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 Theoretically, this article investigates the two-dimensional, thermal energy and mass 

transfer non-Newtonian flow (Casson) over a stretched surface, nanofluid with exponential 

inclination when there is a heat source and thermal radiation present. It is assumed that a 

particular exponential function governs the variation of the wall temperature, wall 

concentration, and stretching velocity. In additional we considered the chemical reactions, 

solutal slip, velocity slip, thermal slip, and blowing/suction factors. The analytical solution 

is subsequently obtained using the homotopy analysis method with the assistance of the 

BVPh2.0 package in Mathematica. The outcomes reveal a direct correlation between 

various parameters and fluid dynamics. Velocity profiles are enhanced by factors such as 

the velocity ratio, thermal Grashof and solutal Grashof characteristics, while they diminish 

with the Casson parameter, velocity slip coefficient, and inclination angle characteristics. 

Temperature profiles, on the other hand, respond positively to the heat 

generation/absorption, and thermal radiation but inversely to the thermal slip factor, 

velocity ratio, and Prandtl number. Concentration profiles exhibit contrasting trends, 

escalating with the magnetic factor, and thermophoresis characteristics, Casson factor, yet 

declining with the Brownian motion factor, Schmidt number, and concentration slip 

characteristics. An analysis of the skin friction coefficient highlights the impact of the 

Casson characteristics and magnetic characteristics parameter, showcasing they influence 

fluid flow characteristics. Notably, local heat and mass transfer rates are negatively 

influenced by the Casson factor and the magnetic coefficient. A comprehensive 

comparison with existing literature underscores the strong agreement and validation of the 

current research findings. This approach offers considerable benefits in a wide variety of 

sectors, such as ecology, bioengineering, geophysics, biomedical, and architectural thermal 

insulation, amongst others. 
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1. INTRODUCTION 

 

With varying shear, non-Newtonian fluids' viscosity varies 

rates and pressures because they don’t adhere newtons law on 

viscosity. Numerous sectors can benefit from studying non-

Newtonian fluids. It is well-known that fluids whose 

behaviour is not in accordance with Newton's laws include 

things like petroleum, nuclear waste disposal fluids, hydrology 

of groundwater, systems for cooling transpiration, almond 

juice, natural honey & other lotions and edible oils required 

for the body. A threshold stress property is displayed by 

Casson fluid, of non-Newtonian fluids category. Human blood 

is a complex fluid that can be classed as a Casson fluid since 

it contains blood cells, has heat transmission capabilities, and 

contains complex components like fibrinogen, synovial fluid, 

and rouleaux. Casson first proposed the rheological model, 

which is another name for the Casson model [1]. Using 

thermal radiation and chemical processes as variables, Reddy 

[2] performed theoretical research on the multi-harmonic flow 

of connected boundary layers through a porous medium of a 

Casson fluid over a stretched surface with an exponential 

inclination. A fluid of Casson model within a tube flow of 

blood was developed by Walawender et al. [3], and the basic 

assets of Casson fluid in pipes within a similar kind of 

absorbent channel were studied by Dash et al. [4]. Researchers 

Mukhopadhyay et al. [5] looked into the time-dependent flow 

on a stretchy surface of Casson fluid with double dimension. 

Casson fluid`s boundary layer flow (BL) of thermal energy 

transfer towards a stretching top surface had been studied by 

Pramanik [6], who took blowing and suction effects into 

account. Rao et al. [7] applied similar transformation 

techniques of triple-dimensional flow of Casson motion upon 

a stretched membrane with various parameters. 

Heat transfer fluids like engine oils, ethylene glycol and 

water, known for their low thermal conductivity are termed 

base fluids. The thermal energy exchange capabilities of the 
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base fluid are substantially enhanced by adding nanoparticles 

to the base fluid to form nanofluids. Nanoparticles are nano-

sized particles (1-100 nm) which when added to the base fluid 

exhibit improve the nanofluid's thermal energy transfer 

properties. Choi [8] was the first to investigate thermal 

behaviour of nanofluids and the study revealed that nanofluids 

enhance the heat transfer rate. Reddy and Ramasekhar [9] 

investigated enhancement of heat transfer and operational 

performance using nanofluid in engine oil. Dzulkifli et al. [10] 

investigated heat transfer and unsteady flow in a Cu-water 

nanofluid across a stretching sheet. They discovered that as the 

unsteadiness parameter and nanoparticle volume fraction 

increase, the skin friction coefficient decreases.  

An integrated fluid system that exhibits properties of 

nanofluids, magneto-hydrodynamics (MHD), and non-

Newtonian fluids (Casson) is called a magneto-Casson 

nanofluid. Consisting of a base fluid—which may or may not 

be conducting—with suspended nanoparticles, behaving 

Casson as a fluid, and being affected by an applied magnetic 

field. These fluids have potential in cutting-edge heat transfer 

applications that make use of magnetic fields, such as non-

Newtonian fluidic systems for magnetically enhanced heat 

transfer, magnetic hyperthermia to treat cancer, and magnetic 

drug targeting.  

Electromagnetic waves may travel in any direction and are 

known as radiation. The radiation that an object emits 

determines its classification. Ionizing and non-ionizing 

radiations are the two main categories of radiation. A number 

of fields rely heavily on radiation, including engineering, 

astronomy, and climate science. To design solar panels, study 

the distribution of energy on Earth, and assess heat 

transmission in industrial processes, one must have a thorough 

understanding of radiation. 

The Casson nanofluid's magnetohydrodynamic (MHD) 

flow on a surface that is not stationary and is shrinking is 

examined by Lund et al. [11]. Shah et al. [12] derived the 

magneto hydrodynamic flow of Casson nanofluid time-

fractional method by applying the generalized Fourier and 

Fick’s laws over a slanted channel. The magneto hydro 

dynamic Couple stress Casson flow of a hybrid nanofluid was 

explored by Rehman et al. [13]. Due to its significant uses in 

modern engineering devices, specifically by improving heat 

management and efficacy in several industrial processes, the 

stress of the MHD Couple Rehman et al. [13] looked into the 

Casson flow of a hybrid nanofluid. Panigrahi et al. [14] 

suggested an analysis to an inclined magnetic field affects 

Casson nanofluid flowing across an extending spread sheet 

that's embedded into a porous matrix with saturation. Irshad et 

al. [15] studied a challenging numerical problem involving the 

magnetohydrodynamic Casson nanofluid flow in a porous 

medium across a stretched membrane. They used the Keller 

box technique, which relies on the finite difference method 

(FDM), to solve this issue. 

The flow of nanofluids towards a heated permeable sheet 

with extensions and compressions in the MHD stagnation area, 

where fluid velocity tends to be zero, was investigated by 

Chaudhary and Kanika [16]. They investigated the heat 

production and absorption, as well as thermal radiation, 

influenced the flow of nanofluids. An investigation was 

conducted by Reddy et al. [17] to determine the impact that 

thermal radiation has on the magneto hydrodynamic boundary 

layer flow of a non-Newtonian nanofluid as it travels across a 

stretched surface that contains porous media.  

Nanofluid flow across a stretching sheet in a porous media 

was the subject of an investigation by Pal and Mandal [18], 

who looked into the ways in which thermal radiation and 

chemical reactions influence mass transfer and mixed 

convection heat. The thermal and stratification properties of 

non-Newtonian fluids that are flowing across porous media 

were explored by Megahed and Abbas [19]. The FDM utilized 

by Barik et al. [20] in order to explore the effects of repeated 

slips on the flow of MHD nanofluids across a stretched sheet 

that was both chemically reactive and radiative. The sheet was 

also inclined. 

The impact of dual stratification on the stagnation point had 

been investigated by Sadaf et al. [21]. They considered the 

radiative Riga plate flow of Walters' B nanofluid. Ramana et 

al. [22] provided an explanation of the continuous 

magnetohydrodynamic stagnation point fluid flow for a fluid 

of Casson across a stretched sheet with a source of heat and a 

first-order reaction of a chemical by including multiple slip 

boundary conditions. According to their observations, the 

thermal profile and chemical reactivity decreased when the 

heat source and chemical reaction parameters rose. In order to 

study the problem of stagnating location (where fluid velocity 

tends to zero) flow of MHD methanol-based nanofluid through 

convectively heated stretched sheets while keeping in mind the 

influence of heat radio activity and generation via a porous 

medium, Nandi et al. [23] used statistical and numerical 

perspectives. 

Particles in fluids, particularly those at the microscopic 

level, are controlled by two separate systems: thermophoretic 

diffusion and Brownian motion. Particles in a liquid or gas can 

be described by the random and unexpected motion that occurs 

when they collide with the molecules of the fluid, a process 

known as Brownian motion. When there is a change in 

temperature throughout a fluid, this process is called 

thermophoretic diffusion. When there is a difference in 

temperature between the fluid and the particles move from 

hotter to colder areas by a process called thermophoresis. 

Particle displacement in fluids is a common feature of both 

Brownian motion and thermophoretic diffusion, yet these two 

phenomena have different origins. Thermophoretic diffusion 

happens when particles interact with the temperature 

differential in the fluid, as opposed to Brownian motion, which 

is primarily produced by random collisions with molecules in 

the fluid. Microfluidic device creation, colloidal system 

analysis, and atmospheric dynamics understanding are just a 

few of the scientific and technological fields that rely on these 

two phenomena. 

In order to investigate the effects of Brownian motion, 

thermophoretic diffusion, and thermal advancement across an 

incline on MHD micropolar nanofluid, Thabet et al. [24] 

utilized computer simulations to investigate the interaction 

between these three phenomena. In their study, Shahzad et al. 

[25] investigated the Darcy-Forchheimer flow of 

bioconvective micropolar nanofluid between two discs with 

Cattaneo-Christov heat flux. They also investigated the 

relationship between thermophoretic diffusion and Brownian 

motion. Hazarika and Ahmed [26] conducted research on 

thermophoresis and Brownian motion in micro-polar 

nanofluids by employing the bvp4c numerical approach. Irfan 

[27] conducted a study in which he explored the effects of 

diffusion through thermophoresis and Brownian motion. The 

study involved Carreau nanofluids in a non-linear 

convectional mixed flow of nanofluids with varying 

parameters. Shah et al. [28] observed diffusion effects of 

thermophoretics and Brown's law in their research on the 
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MHD dynamics with Higher-Convection flow of Maxwell 

nanofluids down a typically inclined surface. This research 

was conducted in addition to the MHD dynamics. Recently, 

literature in this field has drawn on thermophoretic 

transmission and Brownian law studies [29-34]. 

A fluid's movement across a surface area that is sloping or 

inclined in relation to a straight line is referred to as fluid 

movement across a surface with inclination. Gravitational 

forces, fluid viscosity, and gradient are some of the variables 

that might affect this flow was studied by Pera and Gebhart 

[35]. The value-based study of MHD free convective layer of 

limitations motion of Casson substance brought on by a porous 

surface that is angled vertically, as well as the consequences 

of thermal energy and chemical changes, was reported by Raju 

[36]. Rafique et al. [37] used the Soret and Dufour effect to 

study the Casson Nanofluid limit layer's movement on a 

sloped elongated surface area. Tawade et al. [38] used the 

Runge-Kutta 4th-order with the shooting technique for 

resolving ordinary differential calculations that are non-linear 

for nanofluid movement that was smooth and unsteady past 

stretching surfaces in double dimensions. Additional issues 

about fluid flow beneath a stretchy sheet with varying 

thicknesses under various circumstances can be found in the 

literature by Pal et al. [39] and Abbas and Megahed [40]. 

Mathematica is a sophisticated numerical tool that is known 

for its efficiency and accuracy in solving nonlinear boundary 

value problems. This research makes use of the Homotopy 

Analysis Method (HAM) technique with the assistance of the 

BVPh2.0 package in Mathematica with the intention of 

achieving similar results. An efficient framework for 

numerical calculations in fluid dynamics is provided by HAM, 

which is characterized by its compact support and qualities 

that pertain to multiple solutions. Due to the fact that the HAM 

method incorporates the benefits of various strategies that are 

designed to handle complicated systems in an effective 

manner, it is particularly well-suited for the challenge at hand. 

The purpose of this study is to evaluate the influence that 

various parameters, including the intensity of the magnetic 

field, the features of the Casson fluid, the Prandtl quantity, and 

the velocity ratio, as well as the impacts of multi slip, have on 

the distributions of velocity, concentration, and temperature. 

In addition, important technical metrics like as the Sherwood 

number, the Nusselt number, and the skin friction coefficient 

are evaluated using this process. The findings provide 

important insights into the interaction between magnetic fields, 

non-Newtonian fluid dynamics, and heat transfer. These 

discoveries have substantial implications for the optimization 

of industrial processes and the improvement of engineering 

systems. 

  

 

2. RESEARCH QUESTION 
 

(1) How do thermal radiation and heat source influence 

the boundary layer flow and features of thermal transmission 

of Casson nanofluids? 

(2) What is the impact of Brownian motions and 

thermophoresis’s on the flow, thermal, and concentration 

profiles of Casson nanofluids in the presence of multiple slip 

effects? 

(3) In what ways can magnetohydrodynamics (MHD) 

enhance or reduce the efficiency of heat transfer in Casson 

nanofluids? 

(4) How can the HAM technique solver be utilized 

effectively to predict the implication of Casson fluid factors on 

thermal and flow distributions? 

(5) What is the role of Schmidt number and Prandtl 

number in optimizing heat transfer and flow dynamics in a 

Casson nanofluid system? 

 

 

3. PHYSICAL AND MATHEMATICAL MODELLING 
 

Take note of a stable, two-dimensional Casson flow of 

nanofluids over a substantially elongated sheet that is disposed 

at an inclined angle   with its perpendicular axis. The x‐ and 

y‐ As shown, the axes are normal to the surface and aligned 

along the inclined surface in Figure 1. Here, elongating and 

liberated fluid Acceleration of streams are represented as and 

𝑈∞(𝑥) = 𝑏𝑒
𝑥

𝐿 correspond, where a and b are any constants, x 

is the value of regulated together the surface that is being 

stretched and L is the sheet length. The temperature near and 

distant from surface are denoted as Tw and T∞, respectively, 

whereas concentration Cw and C∞ are also respectively. A 

Horizontal electromagnetic nonuniformity induction of 

strength 𝐵(𝑥) = 𝐵0𝑒
𝑥

2𝐿 is applied parallel to y axis, where B0 

is the uniform magnetic induction power. It is assumed that the 

magnetic field generated by the fluctuating electrical current 

is negligible. Furthermore, it is assumed that there is no 

external electric field and that the charge polarization-induced 

electrical field is insignificant. In Figure 1, the flow is 

described. Brownian motion and thermophoresis properties 

are considered. Chemical responses, the vacuum, injection, 

thermal energy, and multi-slip effects are also discussed. 

 

 
 

Figure 1. An actual physical manifestation of the flow 

 

The rheological computation of state is presented as follows 

within the framework of a Casson fluid flow that is isotropic 

and incompressible: 

 

2 ,
2

2 ,
2

y

B i j c

i j

y

B i j c

c

p
e

p
e
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



  


  
+   

 
= 

   +  
  
 

 

 

here, μB is the non-Newtonian fluid's material elasticity. py is 

the fluid's stress due to yield, π is the item of the component of 
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distortion rate in relation to itself, eij is the (i,j)th part of the 

amount of distortion and πc is a critical value of this item based 

on the model that is not Newtonian. Regarding the particular 

situation of Casson fluid, we considered π>πc and 𝑝𝑦 =
𝜇𝐵√2𝜋

𝛽
, 

it is possible in other words, the fluctuating of the consistency 

𝜇 = 𝜇𝐵 +
𝑝𝑦

√2𝜋
. 

Changing the amount of py in μ, we get: 

 

1
1B 



 
= + 

 
 

 

For this investigation, the process of mathematical 

equations is provided by [41]:  

 

0,
u v

x y

 
+ =

 
 (1) 

 

( ) ( )

( )

2

2

2

1
1

cos

( )
,

T C

f

f

u u u
u v

x y y

g T T C C

B xdU
U U u

dx




 








 

   
+ = + 

   

 + − + − 
  

+ + −

 (2) 

 

( )
( )

( )

22

2

0 1

T
B

r

f f

DT T T C T T
v D

x y y y T yy

Q q
T T

c c y

u  

 





       
+ = + +  

        


+ − −



 (3) 

 

( )
2 2

2 2

T
B

DC C C T
u v D Kr C C

x y Ty y




   
+ = + − −

   
 (4) 

 

Following Rao [41], the circumstances surrounding limits 

are considered as: 
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Following the thermal flux, using the Roseland estimation, 

is 
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where, σ* is Stefan Boltzmann constant and average value of 

consumption is 𝜅∗. Furthermore, we assume that the internal 

flow thermal difference is sufficiently wide, so that T4 is 

shown as an inverse function of temperature. Therefore, by 

enlarging T4 in Taylor's sequence regarding T∞ and if we 

neglect higher order words, we get: 
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Making use of Eqs. (6) and (7) the Eq. (3) converts into: 
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The non-linear partial differential equations are reduced to 

non-linear ordinary differential equations by applying the 

following similarity transformations. 
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where, 𝜁 is the similarity variable. 

Substituting Eq. (9) in Eqs. (2), (4), and (8), we obtain: 
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The limited conditions are: 
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The primary physical factors that are relevant to this topic 

right now are 𝑆ℎ𝑥 (=
𝑥𝑞𝑚

𝑘(𝐶𝑤−𝐶∞)
) is the local Sherwood number, 
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), is the local Nusselt number, 𝐶𝑓 (=
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is the local Skin-friction component.  
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With the modifications described above, we have: 
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4. HAM 

 

It is demonstrated that the Homotopy Analysis Method 

(HAM), also known as the Homotopy Analysis Method, is an 

effective semi-analytical method by the fact that it is utilized 

in a variety of research projects to handle boundary layer flow 

issues. As an illustration, it has been successfully utilized to 

acquire semi-analytical solutions for the thermal convection 

boundary layer flow of incompressible Casson fluids. These 

solutions incorporate features such as suction/injection and 

heat sink effects, both of which are essential in polymer 

coating applications. In addition, the ability of HAM to handle 

non-linear boundary value problems has been demonstrated by 

the fact that it has been utilized to produce mathematical 

expressions for velocity, heat and mass transfer in boundary 

layer flows that involve thermal radiation in presence of 

multiple slip effects. The approach has also been utilized in the 

field of MHD, which has shed light on the impact that 

parameters like magnetic and Prandtl numbers have on flow 

characteristics. Additionally, the BVPh2.0 program has the 

capability to ease the implementation of HAM, which enables 

the efficient computing of solutions in complicated boundary 

layer situations that involve nanofluids and Casson fluids.  

Employing the HAM allowed us to derive the analytic 

solutions for Eqs. (10) to (12) with the prescribed boundary 

conditions (13), using selected initial guesses and linear 

operators for the functions ,f   and  . 

We consider the initial hypotheses and linear operators in 

the following manner in order to capture the homotopic 

solutions of Eqs. (10) to (13). The flow chart is given in Figure 

2. 

 

 
 

Figure 2. Diagrammatic representation of HAM process 
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where, Fi (i=1 to 7) are the arbitrary constants. 

The zeroth-order stretching formulas are constructed by us: 
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based on limited circumstances: 
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where, 
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The value of 𝑝 (embedding parameter) lies between 0 and 1 

(including end points), s the embedding constraint, ℏ𝑓 , ℏ𝜃and 

ℏ𝜙  are non-zero auxiliary constraints and 𝑁𝑓 , 𝑁𝜃  
and 𝑁𝜙  

are 

operators of nonlinear terms. 

In the following, the nth-order deformation equations are 

presented: 
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with the following boundary conditions: 
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where, 
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If we let 𝑓𝑛
∗(𝜁), 𝜃𝑛

∗(𝜁) and 𝜙𝑛(𝜁), the general solution of the 

mth order deformation equations is provided by the special 

solutions of: 
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 (28) 

 

where, the integral constants Di(i=1 to 7)
 
are determined using 

the boundary conditions. 

The aforementioned linear homogeneous equations can be 

easily solved using MATHEMATICA in the following order: 

n=1,2, …. 

 

 
 

Figure 3. ℏ-curves for ' '(0), '(0)and '(0)f   at 15th order 

approximations 

 

Table 1. Convergence behavior of HAM solutions at various 

approximation orders 

 

Order ''(0)f−  ( )' 0−
 

( )'' 0−
 

5 0.921021 0.685804 0.784599 

10 0.919537 0.682007 0.787443 

15 0.919644 0.681943 0.787599 

20 0.919632 0.681942 0.787595 

25 0.919633 0.681942 0.787595 

30 0.919633 0.681942 0.787595 

35 0.919633 0.681942 0.787595 

40 0.919633 0.681942 0.787595 

 

To determine the appropriate values for the auxiliary 

parameters that are not zero,  -curves are portrayed in Figure 

3. From this figure, the presumable interval of auxiliary 

parameter is [-1.0,0.0]. The solutions are convergent for whole 

region of   when 0.69f  = = = − . Integration of the 

method is given in Table 1. 

 

 

 

5. RESULTS AND DISCUSSIONS 

 

Boundary conditions have been addressed by taking 

advantage of the modified equations that have been exposed 

to HAM. Graphs are plotted for different profiles for varying 

values of the controlling constraints. To determine the validity 

of our effort, a comparison with historical trends was 

conducted, and Table 2 clearly shows the enormous agreement 

we obtained. While most of the figures are generated by 

varying a specific parameter over a range of values, some 

remain fixed at a single value throughout the entire simulation, 

such as 1.0, = M=0.5, A=0.5, 60o = , S=0.5, Gr=0.5, 

Gc=0.5, 
1 2 3 0.3,  = = = R=0.5, Pr=0.71, Q=0.5, Nb=0.5, 

Nt=0.5, Sc=0.6, and 0.5. =  

The way the momentum is affected by the Casson fluid 

parameter β, thermal & solutal contours were revealed in 

Figures 4 to 6. Amplification in β has been found to decline 

the fluid's viscosity. As a change in β causes the fluid to behave 

like shear-thickening, which diminishes the fluid's fluidity and 

the width of its momentum barrier layer. While the velocity 

contour displays the opposite tendency, the thermal, solutal 

contours grow as the Casson fluid parameter increases. 

 

 
 

Figure 4. Figuration of ( )f   for   

 

 
 

Figure 5. Figuration of ( )   for   

 

Table 2. Comparison of '(0)−  for various values of ,PrandM R in the absence of remaining constraints 

 
M R Pr Bidin and Nazar [42] Ishak [43] Rajendar and Anand Babu [44] HAM 

0.0 0.0 1.0 0.9547 0.9547 0.9548 0.954783 

0.0 0.0 3.0 1.8691 1.8691 1.8692 1.869067 

0.0 1.0 1.0 0.5315 0.5315 0.5311 0.531503 

1.0 0.0 1.0 0.8611 -- 0.8611 0.861427 
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Figure 6. Figuration of ( )   for   

 

Figures 7 to 9 validate that the magnetic parameter M 

affects the profiles. Although the trend for concentration and 

temperature is the reverse, ( )f   falls as M's magnitude 

upsurges. The rate of transfer actually declines as M increases 

as a result of which it upsurges the Lorentz force that limits 

the flow of fluids. The Lorentz force was visible when the flow 

field was going through a magnetic field. This force is 

powerful enough to drag the fluid along and slow its 

movement. Consequently, the fluid flow momentum decreases 

as the velocity layer thickness increases. 

 

 
 

Figure 7. Figuration of ( )f   for M  

 

 
 

Figure 8. Figuration of ( )   for M  

 

 
 

Figure 9. Figuration of ( )   for M  

 

Figure 10 exemplifies that the momentum ratio significator 

A affects the momentum of the profiles. The fluid's momentum 

gains as the momentum ratio significator the magnitude 

upsurges. Figures 11 and 12 display the momentum ratio 

significator. A affects the development of non-dimensional 

thermal and solutal contours. As A surge, the thermal and 

solutal of the fluid asymptotically decline, forming thin 

temperature and concentration boundary layers. A greater 

momentum ratio signifies more. The momentum of the free 

stream is increased by heat transfer from the wall. The 

concentration of the fluid upsurges in tandem with the free 

stream velocity as momentum ratio significator A upsurges. 

 

 
 

Figure 10. Figuration of ( )f   for A  

 

 
Figure 11. Figuration of ( )   for A  
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Figure 12. Figuration of ( )   for A  

 

 
 

Figure 13. Figuration of ( )f   for   

 

 
 

Figure 14. Figuration of ( )f   for S  

 

The impact of an inclined angle on the momentum contour 

is illustrated in Figure 13. As the increases, the momentum 

contour decreases. This is explained by the fact that the 

buoyant force caused by thermal diffusion is reduced by a 

factor of 𝑐𝑜𝑠 𝛺. As higher values suction (S) effectively reduce 

the momentum contour both in fluid and gaseous forms, as 

shown in Figure 14. The features of the local Grashof number 

are Gr on the momentum contours are depicted in Figure 15. 

In this case, the fluid flow velocity will increase quickly as Gr 

values rise. 

Figure 16 demonstrates that the velocity contours improve 

when the adjusted Grashof parameter Gc values upsurge. 

Figure 17 depicts the restriction on velocity slip δ1 upsurges, 

the fluid speed falls and the slip speed upsurges. This could be 

because the velocity of the stream and the stretched sheet are 

different in the case of a slip scenario. An upsurge in the 

velocity slip limitation δ1 causes the fluid velocity to drop as 

the slip velocity increases. This phenomenon occurs when, in 

slip conditions, the velocity of the fluid stream close to the 

stretching sheet differs from that of the document for 

extending. As the thermal slip limitation δ2 rises, Figure 18 

demonstrates that the temperature declines. Although there is 

very little heat and the physical width of the temperature 

boundary layer decreases as the thermal slip constraint value 

increases during the transfer from the sheet to the temperature 

boundary layer. 

 

 
 

Figure 15. Figuration of ( )f   for Gr  

 

 
 

Figure 16. Figuration of ( )f   for Gc  

 

 
 

Figure 17. Figuration of ( )f   for 
1  
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Figure 18. Figuration of ( )   for 
2  

 

Figure 19 shows the connection between thermal radiation 

and temperature limitation R. Higher values of R indicate a 

greater infusion of heat energy that radiates into the system, 

raising the temperature. Figure 20 displays the temperature 

contours change for different Prandtl values. The Prandtl 

number is found to be upsurges, the boundary layer's thermal 

declines. The extraordinary effect of Q on θ(ζ) is revealed in 

Figure 21. An increase in the values improves θ in the case of 

air. The thermal contour initially declines before rising away 

from the wall. 

 

 
 

Figure 19. Figuration of ( )   for R  

 

 
 

Figure 20. Figuration of ( )   for Pr  

 
 

Figure 21. Figuration of ( )   for Q  

 

Figure 22 illustrates the significance of the Brownian 

movement significator in a clear and concise manner. Nb may 

have an effect on θ(ζ). In general, Brownian mobility helps to 

regulate the temperature of the fluid in the boundary layer by 

preventing materials from accumulating on the surface that is 

located at a distance from the fluid. The temperature rises 

when there is a greater concentration of Nb in the fluid (one 

that is less than 1). Most of the time, Brownian motion is 

responsible for preventing molecules from depositing away 

from the surface of the liquid and warming the liquid that is 

contained within the boundary layer. At some distance from 

the extension surface, rapid flow is brought about by the 

thermophoretic force that is produced by the temperature 

gradient that is the result of the extension. As Nb increases, a 

greater quantity of fluid is heated away from the surface, 

which results in an increase in the thermal properties of the 

boundary layer. However, concentration profiles exhibit the 

reverse pattern, as illustrated in Figure 23. 

 

 
 

Figure 22. Figuration of ( )   for Nb  

 

 
 

Figure 23. Figuration of ( )   for Nb  
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The stretched sheet creates a rapid flow that carries 

nanoparticles, widening the boundary layer for the mass 

volume fraction. These phenomena are demonstrated in 

Figures 24 and 25. It has been reported that Nt directly 

correlates with both the thermal and the solutal of 

nanoparticles. 

 

 
 

Figure 24. Figuration of ( )   for Nt  

 

 
 

Figure 25. Figuration of ( )   for Nt  

 

 
 

Figure 26. Figuration of ( )   for Sc  

 

Figure 26 portrays the Schmidt number (Sc) affects the ϕ(ζ) 

concentration contour. Additionally, it has been noted that 

when the value growths, the concentration contour falls. A 

lower mass diffusivity relative to velocity diffusivity is 

indicated by a higher Schmidt number, which implies a 

decrease in scalar diffusivity, less diffusion, and slower solutal 

changes in the fluid medium. The ratio of mass diffusivity to 

momentum diffusivity is known as Sc in physics. The effect of 

a chemical reaction significator γ on ϕ(ζ) is portrayed in Figure 

27. It is well known that when the chemical reaction 

significance increases, the solutal falls. Figure 28 exemplifies 

the nanoparticle fraction slip limitation δ3 has a similar effect 

on the mass fraction field as it does on the temperature field. 

This resemblance results from slip's fundamental obstruction 

to liquid motion, which ultimately lowers net atomic 

advancement. Consequently, reduced molecular development 

leads to a decline in the mass fraction field. 
 

 
 

Figure 27. Figuration of ( )   for   

 

 
 

Figure 28. Figuration of ( )   for 
3  

 

Figure 29 exhibits the skin-friction factor on variation   

and M. It’s observed that as   and M heightened the skin-

friction factor declines. Figure 30 demonstrated that the 

Nusselt number on variations of   and M. It is observed that 

as   and M increased the Nusselt number declines. Figure 31 

depicted that the local Sherwood number on variations of   

and M. It is noticed that as   and M. increased the local 

Sherwood number declines.  
 

 
 

Figure 29. Figuration of fxC for   and M  
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Figure 30. Figuration of 
xNu for   and M  

 

 
 

Figure 31. Figuration of 
xSh for   and M  

 

 

6. CONCLUSIONS 

 

Based on the results of numerical analysis that were carried 

out using a HAM technique, the following conclusions were 

derived regarding the MHD features of a Casson nanofluid that 

was flowing over an inclined stretching sheet that was 

stretched linearly: 

• When the momentum of the nanofluid declines, the 

Casson constraint, the magnetic constraint, and the 

momentum slip factor all have an impact on the 

degree to which this can occur. A rise in the thermal 

characteristics of the nanofluid is brought about by 

the combination of three constraints: the heat source 

constraint, the Brownian motion constraint, and the 

temperature radiation constraint.  

• As the Casson constraint and the thermophoresis 

constraint both increase, the solution boundary layer 

also increases, but it decreases as the Brownian 

motion component decreases. 

• The momentum slip constraint and increases in the 

heat and mass transfer rates are directly related to one 

another. There is a correlation between the two. 

However, as the thermal leap constraint values grow, 

both the rate of heat transfer and the rate of mass 

transfer decrease. This is the case. 

• In the event that the magnetic constraint is increased, 

it has been seen that the Sherwood and Nusselt 

numbers subsequently fall. In the event that 

momentum slip takes place, both the Sherwood 

number and the Nusselt number will decrease.  

It is possible that in our subsequent research attempts, we 

will broaden the scope of the work that we are currently doing 

in order to encompass the non-Newtonian flow across a 

nonlinear stretching sheet and to consider hybrid nanofluids. 
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NOMENCLATURE 

 
a  constant extending rate 

b  free stream rate 

( )
f

c  specific heat at non-varying pressure, 

J.kg-1.K-1 

,u v  resolution of velocity vector along x,y 

directions, m.s-1 

wU  stretching velocity, m.s-1 

U
 free stream velocity, m.s-1 

0B  strength of magnetic field  

BD  coefficient of Brownian 

TD  coefficient of thermophoresis 

wV  wall injection/suction velocity 

  product of component deformation 
g  gravitational acceleration m.s-2 

R  thermal radiation constraint 

C  the fluid concentration, kg.m-3 

wC  Solutal level of fluid at surface, kg.m-3  

C
 concentration of the ambient, kg.m-3 

k  absorption coefficient 

  heat conductance of fluid, W.m-1.K-1 

,f  and   non-zero auxiliary parameters 

n  characteristic function 

( 1 to 7)iD i =  arbitrary constants 

,fN N and N  non-linear operators 

,fL L and L  linear operators 

M  magnetic field constraint 

Nt  thermophoresis constraint 

Nb  Brownian motion constraint 

Pr  Prandtl number  
Gr  local Grashof number as a result of 

temperature changes 

Gc  due to the level of concentration, the 

local Grashof number 

0V  initial strength of suction 

fxC  coefficient of skin friction 

 local Nusselt number 

xSh  local Sherwood number 

f  stream function with no dimension  

'f  dimensionless velocity 

Sc  Schmidt number 
Q  heat source constraint 

Le  Lewis constraint 

T  fluid’s thermal K 

wT  convective liquid temperature  

T  ambient fluid temperature, K  

wq  surface heat flow, W.m-2 

mq  surface mass movement 

w  shearing stress of the Surface, N.m-2 

 

Greek symbols 

 

B  plastic dynamic viscosity, kg. M-1.s-1 

  chemical reaction parameter 

  similarity variable 

  diffusivity of the fluid at varying 
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temperature  

c
 mass expansion coefficient in volume 

T coefficient of mass expansion in volume 

units, K-1

 Casson constraint, K-1 
* Stefan -Boltzmann constant 

 kinematic viscosity, m2.s-1 
 dimensionless soluta 

 dimensionless Thermal 

( )
f

c fluid heat capacity 

 sheet angle with inclination 

( )

( )
p

f

c

c





=

fraction of heat capability of Nanofluid 

to the base fluid 

f electrical conductivity, S.m-1 

 stream function, m2.s-1 

p nanoparticles mass density, kg.m-3 

Subscripts 

f fluid (pure water) 
w wall membrane 

 free stream 
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