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Deep learning approaches spread widely in many applications because of their accurate 

results. Water flow rate measurement is one of these applications. This work proposes a 

new approach for measuring water flow rate in pipes using acoustic signals generated. The 

approach consists of multiple stages: real-time acoustic data collection, feature extraction, 

and classifier implementation. A medical stethoscope and microphone are attached to the 

pipe under test with a proper soundproof mounted enclosure to collect acoustic data. The 

obtained data represented ten levels of water flow rate in the pipe. Then, all these data are 

processed and used to generate features using the Mel-Filterbank energies spectrogram, 

which enhances flow-related acoustic information. The generated spectrogram features of 

the 10 classes are fed to the deep learning classifier, which is based on the TinyML 

framework. Classifier high-performance metrics show the implemented approach's 

success in accurately measuring flow. The 98.36% accuracy of the classifier illustrates the 

success of the proposed approach with an F1 Score of 0.99, which outperforms the 

competitive research results. Moreover, the trained and tested classifier with the feature 

generation stage is deployed efficiently on the limited resources microcontroller (Arduino 

Nano 33BLE sense), consuming only a tiny share of the microcontroller's resources. 

Additionally, the resulting latency of the classifier inference time is less than 0.2 seconds, 

making the classifier suitable for real-time applications. 
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1. INTRODUCTION

Flow measurement is considered one of the most significant 

processes in industrial or residential applications [1]. 

Therefore, various flow meter systems are proposed in the 

literature, including direct (intrusive) and indirect (non-

intrusive) techniques. The choice of the correct flow meter is 

subject to liquid physical properties like temperature, pressure, 

velocity, and turbulence [2]. Intrusion depends on the 

electromechanical or mechanical sensors that sink into the 

liquid path. Despite the widespread usage of this kind of flow 

meter, they still have several disadvantages, such as complex 

installation, costly maintenance, and pressure losses. On the 

other hand, non-intrusive flow instruments can overcome 

these disadvantages and increase reliability. These devices 

provide plug-and-play solutions, so they are clamped or 

attached to the pipe rather than embedded in them [3, 4]. 

The non-intrusive meter can work depending on several 

physical principles, such as acoustic, pipe vibration, or 

ultrasonic flowmeter. Ultrasonic technologies have gained 

popularity in industrial and biomedical applications to monitor 

bidirectional flow without disrupting the medium. Particularly 

under clean, steady-flow conditions, these instruments 

produce reliable findings. In addition, the ability to operate 

without penetrating the pipe or coming into contact with the 

fluid makes them particularly suitable for applications where 

cleanliness, safety, or ease of maintenance is a priority. They 

do have some difficulties, however. They are sensitive to 

variations in flow profile, temperature, and pressure, as well 

as the stability of the acoustic link, and their performance may 

suffer when working with fluids that contain particles or 

bubbles. For instance, asymmetrical flow patterns or 

misalignment during installation might throw transit-time 

meters off. In contrast, Doppler-based devices rely 

significantly on consistent acoustic scatterers in the flow. 

These problems underscore the continuous requirement for 

hybrid or more robust measurement systems to manage a 

greater variety of real-world circumstances [5]. 

On the other hand, many authors proposed that the acoustic 

signal approach can be the most reliable method for home 

applications. Based on artificial intelligence algorithms, sound 

signals generated by water flow are used to classify, detect, or 

estimate flow value. The main challenging points of acoustic 

signal processing are background noise, microphone 

installation, and quality of generated sound textures [1, 6, 7].  

To this end, several previous works deal with flow 

parameters based on acoustic. In the study [1], the author 

presents an original way to design a recognition system to 

detect water sounds generated by drops based on bubble 

physics (radially oscillating). The proposed method consisted 

of several pre-processing signal stages: Candidate selection, 

non-harmonic filtering, and attack localization. After that, a 

decision algorithm is performed using spectrogram 

localization. The design system is simulated successfully and 
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gives an F-measure equal to 70% compared with classical 

machine learning. Unfortunately, there is no indication that the 

studies are scalable because they are carried out on a small, 

controlled dataset. In the study [4], the authors proposed a 

flowmeter that utilizes acoustic signals from water passing 

through a PVC pipe knee. These audio signals are captured by 

a stethoscope chest piece, significantly reducing interference 

from surrounding noise. This study analyzes the recording 

audio using the Fast Fourier Transform (FFT) to filter out 

noise and extract features from the sound signals, thereby 

finding a better correlation with flow rates. The results indicate 

a quadratic relationship between the standard deviation of the 

recording sound and water flow rates. Also, an exponential 

relationship was found between the wavelet transform 

coefficients and water flow energy. This method's drawbacks 

include being influenced by noisy surroundings, the need for 

knees in the pipe, low accuracy measures, and high cost. In the 

study [7], a field study is carried out to characterize the use of 

outdoor water taps based on the sound recording method. The 

authors depended on a microphone sensor and recorder device 

to acquire water sound to achieve this aim. The pre-processed 

stage consisted of a high-pass filter and short-term energy with 

a movable window. Then, an automated detection algorithm 

was used to capture signal features. An 80% precision is 

achieved with a low cost of implementation, but unfortunately, 

the proposed work faces challenges during peak demand 

periods because of the reduction in pressure. In the study [8], 

a system for classifying water-flow sounds is proposed to 

support elderly individuals in a home environment. Three 

water-flow sound signals were recorded separately and 

combined. In the pre-processing stage, the designed system 

depended on a spectrogram (Short-Time Fourier Transform) 

to identify unique features for each flow type. Then, time-

frequency combined sound data is applied to the decision 

algorithm, which uses a threshold value to classify sounds. The 

authors declared that the system gave high accuracy for 

classification, but they did not mention any numerical values 

or make comparisons. In the study [9], a non-intrusive 

monitoring device for domestic activity is designed based on 

acoustic detection and classification to serve older people in 

Singapore. The system mainly consists of a small 

omnidirectional microphone sensor and a sound recognition 

algorithm, Hidden Markov Models (HMM), and Mel-

Frequency Cepstral Coefficients (MFCC). The classifier gives 

five activity classes with an 84% accuracy rate. The authors 

did not resolve the privacy issue during system installation. In 

the study [10], a water flow detection and measuring system 

for the home environment is proposed based on acoustic 

signals. The design uses a commercial microphone sensor 

attached directly to the water pipe for audio acquisition and is 

covered by a foam layer for noise reduction. Thus, the 

classification modal is developed using the Context 

Recognition Network (CRN) Toolbox. This open-source tool 

contains stand-alone algorithms named (Tasks), enabling 

users to build a chain of complex data analysis. These chains 

consisted of the following tasks: sound interface, FFT 

conversion, Mel-Frequency filter, feature extraction, classifier 

algorithm, and rules. The authors used the K-nearest 

neighbour (KNN) classifier to perform well. However, the 

system has a complex installation process, and some noise 

sounds cannot be rejected, which reduces the classifier levels 

to six. Previous work [11] proposed a pipeline flow detection 

and classification device based on machine learning for a 

residential environment. The design is based on sensing the 

vibrations generated by water in the pipe using two 

piezoelectric sensors (hot and cold water). Also, the design 

supports energy consumption principles by applying a 

dynamic sampling technique and extracting features from the 

collected data before transmission to the cloud. Support Vector 

Machines (SVMs) are used to develop a model that identifies 

four classes: no flow, hot flow, cold flow, and mixed flow. 

However, the system also has complex installation, requiring 

new calibration steps (training) for each deployment.  

In the study [12], the authors find a relationship between the 

sound of water flowing through a tap and its flow rate. A 

microphone was placed under the tap to record sound signals, 

and a transparent container was employed to measure the flow 

rate. The captured voice signals were analyzed using FFT. The 

experimental results used five independent sound clips, 

yielding an average error of 15%, representing low accuracy. 
Unfortunately, the experiments did not include outside noise 

(such as traffic or animals). More research is required to create 

adaptive models or noise-filtering strategies that retain 

accuracy in noisy, real-world settings. In the study [13], the 

authors proposed a method for classifying water usage into 

interactivity and intra-activity waste by surveying everyday 

water-related tasks. This method is based on sound data by 

extracting frequency and amplitude as features; the sound is 

captured using a microphone placed on a tap. FFT was applied 

to analyze the audio's frequency, and machine learning was 

used as a classifier. The accuracy results are 100% for 

interactivity and 81.1% for intra-activity waste detection. The 

data was collected in a controlled laboratory setting with just 

ten participants. Verifying the system's functionality in homes 

with a broader range of user habits and ambient noise is 

necessary. In the study [14], the authors suggested developing 

a water leak detection system based on artificial intelligence 

and cloud information management using sounds collected by 

the acoustic rod and microphone via the mobile. This system 

can systematically gather and organize leakage sounds and 

provide a model that a mobile application uses to guide 

operators in specifying leaking pipes. FFT was utilized to 

analyze the sound frequency. Machine Learning (ML), Deep 

Neural Networks (DNN), Convolutional Neural Networks 

(CNN), and Support Vector Machines (SVM) were used to 

design and compare the system. The findings show that DNN 

is better than others, with an accuracy of 90%. The system 

proposed leak vs. no leak as a binary classification. Multi-class 

classification may be useful in real-world situations. 

The earlier stated techniques lack important features needed 

to make a proportional tradeoff in the accuracy of measuring 

water flow rate in pipes and acoustic signals generated from 

this flow and implementation cost. 

The main contributions of this research are: 

 

• Low installation cost and complexity using a combination 

of a stethoscope and microphone attached to the pipe 

under test. 

• A high classifier level gives a high-performance 

implemented approach to measure flow successfully and 

accurately.  

• The trained and tested classifier is implemented efficiently 

on the limited resources of the microcontroller, consuming 

only a tiny share of the microcontroller's resources.  

 

The rest of the paper is organized as follows: the next three 

sections describe background theory. Section 5 shows the 

proposed work and methodology. In section 6, the obtained 
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results are presented and discussed. Finally, the conclusion is 

depicted in section 7. 

 

 

2. LIQUID SOUND MODELLING  

 

Liquid in flow may produce sounds due to the air bubbles 

trapped by the water. Many physical models are proposed in 

the literature to describe sounds from bubbles. Based on the 

work of Leighton and Doel [15, 16], the equations from (1) to 

(6) describe the behaviour of the bubbles immersed in the 

liquid. The liquid's kinetic energy (E) just surrounding the 

created bubbles and injected into it is shown in Eq. (1) 

 

𝐸 = 2𝜌𝑟3𝑢2 (1) 

 

where, (𝜌) is the liquid density, (r) is the bubble radius in 

meters, and (u) is the average velocity at the boundary. During 

the bubble's lifetime, the bubble oscillates and emits a 

sinusoidal sound, which decays over time due to dissipating in 

its energy, as deprecated in Eq. (2). This phenomenon is called 

"radially oscillating". 

 

ℎ(𝑡) = 𝑎 𝑠𝑖𝑛 (2𝜋𝑓𝑡)𝑒−𝑑𝑡 (2) 

 

where, (f) is the resonance frequency calculated by Eq. (3), (d) 

is the damping factor calculated by Eq. (4), and (a) is the 

amplitude calculated by Eq. (5). 

 

𝑓 = 3/𝑟 (3) 

 

𝑑 =
0.13

𝑟
+ 0.0072𝑟−3/2  (4) 

 

𝑎 ≅ 𝑟√𝑟𝑢 (5) 

 

Therefore, the immersed bubble creates a sound wave that 

propagates to the liquid surface and later is delivered to the 

free air. Moreover, the bubble's radial oscillation increases 

rapidly during the trip to the surface. The resonance frequency 

of a bubble just under the liquid surface is 1.4 times its value 

of an immersed one. The relation between sound frequency 

and time is subjected to Eq. (6). This phenomenon can be 

shown in Figure 1. 

 

𝑓(𝑡) = 𝑓𝑜(1 + 𝜎𝑑) (6) 

 

where, (σ) is the slope factor, and it is related to the moving 

velocity of the bubble. 

 

 
 

Figure 1. The spectrogram of a drop falling into water shows 

the change in sound frequency during the bubble travelling to 

the surface [1] 

3. ACOUSTIC SIGNAL PROCESSING AND FEATURE 

GENERATION (MEL-FILTERBANK ENERGY MFE) 

 

Acoustic signals generated from the water flow inside pipes 

can be analyzed and processed to generate features related to 

the behaviour of the flow. There are several processing 

techniques used to generate features from acoustic signal and 

time series data, such as Mel-Frequency Cepstral Coefficients 

(MFCC), Spectrogram, Syntiant, or Mel-Filterbank energy 

(MFE) [17]. These processing techniques enhance machine 

learning and classifier performance [18]. The MFE efficiently 

assists machine learning algorithms in classification tasks, 

especially for non-voice data such as environmental sounds 

and unvoiced phonemes. However, the ability of MFE to use 

phase information to encode filterbank energies improves 

generated feature quality, which in turn enhances 

classification performance [19]. The Mel-Filterbank Energies 

(MFE) calculates features from the acoustic signals using 

Short-Time Fourier Transform (STFT). The following 

mathematical equations detail the required steps to compute 

MFE [19, 20]. 

Calculate STFT by applying window (such as Hamming), 

then compute Discrete Fourier transform (DFT)  

 

𝑋[𝑘] = ∑ 𝑥[𝑛]. 𝑒−
𝑗2𝜋𝑘𝑛
𝑁

𝑁−1

𝑛=0

 (7) 

 

where, 𝑘 = 1, 2, 3… , 𝑁 − 1. 

Computing the power spectrum of the DFT signal  

 

𝑃[𝑘] = |𝑋[𝑘]|2 (8) 

 

Applying the Mel-Filterbank using the Mel Scale 

approximation illustrates how humans perceive frequencies. 

The conversion from frequency f in Hz to the Mel scale is 

 

𝑚(𝑓) = 2595. 𝑙𝑜𝑔10(1 +
𝑓
700⁄ )  (9) 

 

Generation of a set of triangular 𝐻𝑚[𝑘]  centred on 

frequencies in the Mel scale 

 

𝐻𝑚[𝑘] =

{
 

 
0  

𝑓𝑘−𝑓𝑚−1

𝑓𝑚−𝑓𝑚−1
𝑓𝑚+1−𝑓𝑘

𝑓𝑚+1−𝑓𝑚

        

𝑖𝑓  𝑓𝑘 < 𝑓𝑚−1 𝑜𝑟 𝑓𝑘 > 𝑓𝑚+1 

𝑓𝑚−1 ≤ 𝑓𝑘 ≤ 𝑓𝑚

𝑓𝑚 ≤ 𝑓𝑘 ≤ 𝑓𝑚 + 1

  (10) 

 

 
 

Figure 2. Mel-Filterbank 

1103



 

where, 𝑓𝑚−1 𝑓𝑚 and 𝑓𝑚+1 are the beginning centre and ending 

of the linear frequencies with 𝑚𝑡ℎ order. The above equations 

of the Mel scale filterbank are implemented using MATLAB 

environment is shown in Figure 2 [21]. 

Then, multiplying the power spectrum 𝑃[𝑘] by the filters 

𝐻𝑚[𝑘] Moreover, taking the sum of these multiplications for 

each filter as follows: 

 

𝐸𝑚 = ∑ 𝑃[𝑘]. 𝐻𝑚[𝑘]𝑘   (11) 

 

where, 𝑚 = 1, 2, … ,𝑀. 

 

 

4. ONE-DIMENSIONAL CONVOLUTIONAL NEURAL 

NETWORK (1D-CN) 

 

Convolutional Neural Networks (CNNs) are generally 

employed to extract features from two-dimensional (2D) input 

data. An equivalent one-dimensional (1D) structure is used for 

1D data. Therefore, 1D-CNN can be one of the proper 

techniques for examining 1D signals. The 1D-CNN has 

recently drawn interest in several applications, including 

anomaly detection, fault detection, and personal medical data 

classification. 1D-CNN extracts signal attributes by 

considering local data rather than the whole signal in each 

network layer. This reduces the number of learnable 

parameters and speeds up network training, leading to less cost 

and computing power, making it suitable for real-time 

applications. It comprises the following layers: input, 

convolutional, pooling, flattening, fully connected, and output, 

all shown in Figure 3 [22, 23]. 

 

 
 

Figure 3. 1D-CNN architecture [24] 

 

4.1 Convolution layer 

 

Assume (x) indicates the input data with length (n), (w) 

represents the kernel with length (k), (s) is the number of steps 

in the kernel window location, and (p) is the padding p. So, the 

convolution between (x) and (w) for step (s) is as follows: 

 

𝑦(𝑛) =

{
∑ 𝑥(𝑛 + 𝑖)𝑤(𝑖)                   𝑘
𝑖=1 𝑖𝑓 𝑛 =  0

∑ 𝑥(𝑛 + 𝑖 + (𝑠 − 1))𝑤(𝑖)𝑘
𝑖=1    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

}  
(12) 

 

The output length (o) is  

 

𝑜 =
𝑛+2𝑝−𝑘

𝑠
+ 1  (13) 

 

4.2 Pooling layer 

 

Typically positioned beyond a convolution layer. This layer 

minimizes overfitting, the size of features, and network 

parameters. The most common pooling method, maximum 

pooling, selects a maximum value inside a size (f) window and 

then shifts it over the input by (s) step after each pooling. The 

formula for the maximum pooling is as follows: 

 

𝑦(𝑛) =  {
𝑚𝑎𝑥(𝑥(𝑛 +  𝑖))     𝑖𝑓 𝑛 =  0
𝑚𝑎𝑥(𝑥(𝑛 +  𝑗 +  (𝑠 −  1)))

}  (14) 

 

4.3 Flatten and fully connected layers 

 

Assume that convolution layers deliver output with a depth 

of more than one. In such cases, the convolutional layers' 

output is transformed by the Flatten layer into a format that the 

dense layers can employ as input. Fully connected layers 

connect every node in the layers that follow. The flattened 

matrix traverses a fully connected layer before categorizing it 

into suitable classes [24]. 

 

 

5. THE PROPOSED SYSTEM AND METHODOLOGY  

 

In this work, a water flow rate measuring approach is 

designed, implemented, and tested based on several stages, as 

shown in Figure 4. The proposed approach consists of five 

stages, starting with gathering the required hardware in one 

system. Then, the experiment is conducted for sound data 

collection. The collected data is processed for feature 

generation and fed to the deep learning model. Finally, the AI 

model is tested to evaluate its performance and to check its 

success in achieving the proposed measuring values. The 

following subsections will explain each stage of the proposed 

system in more detail. 

 

 
 

Figure 4. The proposed system 

 

5.1 Experiment setup 

 

Figure 5 illustrates the proposed system's experimental 

setup during training, testing, and deployment. In all phases, a 

high-quality microphone connected to a stethoscope is used to 

acquire the acoustic signal generated by water flow in the pipe. 

To mitigate the impact of external noise, the sound sensor is 

placed inside a soundproof enclosure lined with acoustic-

insulating materials. In addition, according to the study [4], the 

stethoscope reduces the surrounding noise by amplifying 

sound from water flow. The stethoscope can be attached 

directly to the pipe near a knee or tap. This installation process 

is simple and cost-effective because it does not require 

complex noise isolation or plumbing techniques. A computer 

was used to record sound signals for different flow levels 

during the data collection phase with the help of a cloud tool. 
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For each level, (300) seconds of real water flow sound is 

recorded to train and test the neural network module. Finally, 

the developed AI module is deployed using an Arduino Nano 

33 device. A special shield connects our sound acquisition 

components to the Nano 33 device. Also, an LCD screen 

displays the measured flow rate value in real-time. 

 

 
(a) Device deployment and during system training and testing 

 
(b) Practical implementation 

 

Figure 5. System experimental setup 

 

5.2 Data collection 

 

The dataset is collected from the real-world environment 

using the proposed system shown in Figure 5 above. The 

collected data consisted of ten water flow rate levels. These 

levels are generated using a faucet. For each level, the 

microphone with A stethoscope records five minutes of water 

sound and saves it in (.wav) file format. A thick fabric is used 

as soundproof material to reduce the noise of the surrounding 

environment. Practically, the obtained levels start from 10% to 

100%, representing full capacity. Under 10% of the capacity, 

the flow level is treated as zero flow because weak or no sound 

is obtained with a zero flow rate in the pipe. However, the 

dataset is collected using a cloud platform with a sampling 

frequency of (1.6kHz). After that, each level's audio file is 

segmented into 300 files to make the sample length one second. 

Therefore, the net size of the dataset becomes 3000 files. A 

percentage of 80% is used for training, 10% for validation, and 

the remaining 10% for testing the classifier. 

 

5.3 Acoustic feature extraction  

 

Usually, deep learning algorithms do not need a feature 

extraction stage to perform the classification task. However, 

with sound signals, it is more efficient to use special feature 

generation tools. In this work, Mel-filter bank energies (MFE) 

representative of sound signals are used to enhance the 

performance of the proposed approach. Several configurations 

are tested, including the frame length (100 ms, 200 ms, 300 

ms), frame stride (50 ms, 100 ms, 150 ms), number of filters 

(20, 40, 64), and FFT length (128, 256, 512). The classification 

model was trained and evaluated for each configuration using 

the same dataset split. The combination presented in Table 1 

yielded the best performance in terms of accuracy and F1-

score, with an improvement ranging from 2% to 4% over 

suboptimal configurations. This sensitivity analysis 

demonstrates that the selected parameters balance temporal 

resolution and spectral detail, enhancing the discriminative 

power of the extracted features. 

 

Table 1. MFE parameters 

 
Parameter Value 

Frame length 200 ms 

Frame stride 100 ms 

Filter number 40 

FFT length 256 

Low frequency 20 Hz 

High frequency 8kHz 

 

Figure 6 shows the steps of MFE feature generation, starting 

with the audio signal for two randomly selected classes (0 and 

70%) and the Mel energies for these classes, and ending with 

FFT Bin weighting. While Figure 7 shows the features 

gathering for all ten classes.  

1105



 

0% class 70% class 

  
(a) Audio signal 

  
(b) Mel energies 

  
(c) FFT Bin weighting 

 

Figure 6. MFE-generated images 

 

 
 

Figure 7. Generated features 

 

5.4 Deep learning classifier 

 

Table 2. 1DCNN model hyperparameter 
 

Hyperparameter Value 

Number of training cycles 60 

Learning rate 0.005 

Validation set size 20% 

Batch size  32 

Profile integer 8 model  Yes  

 

In this work, the flow measurement has been divided into 

10 classes. A deep learning model has been built to classify 

input sound signals into their proper classes, representing the 

water flow. The one-dimensional convolutional neural 

network model (1DCNN) was chosen as a classifier with 10 

output classes. The architecture and the layers of the classifier 

are stacked together, as shown in Figure 8. In addition, the 
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hyperparameter setting of the neural network is shown in 

Table 2. 

 

 
 

Figure 8. 1DCNN architecture 

 

 
 

Figure 9. Confusion matrix (training) 

 

As mentioned earlier, the model was trained using the 

collected dataset, which is split into 80% for training and 20% 

for validation. The CNN is trained over 60 training cycles 

(Epochs) with a learning rate of 0.005 and batch size of 32. 

The deep learning model depicts very high-performance 

metrics with a validation accuracy of 99.3%  and a loss of 0.02. 

Figure 9 shows the confusion matrix of the ten classes of the 

classifier with an F1 Score metric. 

The confusion matrix confirms the perfect performance of 

measuring water flow in the pipe and proper categorizing tasks 

for each class, with a slight dip in accuracy in the second class. 

More performance training metrics are shown in Table 3, 

which also confirms the success of the model in classifying the 

sound signal into its right class in a proper way. 

 

Table 3. 1D-CNN classifier performance metrics 

 
Metric Value 

Area under ROC curve 1.00 

Weighted average recall 0.99 

Weighted average precision 0.99 

Weighted average F1 Score 0.99 

 

 

6. RESULT AND DISCUSSION  
 

The implemented system is tested using the unseen 20% of 

the collected sound data. The confusion matrix of the 10 

classes classifier shows the high-performance metrics, as 

shown in Figure 10. However, low misclassification error has 

been accorded along low flow rate classes (10% and 20%) 

with a score of 76.9% that gained a 20% class, which is 

expected with low flow rate [25]. The relatively low accuracy 

observed for class 2 (20% flow) is likely attributed to the 

overlap in acoustic features with adjacent flow levels, 

particularly class 1 (10%). At low flow rates, the sound 

generated by the water is weak and lacks distinctive acoustic 

characteristics, making it difficult for the classifier to 

differentiate between these classes reliably.The results 

generally show a high classification total accuracy of 98.39%, 

which outperforms the state-of-the-art research approaches in 

flow rate measuring classifiers, as shown in Table 4. Other 

performance metrics are calculated to enlighten a global 

overview of the implemented approach. One of these metrics 

is the area under the curve (AUC) of the classifier's receiver 

operating characteristics (ROC). The perfect results of AUC 

with a score of 1.0 represent the ability of the classifier to 

distinguish sharply between the 10 classes. Weighted average 

precision and weighted average recall are other global 

performance metrics considering the number of samples in 

each class. In turn, this will predict better classifier 

performance measures. The high scores of 0.99 for both 

precision and recall measures reflect the ability of the classifier 

to correctly predict each class individually. Finally, another 

global measure is chosen to illustrate how the multi-class 

classifier is successful, as shown in Table 4, the F1 Score 

performance metrics. 

 

 
 

Figure 10. Confusion matrix (test set) 

 

Table 4. Classifier performance metrics 

 
Metric Value 

Accuracy 98.39% 

The area under the ROC curve 1.00 

Weighted average recall 0.99 

Weighted average precision 0.99 

Weighted average F1 Score 0.99 

 

The 0.99 value of the F1 Score shows that the classifier 

performs well regarding the harmonic mean of both precision 

and recall measures, which F1 contains. The 10-step water-

flow measuring model is quantized and optimized using the 

TinyML framework with the online development platform 

Edge Impulse [26]. The quantization tool helps to reduce the 

required hardware resources and fits the model to a resources-

constrained Arduino microcontroller (Nano 33 BLE sense). 

Table 5 shows the resources used in the deployed model of the 

microcontroller. 

 

Table 5. Microcontroller resources usage by the classifier 

 
Metric MFE Classifier Total 

Latency 161ms 7ms 168ms 

RAM 19.8k 10.6k 19.8k 

Flash - 35.8k 35.8k 

Accuracy - - 98.39% 

 

At the same time, the latency is fast enough to enable the 

deployed model to be implemented in real-time. Classifier 

high-performance metrics show the success of the 

implemented approach to measure flow successfully and 

accurately. The 98.39 % accuracy of the classifier illustrates 
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the success of the proposed approach with an F1 Score of 0.99, 

which outperforms the competitive research results. Moreover, 

the trained and tested classifier with the feature generation 

stage is deployed efficiently on the limited resources 

microcontroller (Arduino Nano 33BLE sense), consuming 

only a tiny share of the microcontroller's resources. The 

contribution of this work is illustrated in Table 6, which 

represents a comparison to the related published system in the 

literature. 

 

Table 6. Comparison of the proposed system with the related works in the literature 

 

Ref. 
Required System 

Resources 
Classifier Technique Accuracy 

Installation 

Cost 

Classifier 

Levels 

Installation 

Complexity 

[9] N/A 
Mel-Frequency Cepstral 

Coefficients (MFCC) 
84% N/A 4 simple 

[10] High-resource K-nearest neighbour (KNN) ≅ 90% Low cost 6 Complex 

[1] Time-frequency zones F-measure ≅ 70% N/A binary N/A 

[7] N/A - 80% High cost - Simple 

[11] Low-resources 
Support Vector Machine 

(SVM) 
≅ 96% High cost 4 Complex 

This 

work 
Very Low resources 1D-CNN 98.39% Low cost 10 simple 

 

 

7. CONCLUSION 

 

In this paper, a non-intrusive water flow rate measuring 

system is designed, tested, and enhanced using a one-

dimensional convolutional neural network.  

The suggested flow meter collects the acoustic signal 

generated due to water flow in the measured pipe, which 

changes based on the water flow rate. A microphone collects 

the audio signal and then fed to the model's feature extraction 

stage. In turn, the convolutional neural network receives the 

generated feature. The generated features train and test the 1D-

CNN algorithm to classify the acoustic signal into 10 classes 

based on the flow rate category. The trained flow measuring 

system is tested using the test set of the collected acoustic data. 

The test results show high-performance metrics scores and 

reflect the proposed classifier's success with its 10 classes 

measuring water flow in pipes. The system measured flow 

levels from 10% to 100% of pipe capacity. This design option 

increased system reliability when installed with different pipe 

diameters. It is important to remember that a flow value of less 

than 10% is regarded as zero. This assumption prevents the 

microphone from recording weak water sounds to maintain 

system stability against ambient noise. Implementing the 

proposed system increases the ability to build low-cost 

measuring modules that can be easily installed and non-

invasively. The classifier of 10 classes gained a total accuracy 

of 98.39% and an F1 Score of 0.99. The scores show how 

accurate and reliable this proposed approach is. The systems 

and their high-performance metrics scores open the 

opportunity to manufacture low-cost, straightforward modules. 

This approach can be practical for domestic flow meters and 

detect many patterns, such as leak behaviour and blocked 

pipes. The trained and tested classifier with the feature 

generation stage is deployed efficiently on the limited 

resources microcontroller (Arduino Nano 33BLE sense), 

consuming only a tiny share of the microcontroller's resources.  
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