
A Centralized Federated Learning Algorithm Based Multi Classification Predictive 

Maintenance in Industrial Internet of Things System 

Ruaa W. Abdalah1* , Osamah F. Abdulateef1 , Ali H. Hamad2

1 Automated Manufacturing Engineering Department, AL Khwarizmi College of Engineering, University of Baghdad, Baghdad 

10071, Iraq 
2 Information and Communication Engineering Department, AL Khwarizmi College of Engineering, University of Baghdad, 

Baghdad 10071, Iraq 

Corresponding Author Email: ruaa.abd2204@kecbu.uobaghdad.edu.iq

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license 

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/jesa.580604 ABSTRACT 

Received: 6 April 2025 

Revised: 4 May 2025 

Accepted: 15 May 2025 

Available online: 30 June 2025 

Predictive maintenance (PdM) is essential for maintaining sustained operation for Industry 

4.0 systems. Using artificial intelligence is crucial when PdM is required. However, there 

are several difficulties because of growing requirements for secure learning when 

uploading and downloading data in cloud servers. This led to the use of a training 

algorithm that preserves the privacy and security of the dataset. This work proposed a 

Federated Learning (FL) algorithm in PdM emphasizing its benefits in terms of quicker 

training time, lower latency, low power consumption, and, mainly, more security and 

privacy. The proposed system uses FL with deep neural network (DNN) model for both 

client and global models. Three client systems are represented by three AC motors 

equipped with different sensors, such as temperature, vibration, and current, which have 

been interfaced with Raspberry Pi through the I2C communication protocol. The weight 

values for the models are uploaded and downloaded between the local model and the 

global model in the cloud server using the MQTT Internet of Things (IoT) protocol. 

Results show good training performance metrics enhancement for the FL algorithm over 

the local model training without FL, where the accuracy has been increased from (0.9915) 

to (0.9983) in FL while the loss is decreased from (0.0232) to (0.0104) in FL. 
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1. INTRODUCTION

Predictive maintenance (PdM) and the Industrial Internet of 

Things (IIoT) together mark a significant change in equipment 

management, especially when deep learning (DL) is used to 

interpret time series data from IIoT devices [1]. IoT is a 

scalable network system of distributed devices and 

connectivity that is having a dramatic impact on a wide range 

of application areas. Particularly in the context of Industry 4.0, 

the increasing velocity and volume of data generated by 

Industrial IoT (IIoT) devices, combined with advanced 

analytics capabilities, enables intelligent industrial operations, 

which improve manufacturing processes and operational 

efficiency [2]. 

Four main types of maintenance in industry: Predictive 

Maintenance (PdM) improves equipment longevity and 

prevents unplanned machine downtime by identifying possible 

problems before they materialize. While Reactive 

Maintenance (RM) focuses on fixing equipment as soon as it 

breaks down, Proactive Maintenance (PRM) aims to prevent 

failures by addressing their root causes. This suggests that 

because failure duration is unpredictable, downtime may be 

significant. Consequently, regardless of the machine's real 

condition, Preventive Maintenance (PM) is carried out 

regularly. Unlike reactive, which is less costly but results in 

higher expenses if equipment breaks down and creates 

unexpected downtime. Predictive methods enable planning 

and minimize unexpected downtime, while preventative 

measures may result in needless maintenance. Because PdM 

entails condition monitoring, it only minimizes unexpected 

downtime, while preventative measures may result in needless 

maintenance. Because Predictive maintenance entails 

condition monitoring, it is only carried out when required. As 

a result, there should be less need for replacement components, 

which would save expenses. Additionally, it helps prevent 

excessive maintenance, which frequently leads to problems. 

While predictive maintenance primarily focuses on scheduling 

maintenance for equipment situation, preventive maintenance 

may entail reevaluating systems to prevent breakdown. Using 

contemporary technology like data analysis, machine learning, 

and Internet of Things sensors yields further benefits. As a 

result, forecasts became more precise. Equipment life can be 

increased by addressing issues early. PdM necessitates real-

time data analysis and storage while accounting for the many 

facets and impacts of the signals gathered. Predictive 

maintenance use various techniques, such as artificial 

intelligence, time series analysis, data analytics, , and different 

failure modes ,etc. [3].  

In an IIoT setting, federated learning enables several 

devices (or clients) to work together to train machine learning 
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models without disclosing private information. In PdM, 

senssory data should de secured when uploaded to a cloud 

server. Federated learning resolves privacy issues while 

facilitating efficient model training by maintaining data 

decentralization [4]. Combining both PdM and FL will 

enhance prediction accuracy while protecting privacy through 

local data processing. This tactic promotes inter-

organizational collaboration while reducing the cost of data 

transit. FL is therefore an effective tool in the context of 

Industry 4.0 [5].  

Currently, deep learning is applied across various fields, 

including PdM. When ample historical data is provided, deep 

learning models outperform both statistical and conventional 

machine learning approaches. At the core of deep learning 

there are artificial neural networks (ANN), which mimic the 

brain's functioning. Unlike shallow networks with one or two 

hidden layers, deep learning utilizes more complex 

architectures [6]. Sensors directly attached to industrial 

equipment produce data that condition monitoring (CM) 

systems analyze to detect irregularities and forecast potential 

failures. This enhances reliability and optimizes maintenance 

costs. CM relies on diverse sensors, including those measuring 

temperature and vibration, to track system parameters, model 

behavior, and detect anomalies signaling wear or damage. 

Such monitoring is critical, as equipment failures can disrupt 

entire production processes, resulting in costly repairs and 

significant financial losses. As simple sensors alone cannot 

provide enough power, the data is usually transferred to an 

external server or cloud for analytics jobs such as machine 

learning models.  

Industrial facilities are often located far away from the 

actual cloud data centers, which can limit network capabilities. 

For example, they can suffer from high latency and unstable 

network connections, which can cause network link 

congestion. Early fault diagnosis leads to faster repairs and 

reduced follow-up costs [7]. It is the reason why FL as a 

distributed machine learning paradigm has been more and 

more popular for the IIoT recently. FL involves training the 

models locally using real data sources, and then aggregating 

them into a global model without sharing any training data. 

This makes it possible to integrate the knowledge of other 

faculties while keeping training ML models inside the 

organizational limits of IIoT locations [8].  

This work introduces and applies a PdM algorithm that 

combines FL with a DNN. The propsed system has been tested 

on a benchmark system of three AC motors equipped with four 

sensor types. A substantial offline dataset was gathered and 

trained the DNN model on a public server. During the online 

process, real-time data is gathered from different sensors and 

fed into the DNN model to predict potential failures. 

Additionally, the method integrates condition monitoring 

technologies with the FL framework, enabling local model 

training at individual IIoT sites while facilitating cloud-based 

model aggregation to enhance knowledge sharing across 

different locations.  

The rest of this paper is organized as follows: Section 2 

presents the current research in PdM systems. prerequisites 

necessary to design the proposed system is introduced in 

section 3. Section 4 shows how the custom dataset being 

gathered from real system. Section 5 describes the proposed 

PdM design and section 6 introduced the discussion and results 

of the proposed system. Finally, Section 7 introduce the 

conclusion of this work. 

2. RELATED WORK

Much researches have been done on FL for PdM systems 

using various modeling techniques. Singh et al. [9] introduced 

FL architecture designed specifically for predictive 

maintenance is shown in this study, enabling several clients to 

train machine learning models concurrently while maintaining 

decentralized data. Numerous machine learning techniques 

were employed, such as Random Forest, Logistic Regression, 

with a remarkable accuracy of 93.17% in the federated 

learning technique, these findings suggest that in PdM 

applications, FL can successfully strike a compromise 

between privacy and performance requirements. Zhao et al. 

[10] provided an autoencoder-based FL approach to address

this issue, which uses vibration sensor data from spinning

machines to enable distributed training on edge devices that

are situated on-site and next to the machines under

observation. using two real-world datasets and many testbeds.

Liu et al. [11] introduced a decentralized system based on FL

to guarantee low-latency and safe industrial data processing. It

uses the distributed Alternating Direction Method of

Multipliers (ADMM) method, which has the benefits of

parallelism and decomposability to improve the suggested

data processing model demonstrates that the proposed inexact

algorithms can achieve comparable statistical accuracy while

reducing response time by up to 17.2% and 58%, respectively

when compared to other existing algorithms using industrial

datasets from a thermal power plant for steam prediction case.

Putra et al. [12] introduced Decentralized FL (DFL) method

for joint learning in the identification of bearing faults. The

collaborative framework's susceptibility to assaults can be

reduced by utilizing the decentralized FL idea. To cut down on

communication overhead, suggested DFL incorporates

continuous learning strategies. With an accuracy percentage of

96.08% and a learning time reduction of up to 37.52%, the data

show that decentralized collaborative learning performs

satisfactorily. Praveena et al. [13] introduced a FL enabled

advanced PdM framework for the prediction and detection of

defects in industrial machinery, based on a hybrid MLP-GRU

model. The IMS bearing dataset, C-MAPSS dataset, and pump

sensor dataset are three separate datasets that are incorporated

into the framework and represent different kinds of equipment

and failure scenarios. Through integration and preprocessing,

the records are meticulously merged into a training dataset,

which facilitates the development of a hybrid MLP-GRU

model capable of identifying complex fault patterns and

temporal correlations. All things considered; the proposed

framework represents a significant advancement in the

predictive maintenance of industrial machinery. Its

implementation of federated learning techniques and a hybrid

MLP-GRU model architecture yields encouraging results of

0.94% accuracy in real-world industrial applications.

Guduri et al. [14] provided a Federated Convolutional 

Neural Network with Temporal Attention Mechanism 

(FedCNN-TAM) is presented in this work for PdM tasks in 

IoT networks. This approach improves prediction accuracy by 

using temporal aspects in sensor data. FedCNN-TAM exhibits 

a notable performance improvement over representative 

models when tested on the CMAPSS dataset. Lu et al. [15] 

proposed a brand-new clustering-based FL technique in which 

customers are grouped according to how similar their datasets 

are. To estimate dataset similarity between clients without 

exchanging data directly, probabilistic deep learning models 

are trained, and each client analyzes the prediction uncertainty 
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of the models of other clients on its local dataset. Based on 

relative forecast accuracy and uncertainty, clients are then 

grouped for FL. Three bearing fault datasets were used in the 

experiments; two were publically accessible, and one was 

specifically gathered for this study. Von Wahl et al. [16] 

presented an approach to a thorough framework for combining 

federated learning (FL), foundation models (FMs), and 

artificial intelligence of things (IoT) technologies. Extensive 

simulations on a typical fleet of aircraft showed that the 

combined FM and FL strategy consistently outperformed 

standalone implementations in several important measures, 

such as convergence speed, model size efficiency, and forecast 

accuracy. For fleet-wide optimization, predictive 

maintenance, and real-time monitoring. Sanchez et al. [17] 

presented an approach to a hybrid framework that blends 

models of Multi-Layer Perceptions (MLP) and Gated 

Recurrent Units (GRU). This system created especially for 

predicting and detecting defects in industrial machinery, 

enabling the efficient use of dispersed information while 

protecting privacy and data security. Abdalah et al. [18] laid 

the foundation for our work. Building on their system of AC 

motors, our approach treats each motor as an independent 

system, with training performed on its respective local dataset 

only. The proposed system uses the deep learning technique to 

train the system with an accuracy of 100% and a loss of 

0.0014. 

3. PRELIMINARIES

To enable preventive maintenance, predictive maintenance 

leverages IIoT and data analytics to check machines status and 

predict faults. In this work, a predictive maintenance system 

has been built based on federated deep learning. 

3.1 Working sensors 

Data has been gathered from the workbench using a variety 

of sensor types, including: As a 13-bit, 3-axis shaking sensor, 

the ADXL345 is an ideal device for monitoring motor 

vibrations. It has good qualities such as a tiny profile, a 

compact form factor, and extremely low power consumption. 

With the ACS712 current sensor module, the motor's current 

is tracked. It is an entirely integrated current sensor that does 

not experience magnetic hysteresis. With just one 5V power 

source, it provides linear current sensing for both AC and DC 

currents via the Hall Effect. It also uses a low-resistance 

current conductor and an analog-to-digital converter 

(ADS1115). Certain essential qualities must be possessed by 

the temperature sensor that was employed in this study. The 

MLX90614 contactless temperature sensor was chosen for its 

wide range, high accuracy and precision. Its affordability and 

compact size also make it a good fit for the requirements of 

this study. A SHT21 digital humidity and temperature sensor 

was also used to measure the outdoor temperature [19]. That 

operating efficiency is greatly increased by predictive 

maintenance with vibration sensors. Makes highly accurate 

predictions about production stoppages by using machine 

learning techniques. This proactive strategy reduces downtime 

and boosts overall productivity by enabling prompt 

maintenance interventions [20]. The specifications of the 

sensors used in this work are shown in Table 1. 

Table 1. Specification of the sensors [20] 

Sensor Definition Range Accuracy Operating Voltage Current Consumption Address 

ADXL345 3-axis accelerometer ±2g, ±4g, ±8g, ±16g 0.0038g 2V-3.6V 0.11mA 0×53 

ACS712 Current ±5A, ±20A, ±30A 65mV /±5A 5V 10mA None 

MLX90614 Contactless 70°-380° 0.02℃ 3.6V-5.5V 0.5mA 0×5A, 0×5B 

SHT-21 Temperature/ humidity 0-100% 40°-125° 0.3℃ , 2% humidity 3.3V-5.5V 0.1mA 0×40 

ADS1115 A/D converter 0-5V ±1% to ±0.1% 0-10V 1mA 0×48 

ADXL345 3-axis accelerometer ±2g, ±4g, ±8g, ±16g 0.0038g 2V-3.6V 0.11mA 0×53 

3.2 I2C protocol 

The Raspberry Pi's mobility, parallel, affordability, and low 

power consumption make it a very practical, promising, and 

perfect technology for IoT applications. The Raspberry Pi is 

an affordable, energy-efficient computer capable of 

performing many tasks typically handled by a traditional 

desktop PC, making it ideal for IoT applications. One tool for 

accelerating processes and calculations is the Raspberry Pi 4, 

it is a quad core processor [21]. The different types of sensors 

is connected using the I2C protocol ( a two-line interface 

enables communication between different sensors at the same 

time). Sensors are connected to the RPi using two wires Serial 

Clock (SCL) and Serial Data (SDA).  

3.3 Deep neural networks 

The proposed DNN model is described in Table 2. The 

model consists of eight layers, with the input layer matching 

the feature dimensions and the output layer represents the five 

classes of faults [22]. In this work, ReLU is used as the 

activation function in hidden layers while Softmax is used in 

the output layer which enable multi classification required in 

this work [23]. The proposed DNN model layers used in this 

work is chosen such that a decision impacted by a number of 

input features. By striking a balance between model capacity 

and issue complexity, it enables the network to learn abstract 

patterns without going into too much detail. This setup 

maintains computational efficiency while reducing the chance 

of overfitting, particularly when data is few. It also conforms 

to the empirical results of experiments and the principles of 

architectural design. In general, eight layers each of 50 

neurons work well for a variety of datasets and classification 

applications. The loss function used in this work is categorical 

cross-entropy which is best work with multiclass labels. 

3.4 Federated learning 

In the conventional federated learning (FL) framework as 

shown in Figure 1, multiple edge devices function as 

independent clients connected to a central global server. 

Typically, a predetermined number of FL clients (D) are 

randomly chosen from a group of edge devices that have 

expressed willingness to participate in the training process. 

During a training iteration at time t, each selected client (d) 

retrieves the global model parameters (𝜃𝑡) from the server and
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trains the model using its local dataset. If md denotes the 

number of data samples for a client, then ∑ 𝑚𝑑 =𝐷
𝑑=1 M, where 

M is the total size of data samples from D clients. The FL 

attempts to optimize 𝑓(𝜃) [24]. 

 

Table 2. Hyperparameter of DNN 

 
Hyperparameter Value  

neuron/layer  50 

Layers  8 

Epochs 25 

Activation-function  ReLU, SoftMax 

Loss-function  Categorical cross entropy 

Optimizer  Adam  

Classes  5 

Batch 64 

 

 
 

Figure 1. Traditional fedrated learning [24] 

 

min 𝑓(𝜃) 

𝑓(𝜃) = ∑
𝑚𝑑

𝑀

𝐷

𝑑=1

𝐹𝑑 (𝜃) 

𝐹𝑑(𝜃) =
1

𝑚𝑑

∑ 𝑓𝑖

𝑖∈𝑚𝑑

(𝜃) 

(1) 

 

In the local training phase, each client d optimizes the global 

model by minimizing its loss function 𝑓𝑖 ( 𝜃 ), which 

corresponds to the i-th sample in its datasetOptimization 

techniques like stochastic gradient descent (SGD) or Adam are 

employed for this purpose. Once local training is complete, the 

client transmits its updated version of the global model, 

denoted as 𝜃𝑡+1
𝑑 , back to the global server.  

 

𝜃𝑖+1
𝑑 = 𝜃𝑖 − 𝛼𝑑𝜆𝑑 (2) 

 

Here, 𝛼𝑑 represents the learning rate, while 𝜆𝑑 denoting the 

gradient calculated by client d using its local dataset and the 

parameters 𝜃𝑡.  

The global server combines the collected local models and 

calculates the enhanced global model (𝜃𝑡+1) in the following 

manner. 

 

𝜃𝑖+1 = ∑
𝑚𝑑

𝑀

𝐷

𝑑=1

𝜃𝑖+1
𝑑  (3) 

 

In FL, clients download the improved global model for 

subsequent training rounds, continuing this iterative process 

until the model converges. Federated Averaging (FedAvg) is 

a decentralized learning method where multiple participants 

collaboratively train a model while keeping their raw data 

private. Each client performs local training using its dataset 

and sends only the adjusted model parameters—not the raw 

data—to a central server. The server aggregates these updates 

by taking a weighted average of the model weights, with the 

weights determined by the size of each client's dataset. This 

approach enhances privacy, reduces bandwidth usage, and 

scales well across numerous clients. However, it faces 

challenges like data heterogeneity and communication 

efficiency. Overall, FedAvg is crucial for effective federated 

learning. The FedAvg formula can be describe as: 

 

𝑤𝑡+1 = ∑
𝑛𝑘

𝑛

𝐾

𝑘=1

𝑤𝑡+1
𝑘  (4) 

 

where, 𝑛𝑘  represents the aggregate number of data samples 

from all devices; 𝑤𝑡+1
𝑘 is the weight vector of the local model 

modified by device k in round 𝑡+1. Given a loss function η and 

a gradient ∇L(𝑤𝑡
𝑘;b) computed regarding the model weights 

𝑤𝑡
𝑘 and input data b, the local and global model updates can 

be presented as illustrated in Algorithm 1. 
 

Algorithm 1: Federated averaging (FedAvg) algorithm. 

Input: Initial global model w, number of clients K, number 

of rounds t 

Output: Updated global model 𝑤𝑡  

for each round t = 1, 2 ..., t do 

   for each client k = 1,2, ..., K in parallel do: 

    batches = divide 𝐷𝑘 client dataset into chunk of size B 

      𝑤𝑡
𝑘 ← 𝑤𝑡 , initialize local model on each client 

      for each batch b ∈ batches do: 

          𝑤𝑡
𝑘 ← 𝑤𝑡

𝑘 - η∇L(𝑤𝑡
𝑘;b)  

      end for 

   end for 

   𝑤𝑡+1 ← 
1

𝐾
 ∑ 𝑤𝑡+1

𝑘  𝐾
𝑘=1 ; 

end for 
 

 

4. DATASET IMPLEMENTATION 
 

This work utilizes various sensors, including current 

sensors, contactless temperature sensors, ambient temperature 

with humidity sensors, and 3-axis accelerometers, to collect 

sensor data. The vibration sensor produced three distinct 

features corresponding to the X, Y, and Z axes, creating 

multiple columns within the same dataset and effectively 

recording a fault status every one second sample time. Data 

collection was conducted both online and offline, capturing 

detailed fault classifications such as normal operation, heavy 

load, overcurrent, stopping and vibration. These conditions 

were precisely induced in the benchmark system to generate 

the necessary dataset for each fault type. 

To simulate vibrations across the motor’s three axes, an 

unbalanced mass was employed. Variations in motor current 

were replicated using capacitors of different sizes, while a 

mechanical braking system mimicked stop and heavy load 

scenarios. Table 3 outlines the quantity and distribution of 

datasets for each fault category. 
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Table 3. Size and counts of data set for each class 

Failure Type File Size (KB) Data Records 

Normal 843 20159 

Vibration 351 6762 

Stop rotating 641 16466 

Havey load 141 2711 

Over current 202 4591 

In this work, a deep neural network model was used to 

classify the four types of faults with the normal operation as 

the fifth class. Before training the DNN model, the dataset 

needs to be properly preprocessed such as normalized and 

labeled as follows: 

i) Dataset Normalization: it is a key preprocessing in

machine learning training. In this work MinMaxScaler 

algorithm has been used to normalize the features (train dataset 

and test dataset). This method scales features to a given range, 

typically between 0 and 1, to ensure that no single feature has 

an excessive influence on the model learning process. This 

improves model performance and speeds up the learning 

process. It also ensures a fair feature contract by ensuring that 

features with a wide range do not overwhelm features with a 

narrow range. 

𝑥𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
(5) 

ii) Dataset labeling: Dataset labeling Categorical classes of

data is preprocessed by One-hot encoding algorithm which is 

a technique used to convert string data into a numerical format 

that machine learning can process. This involves generating 

numbers for each distinct category. 

Figure 2. Five classes distribution Figure 3. Five classes after balance 

Table 4. Sample of data collected 

Accel x Accel y Accel z Amb_Temp Object_Temp Current Label 

0.437 -0.0937 7.937 17.82 31.05 0.334 Normal 

0.812 0.781 7.875 17.82 31.01 0.332 Normal 

2.093 -0.281 7.281 17.83 31.03 0.335 Normal 

6.187 5.468 15.968 35.175 36.23 0.410 Over current 

7.406 8.718 15.978 35.185 36.21 0.446 Over current 

1.593 0.40 7.312 33.073 31.97 0.404 Stop rotating 

1.781 0.25 7.187 33.062 31.99 0.400 Stop rotating 

0.0281 -0.0232 -0.248 0.010 34.51 28.525 Misalignment 

0.0367 -0.0294 -0.267 0.009 34.43 28.515 Misalignment 

12.656 15.969 2.281 23.731 55.09 0.758 Heavy load 

15.968 15.968 -11.625 23.742 55.17 0.692 Heavy load 

iii) Dataset splitting: The dataset was divided into 60% for

training, 10% for validation, and 30% for testing. The training 

part, typically the largest portion, is used to train the model. 

The testing part evaluates the final trained model using testing 

data where the model hasn’t seen this data before. The 

validation part is used along with the train set to enhance the 

training performance. Figure 2 shows the five classes among 

the collected dataset: normal, overcurrent, heavy load, 

stopping, and vibration. The data is unevenly distributed 

among these categories. 

iv) Class balance: To resolve class imbalance in datasets, in

this work the Synthetic Minority Over-sampling Technique 

(SMOTE) is used. This gives a DNN model more balanced 

perspective on the issue and increases the likelihood that it will 

learn to categorize all classes efficiently by boosting the 

representation of minority classes in training data. This 

contributes to the confirmation that the SMOTE operation was 

effective in achieving more equitable class allocations. Figure 

3 shows the five classes after balance. 

The confusion matrix is a 5×5 array, with 5 denoting the 

number of classes. A binary classification model employs a 

2×2 confusion matrix, whereas a multiclass model uses an 

N×N matrix, where N denotes the classes. The value 𝑐𝑖, 

denotes the frequency with which a status of class i was 

categorized as class j. Moreover, a comprehensive array of 

metrics can be extracted from the complete confusion matrix. 
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Accuracy =
∑ 𝑇𝑃(𝐶𝑖)

𝑁
𝑖=1

∑ ∑ 𝐶𝑖,𝑗
𝑁
𝑗=1

𝑁
𝑖=1

 (6) 

 

𝑟𝑒𝑐𝑎𝑙𝑙(𝐶𝑖) =
TP(𝐶𝑖)

TP(𝐶𝑖) + FN(𝐶𝑖)
 (7) 

 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝐶𝑖) =
TP(𝐶𝑖)

TP(𝐶𝑖) +  FP(𝐶𝑖)
 (8) 

 

F1(𝐶𝑖) =
2 ∗  recall(Ci) ∗ pression(Ci)

recall(𝐶𝑖) + recall(𝐶𝑖)
 (9) 

 

where, TP (𝐶𝑖) True positive for classi FN false negative for 

classi. An example of the gathered data is displayed in Table 

4. The DNN model leverages the dataset to build a predictive 

system that conducts real-time monitoring on the cloud server 

and forecasts potential failures. 

 

 

5. PROPOSED SYSTEM DESIGN 

 

The proposed benchmark testbed consists of three motors 

each equipped with four sensors: 3-axis vibration sensor, two 

temperature sensors a contactless infrared sensor and ambient 

sensor, and current sensor. All these sensors have been 

interfaced with three Raspberry Pi 4 for each motor via I2C 

communication protocol where each sensor has its unique 

address to avoid packet collision. Each Raspberry Pi then 

communicates with the cloud server via the MQTT protocol. 

The Raspberry pi has a local DNN model (i.e., three DNN 

model or clients) while a global model is presented in the cloud 

server. Figure 4 shows the proposed system architecture. 

The proposed system has two mode of operation, local and 

global models training and predictive mode. Before train the 

models, a realistic dataset has been collected from the motor 

in different failed types which are deliberately done. 

Within the training mode, a FL approach has been used 

where in each round the local models are trained on their part 

of the dataset where each part consists of all features (sensor) 

but with two failure classes only. After the local model is 

trained to its desired accuracy and loss values, the final 

weights of the model are uploaded to the cloud server. In this 

stage, the three local models upload their weights to the cloud 

and an aggregation algorithm based on FedAvg is used to 

compute the new global model weight. Then the global model 

will train again for the new weights. After that, the global 

model will download its weight to all local models which will 

retain their models again. This process is the first round, the 

proposed system consists of 20 rounds. By doing so, the local 

model which trains only on its part of the dataset and fewer 

classes of failure will be trained for all types of classes and this 

is the main advantage of FL in addition to the security and 

privacy of the sensory data. Algorithm 1, mentioned earlier, 

illustrates the machine learning training process. In the second 

mode of operation, the local model cloud predicts the failure 

types, and also the global model does. Also, the proposed 

system included data visualization to show the different types 

of failures. 

 

 
 

Figure 4. Proposed system architecture 

 

 

6. RESULTS AND DISCUSSION 

 

The confusion matrix gives a thorough assessment of the 

model's performance by comparing the predicted labels to the 

actual labels for each class. At work, the confusion matrix was 

presented as a heatmap, with each cell representing the number 

of incidences for a certain true label (y-axis) and predicted 

label (x-axis). The diagonal elements denote successfully 

identified occurrences (true positives and true negatives), 

whereas the off-diagonal components reflect 

misclassifications. A confusion matrix misclassifies data 

points when a machine learning model misclassifies. Here, the 

model "gets it wrong." Consider the confusion matrix's off-

diagonal members to understand misclassification. Figure 5 
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shows the confusion metrics with and without FL. These cells' 

predicted class differs from their actual class. Row-wise: 

Numbers outside the diagonal column (indicating the real 

class) represent misclassifications where the class was 

projected as something else. As a comparision between the 

two confusion matrecies, it could be noted that within the FL 

the misclassification is less than that without FL. The 

classification report of different metrics with and without FL 

is shown in Table 5. In the following a discription for the most 

important metrics: 

Accuracy: The high diagonal values in the confusion 

matrix indicated a high proportion of properly identified 

examples, which was consistent with the model's total 

accuracy of 0.9983. This highlights the efficiency of the 

federated learning technique and the DNN architecture in 

capturing the underlying patterns inside the dataset. Figure 6 

shows the local model training and validation performance of 

accuracy and loss. These results are based on the overall 

dataset for each client. The local model, trained on the whole 

dataset without using federated learning, earned a respectable 

accuracy of test (0.9965), and train (0.9915) indicating its 

capacity to learn from the data and generate correct 

predictions. However, the centralized method has drawbacks 

in terms of privacy, generality, and scalability. Centralizing 

the data for training presented possible privacy problems, and 

the model's exposure to a single dataset may have limited its 

capacity to generalize to new or varied data. Employing 

federated learning to train a local model on distributed data, as 

shown in Figure 7, resulted in a large accuracy boost to 

(0.9983) demonstrating the capacity to exploit heterogeneous 

data while maintaining privacy. This method improved the 

model's performance by increasing accuracy, recall, and F1-

score while also addressing critical issues like overfitting and 

generalization. Federated learning reduced the danger of 

overfitting and improved generalization to previously 

unknown data by training on localized datasets and pooling 

updates. Furthermore, validation approaches were critical in 

this process, with local validation tracking individual model 

growth and global validation offering an unbiased assessment 

of the final model's performance. Our analysis is shown in 

Table 6 accuracy and other metrics. The best accuracy 

(0.9983) was obtained by the federated learning strategy, 

indicating its exceptional capacity to generalize from a variety 

of data sources.  

Loss Minimization: The federated method demonstrated 

the least amount of loss (0.0104), indicating that it was more 

resilient and could efficiently learn from the dispersed data. 

The federated model shows a deeper comprehension of the 

underlying patterns and relationships in the data while 

reducing loss. 
 

Table 5. Classification report a-without FL, b- with FL 
 

(a) (b) 

Classification Precision Recall F1-Score Support Classification Precision Recall F1-Score Support 

Havey load (0) 0.97 0.99 0.98 856 Havey load (0) 0.98 0.99 0.99 842 

Misalignment (1) 0.99 0.99 0.99 1957 Misalignment (1) 0.99 0.99 0.99 1971 

Normal (2) 1.00 1.00 1.00 6029 Normal (2) 1.00 1.00 1.00 6041 

Over current (3) 1.00 1.00 1.00 1362 Over current (3) 1.00 1.00 1.00 1362 

Stop rotating (4) 1.00 1.00 1.00 5002 Stop rotating (4) 1.00 1.00 1.00 5031 

Accuracy   1.00 15206 Accuracy   1.00 15206 

Macro avg 0.99 0.99 0.99 15206 Macro avg 1.00 1.00 1.00 15206 

Weighted avg 1.00 1.00 1.00 15206 Weighted avg 1.00 1.00 1.00 15206 

 

  
(a) (b) 

 

Figure 5. Confusion metrics a-without FL, b- with FL 

 

Table 6. Compare results between the global model and the local model (without/with federated learning) 

 

Model 
Accuracy Precision Recall Loss 

Train  Test  Train  Test  Train  Test  Train  Test  

Local model (without FL) 0.9915 0.9965 0.9916 0.9965 0.9915 0.9965 0.0232 0.0128 

Glient model 0.9917 0.9975 0.9922 0.9975 0.9931 0.9975 0.0187 0.012 

Global model 0.9956 0.9983 0.9966 0.9983 0.9966 0.9983 0.0124 0.0104 
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Figure 6. DNN model performance for stader system (with out FL). a) Accuracy b) Precision c) Recall d) Loss 
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Figure 7. DNN model performance for stader system (with FL). a) Accuracy b) Precision c) Recall d) Loss 

7. CONCLUSION

This study demonstrates the effectiveness of federated 

learning (FL) in enhancing predictive maintenance (PdM) 

systems within industrial settings. By employing FL, we 

successfully trained a multi-class classification model on 

distributed data without compromising data privacy. The 

implementation of four well-known FL aggregation schemes 

on various datasets, including a novel real-world dataset, 

revealed that federated learning significantly improves model 

accuracy, achieving an increase from 99.15% to 99.83% while 

reducing loss from 0.0232 to 0.0104. Additionally, federated 

learning (FL) faces a number of difficulties, such as:  

Communication costs: During training in federated 

learning, clients and a central server (or clients directly in 

decentralized models) communicate model updates on a 

regular basis. These updates may be rather big, particularly for 

large models. In terms of bandwidth utilization, this results in 

significant communication expenses. In order to combat this, 

methods like quantization—which lowers the accuracy of 

weights—and spacing—which sends just a portion of updated 

weights—are employed to shrink the amount of model updates 

prior to transmission. 

Latency: The training process can be considerably slowed 

down by high latency between clients and the server, or 

between clients. Communication times between clients might 

differ greatly in geographically dispersed locations or those 

with different network equipment, which can impact the 

aggregation process's synchronization. Therefore, 

asynchronous deep learning is employed, where the server 

may aggregate changes as soon as it receives them from any 

client, rather than waiting for all clients to give their updates 

in each round. Although it necessitates more intricate 

aggregation processes, this lessens the impact of sluggish 

clients. 

The results indicate that FL provides a robust alternative to 

traditional local and global training methods, particularly for 

applications involving sensitive or dispersed data sources. 

This approach not only maintains data privacy but also enables 

high-performance model training. Our findings support the 

further exploration of federated learning across diverse 

domains, encouraging collaborative learning while 

safeguarding confidential information. Overall, federated 

learning presents a promising pathway for future 

advancements in predictive maintenance and industrial IoT 

applications. 
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