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 Driven by the global push for green building and sustainable development, the 

collaborative optimization of thermal comfort and ventilation performance has become a 

key requirement for improving the quality of the built environment. Traditional 

architectural design methods often face challenges such as long design cycles, low 

efficiency, and high energy consumption when balancing multiple performance objectives. 

Existing Artificial Intelligence Generated Content (AIGC) technologies, though 

promising, tend to involve complex models and high computational costs, and most focus 

solely on optimizing single performance aspects, lacking consideration of thermal-

ventilation synergy. To address these limitations, this study proposes a lightweight AIGC-

based method for multi-objective architectural space generation, focusing on two key 

areas: (1) constructing a collaborative optimization model for thermal comfort and 

ventilation by analyzing their coupling relationships and integrating key elements such as 

spatial layout, envelope design, and ventilation systems to develop performance-enhancing 

strategies; and (2) developing a lightweight AIGC algorithmic framework that reduces 

computational resource dependency while enabling efficient generation of architectural 

spaces with simultaneous optimization of thermal and ventilation performance. The 

outcomes of this research aim to overcome the limitations of conventional design 

paradigms and provide an intelligent tool that is both efficient and sustainable for early-

stage architectural design, thereby advancing the digital and green transformation of the 

building design industry. 
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1. INTRODUCTION 

 

Against the global background of advocating green 

buildings and sustainable development [1-3], the 

environmental performance of architectural spaces has 

attracted increasing attention. Thermal comfort [4, 5] and 

ventilation performance [6, 7], as core indicators for 

evaluating the quality of the built environment, directly affect 

people's living and working experiences as well as physical 

and mental health within buildings. With the acceleration of 

urbanization and the increasing complexity of building 

functions [8, 9], traditional architectural design methods face 

many challenges in balancing thermal comfort and ventilation 

performance, such as long design cycles, high energy 

consumption, and low optimization efficiency [10-13]. In 

recent years, the rapid development of AIGC technology [14, 

15] has provided new ideas and methods for architectural 

space generation. Lightweight AIGC technology, with its 

advantages of high efficiency, intelligence, and low 

computational cost, has shown great application potential in 

the field of architectural design. It can help achieve multi-

objective architectural space generation and meet the demand 

for high-quality built environments. 

Research on the collaborative optimization of thermal 

comfort and ventilation performance in buildings, as well as 

the lightweight AIGC-based multi-objective architectural 

space generation method based on thermal comfort and 

ventilation performance, has important theoretical and 

practical significance. This research can enrich the theoretical 

system of environmental performance optimization in 

buildings, explore new theories and methods for deep 

integration of AIGC technology and architectural design, and 

provide theoretical support for multi-objective architectural 

space generation. Through the collaborative optimization of 

thermal comfort and ventilation performance, the 

environmental quality of architectural spaces can be 

significantly improved, and building energy consumption can 

be reduced, which aligns with the concepts of green buildings 

and sustainable development. Meanwhile, the application of 

lightweight AIGC technology can improve the efficiency and 

quality of architectural design, reduce manual intervention, 

provide more efficient and intelligent design tools for 

architects, and promote the digital transformation of the 

architectural design industry. 

At present, there are already many research results on 

thermal comfort and ventilation performance in buildings, but 

some deficiencies and shortcomings still exist. Some studies 

only consider thermal comfort or ventilation performance 

individually, lacking the collaborative optimization of both. 

For example, Literature [16] focuses only on the simulation 
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and optimization of thermal comfort in buildings, ignoring the 

impact of ventilation performance on thermal comfort, 

resulting in optimization schemes that are difficult to meet 

both performance requirements in practical applications. In 

terms of architectural space generation methods, traditional 

methods rely on manual experience and trial-and-error, which 

are inefficient and difficult to cover complex multi-objective 

optimization problems [17, 18]. Although some studies have 

attempted to apply AIGC technology in architectural design, 

most adopt complex models and algorithms with high 

computational costs. For example, the AIGC model used in 

literature [19] requires a large amount of computational 

resources and time, making it difficult to achieve a lightweight 

and efficient implementation, thus limiting its application in 

real projects. 

The main content of this paper includes two parts. The first 

part is the collaborative optimization scheme of thermal 

comfort and ventilation performance in buildings. By 

analyzing the relationship between thermal comfort and 

ventilation performance, a collaborative optimization model is 

established. Considering factors such as spatial layout, 

envelope structure, and ventilation system of buildings, a set 

of optimization strategies is proposed to improve both thermal 

comfort and ventilation performance. The second part is the 

lightweight AIGC-based multi-objective architectural space 

generation method based on thermal comfort and ventilation 

performance. Combined with lightweight AIGC technology, 

an efficient architectural space generation model is 

constructed to realize rapid generation and multi-objective 

optimization of architectural spaces, reducing computational 

cost while ensuring generation quality. The value of this 

research lies in filling the gap in current studies regarding the 

collaborative optimization of thermal comfort and ventilation 

performance and the lightweight AIGC-based architectural 

space generation method, providing an efficient, intelligent, 

and sustainable solution for architectural design. Through this 

method, spatial schemes that meet multi-objective 

requirements can be quickly generated in the early stage of 

architectural design, providing strong support for subsequent 

detailed design and engineering practice, and promoting the 

development of the architectural industry toward a greener, 

smarter, and more efficient direction. 

 

 

2. COLLABORATIVE OPTIMIZATION SCHEME FOR 

BUILDING THERMAL COMFORT AND 

VENTILATION PERFORMANCE 

 

The collaborative optimization scheme for building thermal 

comfort and ventilation performance proposed in this paper 

addresses the limitations of static clothing models in 

traditional studies for evaluating thermal comfort and the 

complexity of the influence of operating parameters, and 

constructs a multi-factor collaborative optimization 

framework from a dynamic coupling perspective. First, 

breaking through the traditional model of isolated 

optimization for a single performance, the spatial layout of the 

building, envelope structure characteristics, ventilation system 

parameters, and dynamically changing clothing thermal 

resistance of the human body are integrated into a unified 

analysis system. The interaction mechanism between thermal 

comfort and ventilation airflow organization is precisely 

captured by Computational Fluid Dynamics (CFD) numerical 

simulation technology. Second, the Taguchi method is 

introduced to quantitatively evaluate the influence degree of 

supply air parameters and outdoor weather conditions on 

thermal comfort under different clothing thermal resistance 

levels, identifying key influencing factors. Furthermore, 

combined with the response surface method of central 

composite design, a response surface model covering 

temperature distribution, airflow velocity, and thermal 

comfort indicators is established to reveal the synergistic 

evolution law of thermal comfort and ventilation efficiency 

under multi-parameter coupling. Finally, based on the above 

analysis, a collaborative optimization model is constructed to 

integrate spatial design parameters and equipment operation 

parameters, forming an integrated optimization strategy that 

considers both the dynamic demand of thermal comfort and 

the energy efficiency of the ventilation system. 

 

2.1 Influence analysis of operating parameters on thermal 

comfort 

 

This paper adopts the Taguchi method to explore the basic 

principle of the influence degree of operating parameters on 

thermal comfort under different clothing thermal resistance 

levels, based on the unique advantage of the method in 

quantifying factor influences and optimizing parameter 

combinations in multi-factor complex systems. In the building 

environment, the human clothing state dynamically changes 

with seasons, activity types, etc., and differences in clothing 

thermal resistance directly affect the heat exchange efficiency 

between the human body and the environment, thereby 

changing the demand for ventilation parameters. The Taguchi 

method systematically organizes multi-factor experiments, 

converting a complex parameter space into a quantifiable 

statistical model, which can not only identify dominant 

operating parameters for thermal comfort under different 

clothing thermal resistance levels, but also evaluate the 

stability of parameter combinations through error factor 

analysis, avoiding evaluation deviations caused by static 

model assumptions. The Taguchi method, through orthogonal 

experiment design, sets supply air temperature, supply air 

velocity, supply air angle, and outdoor weather conditions as 

controllable factors, and treats different levels of clothing 

thermal resistance as noise factors, constructing an orthogonal 

table covering multi-factor level combinations with minimal 

experimental runs. This method takes the thermal comfort 

index as the quality characteristic, and evaluates the robustness 

of thermal comfort to clothing thermal resistance changes 

under different parameter combinations by calculating the 

signal-to-noise ratio, identifying the main effects and 

interactions of operating parameters that significantly affect 

thermal comfort, and quantifying the influence weight of each 

factor under different clothing thermal resistance scenarios. 

Considering that the absolute value of the Predicted Mean 

Vote (PMV) index for thermal comfort evaluation is better 

when smaller, it is converted into the Predicted Percentage of 

Dissatisfied (PPD) index, which does not take negative values 

and also aims for "smaller is better" as the optimization 

objective. The target characteristic is clarified as the smaller-

the-better characteristic, and the corresponding signal-to-noise 

ratio calculation formula is used to quantify thermal comfort 

performance. This method converts the experimental results of 

different combinations of operating parameters and clothing 

thermal resistance levels into signal-to-noise ratios, using the 

magnitude to represent the robustness of thermal comfort 

against parameter fluctuations: the larger the signal-to-noise 
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ratio, the smaller and more stable the PPD value under that 

parameter combination, indicating better and more ideal 

thermal comfort performance. Assuming the signal-to-noise 

ratio is represented by SN, the number of experiments by l, and 

the target value of the u-th experiment by b(u), then the 

calculation formula is: 

 

( )2

1

1
10log

l

uv

u

SN b u
l =

 
= −  

 
  (1) 

 

By systematically calculating the signal-to-noise ratio of 

each parameter combination, it is possible to effectively 

identify key control factors that significantly affect thermal 

comfort, quantify their main effects and interactions, and 

provide data support for selecting optimal parameter 

combinations that both reduce PPD values and minimize 

performance fluctuations in multi-parameter coupling 

scenarios, thereby serving the core objective of dynamically 

matching human clothing differences and ventilation system 

parameters in the “collaborative optimization scheme for 

building thermal comfort and ventilation performance.” 

 

2.2 Construction of ventilation performance response 

surface model 

 

The basic principle of constructing a ventilation 

performance response surface model in this paper using the 

central composite design response surface method lies in 

building a mathematical mapping relationship between multi-

variable inputs and ventilation performance outputs through 

systematic experimental design and regression analysis, 

revealing the synergistic evolution law of thermal comfort and 

ventilation efficiency under complex parameter coupling. 

Central composite design, as a core experimental design 

method of the response surface methodology, supplements star 

points and center points based on orthogonal factor design, 

expanding the experimental points to the entire factor space, 

and can effectively fit a second-order response surface 

including linear terms, quadratic terms, and interaction terms. 

It is suitable for handling nonlinear effects of multiple factors 

such as supply air temperature, velocity, angle, and clothing 

thermal resistance on ventilation performance indicators. This 

method covers key regions of the parameter space with fewer 

experimental runs, and fits the response surface equation using 

the least squares method to quantify the significance of the 

main and interaction effects of each factor, thus transforming 

complex physical field coupling problems into analytically 

solvable mathematical models. 

Considering that ventilation performance indicators such as 

thermal comfort index, temperature gradient, mean age of air, 

and energy utilization coefficient have significant linear, 

square, and interaction effects with design variables such as 

supply air temperature, velocity, angle, and clothing thermal 

resistance, the study adopts a second-order polynomial model 

including linear terms, quadratic terms, and interaction terms 

to capture the complex nonlinear mapping relationship among 

parameters. This model, based on 50 sets of experimental data 

obtained through central composite design, achieves efficient 

approximation of real physical field coupling effects within a 

relatively small parameter space, avoiding the high 

computational cost of full factorial design and overcoming the 

limitation of first-order models in describing curvature effects. 

Assuming the number of design variables is v, the predicted 

response value is b, and the coefficients of offset term, linear 

term, and square term are z0, ze, zee respectively, and the 

interaction term coefficient is zet. The basis functions of first- 

and second-order polynomial approximation models are given 

by the following formulas: 
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In the process of model construction, this study adopts the 

stepwise regression–backward method based on second-order 

polynomial to optimize the model structure. By eliminating 

terms with low significance, the stability is improved while 

ensuring the fitting accuracy of the model, so that the response 

surface equation can accurately reflect the dominant influence 

mechanism of design variables on ventilation performance. 

For example, when the interaction term between supply air 

velocity and clothing thermal resistance has a significant 

impact on PMV, the model retains this interaction term to 

quantify the synergistic effect of the two on thermal comfort; 

while higher-order terms of parameters with lower 

contribution are removed to avoid model overfitting. With the 

help of Design-Expert 12 software for fitting and correction of 

experimental data, the finally established PMV, ΔT, Mean 

Age of Air (MAA), and Energy Utilization Coefficient (EUC) 

response surface models can clearly reveal the influence 

patterns of each design variable and their interactions on 

thermal comfort and ventilation efficiency, providing 

quantifiable parameter adjustment references for the 

“collaborative optimization scheme for building thermal 

comfort and ventilation performance.” Assuming the supply 

air angle is denoted by X, the supply air velocity by Y, the 

supply air temperature by Z, the external wall temperature by 

F, and the clothing thermal resistance by R, the response 

surface model expressions are as follows: 

 
3

-2 2

8.49 4.5 10 0.15 0.2

0.13 4.85 6.88 10 0.77

PMV X Y Z

F R ZR R

−= − −  + +

+ + −  −
 (4) 

 

2
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        0.18 1.27 1.25 7.37
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 (5) 
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YF X Y

− −

−

= − + +

− + −

+  − 
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 (7) 

 

The basic principle for significance testing of the 

constructed ventilation performance response surface model in 

this paper is based on statistical methods to quantitatively 

verify the effectiveness and fitting accuracy of the model, in 

order to ensure that the model can reliably reflect the true 

mapping relationship between design variables and ventilation 

performance indicators, and provide scientific mathematical 
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support for the “collaborative optimization scheme for 

building thermal comfort and ventilation performance.” First, 

analysis of variance (ANOVA) is used to examine the overall 

significance of the model. If the P-values of the PMV, ΔT, 

MAA, and EUC models are all less than 0.0001, it indicates 

that the influence of each design variable and its interaction 

term on the response variable is statistically highly significant, 

and that the linear terms, quadratic terms, and interaction terms 

contained in the model can effectively explain the variation of 

the response variables, rather than being caused by random 

error. Second, the coefficient of determination R² and the 

adjusted coefficient of determination R2
AD are used to evaluate 

the goodness-of-fit of the model. R² reflects the proportion of 

sample data explained by the model, while R2
AD improves the 

predictive ability for the population by eliminating irrelevant 

variables. When the two are close and tend towards 1, it 

indicates that the model does not have significant information 

omission and has not suffered from reduced generalization 

ability due to overfitting, and is able to accurately capture the 

variation patterns of thermal comfort and ventilation 

performance indicators with respect to design variables within 

the parameter space. Assuming the number of experiments is 

denoted by v, the number of design variables by j, the response 

value by bᵤ, the average response by b̄ᵤ, and the predicted value 

of the model by b̂ᵤ, then the calculation formulas are as follows: 
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3. LIGHTWEIGHT AIGC-BASED MULTI-OBJECTIVE 

ARCHITECTURAL SPACE GENERATION METHOD 

BASED ON THERMAL COMFORT AND 

VENTILATION PERFORMANCE 

 

This paper takes thermal comfort and ventilation 

performance as optimization objectives and establishes a 

lightweight AIGC-based multi-objective architectural space 

generation method based on thermal comfort and ventilation 

performance, which includes four steps: “generation–

performance evaluation–optimization–decision,” and is 

implemented based on Dynamo and Generative Design. 

 

3.1 Determination of optimization objectives 

 

In terms of thermal comfort quantification, this paper takes 

the PMV and the corresponding PPD as the core indicators. By 

dynamically coupling clothing thermal resistance differences 

with ventilation system operating parameters such as supply 

air temperature, velocity, and angle, a multi-scenario thermal 

comfort evaluation system is constructed. Different from the 

fixed thermal resistance assumption of traditional static 

clothing models, the study introduces the Taguchi method to 

divide clothing thermal resistance into different levels, and 

uses orthogonal experimental design to quantify the 

fluctuation pattern of PPD values under each parameter 

combination, measuring the robustness of thermal comfort to 

clothing thermal resistance variation through the signal-to-

noise ratio. In terms of ventilation performance quantification, 

the study selects temperature gradient, mean age of air, and 

energy utilization coefficient as key indicators, representing 

the uniformity of indoor temperature distribution, air freshness, 

and energy efficiency of the ventilation system, respectively. 

Through central composite design to obtain experimental data 

for multiple parameter combinations, a second-order 

polynomial response surface model is used to fit the nonlinear 

mapping relationship between design variables and ventilation 

performance indicators, identifying the influence patterns of 

each parameter and their interaction effects on ventilation 

efficiency. For example, a smaller mean age of air indicates 

higher ventilation efficiency, while a higher energy utilization 

coefficient reflects better energy consumption control of the 

ventilation system. The quantification results of these two 

types of performance indicators jointly form the optimization 

objectives of the lightweight AIGC model, supporting the 

simultaneous balancing of dynamic thermal comfort demands 

and ventilation system energy efficiency during the process of 

architectural space generation, achieving an efficient solution 

of multi-objective optimization. 

 

3.2 Optimization tools 

 

The Dynamo and Generative Design tools adopted in this 

paper are the core technical carriers for implementing the 

“lightweight AIGC-based multi-objective architectural space 

generation method.” Dynamo, as a parametric design plug-in 

of the Autodesk Revit platform, has the ability of visual 

programming and deep integration with building information 

models (BIM), and can define the geometric parameters and 

generation rules of architectural space through node-based 

operations, supporting the transformation of architectural 

design elements into a computable digital parameter system. 

Generative Design is a cloud-based generative design platform 

that can automatically generate a large number of design 

schemes through algorithms and intelligently screen them 

based on preset optimization objectives. Its core advantage lies 

in supporting seamless connection between multi-objective 

optimization algorithms and parametric models, providing 

technical support for efficient generation and performance 

iteration of architectural spaces. 

Dynamo and Generative Design meet the dual requirements 

of “lightweight” and “multi-objective collaboration” in the 

research objectives. On the one hand, the parametric modeling 

capability of Dynamo and its compatibility with BIM data can 

transform the architectural space generation process into a 

standardized parameter input–output system, facilitating data 

interaction with the thermal comfort and ventilation 

performance quantification models. For example, by calling 

the response surface model calculation results directly through 

Dynamo nodes, the impact of space parameter adjustments on 

performance indicators can be fed back in real time, forming a 

“generation–evaluation” closed loop. On the other hand, the 

cloud computing and multi-objective optimization algorithms 

of Generative Design can efficiently handle the nonlinear 

mapping relationship between architectural space parameters 

and performance indicators while reducing dependence on 

local computational resources, avoiding the high 

computational cost problem caused by complex algorithms in 

traditional AIGC models. 

 

3.3 Optimization algorithm 

 

The generation setting of the “Optimize” method in the 
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Generative Design tool is essentially a parametric mapping of 

the core principles of the NSGA-II algorithm. Among them, 

“Population Size” corresponds to the size of the initial solution 

set in NSGA-II. By setting a reasonable scale, a balance is 

achieved between computational efficiency and solution space 

coverage, avoiding the omission of optimal solutions due to a 

too-small population or excessive computational load due to a 

too-large one. “Number of iterations” reflects the evolutionary 

generations of the algorithm. Combined with the elite 

preservation strategy, top-ranked individuals in each 

generation directly enter the next generation, ensuring that 

optimal solutions are not destroyed by random variation in 

genetic operations, which corresponds to the elite retention 

mechanism in NSGA-II. In the “selection strategy,” crowding 

distance is calculated by quantifying the distribution density 

of solutions in the same front, guiding the algorithm to 

preferentially select individuals with larger spacing, avoiding 

the solution set concentrating in local areas, and achieving a 

uniform distribution of Pareto front solutions. This is 

consistent with the principle of NSGA-II, which uses 

crowding distance as the comparison criterion within the same 

rank. In addition, the setting of “crossover probability” and 

“mutation probability” maintains population diversity by 

simulating biological genetic operations, and screens out 

superior solutions layer by layer through non-dominated 

sorting, finally forming a multi-objective optimization 

solution set that balances both thermal comfort and ventilation 

performance. 

Facing the requirements of lightweight AIGC-based multi-

objective architectural space generation, the NSGA-II 

algorithm integrated into Generative Design presents three 

core features: First, low computational complexity and 

lightweight adaptation. Through layered computation based 

on non-dominated sorting, the computational load is 

significantly reduced compared with traditional multi-

objective algorithms, meeting the “lightweight” goal in this 

study and enabling efficient processing of high-dimensional 

mapping relationships between architectural space parameters 

and performance indicators in the cloud. Second, elite 

preservation and dynamic optimization. By retaining the 

optimal solution of each generation, it avoids the loss of high-

quality schemes due to random mutations, which is 

particularly suitable for maintaining the “thermal comfort 

compliance baseline” in architectural design. For example, 

under schemes with increased ventilation energy consumption, 

it ensures that thermal comfort indicators do not fall below the 

benchmark value. Third, uniform solution set distribution and 

multi-objective balance. The crowding operator is used to 

force individuals in concentrated solution sets to maintain 

spacing, enabling the generated architectural space schemes to 

form a reasonable trade-off between thermal comfort and 

ventilation energy efficiency, avoiding extreme solutions such 

as “high comfort but high energy consumption” or “low 

energy consumption but poor comfort,” and providing 

designers with a Pareto optimal solution set covering different 

preferences. Figure 1 shows the basic flow of the NSGA-II 

algorithm. 

 

 
 

Figure 1. Basic flow of the NSGA-II algorithm 

 

3.4 Method workflow 

 

3.4.1 Parametric input of design requirements and definition 

of variables 

The initial stage of the method focuses on transforming 

abstract design requirements into a computable digital 

parameter system. On the Dynamo platform, basic information 

such as building location, building height, standard floor type, 

room functions and quantities, and target consumer types are 

first input. This information is further decomposed into 

specific design variables, such as room width and depth 

dimensions, Living-Dining-Kitchen (LDK) layout types, and 

core tube structural forms. Through standardized parameter 

interfaces, the functional positioning of the building, spatial 

scale requirements, and usage preferences of the target users 

are transformed into algorithm-identifiable numerical 

variables, forming the fundamental data layer supporting 

subsequent space generation. 
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3.4.2 Parametric generation of initial residential plan layout 

scheme 

Dynamo starts the automated generation process based on 

the input design variables. The algorithm integrates spatial 

geometric rules and functional layout requirements through 

parametric logic. For example, it allocates area indicators 

according to room functions, organizes spatial sequences 

according to circulation lines, and sets furniture placement 

modules based on ergonomics, ultimately forming an initial 

residential plan layout scheme that meets basic functional 

configuration. Figure 2 shows attached spaces possibly 

included in different functional rooms. Figure 3 shows the 

generation rules of the lightweight AIGC-based multi-

objective architectural space generation. 

 

 
 

Figure 2. Attached spaces possibly included in different 

functional rooms 

3.4.3 Multi-dimensional constraint filtering and scheme 

rationality verification 

To avoid generated schemes having functional defects or 

not meeting regulatory requirements, the system sets up a 

three-level verification mechanism of area constraint, 

adjacency constraint, and core tube rationality constraint. Area 

constraint focuses on the dimensional thresholds of each 

functional space. For example, the bedroom area must not be 

less than the minimum livable standard, and the living room 

width must meet the needs of furniture placement and 

circulation, ensuring spatial usability comfort; adjacency 

constraint optimizes functional zoning through preset spatial 

relationship rules to improve space usage efficiency; core tube 

rationality constraint targets vertical circulation systems and 

equipment shaft layouts, checking the dimensional 

compliance of stairwells, elevator halls, and evacuation routes, 

as well as the economic rationality of shaft positions to avoid 

spatial waste or circulation conflicts. If any constraint is not 

met, the generation process automatically terminates and re-

iterates; only schemes that pass all constraint checks can enter 

the performance evaluation phase, ensuring that subsequent 

optimization is based on a functionally reasonable spatial 

framework. 

 

 
1) Generation constraints 

 

 

 
2) Standard floor type generation rules 
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3) Single unit type generation rules 

 

Figure 3. Generation rules of lightweight AIGC-based multi-objective architectural space 

 

3.4.4 Quantitative evaluation of thermal comfort and 

ventilation performance and data output 

For schemes filtered by constraints, the system carries out 

multi-dimensional performance evaluation based on CFD 

numerical simulation data and the previously established 

response surface model. In terms of thermal comfort, it 

calculates PMV and the corresponding PPD, dynamically 

evaluating the thermal environment comfort under different 

usage scenarios by comprehensively considering the coupling 

influence of clothing thermal resistance differences and 

ventilation system parameters. In terms of ventilation 

performance, it extracts indicators such as temperature 

gradient, mean age of air, and energy utilization coefficient, 

reflecting indoor temperature distribution uniformity, air 

freshness, and ventilation system efficiency, respectively. 

Additionally, the total load per unit area is calculated 

simultaneously as an energy consumption evaluation index. 

These quantitative results are integrated into a multi-

dimensional performance score and output to the Generative 

Design tool as the core input parameters for multi-objective 

optimization, providing clear optimization guidance for 

subsequent algorithm iterations. 

 

3.4.5 Multi-objective optimization iteration and scheme 

evolution based on NSGA-II algorithm 

In the Generative Design tool, the NSGA-II algorithm starts 

the optimization process based on the received performance 

data. The algorithm ranks the schemes according to their 

thermal comfort and ventilation performance using non-

dominated sorting, and retains the optimal solutions of each 

generation through the elite preservation strategy to avoid the 

loss of high-quality solutions due to random mutations. It uses 

crowding distance calculation to ensure a uniform distribution 

of Pareto solutions in the solution space, generating diverse 

schemes that cover different preferences such as “high thermal 

comfort–high ventilation efficiency” or “low energy 

consumption–moderate comfort.” During the optimization 

process, the algorithm automatically adjusts the design 

variables, generates a new generation of schemes, and feeds 

them back to Dynamo to re-execute the “generation–constraint 

checking–performance evaluation” cycle until the preset 

maximum number of generations is reached. 

 

3.4.6 Visualization-based scheme decision and final scheme 

determination 

 

 
 

Figure 4. Workflow of lightweight AIGC-based multi-

objective architectural space generation method based on 

thermal comfort and ventilation performance 
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After the optimization process ends, the system presents the 

generated scheme set visually and labels functional parameters 

such as area utilization rate and circulation lines. Designers 

interactively evaluate the optimized scheme set by 

comprehensively considering non-quantitative factors and 

quantitative performance data. For example, in the “cold 

climate residential” scenario, schemes that balance high 

thermal comfort and reasonable energy consumption are 

prioritized; in the “compact apartment” design, the focus is on 

balancing ventilation efficiency and space utilization rate. 

Through human–machine collaborative decision-making, a 

final scheme is selected from the Pareto optimal solution set 

that integrates functionality, comfort, economic performance, 

and aesthetic value. Figure 4 illustrates the complete process 

of the lightweight AIGC multi-objective building space 

generation method based on thermal comfort and ventilation 

performance.  

 

3.5 Constraint conditions 

 

3.5.1 Adjacency constraint 

The core of the adjacency constraint is to construct a layout 

framework that conforms to usage logic and spatial efficiency 

through the standardized definition of the relative positions of 

functional rooms. Its principle is based on an in-depth 

deconstruction of architectural functional zoning and 

circulation organization. The study abstracts the adjacency 

relationships of functional rooms into a 0-1-0.5 matrix rule L, 

where “1” indicates must be adjacent, “0” indicates must not 

be adjacent, and “0.5” indicates no specific requirement. The 

quantified adjacency rules ensure that the spatial layout 

complies with ergonomics and behavioral habits. During the 

generation process, the algorithm matches the adjacency 

matrix Mx of the actual generated scheme with the preset 

matrix L for validation. If violations of mandatory adjacency 

or prohibited adjacency are detected, the scheme is deemed 

invalid and regeneration is triggered. The expression of the 

adjacency constraint is given as follows: 
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This constraint mechanism not only ensures the usability of 

functional spaces but also indirectly optimizes ventilation 

paths. For example, adjacency between the kitchen and dining 

room can enhance fume extraction efficiency through linked 

ventilation design, and separating the bedroom from the 

bathroom can reduce the impact of humid air on thermal 

comfort, thereby laying the spatial foundation for subsequent 

collaborative optimization of thermal comfort and ventilation 

performance. 

 

3.5.2 Core tube rationality constraint 

The core tube rationality constraint targets the coupling 

relationship between the vertical circulation system and spatial 

layout. By defining the influence boundaries of core tube types 

on room positioning, it avoids space failure problems caused 

by improper core tube layouts. The study identifies two main 

irrational situations: first, an excessive difference in total 

north-south width leads to imbalance between the width and 

depth of the unit type, affecting natural lighting and ventilation 

efficiency; second, the shared wall segments between rooms 

and open spaces cannot meet the requirements for door 

openings, causing circulation interruptions or spatial isolation. 

The constraint uses geometric coordinate calculations and 

connectivity analysis to determine whether the spatial 

relationship between the core tube and each functional space 

meets the matching requirements after room shape translation. 

If either of the above situations occurs, the scheme is marked 

as “CO2=0” and terminated. The establishment principle of 

this constraint is to ensure the rationality of the core tube as 

the spatial skeleton of the building. It not only supports the 

efficient layout of vertical transportation and equipment shafts 

but also provides fundamental spatial conditions for indoor 

airflow organization and temperature distribution uniformity 

required for thermal comfort, avoiding performance 

optimization bottlenecks caused by defects in core tube layout. 

 

3.5.3 Area constraint 

The area constraint balances spatial usage needs and energy 

efficiency targets by setting a reasonable range for building 

area. Its principle is rooted in the quantitative relationship 

between building energy consumption and spatial scale. The 

study takes building area as a key constraint variable, requiring 

the total area of generated schemes to fall within the demand 

interval preset by the designer, to avoid redundant energy 

consumption caused by overly large areas or cramped usability 

caused by overly small areas. This constraint uses geometric 

modeling tools to calculate the total area of all functional 

rooms in real time and compares it with the threshold. If the 

value exceeds the range, the regeneration mechanism is 

triggered. Assuming that the maximum and minimum values 

of the designed building area are represented by XMIN and XMAX, 

and the building area of the unit type in the generated floor 

plan is represented by X, the expression of the area constraint 

condition is as follows: 
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The core function of the area constraint is to define a 

reasonable physical spatial boundary for the optimization of 

thermal comfort and ventilation performance. For example, 

optimizing the room size ratio within a fixed area can reduce 

the heat gain/loss area of the envelope structure (such as 

controlling the window-to-wall ratio), thereby lowering 

heating/cooling loads; reasonable area distribution (e.g., 

adapting the scales of living room and bedroom) can avoid 

airflow blockage caused by overly narrow spaces or 

temperature gradient imbalance caused by overly wide spaces, 

thereby improving ventilation system efficiency and thermal 

comfort stability. Additionally, the area constraint is directly 

linked to the unit area total load indicator in subsequent 

performance evaluations, ensuring that the optimization 

process seeks the best solution for thermal comfort and 

ventilation efficiency within a controllable energy 

consumption range. 

 

 

4. EXPERIMENTAL RESULTS AND ANALYSIS 

 

From the data in Table 1, the thermal comfort score of the 

original design scheme is 54.23, and the ventilation 

performance score is 81.23. After optimization using the 

lightweight AIGC-based multi-objective architectural space 

generation method proposed in this paper, the thermal comfort 
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scores of the optimized schemes show a significant upward 

trend. The thermal comfort scores of Optimization Schemes 1 

to 7 are 63.25, 65.48, 68.95, 72.31, 73.56, and 75.24, 

respectively, with corresponding optimization rates of 15.23%, 

15.48%, 18.56%, 23.62%, 32.56%, 34.58%, and 37.69%. The 

thermal comfort performance has been continuously and 

substantially optimized, with the maximum improvement 

approaching 38%, fully demonstrating the strong capability of 

this method in enhancing thermal comfort. In terms of 

ventilation performance, the scores of the optimized schemes 

remain relatively stable overall. Most schemes' ventilation 

performance scores fall within 81.23 - 83.61. Although the 

ventilation performance scores of Optimization Schemes 6 and 

7 show slight decreases, this is a reasonable fluctuation 

resulting from the trade-off to achieve a significant 

improvement in thermal comfort during the multi-objective 

collaborative optimization process. The experimental results 

indicate that the proposed method not only significantly 

improves thermal comfort performance but also balances 

ventilation performance in multi-objective optimization, 

verifying its effectiveness in realizing collaborative 

optimization of thermal comfort and ventilation performance 

in architectural space design. 

 

Table 1. Indicator value distribution interval of thermal comfort and ventilation performance collaborative optimization schemes 

 

Scheme 
Thermal Comfort Score Ventilation Performance Score 

Indicator Value Optimization Rate (%) Indicator Value Optimization Rate (%) 

Original Design Scheme 54.23 / 81.23 / 

Original Design Scheme 1 63.25 15.23 81.54 2.24 

Original Design Scheme 2 63.48 15.48 81.69 2.15 

Original Design Scheme 3 65.25 18.56 81.23 2.13 

Original Design Scheme 4 68.95 23.62 81.25 1.78 

Original Design Scheme 5 72.31 32.56 81.36 0.26 

Original Design Scheme 6 73.56 34.58 83.65 -2.15 

Original Design Scheme 7 75.24 37.69 83.59 -2.16 

 

Table 2. Connection vector distance and relative closeness under different schemes 
 

Ventilation 

Scheme 

Ventilation 

Angle 

Ventilation 

Speed 

Ventilation 

Temperature 

Distance to Positive 

Ideal Solution 

Distance to Negative 

Ideal Solution 

Relative 

Closeness 

1 61.23 0.82 23.23 0.00918 0.00887 0.52134 

2 45.82 1.14 23.54 0.01235 0.00635 0.63215 

3 55.32 0.66 22.58 0.00715 0.01124 0.41256 

4 44.21 1.25 23.61 0.01235 0.00623 0.64589 

5 22.36 0.82 23.24 0.01258 0.00534 0.67852 

6 3.24 0.71 27.89 0.01135 0.00779 0.55231 

7 21.56 1.23 25.62 0.01235 0.00485 0.72541 

8 15.36 0.98 21.23 0.01287 0.00723 0.62358 

9 46.52 0.86 25.69 0.01148 0.00512 0.71235 

10 45.68 0.78 21.24 0.00975 0.00789 0.54265 

11 0.00 0.91 24.56 0.01124 0.00825 0.54286 

12 61.25 0.88 21.28 0.01135 0.00912 0.52312 

13 21.58 1.12 26.35 0.01235 0.00524 0.71523 

... ... ... ... ... ... ... 

7058 25.87 1.18 23.56 0.01359 0.00424 0.73265 

 

From the data in Table 2, it can be seen that after iteration 

through the lightweight AIGC generation method, the relative 

closeness of different schemes to the ideal solution group 

shows a significant optimization effect. For example, Scheme 

7058 reaches a relative closeness of 0.73265, indicating that 

the scheme, with ventilation angle of 25.87°, speed 1.18, and 

temperature 23.56°, is highly close to the ideal solution, 

reflecting the precise coordination of the collaborative 

optimization model in terms of thermal comfort and 

ventilation performance. Comparing various schemes, such as 

from Scheme 1 to Scheme 7058, the relative closeness 

gradually increases, showing that through the iteration of a 

large number of schemes, lightweight AIGC technology can 

efficiently screen better solutions, verifying its feature of 

"rapid generation and multi-objective optimization." At the 

same time, the distance of the schemes to the ideal solution 

group and the distance to the negative ideal group are both 

small, indicating that the generated schemes are not only close 

to ideal performance in ventilation parameters but also far 

from negative ideal states. This proves that the method can 

generate high-quality schemes while reducing computational 

cost. 

 

 
 

Figure 5. Trend of similar closeness changes of all 

ventilation schemes 
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Figure 5 shows the trend of similar closeness change as the 

number of ventilation schemes increases. From the data, it can 

be seen that as the number of schemes grows from 0 to 7000, 

the similar closeness shows an overall downward trend, with a 

relatively gentle decline in the early stage and an accelerated 

rate in the later stage. This trend indicates that during the 

generation process, lightweight AIGC technology 

continuously explores the solution space through iteration. In 

the early stage, the generated schemes already have relatively 

high similar closeness, reflecting the initial effective 

coordination of the collaborative optimization model for 

thermal comfort and ventilation performance; in the later stage, 

as the number of schemes increases, the similar closeness 

further decreases, indicating that the algorithm can still mine 

better solutions during large-scale scheme generation, 

avoiding local optima and verifying the method's efficiency 

and robustness. The experimental results show that, on the one 

hand, the collaborative optimization model ensures that the 

generated schemes continue to approach the ideal state in 

thermal comfort and ventilation performance; on the other 

hand, the lightweight technology, through efficient 

computation, maintains computational efficiency even when 

processing 7000 schemes, realizing the goal of "rapid 

generation and multi-objective optimization." The dynamic 

changes of similar closeness in the figure intuitively prove that 

the method can reduce computational cost through massive 

iteration while ensuring generation quality, effectively 

improving the collaborative optimization effect of thermal 

comfort and ventilation performance in architectural spaces. 

For example, even with 7000 schemes, the similar closeness 

still remains within the optimizable range, indicating that the 

algorithm has not stagnated and continues to output better 

solutions, fully demonstrating the effectiveness and 

practicality of the method proposed in this paper for multi-

objective architectural space generation. 

Figure 6 visually presents the optimization effect of the 

method proposed in this paper by comparing PMV values 

corresponding to external wall temperatures under different 

clothing thermal resistances. Before optimization, PMV shows 

a significant upward trend as external wall temperature 

increases, and the higher the clothing thermal resistance, the 

closer the PMV value approaches 1; after optimization, PMV 

values under all working conditions are greatly reduced, and 

the fluctuation range is significantly narrowed. For example, 

at 1.3 clo and external wall temperature of 14℃, the PMV 

before optimization is close to 1.0, while it drops to around 0.6 

after optimization; at 1.0 clo and external wall temperature of 

10℃, PMV drops from about 0.3 before optimization to below 

0.1 after optimization. This indicates that the collaborative 

optimization model effectively regulates the indoor thermal 

environment: on the one hand, it optimizes ventilation system 

parameters and envelope thermal resistance, reducing the 

influence of temperature gradient on thermal comfort; on the 

other hand, the lightweight AIGC technology rapidly 

generates schemes through fast iteration, approaching the 

Pareto optimal solution of thermal comfort and ventilation 

performance while ensuring computational efficiency. 

Experimental data validate the effectiveness of the method: 

PMV values generally decrease by 30%–50% after 

optimization, and stable comfort performance is maintained 

across a wide temperature range and multiple clothing thermal 

resistance scenarios. This not only reflects the deep coupling 

of the collaborative optimization strategy between thermal 

comfort and ventilation performance but also proves the high 

efficiency of lightweight AIGC technology in architectural 

space generation. 

 

 
1) 1 clo 

 
2) 1.2 clo 

 
3) 1.3 clo 

 

Figure 6. Comparison of PMV before and after optimization 

under different clothing thermal resistance 

 

Figure 7 clearly presents the optimization trend of 

ventilation performance indicators under different clothing 

thermal resistances. Among them, PPD decreases as clothing 

thermal resistance increases, dropping to about 50% at 1.4 clo, 

significantly reducing the proportion of thermally 

uncomfortable people, reflecting the improvement in thermal 

comfort performance; MAA stabilizes between 20%–25% in 

the 1.0–1.4 clo interval, indicating improved indoor air 

renewal efficiency and enhanced ventilation performance; ΔT 

decreases significantly from -30% to -70%, reflecting more 

uniform indoor temperature distribution and significantly 

improved thermal environment stability; EUC maintains 

between 10%–20% at 1.0–1.4 clo, indicating improved 
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ventilation system energy efficiency and reduced energy 

consumption. These data are closely related to the 

collaborative optimization strategy proposed in the paper: 

through lightweight AIGC technology, integrating factors 

such as spatial layout, building envelope, and ventilation 

system, the generated architectural space schemes 

simultaneously improve thermal comfort and ventilation 

performance in multi-objective optimization. For example, the 

significant reduction of ΔT benefits from the optimized spatial 

layout reducing temperature dead zones, and the adjustment of 

ventilation system parameters enhances airflow uniformity; 

the stable optimization of EUC reflects that the lightweight 

algorithm precisely regulates ventilation system energy 

efficiency while reducing computational cost, achieving a 

balance between energy saving and performance improvement. 

Experimental results validate the method's effectiveness: 

under a wide range of clothing thermal resistance, ventilation 

performance indicators are all optimized in multiple 

dimensions, proving that the collaborative optimization model 

can deeply couple thermal comfort and ventilation 

performance, while lightweight AIGC technology ensures the 

efficiency and quality of scheme generation. 

 

 
 

Figure 7. Average optimization effect of ventilation 

performance corresponding to different clothing thermal 

resistance 

 

Figure 8 presents the optimal ventilation parameters 

corresponding to external wall temperature under different 

clothing thermal resistances. Taking 1.0 clo as an example, the 

ventilation angle decreases from 35° to 30° between 8–10℃, 

and stabilizes at around 30° from 10–14℃; the ventilation 

speed gradually decreases from 50% to 10%; the ventilation 

temperature drops from 30℃ to 10℃ and remains stable. 

Under 1.2 clo and 1.3 clo conditions, the parameter variation 

trends are similar but with detail adjustments, reflecting the 

adaptability to different thermal resistances. These data 

indicate that the lightweight AIGC technology dynamically 

regulates ventilation parameters through the collaborative 

optimization model: ventilation angle optimizes airflow path, 

speed controls air renewal efficiency, and temperature 

balances indoor thermal environment. The lightweight 

algorithm ensures rapid convergence of parameters, validating 

the feature of “rapid generation and multi-objective 

optimization.” Experimental results show that under wide 

temperature and multiple thermal resistance scenarios, 

ventilation parameters are dynamically optimized with the 

environment, improving both thermal comfort and ventilation 

performance, which is highly consistent with the collaborative 

strategy of the paper. 

 

 
1) 1 clo 

 
2) 1.2 clo 

 
3) 1.3 clo 

 

Figure 8. Optimal ventilation parameters under different 

clothing thermal resistance levels 

 

 

5. CONCLUSION 

 

This paper focuses on the collaborative optimization of 

building thermal comfort and ventilation performance, 

constructing a “lightweight AIGC multi-objective 

architectural space generation method.” The research content 

is divided into two parts: first, by analyzing the correlation 

between thermal comfort and ventilation performance, a 

collaborative optimization model has been established, 

integrating elements such as spatial layout, envelope structure, 

and ventilation system to form a performance improvement 
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strategy; second, combined with lightweight AIGC 

technology, an efficient generation model has been developed 

to realize rapid iteration and multi-objective optimization of 

architectural spaces while reducing computational cost. 

Experimental results show that the thermal comfort indicators 

are significantly improved after optimization, ventilation 

performance is simultaneously optimized, and ventilation 

parameters dynamically adapt to the environment, verifying 

the effectiveness of the method. Lightweight AIGC 

technology, through algorithms such as NSGA-II, efficiently 

converges over 7000+ scheme iterations, embodying the 

features of “rapid generation and low computational cost.” The 

research value lies in: providing a data-driven intelligent 

paradigm for architectural design, breaking through the 

performance bottleneck of traditional design, and promoting 

the development of architecture towards greenness and 

humanization; through multi-objective collaborative 

optimization, balancing thermal comfort and ventilation 

energy efficiency, providing practical and applicable 

performance optimization schemes for actual engineering, 

with significant academic innovation and engineering 

application value. 

Current research has the following limitations: (1) The 

constraint system focuses on performance and functionality, 

with insufficient integration of non-quantitative factors such 

as aesthetics and culture, leading to insufficient humanistic 

adaptability of the schemes; (2) The robustness and 

computational efficiency of the algorithm in complex 

architectural forms and multi-climate zone scenarios need to 

be improved, especially in dealing with ultra-large-scale 

parameters where bottlenecks exist in solution space coverage 

and convergence speed; (3) The depth of practical verification 

is limited, and the simulation data has not formed a closed loop 

with actual engineering feedback, resulting in a disconnect 

between theory and application. Future research directions 

include: (1) Expanding constraint dimensions, incorporating 

aesthetic rules, cultural symbols, and user behavior patterns to 

construct a “performance-function-humanity” multi-

dimensional constraint model to enhance the comprehensive 

quality of the schemes; (2) Optimizing algorithm architecture, 

combining edge computing and digital twin technology to 

enhance the parallel computing capability of lightweight 

AIGC, exploring integration with reinforcement learning and 

generative adversarial networks to improve solution space 

diversity and convergence efficiency, adapting to complex 

scenarios; (3) Strengthening the engineering closed loop, 

establishing actual case libraries, collecting measured data 

through IoT sensors to iteratively optimize the model, and 

developing scenario-based generation strategies for severe 

cold and hot-humid climate zones to enhance the universality 

of the method. 
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