014 

1 1.0000 0.9999 0.9999 1.0014 0.0001 0.0000 0.0015 

 0.0325 0.0189 0.0010 0.0012 

X 

G=0.6, a=0.9532 

Num 
Previous results Deviation 

ASM [32] DOLM [33] TSM this work (21) ASM [32] DOLM [33] TSM this work (21) 
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0 0.9645 0.9543 0.9590 0.9532 0.0102 0.0047 0.0058 

0.2 0.9660 0.9561 0.9606 0.9550 0.0099 0.0045 0.0056 

0.4 0.9702 0.9616 0.9654 0.9604 0.0086 0.0038 0.0050 

0.6 0.9774 0.9707 0.9736 0.9696 0.0067 0.0029 0.0040 

0.8 0.9875 0.9835 0.9850 0.9827 0.0040 0.0015 0.0023 

1 1.0000 1.0000 0.9999 1.0000 0.0000 0.0001 0.0001 

 Average  0.0066 0.0029 0.0038 

 

Table 7. Comparison of analytical results for dimensionless temperature distribution function θ(X) on constant thermal 

conductivity and dependent thermal conductivity for parameters εc=0, εG=0.2 

 

X 
N=0.5 N=1 N=5 N=10 

Case1 (9) Case2 (21) Dev Case1 (9) Case2 (21) Dev Case1 (9) Case2 (21) Dev Case1 (9) Case2 (21) Dev 

0.0 0.9136 0.9136 0.0000 0.7291 0.7293 0.0002 0.2200 0.2224 0.0024 0.2091 0.2088 0.0003 

0.2 0.9170 0.9170 0.0000 0.7391 0.7393 0.0002 0.2261 0.2297 0.0036 0.2112 0.2100 0.0012 

0.4 0.9272 0.9272 0.0000 0.7696 0.7698 0.0002 0.2507 0.2592 0.0085 0.2285 0.2193 0.0091 

0.6 0.9443 0.9443 0.0000 0.8218 0.8219 0.0002 0.3193 0.3395 0.0203 0.3514 0.2668 0.0846 

0.8 0.9685 0.9684 0.0001 0.8975 0.8976 0.0001 0.5033 0.5395 0.0362 1.2244 0.4468 0.7775 

1.0 1.0000 0.9998 0.0002 0.9999 0.9999 0.0000 0.9939 0.9988 0.0049 7.4218 0.9838 6.4380 

 Average 0.0001 Average  0.0002 Average  0.0127 Average  1.2185 

 

 

 

 
 

Figure 2. Effect of parameter N on the temperature 

distribution function θ(X) for various parameters εc, εG, G 

when N=0.5, 1.5, 10 

The Taylor series analytical method offers a highly 

economical approach compared to numerical and 

experimental techniques for analyzing thermal behavior in fins. 

It requires minimal computational resources, delivers rapid 

closed-form solutions, and provides strong analytical insights, 

making it ideal for early-stage research. In contrast, numerical 

methods involve higher computational costs, while 

experimental setups demand significant investment in 

equipment, manpower, and time. Thus, the Taylor series 

method proves both cost-effective and efficient for solving 

complex nonlinear heat transfer problems. 

Limiting case. (Fin with temperature-dependent internal 

heat generation and constant thermal conductivity). 

It should be noted that when the thermal conductivity is a 

constant i.e., εc= 0, the Eq. (11) becomes: 

 

𝜃(𝑋) = 𝜃(0) + 𝜃(2)(0)
𝑋2

2!
+ 𝜃(4)(0)

𝑋4

4!
+ 𝜃(6)(0)

𝑋6

6!
  (28) 

 

where 𝜃(2)(0) = 𝑁2𝑎 − 𝑁2 − 𝑁2𝐺𝑎𝜀𝐺 (29) 

 

𝜃(4)(0) = 𝑁2𝜃(2)(0) − 𝑁2𝜀𝐺𝐺𝜃(2)(0) (30) 

 

𝜃(6)(0) = 𝜃(4)(0)(𝑁2 − 𝑁2𝐺𝜀𝐺) (31) 

 

In Figure 2, as N increases, the temperature θ(X) decreases 

more sharply, indicating enhanced heat dissipation along the 

fin. For lower values of N, the temperature remains relatively 

higher throughout the fin length. As the nonlinearity parameter 

N increases, the temperature profiles become steeper, 

especially near the base region, suggesting stronger nonlinear 

effects. The figures demonstrate that higher N values 

significantly accelerate the cooling process. Throughout the 

analysis, the parameters εc, εG, and G are kept constant. 

Figure 3(a)-(c) presents the influence of the parameter 𝜀𝑐 on 

the dimensionless temperature distribution θ(X) and the 

dimensionless base temperature ratio θ(X) along the fin length 

for different conditions. In Figures 3(a) and 2(b), as 

𝜀𝑐 increases, the temperature profiles θ(X) show a more rapid 

decline along the axial distance, indicating greater thermal 

conductivity effects. Each curve shifts downward with 

increasing εc, meaning higher values of εc enhance the cooling 

of the fin. Figure 3(c) focuses on the dimensionless base 

temperature ratio, which also decreases more noticeably with 

higher εc, emphasizing its significant role in thermal 
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performance. Throughout the study, the parameters N, εG, G 

are fixed to illustrate the isolated effect of εc. 

 

 

 

 
 

Figure 3. Effect of parameter εc on the temperature 

distribution function θ(X) for various parameters N, εG, G 

when εc=0, 0.2, 0.4, 0.6 

 

Figure 4(a)-(c) illustrates the effect of the parameter 𝜀𝐺 on 

the dimensionless temperature distribution θ(X) along the axial 

distance of the fin for various fixed values of N, εc, G. In each 

subfigure, an increase in εc leads to a noticeable reduction in 

the temperature θ(X) across the fin, highlighting the significant 

role of surface emissivity in enhancing heat loss. In Figures 

4(a) and 4(b), higher εG values cause steeper temperature drops, 

especially near the base. Figure 4(c) further confirms this trend 

with a stronger cooling effect as εG rises. These results clearly 

show that increasing εG enhances radiative heat transfer, 

leading to lower temperature profiles along the fin length. 

Figure 5(a)-(c) displays the effect of the parameter G on the 

dimensionless temperature distribution θ(X) along the axial 

distance from the tip of the fin for different fixed values of N, 

εc, εG. As shown, increasing G leads to a pronounced decrease 

in the temperature θ(X) along the fin, indicating enhanced 

convective heat loss. Each subfigure demonstrates that higher 

values of G result in steeper temperature gradients, especially 

closer to the fin base. The influence of G is consistent across 

the different cases, with G=0.6 producing the lowest 

temperature profiles. These results emphasize that increasing 

G significantly boosts the fin’s cooling efficiency by 

strengthening the convective heat transfer mechanisms. 

 

 

 

 
 

Figure 4. Effect of parameter εG on the temperature 

distribution function θ(X) for various parameters N, εc, G 

when εG=0.2, 0.4, 0.6 

 

Figure 5 illustrates how temperature changes for different 

values of other factors in relation to the heat generation 

number G. The temperature rises in proportion to the internal 

heat generating number. The temperature gradient at the 

bottom of the fin for each curve in Figures 3-5 shows that the 

fin is absorbing heat from the main surface and releasing this 

heat into the surrounding area, along with the heat it generates 

on its own. The intended function of the fin may be 

undermined by an unfavourable situation where some energy 
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transfers to the main surface rather than dissipating to the sink 

due to excessive internal heat generation. 

 

 

 

 
 

Figure 5. Effect of parameter G on temperature distribution 

function θ(X) for various parameters N, εc, εG when G=0.2, 

0.4, 0.6 

 

The local fin temperature rises when the parameters G, εG, 

and εc rise, according to a comparison of Figures 3-5. The rise 

in internal heat production G is the cause of this increase. A 

greater fin temperature is produced as a consequence of the 

rise in parameter εG which suggests that heat production is a 

stronger dependence of the local fin temperature. An increase 

in εc indicates that the fin's thermal conductivity is more 

strongly influenced by the local temperature. The temperature 

profile gets flatter with increasing temperatures across the fin 

due to the fin's increased thermal conductivity, which causes 

heat transfer with fewer temperature gradients. 

 

 

4. CONCLUSION 

 

In conclusion, the thermal analysis of convective fins, both 

analytically and numerically, demonstrates the effectiveness 

of using Taylor series expansions to tackle nonlinear heat 

transfer problems. The parameters significantly impact the 

heat transfer process, particularly near the base of the fin, 

where changes in thermal conductivity and intensified heat 

generation lead to deviations from the traditional linear 

temperature distribution. 

As the base temperature increases, the temperature-

dependent parameters—especially the rise in thermal 

conductivity—create more complex heat transfer patterns 

along the fin, which are effectively captured by the analytical 

model. This sensitivity to material properties emphasizes the 

critical role that temperature-dependent variations play in 

determining the thermal efficiency and performance of the fin. 

The results suggest that the Taylor series-based method is not 

only accurate but also adaptable to varying thermal conditions, 

offering a valuable tool for optimizing thermal management 

systems, such as heat exchangers, where controlling material 

properties can lead to substantial improvements in efficiency. 

This analytical approach presents a promising alternative to 

purely numerical methods, balancing computational efficiency 

with high accuracy. Furthermore, the method’s ability to 

handle temperature-dependent parameters makes it a versatile 

tool that could be applied to a wide range of heat transfer 

systems, from simple fins to more complex geometries and 

boundary conditions, enhancing its applicability in the design 

and optimization of advanced thermal systems. 
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NOMENCLATURE 

h convection heat transfer coefficient, W/m2K 

𝑘 thermal conductivity, W/mK 

P fin perimeter, m 

T local fin temperature, K 

G dimensionless generation number 

N dimensionless Fin parameter  

X dimensionless axial distance measured from the tip of 

the fin 

𝑘0 thermal conductivity at zero temperature, W/mK 

q* internal rate of heat generation, W/m3 

𝑞∞
∗ internal rate of heat generation at sink temperature 

𝑇∞, W/m3

𝑇𝑏 fin base temperature, K 

𝑇∞ sink temperature for convection, K 

Greek symbols 

𝛽 thermal conductivity, K-1 

𝜀 internal heat generation parameter, K-1 

𝜀𝑐 dimensionless thermal conductivity parameter 

𝜀𝐺 dimensionless internal heat generation parameter 

𝜃 dimensionless temperature, (𝑇 − 𝑇∞)/(𝑇𝑏 − 𝑇∞)
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