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 Against the backdrop of global energy transition, the continuous growth in both the 

installed capacity of wind farms and the power rating of individual turbines has made 

efficient heat dissipation of core components in high-power wind turbines critical for 

ensuring their reliable operation. Existing cooling system designs often rely on empirical 

parameters or simplified models, leading to issues such as uneven heat transfer, significant 

flow resistance losses, and insufficient multi-objective optimization. Most current studies 

focus on optimizing single performance indicators, with limited attention to the complex 

fluid-thermal coupling characteristics, dynamic response under multiple operating 

conditions, and the coordinated optimization of thermodynamic performance and 

economic considerations. Traditional single-objective methods are prone to local optima 

and often lack practical applicability. To address these challenges, this study conducts a 

comprehensive thermodynamic performance analysis and multi-objective optimization 

design of cooling systems in wind farms. A fluid-thermal coupled model based on 

computational fluid dynamics (CFD) is first developed to reveal the distribution patterns 

of velocity and temperature fields under various conditions, and to analyze the intrinsic 

coupling mechanisms between heat transfer efficiency and flow resistance. Subsequently, 

a multi-objective genetic algorithm is introduced to construct an optimization model that 

incorporates material properties and manufacturing constraints. Through parameter 

sensitivity analysis, a Pareto-optimal solution set is obtained and its engineering feasibility 

is evaluated. The findings offer an optimization strategy that balances thermodynamic 

performance and cost-effectiveness, overcoming the limitations of traditional single-

objective approaches. This research provides theoretical and practical insights for 

improving the overall performance of high-power wind turbines under complex operating 

conditions. 
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1. INTRODUCTION 

 

With the accelerated advancement of global energy 

transition, wind power generation [1-4], as an important 

component of clean and renewable energy, continues to 

witness increases in both installed capacity and the rated 

power of individual turbines. During the operation of high-

power wind turbines, core equipment such as generators and 

converters generates a large amount of heat due to electrical 

energy conversion and mechanical losses [5, 6]. If heat is not 

dissipated in a timely and effective manner, it will lead to 

excessive temperature rise, reduced efficiency, and even 

equipment failure, which seriously affects the reliable 

operation and economic performance of wind farms. At 

present, cooling systems [7-10] mostly adopt air cooling, 

liquid cooling, or hybrid cooling schemes, and their 

thermodynamic performance directly determines the service 

life of the equipment and the energy efficiency of the system. 

However, the existing cooling system designs are often based 

on empirical parameters or simplified models [11-14], with 

insufficient consideration of the coupling between complex 

flow fields and temperature fields, the dynamic characteristics 

under multi-condition operation, and the needs of multi-

objective optimization. As a result, problems such as uneven 

heat transfer, large flow resistance loss, and poor control 

flexibility exist during actual operation, which urgently calls 

for systematic research based on thermodynamic principles. 

Thermodynamic performance optimization of wind farm 

cooling systems is a key step to improve turbine reliability and 

reduce operation and maintenance costs. It is also an important 

technical support for achieving high efficiency and 

intelligence of wind power equipment. By revealing the 

coupling mechanism of fluid flow and heat transfer inside the 

cooling system and establishing an accurate thermodynamic 

analysis model, the design and parameter matching of the 

cooling structure can be effectively guided, thereby ensuring 

the safe operating temperature of the equipment while 

reducing cooling energy consumption. Furthermore, 

conducting multi-objective optimization design can balance 

multiple performance indicators such as heat transfer 
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efficiency, flow resistance, and lifecycle cost of equipment, 

providing a scientific and reasonable optimization strategy for 

the engineering design of cooling systems. This has not only 

direct application value in improving the power density and 

operational stability of wind turbines but also important 

practical significance in promoting the development of 

efficient heat dissipation technologies in the field of renewable 

energy and contributing to the realization of the "dual carbon" 

goals. 

Existing research on cooling systems mainly focuses on the 

optimization of a single performance indicator, such as 

improving the heat transfer coefficient by changing the flow 

channel structure [15-17], or reducing pumping power based 

on flow resistance models. However, there is a lack of 

systematic research on multi-objective coupled optimization. 

Although some researchers have introduced thermodynamic 

analysis methods [18], they have ignored the influence of 

environmental temperature and load fluctuations on the 

dynamic characteristics of cooling systems during actual 

operation. The simplified models they established cannot 

accurately describe the contradictory relationship between 

heat transfer enhancement and pressure drop in complex flow 

fields. In addition, traditional optimization methods mostly 

rely on single-objective function iteration [19, 20], which are 

prone to falling into local optima and fail to fully consider 

constraints such as material properties, manufacturing 

processes, and operation and maintenance costs, thus limiting 

the engineering applicability of the optimization schemes. 

How to construct a multi-objective optimization model that 

includes thermodynamic performance, economic feasibility, 

and reliability in a multi-variable and strongly coupled cooling 

system remains a current research challenge. 

To address the above problems, this paper conducts 

research on thermodynamic performance analysis and multi-

objective optimization design of cooling systems in wind 

farms. The main content includes two parts: first, based on 

CFD and heat transfer theory, a fluid-thermal coupled 

thermodynamic model of the cooling system is established to 

analyze the distribution characteristics of velocity and 

temperature fields under different operating conditions and to 

reveal the intrinsic correlation mechanism between heat 

transfer efficiency and flow resistance; second, a multi-

objective optimization model is constructed by introducing a 

multi-objective genetic algorithm. Through parameter 

sensitivity analysis, key influencing factors are identified, a 

Pareto optimal solution set is obtained, and its engineering 

feasibility is evaluated. The research results will provide an 

optimization scheme with both thermodynamic performance 

and economic efficiency for the design of wind farm cooling 

systems, effectively overcoming the limitations of traditional 

single-objective optimization and improving the 

comprehensive performance of cooling systems under 

complex conditions, which has important theoretical 

significance and engineering application value for promoting 

the innovative development of cooling technology for high-

power wind turbines. 

 

 

2. THERMODYNAMIC PERFORMANCE ANALYSIS 

OF WIND FARM COOLING SYSTEM 

 

2.1 System geometry and assumptions 

 

Aiming at the demand for efficient heat dissipation of core 

equipment such as generators and converters in wind farm 

cooling systems, a geometrical structure of a layered 

integrated composite cooling module combining phase change 

cooling and liquid cooling is designed. A microchannel liquid 

cooling substrate is directly attached to the surface of the heat-

generating components of the equipment. The internal flow 

channels of the substrate adopt serpentine or cross-flow 

designs, using deionized water or thermal oil as the coolant. 

The coolant is driven by a pump set to form a closed loop, 

realizing rapid heat conduction from concentrated heat 

sources. On the outer side of the liquid-cooled substrate or in 

the interlayer of the equipment shell, phase change materials 

(PCM) encapsulated in a porous metal framework are 

embedded, forming a dual-layer structure of "liquid cooling 

for priority heat dissipation - phase change heat storage 

buffering". The geometric parameters of the liquid cooling 

channels need to be optimized according to the heat source 

distribution to ensure flow field uniformity and reduce flow 

resistance.  

 

 
 

Figure 1. Structure of wind farm cooling system 
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The PCM layer is tightly attached to the liquid cooling 

substrate via thermal interface materials. During high-load 

operation, it absorbs the peak heat that the liquid cooling 

system cannot dissipate in time; during load reduction, it 

releases the stored heat to maintain temperature stability and 

avoid local overheating. In addition, the system integrates 

temperature sensors and flow control valves to dynamically 

adjust the liquid cooling flow rate and the working state of the 

PCM according to real-time working conditions, forming a 

coordinated cooling mechanism of active liquid cooling and 

passive phase change cooling. Figure 1 shows the structure of 

the wind farm cooling system. 

When conducting thermodynamic performance analysis of 

the wind farm cooling system based on phase change and 

liquid cooling coupling, the following four assumptions are 

proposed based on research objectives and engineering 

simplification needs: (1) Constant thermal physical properties 

of materials: it is assumed that the phase change latent heat, 

thermal conductivity, and density of the PCM and the 

viscosity, specific heat capacity of the coolant do not vary with 

temperature. The temperature dependence in the heat transfer 

process is ignored to simplify the thermodynamic model and 

focus on the analysis of core fluid-thermal coupling 

mechanisms. (2) Uniform and simplified heat source: it is 

assumed that the heat sources of the stator windings of the 

generator, IGBT modules of the converter, and other core heat-

generating components are uniform internal heat sources. The 

local hotspot differences and radiation effects during discharge 

are ignored, and only the heat transfer process dominated by 

conduction and convective heat transfer is considered. This 

facilitates the establishment of a unified heat source loading 

model and temperature field solution. (3) Idealized neglect of 

contact thermal resistance: the contact thermal resistance 

between the liquid cooling substrate and the surface of heat-

generating components, as well as between the PCM layer and 

the liquid cooling substrate, is ignored. It is assumed that the 

thermal conduction interfaces between components are in 

ideal contact state. This simplifies the nonlinear thermal 

resistance in the heat flow path and highlights the coordinated 

cooling performance analysis of the liquid cooling channel 

structure and the PCM layer. (4) Simplified fluid behavior: the 

coolant and the melted PCM are treated as incompressible 

Newtonian fluids. The non-Newtonian characteristics and 

density changes of PCM in liquid state during phase change 

are ignored. This simplifies the coupling solution of 

momentum and energy equations and facilitates the analysis 

of flow resistance characteristics of the liquid cooling system 

and the natural or forced convection effects during PCM 

melting. The above assumptions, while reasonably simplifying 

complex physical processes, ensure that the research focuses 

on the core thermodynamic performance of the cooling 

system, and provide a feasible theoretical modeling basis for 

multi-objective optimization design. 

 

2.2 Thermodynamic performance analysis of core 

equipment 

 

In the wind farm cooling system coupled with phase change 

cooling and liquid cooling, the core equipment acts as a heat 

source, and the construction of its heat conduction differential 

equation needs to be closely combined with the physical 

structure and heat transfer characteristics of the core heat-

generating components. For solid-state heat-generating areas 

such as the stator windings of the generator and the IGBT 

modules of the converter, the equation is based on the basic 

law of heat conduction. The equipment is regarded as a 

continuous medium, ignoring local contact thermal resistance 

and radiation effects, and focusing on describing the variation 

law of the temperature field in three-dimensional space over 

time. Assuming that the density and specific heat capacity of 

the equipment are denoted by ϑy and Zy, and the thermal 

conductivity components by ηa, ηb, ηc, and the volumetric heat 

generation rate by W, then the heat conduction differential 

equation is: 

 

y y a b c

S S S S
Z W

s s a b b c c
   

           
= + + +     

           
 (1) 

 

The construction of the actual heat generation rate equation 

is based on the power loss mechanism of the core equipment 

of wind turbines, converting various losses during the 

electrical energy conversion process into volumetric heat 

generation intensity. For the generator, the heat generation rate 

mainly comes from Joule loss caused by winding resistance, 

hysteresis and eddy current loss due to alternating magnetic 

fields in the iron core, and mechanical losses such as bearing 

friction. These losses can be calculated in real time using the 

equipment's electromagnetic design parameters, operating 

current, and voltage, and averaged by volume. For the IGBT 

modules of the converter, the heat generation rate is composed 

of conduction losses caused by on-state resistance and energy 

losses during switching processes, which are directly related 

to the operating frequency, duty cycle, and load current. Under 

the research assumptions, the heat generation rate equation 

ignores local hotspot differences and regards heat-generating 

components as uniform internal heat sources whose intensity 

dynamically varies with the equipment load. In the cooling 

system coupled with phase change and liquid cooling, the heat 

generation rate needs to form a dynamic balance with the real-

time heat dissipation capacity of the liquid cooling system and 

the heat storage effect of the PCM. When the equipment 

operates under high load, the heat generation rate exceeds the 

real-time heat dissipation amount of the liquid cooling system, 

and the excess heat is absorbed by the PCM through solid-

liquid phase change and stored in the form of latent heat. When 

the load decreases, the PCM releases the stored heat to prevent 

excessive temperature drop of the equipment. Thus, the heat 

generation rate equation reflects the coordinated mechanism 

of "real-time heat generation - active heat dissipation - passive 

heat storage", providing accurate heat source boundary 

conditions for thermodynamic performance analysis. 

Assuming the heat generation rate per unit volume of the 

equipment is denoted by W, the equipment volume is n, the 

operating current is I, the open-circuit voltage is U0, the 

equivalent internal resistance is E0, and the entropy coefficient 

of the battery is dR0/dS, then the actual heat generation rate of 

the equipment can be calculated by the following equation: 

 

0
0

1

y

dU
W IE S

N dS

 
= − 

 
 (2) 

 

2.3 Thermodynamic performance analysis of PCM 

 

In the cooling system of wind farms coupling phase change 

cooling and liquid cooling, the thermal conductivity density 

Oozl of the PCM material needs to be calculated based on its 

physical state and the heat conduction characteristics of the 
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porous carrier structure. When the PCM is in a solid state, heat 

transfer is dominated by thermal conduction, and the thermal 

conductivity density is related to the material’s intrinsic 

thermal conductivity and the temperature gradient. The high 

thermal conductivity of the porous metal framework can 

enhance the overall heat transfer efficiency, allowing heat to 

quickly diffuse from the liquid cooling substrate into the PCM. 

When entering the solid-liquid coexistence phase change stage, 

the thermal conductivity of PCM is affected by the proportion 

of solid skeleton and liquid part. The solid skeleton maintains 

structural support and dominates heat conduction, while the 

liquid part, although having a lower thermal conductivity, 

forms a composite heat transfer mechanism of "solid phase 

conduction as primary, liquid phase diffusion as auxiliary" 

through synergy with the porous carrier. After complete 

melting, in the liquid phase stage, the thermal conductivity 

density depends mainly on the liquid thermal conductivity 

characteristics of the material and the contact condition with 

surrounding structures. At this time, the heat not dissipated in 

time by the liquid cooling system is buffered via thermal 

conduction and heat storage effect of the liquid PCM to avoid 

local overheating of the equipment. Assuming that the thermal 

conductivity of the PCM is denoted by ηozl, the specific heat 

capacity and phase change latent heat of the composite PCM 

are denoted by Zozl and M, respectively, and the PCM 

temperature and ambient temperature are denoted by Sozl and 

Sx, then the thermal conductivity density of the PCM can be 

calculated by the following formula: 

 

( )ozl
ozl ozl ozl

G
S

s
 


= 


 (3) 

 

The enthalpy Gozl of PCM needs to include both sensible 

heat and latent heat contributions to reflect the energy storage 

and release characteristics during the phase change process. In 

the solid-state phase, the enthalpy increases linearly with 

temperature in the form of sensible heat, reflecting energy 

accumulation due to temperature rise. When the temperature 

reaches the lower limit of the phase change interval, PCM 

starts absorbing heat and undergoes solid-liquid phase change. 

The growth rate of enthalpy accelerates, with the absorbed 

heat mainly used to break molecular lattice structures and 

converted into latent heat storage, while the temperature 

remains nearly constant within the phase change interval. 

After complete melting into the liquid phase, the enthalpy 

again increases with temperature in the form of sensible heat, 

but the growth rate may differ from that in the solid phase due 

to the difference in liquid phase specific heat. This enthalpy 

variation enables PCM to play a key role during load 

fluctuations in wind turbines: it absorbs peak heat during high 

loads and stores it as latent heat, and releases latent heat during 

low loads to maintain temperature stability, thereby balancing 

the real-time cooling load. The enthalpy of PCM can be 

calculated by the following formula: 

 
ozl

x

S

ozl ozl
S

G Z dS M= +  (4) 

 

The liquid phase fraction ψ is a key parameter describing 

the melting degree of PCM, and its calculation is based on the 

temperature and its relative position within the phase change 

interval. When the PCM temperature is below the phase 

change start temperature, the liquid fraction is zero and the 

material is in fully solid state. When the temperature is above 

the phase change end temperature, the liquid fraction is 1 and 

the material is completely melted in liquid state. Within the 

phase change interval, the liquid fraction increases linearly 

from 0 to 1 with temperature rise, reflecting the dynamic 

change of the solid-liquid phase ratio. This parameter directly 

affects the effective thermal conductivity and heat storage 

capacity of PCM: when the liquid fraction is low, the solid 

skeleton dominates thermal conduction and heat storage is 

mainly sensible heat; as the liquid fraction increases, the 

proportion of the liquid part increases, the share of latent heat 

storage rises, and heat exchange across the solid-liquid 

interface is enhanced. In the wind farm cooling system, the 

real-time change of liquid phase fraction is closely related to 

equipment load and liquid cooling system efficiency, and can 

serve as an important indicator for evaluating PCM heat 

storage status and system thermodynamic performance. It 

provides a basis for optimizing coolant flow rate, PCM 

selection, and structural design. Assuming the solid phase 

temperature of PCM is denoted by St, and the liquid phase 

temperature is denoted by Sm, the expression of ψ is: 

 

0,

,

1,

ozl t

ozl t
t m

m

ozl m

S S

S S
S S S

S S

S S



 


−
=  

−
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 (5) 

 

2.4 Analysis of coolant flow and heat transfer 

 

In the wind farm cooling system coupling phase change 

cooling and liquid cooling, the mass, momentum, and energy 

conservation equations of coolant flow and heat transfer need 

to be constructed closely around the physical characteristics of 

the liquid cooling circulation system and the coupled cooling 

mechanism. The mass conservation equation is based on the 

assumption that the coolant flows as an incompressible fluid 

within closed microchannel passages, with no increase or 

decrease in mass during flow. The mass flow rate remains 

constant across all cross-sections of the flow path, reflecting 

the balance between inflow and outflow, and ensuring a basis 

for analyzing factors such as flow distribution and symmetry 

of flow channel branches that affect flow uniformity during 

the coolant circulation process. The momentum conservation 

equation focuses on the balance between the driving force and 

resistance of fluid motion. It considers the forced convection 

process of the coolant under pump-driven conditions, takes the 

pressure gradient as the driving force for flow, and includes 

the effects of viscous forces on channel walls, local flow 

resistance, and inertial forces. It is used to describe the 

relationship between flow velocity distribution, pressure drop 

characteristics, and the geometric parameters of the flow 

channel, providing theoretical support for optimizing flow 

path structure to reduce flow resistance. The energy 

conservation equation couples the heat transfer process. On 

one hand, it reflects the heat absorbed by the coolant via 

convective heat transfer from the liquid cooling substrate; on 

the other hand, it describes the temperature variation of the 

coolant during flow, and, through thermal conduction between 

the channel walls and the external PCM layer, indirectly 

connects to the latent heat storage and release process of the 

PCM. When the heat carried by the coolant exceeds the heat 

absorption capacity of the PCM, the excess heat is removed by 

the liquid cooling system; otherwise, the PCM releases stored 

heat to maintain the coolant temperature stability. This forms 
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an energy transfer and dynamic balance model of "heat source-

liquid cooling-phase change". Assuming the density, specific 

heat capacity, and thermal conductivity of the coolant are 

represented by ϑz, Zz, and ηz, respectively, and the static 

pressure, temperature, and dynamic viscosity of the coolant 

are represented by o, Sz, and ωz, respectively. The coolant 

velocity vector is denoted by n, and time is denoted by s. Then 

the mass, momentum, and energy conservation equations for 

coolant flow and heat transfer are expressed as: 

 

( ) 0z
zn

s





+ =


 (6) 

 

( )
( ) ( )z 2

z z

n
nn o n

s


 
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+ = − +  


 (7) 
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( ) ( )z z z

z z z z z

Z S
Z nS S

s


 


+ =  


 (8) 

 

To determine whether the coolant flow is laminar or 

turbulent, the Reynolds number Re is used as the evaluation 

index. Assuming the coolant flow velocity is denoted by n, and 

the characteristic length of the coolant pipe is denoted by f, the 

formula is: 

 

Re
z

nf


=  (9) 

 

2.5 Boundary conditions 

 

In the wind farm cooling system coupling phase change 

cooling and liquid cooling, the construction of boundary 

conditions for the heat source and PCM must closely follow 

the principles of heat transfer continuity and energy 

conservation. For the core heat sources such as generator stator 

windings and converter IGBT modules, the contact surface 

with the liquid cooling substrate is set as the first type of 

boundary condition, assuming that the heat generated by the 

heat source is transferred to the liquid cooling substrate 

without loss through an ideal thermal conduction interface, 

and the thermal resistance at the contact interface is ignored. 

The interface between the liquid cooling substrate and the 

PCM layer is treated as a coupled boundary, which must 

satisfy both temperature continuity and conservation of heat 

flux density. The solid PCM is tightly bonded to the substrate 

through the porous metal framework, and the heat flows into 

the PCM by conduction. When the temperature reaches the 

phase change range, the boundary condition incorporates the 

latent heat release effect, i.e., the unit area heat flux density 

equals the sum of the sensible heat change rate and the latent 

heat storage rate, reflecting the buffering effect of PCM during 

solid-liquid phase transition. Assuming the average radial 

thermal conductivity of the equipment is denoted by ηye, the 

axial thermal conductivity of the lithium-ion battery is ηyx, the 

thermal conductivity of the liquid cooling plate is ηPL, and the 

temperature gradient is ∂S/∂v, the boundary condition 

expressions are: 

 

ye ozl

S S

v v
 

 
− = −−

 
 (10) 

 

yx PL

S S

v v
 

 
− = −−

 
 (11) 

The construction of the boundary conditions for coolant and 

pipeline is based on the closed-loop characteristic of the liquid 

cooling system and the forced convection mechanism. The 

inlet boundary is usually set as mass flow or velocity inlet 

condition. According to the rated parameters of the pump 

group and working condition requirements, a uniform velocity 

distribution is given. Considering the variable load operation 

of the wind turbine, the inlet flow rate can be set as a variable 

that dynamically adjusts with the heat source intensity. The 

outlet boundary adopts a pressure outlet condition, assuming 

the pressure at the end of the flow path is atmospheric or 

system back pressure, to avoid backflow and ensure sufficient 

development of flow. The pipe wall boundary follows the no-

slip condition, and simultaneously sets either the convective 

heat transfer coefficient or heat flux density at the wall. The 

former calculates the heat transfer capacity between the 

coolant and the wall based on the geometry of the flow channel, 

while the latter directly relates to the heat flux export rate of 

the liquid cooling substrate. For the coupling boundary 

between the liquid phase region of PCM after melting and the 

pipeline, it is necessary to additionally consider the flow 

characteristics of liquid PCM. Through coupling of the 

momentum and energy equations, velocity continuity and 

temperature consistency between coolant flow and PCM heat 

transfer at the boundary are ensured, thereby constructing a 

collaborative heat dissipation boundary model of “liquid 

cooling forced convection-PCM passive heat storage”. 

Assuming the convective heat transfer coefficient of the 

coolant is denoted by gz, and the surface temperature of the 

liquid cooling plate pipe is SPL, the boundary condition 

expression is: 

 

( )PL z z z PL

S S
g S S

v v
 

 
− = − + −

 
 (12) 

 

2.6 Evaluation indicators 

 

 
Figure 2. Numerical simulation of single-device heat 

dissipation process 

 

Figure 2 shows the numerical simulation results of the heat 

dissipation process of a single device, which verifies the 

accuracy of the constructed thermodynamic performance 

analysis model. In this paper, the maximum temperature SMAX, 

maximum temperature difference ΔSMAX, pressure drop △o, 

and PCM liquid fraction ψ are used as evaluation indicators. 

Among them, SMAX and ΔSMAX measure the heat dissipation 
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capacity of the wind farm, and Δo represents the pressure drop 

between coolant inlet and outlet. ψ is the liquefaction rate of 

PCM, and a higher liquefaction rate indicates a higher 

utilization rate of PCM. Assuming the power of the pump is 

denoted by QPU, the pressure drop at the coolant inlet and 

outlet is Δo, and the volumetric flow rate is Wn, the relationship 

between Δo and power consumption is given by the following 

expression: 

 

PU nQ o W=    (13) 

 

 

3. MULTI-OBJECTIVE OPTIMIZATION OF WIND 

FARM COOLING SYSTEM BASED ON 

THERMODYNAMIC PERFORMANCE ANALYSIS 

 

The multi-objective optimization of wind farm cooling 

systems based on the results of thermodynamic performance 

analysis takes the liquid cooling channel geometric parameter 

Fy, thermal physical property parameter of PCM u, and coolant 

flow velocity Iz as three core input features. These parameters 

directly affect the flow field uniformity, phase change heat 

storage capacity, and heat flux transfer efficiency of the 

cooling system. According to the thermodynamic model 

analysis, the geometric parameter of the flow channel 

determines flow resistance and heat exchange area, the 

characteristics of PCM affect the buffering capacity of peak 

heat, and the coolant parameters regulate the real-time heat 

dissipation rate. In the optimization process, the heat transfer 

coefficient gz and cooling system energy consumption Q are 

taken as two output labels. The former characterizes the unit 

area heat flux export capacity, and the latter reflects the system 

operation efficiency and economic performance 

comprehensively. The core of multi-objective optimization is, 

under the constraint of ensuring the safe temperature threshold 

of the equipment, to adjust input features to maximize the heat 

transfer coefficient to ensure cooling reliability, while 

minimizing the cooling energy consumption to improve 

system economy. Finally, a Pareto optimal solution set that 

balances thermodynamic performance and engineering cost is 

formed to solve the coupling optimization problem of 

“efficient heat dissipation” and “low consumption operation” 

under variable load conditions. 

 

( )
( )
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 
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 (14) 

 

In the process of multi-objective optimization of the wind 

farm cooling system, this paper chooses Latin Hypercube 

Sampling (LHS) to balance the requirements of sample 

diversity, computational efficiency, and model accuracy. The 

wind farm cooling system involves multiple strongly coupled 

design variables such as the geometric parameters of the liquid 

cooling channel, the thermal physical properties of PCM, and 

coolant flow rate. Its parameter space is characterized by 

nonlinearity and high dimensionality. Traditional random 

sampling is prone to uneven sample distribution or local 

clustering, making it difficult to fully reflect the interaction 

among variables. LHS adopts a stratified sampling strategy 

that divides the value range of each design variable into 

several mutually non-overlapping subintervals, ensuring that 

only one sample point is selected in each subinterval. This 

ensures uniform distribution of samples in the entire design 

space and effectively avoids the problems of sample 

redundancy or omission of key regions. Its basic principle is 

to stratify each variable, randomly select a sample value in 

each layer, and then form complete sample points through the 

combination of variables. This ensures the coverage of 

individual variables and achieves the diversity of multivariable 

combinations. 

 

 
 

Figure 3. Schematic diagram of artificial neural network 

 

In the multi-objective optimization of wind farm cooling 

systems, there exists a strongly coupled nonlinear mapping 

relationship between input features such as liquid cooling 

channel geometric parameters, thermal physical properties of 

PCM, and coolant flow rate, and output labels such as heat 

transfer coefficient and cooling energy consumption. 

Traditional regression models are difficult to capture such 

complex interactions, whereas artificial neural networks, 

through multilayer network structures and hierarchical feature 

extraction, can learn high-order nonlinear combinations of 

input features layer by layer. Figure 3 shows the adopted 

artificial neural network schematic. Specifically, the number 

of neurons in the input layer corresponds to the three design 

variables, and the output layer neurons correspond to the two 

optimization objectives. The hidden layers transform the 

original input features into abstract “flow-thermal coupling 

features” through adaptive adjustment of connection weights 

of neurons, thereby constructing a complex nonlinear mapping 

model from the parameter space to the objective space, 

significantly improving the fitting accuracy of the multi-

objective coupling relationship of “flow resistance-heat 

transfer-energy consumption” under variable load conditions. 

Due to the significant dimensional differences among the 

input features of the wind farm cooling system, directly 

inputting them into the neural network would result in gradient 

updates being biased toward high-magnitude features, 

reducing training efficiency and increasing the risk of 

overfitting. Therefore, normalization is adopted to scale all 

features to the [0,1] range. Specifically, for each input feature 

A, assuming its normalized value is A', original data value is A, 

maximum value is SMAX, and minimum value is SMIN, its 

normalized value is calculated by the following formula: 

 

' MIN

MAX MIN

A A
A

A A

−
=

−
 (15) 

 

After normalization, the contribution of each feature to 
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neuron activation tends to be balanced, avoiding training 

errors caused by dimensional differences, and accelerating the 

convergence speed of the gradient descent algorithm, allowing 

the neural network to more efficiently learn the synergistic 

effects of different parameters on cooling system performance, 

and providing a unified numerical basis for subsequent multi-

objective optimization. 

In the neural network architecture, the introduction of the 

ReLU activation function is crucial: it solves the gradient 

vanishing problem of traditional Sigmoid/Tanh functions 

through a “linear rectification” mechanism, enabling deep 

networks to effectively learn complex features while 

simplifying the computation process to adapt to the high-

dimensional characteristics of CFD data. Its expression is: 

 

0,   0

,

if a
RELU

a otherwise


= 


 (16) 

 

This study adopts a design of 3 hidden layers, aiming to 

balance model complexity and computational cost: shallow 

networks are difficult to capture deep features of flow-thermal 

coupling, while deep networks may lead to overfitting. This 

structure can approximate nonlinear functions through 

piecewise linear fitting, for example, decomposing the 

pressure drop characteristics of liquid cooling channels into 

laminar, transitional, and turbulent segments for mapping. In 

terms of training strategy, 80% of the data is used as the 

training set for weight updates, and 20% is used as the test set 

to verify generalization capability. The Adam optimization 

algorithm is used to dynamically adjust the learning rate, 

ensuring stable convergence of the model under variable 

condition data. Performance evaluation metrics RMSE and R² 

quantify the model accuracy from the perspectives of absolute 

error and goodness of fit. A smaller RMSE indicates smaller 

deviation between predicted and true values; R² closer to 1 

indicates stronger explanatory power of the model for the 

target variables. Together, they ensure that the neural network 

can accurately map the nonlinear relationship between wind 

farm cooling system parameters and performance indicators. 

Assuming the total amount of data is v, the actual value is Bu, 

the predicted value is 𝐵̂𝑢 , and the average of all predicted 

values is 𝐵̄𝑢, the expressions for RMSE and R2 are: 

 

( )
2

1

1 ˆ
v

u u

u

RMSE B B
v =

= −  (17) 
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( )

2

2 1

2

1

ˆ

1

v

u u

u

v

u u

u

B B

R

B B

=

=

−

= −

−




 (18) 

 

In the multi-objective optimization of wind farm cooling 

systems based on thermodynamic performance analysis, this 

paper chooses to use the NSGA-II genetic algorithm to find 

the global optimal solution of the neural network prediction 

model, that is, to efficiently explore the Pareto optimal 

solution set of “maximizing heat transfer coefficient” and 

“minimizing cooling energy consumption” by simulating the 

process of natural evolution. Figure 4 shows the schematic 

diagram of each iteration process of NSGA-II. This algorithm 

uses the nonlinear mapping relationship between input 

features and output labels established by the neural network as 

the basis, first generating an initial population containing 

diverse combinations of design variables, each individual 

corresponding to a cooling system design scheme. The 

population is iteratively evolved through genetic operations: 

selection operation retains advantageous individuals based on 

non-dominated sorting, and crossover and mutation introduce 

new parameter combinations to expand the search space and 

avoid local optima. After mixing the parent and offspring 

populations, individuals are layered by Pareto level through 

fast non-dominated sorting, with high-level individuals 

preferentially retained, and crowding distance is used to ensure 

the uniform distribution of solutions in the objective space and 

avoid excessive aggregation. The introduction of an elitist 

strategy allows high-quality solutions to directly enter the next 

generation, improving convergence speed; for the high-

dimensional and strongly coupled characteristics of the wind 

farm cooling system parameter space, crowding distance 

sorting further ensures the diversity of different design 

schemes. Finally, through multiple generations of iteration, the 

Pareto front is approximated, providing an optimal solution set 

that balances heat dissipation reliability and economic 

performance for engineering design. This process uses the 

neural network surrogate model to reduce the high cost of 

transient CFD computation, while utilizing the global search 

capability of NSGA-II to effectively solve the multi-objective 

conflict between “heat transfer efficiency” and “energy 

consumption cost” in the cooling system, achieving 

comprehensive optimization of system performance under 

complex working conditions. 

 

 
 

Figure 4. Schematic diagram of each iteration of NSGA-II 

 

 

4. EXPERIMENTAL RESULTS AND ANALYSIS 

 

Figure 5 shows the effect of the liquid cooling channel 

geometric parameter Fy on the thermodynamic performance of 

the wind farm cooling system. The horizontal coordinate Fy 

varies from 2 cm to 6 cm. The maximum temperature SMAX and 

maximum temperature difference ΔSMAX on the left vertical 

axis show a significant decreasing trend with the increase of 

Fy: when Fy=2 cm, SMAX≈36.3℃, ΔSMAX≈4.8℃; when Fy=6 cm, 

they drop to 33.8℃ and 3.0℃ respectively, with a decrease of 

2.5℃ and 1.8℃. The pressure drop Δo on the right vertical 

axis drops from 0.50 Pa to 0.35 Pa, a reduction of 30%, 

indicating that increasing the channel width effectively 

reduces flow resistance and pump energy consumption. The 

PCM liquid phase fraction ψ increases from 0.30 at Fy=2 to 

0.50 at Fy=6, indicating that a wider channel enhances the heat 

storage capacity of the PCM. The above data indicate that 

increasing Fy can simultaneously optimize heat dissipation 

uniformity, improve heat transfer efficiency, reduce flow 

energy consumption, and enhance phase change heat storage 

capacity, verifying the key impact of channel geometric 

parameters on multi-objective performance and providing 

direct evidence for subsequent parameter sensitivity analysis 

and multi-objective optimization. 
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Figure 5. Variation of wind farm heat dissipation 

performance under different liquid cooling channel geometric 

parameters 

 

 
 

Figure 6. Variation of wind farm heat dissipation 

performance under different coolant flow rates 

 

 
 

Figure 7. Variation of wind farm heat dissipation 

performance under different PCM thermal physical 

parameters 

 

Figure 6 shows the effect of coolant flow rate Iz on the 

thermodynamic performance of the wind farm cooling system. 

As Iz increases from 0.02 m/s to 0.3 m/s, the maximum 

temperature SMAX decreases from 35.2℃ to 32.9℃, a drop of 

2.3℃, indicating that the increase in flow rate significantly 

enhances convective heat transfer and effectively reduces 

system heat accumulation. The maximum temperature 

difference ΔSMAX increases from 2.5℃ to 3.5℃, reflecting that 

under high-speed flow, the temperature difference between 

inlet and outlet of coolant expands, but the average heat 

transfer efficiency is optimized due to increased flow rate. The 

pressure drop Δo shows a decreasing trend with increasing 

flow rate. PCM liquid phase fraction ψ increases from 0.25 to 

0.5, indicating that the increase in flow rate promotes PCM 

melting and enhances system heat storage capacity. In 

summary, coolant flow rate Iz is a key variable to regulate heat 

transfer efficiency and energy consumption: high-speed flow 

improves heat transfer but increases energy consumption, 

while also enhancing phase change heat storage, providing a 

coupling mechanism between variables for multi-objective 

optimization. 

Figure 7 presents the influence pattern of PCM thermal 

physical parameter u on the performance of the wind farm 

cooling system. When u increases from 5 to 25, the maximum 

temperature SMAX decreases from 34.2℃ to 33.0℃, a drop of 

1.2℃, indicating that the enhancement of PCM thermal 

physical properties significantly strengthens the cooling 

capacity of the system and effectively suppresses heat 

accumulation. The maximum temperature difference ΔSMAX 

increases from 3.0℃ to 4.2℃, reflecting that after thermal 

property optimization, the temperature gradient of the coolant 

in the flow channel expands, but the overall heat transfer 

efficiency is optimized due to improved heat storage and 

thermal conductivity of the PCM. Pressure drop Δo decreases 

from 120 Pa to 40 Pa, indicating that the increase of u reduces 

the circulation resistance of the coolant, directly reducing the 

energy consumption of the cooling system. PCM liquid phase 

fraction ψ increases from 0.25 to 0.4, showing that the 

improvement of thermal physical parameter u promotes the 

melting of the PCM and enhances the system's thermal 

buffering capacity. In summary, PCM thermal physical 

parameter u has a strong positive correlation with cooling 

system performance: increasing u can simultaneously 

optimize heat dissipation efficiency, reduce flow energy 

consumption, and enhance heat storage capacity, providing a 

synergistic optimization space of key variables for multi-

objective optimization. 

Figure 8 shows the sample distribution of design variables 

in multi-objective optimization, covering liquid cooling 

channel geometric parameter Fy, coolant flow rate Iz, and PCM 

thermal physical parameter u. In the three subgraphs, the 

sample points of each variable are evenly distributed over 80 

experimental design points, with no obvious clustering or 

omission, indicating that the experimental design adopted 

methods such as LHS to fully cover the key areas of the 

parameter space. For example, the value of Fy varies 

continuously from 2.0 to 5.0 cm, ensuring full-range 

exploration of the influence of channel width on heat 

dissipation performance; Iz covers laminar and turbulent 

conditions, capturing the characteristics of heat transfer and 

energy consumption under different flow states; the range of u 

from 6 to 21 covers the thermal property differences from 

paraffin-based to metal-based PCM. Such evenly distributed 

samples provide sufficient nonlinear fitting data for 

subsequent neural network modeling, ensuring that the model 

can accurately learn the complex coupling relationship 

between Fy, Iz, u and output labels and evaluation indicators, 

laying the data foundation for multi-objective optimization. 

Based on the above samples, this paper constructs a neural 

network surrogate model using input-output data generated by 

the flow-thermal coupling model, and then performs multi-

objective optimization in combination with the NSGA-II 

algorithm. Experimental results show that the 
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comprehensiveness of sample distribution enables the model 

to capture the nonlinear influence of each parameter on system 

performance: for example, when Fy increases, SMAX decreases 

but Δo may increase, forming a “heat transfer-energy 

consumption” conflict; Iz increases enhance convective heat 

transfer but increase pump power; optimization of u 

simultaneously improves heat dissipation and heat storage. 

During the NSGA-II algorithm search in this parameter space, 

non-dominated sorting and crowding distance calculation 

effectively balance multi-objective conflicts. The generated 

Pareto front includes diversified optimal solutions such as 

“high heat transfer-low energy consumption” and “low heat 

transfer-high heat storage.” Parameter sensitivity analysis 

shows that Fy has the highest influence weight on SMAX, 

followed by Iz and u, providing variable priorities for the 

optimization algorithm and improving search efficiency. 

 

 
(a) Liquid cooling channel geometric parameter Fy 

 

 
(b) Coolant flow rate Iz 

 

 
(c) PCM Thermal Physical Parameter u 

 

Figure 8. Sample distribution points of multi-objective 

optimization design variables 

 
(a) SMAX 

 

 
(b) ΔSMAX 

 

Figure 9. Error comparison between traditional simulation 

results and neural network predictions 

 

 
 

Figure 10. Pareto optimal front 

 

Figure 9 shows the prediction performance of the neural 

network model on maximum temperature SMAX and maximum 

temperature difference ΔSMAX. For SMAX (Figure 9(a)), the 

fitting line of predicted value and actual value closely aligns 

with the 0% error line, and all data points fall within the 0.51% 

error line. The maximum error is only 0.51%. For example, 

when the actual value is 35℃, the predicted value is 34.97℃, 
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with an error of only 0.03℃, indicating that the model captures 

the thermal accumulation characteristics of the system 

extremely accurately, providing highly reliable quantitative 

basis for heat transfer efficiency optimization. For ΔSMAX 

(Figure 9(b)), data points are distributed within the 6.05% 

error line, with an average error of about 3.5%. Although the 

error is slightly higher than that of SMAX, considering that the 

maximum temperature difference is affected by multiple 

coupling factors such as temperature gradient in the flow 

channel and distribution of PCM, this error still meets 

engineering accuracy requirements. Compared with traditional 

methods, the neural network model shows significant 

advantages in nonlinear fitting. 

Figure 10 presents the Pareto front of wind farm cooling 

system multi-objective optimization, with heat transfer 

coefficient gz, cooling energy consumption Q, and maximum 

temperature SMAX as the three-dimensional objective variables. 

Black scattered points form a continuous non-dominated 

solution set, clearly showing the coupling relationship among 

multiple objectives: 

(1) High heat transfer - high energy consumption - low 

temperature (Point A region): when gz exceeds 1800 W/(m²·K), 

Q rises above 5.5, and SMAX drops below 32.5℃, 

corresponding to a design with high-speed coolant flow and 

high thermal conductivity PCM. Although this improves heat 

dissipation performance, energy consumption increases 

significantly, making it suitable for extreme thermal load 

scenarios. 

(2) Low heat transfer - low energy consumption - high 

temperature (Point D region): when gz is below 400 W/(m²·K), 

Q drops below 3.0, and SMAX rises above 37℃, corresponding 

to a design with narrow flow channels and low flow rate. 

Although energy-saving, the heat dissipation capacity is 

insufficient, making it suitable for low-load or cost-sensitive 

scenarios. 

(3) Balanced optimization region (near Point E): gz is about 

1200 W/(m²·K), Q is about 3.5, and SMAX is 34℃. Through 

NSGA-II algorithm’s collaborative optimization of gz, u, and 

Iz, a “medium heat transfer - medium energy consumption - 

medium temperature” engineering balanced solution is 

achieved, meeting the cooling and energy consumption 

requirements of wind farms under regular operating conditions. 

Combined with Figure 10 and the study content, the core 

advantages and effectiveness of the method in this paper are 

reflected in: 

(1) Accurate modeling and optimization of nonlinear 

relationships: Through the flow-thermal coupling 

thermodynamic model, the neural network accurately fits the 

nonlinear mapping between parameters and performance, 

providing a high-precision surrogate model for NSGA-II. The 

Pareto front generated in the three-dimensional objective 

space covers the full range of solutions from extreme design 

to balanced design, proving its ability to effectively handle the 

multi-objective conflicts of “heat transfer efficiency-energy 

consumption-temperature control,” providing diversified 

options for engineering decision-making. 

(2) Sensitivity-driven key parameter optimization and 

efficiency improvement: Parameter sensitivity analysis shows 

that Fy has the greatest impact on SMAX, Iz significantly affects 

Q, and u positively impacts both gz and ψ. NSGA-II utilizes 

these sensitivities to prioritize the adjustment of Fy to balance 

temperature and energy consumption, and then enhances heat 

transfer and heat storage through u, significantly improving 

optimization efficiency. Engineering validation shows that the 

balanced solution can achieve: 

➢ Heat dissipation performance improvement: SMAX 

decreases by 10%, avoiding equipment overheating; 

➢ Energy consumption optimization: Q reduced by 15%, 

lowering operating cost; 

➢ Enhanced heat storage capacity: ψ increased by 15%, 

strengthening system thermal buffering. 

(3) Comprehensive coverage of engineering feasibility: The 

solutions on the Pareto front are combined with constraints 

such as channel processing, material cost, and flow rate limit 

to screen out the optimal scheme that meets actual constraints, 

proving that the method is not only effective in theory but also 

applicable to guide the design and optimization of wind farm 

cooling systems in practice. Through actual prototype testing, 

the optimized system, under full-load conditions, achieves a 

50% increase in heat transfer coefficient, a 20% reduction in 

energy consumption, and maintains the maximum temperature 

within the safety threshold of the equipment, verifying the 

engineering effectiveness of the method. 

 

 

5. CONCLUSION 

 

This paper focused on the problem of efficient heat 

dissipation and energy consumption optimization in wind farm 

cooling systems, and constructed a complete technical system 

of “thermodynamic performance analysis-multi-objective 

optimization design.” First, based on CFD and heat transfer 

theory, a flow-thermal coupling thermodynamic model of the 

phase-change cooling and liquid cooling coupled system was 

established. Through numerical simulation, the distribution 

patterns of velocity field and temperature field under different 

working conditions were revealed, and the nonlinear influence 

mechanisms of the liquid cooling channel geometric 

parameters and the thermal physical parameters of PCM on 

heat transfer efficiency and flow resistance were clarified. 

Secondly, LHS was introduced to obtain high-coverage 

sample data, and an artificial neural network was used to 

construct a high-precision nonlinear mapping model between 

input features and output labels, solving the problem that 

traditional methods are difficult to capture multi-parameter 

coupling effects. Finally, the non-dominated sorting genetic 

algorithm NSGA-II was used to search the Pareto optimal 

solution set in the parameter space. Through parameter 

sensitivity analysis, key influencing factors were identified, 

and optimized schemes that consider both cooling reliability 

and economic efficiency were obtained, providing diversified 

decision-making references for engineering design. 

The research value lies in both theoretical and engineering 

breakthroughs: theoretically, through the deep integration of 

the flow-thermal coupling model and the multi-objective 

optimization algorithm, the synergistic mechanism of “heat 

transfer-flow-phase change heat storage” in complex cooling 

systems was revealed; in engineering, the proposed method 

significantly improved the heat dissipation efficiency and 

operational reliability of core wind farm equipment, providing 

a replicable technical path for the design of cooling systems 

for high power density wind power equipment. However, the 

study still has some limitations: first, the thermodynamic 

model makes simplified assumptions about the contact 

thermal resistance between the PCM and the liquid cooling 

substrate, and the flow characteristics of liquid PCM, which 

may affect the prediction accuracy under extreme conditions; 

second, the multi-objective optimization process does not fully 
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consider the dynamic influence of environmental factors on 

cooling system performance, and the experimental validation 

mainly relies on simulation data, lacking long-term operation 

tests in actual wind farms. Future research directions can focus 

on: 1) introducing more accurate multiphase flow models to 

consider the dynamic coupling effect between PCM flow and 

liquid cooling system; 2) expanding optimization objectives to 

include engineering constraints such as life cycle cost of 

equipment and material compatibility; 3) combining edge 

computing and real-time monitoring data to develop adaptive 

optimization control strategies and realize intelligent operation 

of the cooling system; 4) verifying the long-term effectiveness 

of the optimization schemes through field tests in wind farms 

and further modifying model parameters to enhance 

engineering applicability. 
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