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Machine learning has undergone significant advances in recent years, especially in the 

field of control systems, enabling the development of fully autonomous solutions. This 

article presents a simulation-based study for the control of a Brushless DC (BLDC) motor 

using reinforcement learning (RL). A Twin Delayed Deep Deterministic Policy Gradient 

(TD3) agent is implemented as the control strategy. The performance of the proposed 

controller is evaluated through two test scenarios: one focused on reference tracking 

accuracy, and the other on robustness under variable torque conditions. The simulation 

results show a stable and accurate behavior, with response times ranging from 1.2 to 1.9 

seconds for reference tracking and from 1.6 to 1.8 seconds in the presence of load 

disturbances. These performances highlight the ability of reinforcement learning to 

significantly enhance the precision control of BLDC motors, which remains a challenge 

in many applications, particularly in complex, dynamic, and nonlinear environments. 
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1. INTRODUCTION

Brushless DC (BLDC) motors run on a direct voltage source. 

They are becoming more popular and widely used. This is 

because they are constantly being improved. New materials 

make them stronger and more reliable [1]. They also use less 

energy, which makes them more efficient. In addition, the 

electronic parts that control them are getting better. These 

parts now use digital circuits instead of brushes, which were 

used in traditional DC motors [2]. These motors serve as a 

replacement or alternative solution to conventional motors, as 

they offer a very good power-to-weight ratio and a higher 

capacity to operate across wider speed ranges [3]. The 

weaknesses of brushed motors, which BLDC motors 

successfully address, include lower efficiency, mechanical 

wear at the commutation level, the need for regular inspection 

and maintenance, and the requirement for expensive control 

systems. Due to their favorable electrical and mechanical 

characteristics, BLDC motors are frequently used in high-

precision control systems such as in automotive, aerospace, 

medical applications, measuring equipment, industrial 

automation, and electromechanical actuation systems. 

Numerous control techniques have been developed to 

maximize the performance and robustness of BLDC motor 

drive systems [4].  

A large number of control models, such as the classical PID 

controller, can be optimized using online or offline 

optimization algorithms, or through methods such as fuzzy 

logic or artificial neural networks (ANN) to determine their 

parameters [5]. The non-adaptive fuzzy logic controller (FLC) 

[6], the adaptive fuzzy logic controller, ANFIS [7], sliding 

mode control, as well as model predictive control (MPC) [8], 

have also been developed for the speed control of brushless 

DC motors. The majority of industrial applications still rely on 

classical PID controllers due to their simplicity and robustness. 

However, classical PID controllers are generally not effective 

when the processes involved are higher-order systems, time-

delay systems, nonlinear systems, complex or imprecise 

systems, lacking accurate mathematical models, or subject to 

uncertainties [9]. 

Today, methods such as neural networks, random forests, 

and adaptive neuro-fuzzy inference systems (ANFIS) are used 

to estimate or dynamically adjust the parameters of PID 

controllers, to model complex systems, or to predict changes 

in the behavior of electric motors [10]. 

Machine learning has revolutionized the field of electric 

motor control by introducing intelligent approaches capable of 

adapting to dynamic and nonlinear environments [11]. Unlike 

traditional methods based on strict mathematical models, 

machine learning enables the extraction of control laws from 

measured data, even in the presence of uncertainties, 

disturbances, or variations in system parameters [12, 13]. 

More recently, reinforcement learning (RL) has attracted 

significant interest in the control of electric motors, 

particularly in electric vehicles, drones, and autonomous 

robots. This approach is based on the interaction between an 

agent and its environment, learning to optimize its actions by 

maximizing a cumulative reward, which is particularly well-

suited for speed or torque control. Algorithms such as Q-

learning [14], Deep Q-Networks (DQN) [15], and Proximal 

Policy Optimization (PPO) enable the implementation of 

adaptive and optimal control strategies without the need for an 

accurate model of the system [16, 17]. 

Given the limitations of conventional control methods 

Journal Européen des Systèmes Automatisés 
Vol. 58, No. 6, June, 2025, pp. 1111-1121 

Journal homepage: http://iieta.org/journals/jesa 

1111

https://crossmark.crossref.org/dialog/?doi=10.18280/jesa.580603&domain=pdf


particularly their reliance on accurate models and lack of 

robustness in the face of uncertainty Reinforcement Learning 

is attracting growing interest as a model free, data driven 

control strategy. Unlike traditional approaches, RL enables the 

design of optimal control policies through interaction with the 

environment, learning from system states, performed actions, 

and received rewards [18]. This approach allows RL agents to 

identify effective strategies without requiring complex 

mathematical models, making it especially suitable for 

systems that are difficult to model. Among its main advantages 

is its dynamic adaptability, which ensures good performance 

despite variations in temperature, wear, or external 

disturbances. RL also stands out for its ability to operate 

without an explicit model, in contrast to PI or MPC controllers 

that require precise motor modeling [19]. Finally, it excels at 

handling the nonlinearities inherent in electric motors and 

power electronics, by learning complex relationships directly 

from data. These features make RL a promising approach for 

intelligent motor control in real world, uncertain environments 

[20]. 

Highly precise speed control of electric motors, especially 

brushless motors, is a major challenge in most industrial and 

automotive applications, due to the high demands placed on 

performance, stability and robustness. Conventional control 

techniques such as PID controllers or fuzzy logic sometimes 

demonstrate their limits, especially under non-linear, uncertain 

or disturbed conditions. In this context, reinforcement learning 

is an interesting alternative. It enables the development of 

intelligent controllers capable of learning and conforming to 

system dynamics in real time, without the need for a precise 

model. This is the motivation behind this article, which aims 

to: 

• Exploit the application of artificial intelligence

methods in electric motor control systems, in particular

BLDC motors;

• Software design of an intelligent RL-based controller

for high-performance, precise control of BLDC motors;

• Overcome the difficulties of standard methods by

applying a more flexible, higher-performance approach

to BLDC engine control;

• Provide a strong solution to the uncertainties and non-

linearities present in real-action scenarios.

This article, which focuses on the speed control of a 

brushless motor using reinforcement learning, is structured to 

cover all the essential aspects of this innovative approach. It 

begins with an introduction that presents the general context, 

the main control techniques developed in the literature, as well 

as the motivation behind this study. The second part is devoted 

to the mathematical modeling of the BLDC motor, a crucial 

step to accurately represent the system to be controlled. The 

third part introduces the reinforcement learning algorithm used, 

detailing the role of the agent and the training process 

implemented. The fourth part is dedicated to the presentation 

and analysis of the obtained results, allowing for an evaluation 

of the effectiveness of the proposed method. Finally, a 

conclusion summarizes the main contributions of the study 

and suggests future research directions to improve and extend 

this approach. 

2. MATHEMATICAL MODELING OF BLDC MOTOR

The mathematical representation of the BLDC three-phase 

motor model with two pairs of poles is detailed in this first 

subsection, based on its electrical and mechanical equations 

[21]. The stator consists of a full-pitch winding connected in a 

Y (star) configuration, while the rotor features a smooth-

surfaced polar structure. Three Hall-effect sensors are 

symmetrically positioned with a 120-degree electrical offset, 

ensuring precise and balanced commutation [22, 23]. 

Furthermore, the mathematical equations describing the 

behavior of the BLDC motor are derived based on a set of 

simplifying assumptions, which are detailed below. 

● Disregarding cardiac saturation, eddy currents and

deceleration.

● Observe the magnetic field expanding from the air

gap as a trapezoidal wave with a smooth top

covering 120 electrical angles after removing the

armature feedback.

● Assume that electrically conducting components

are dispersed evenly and continuously across the

armature's surface, ignoring the impact of

feedback.

● Flywheel diodes and switches in the power

converter control circuit provide perfect switching

performance.

The BLDC motor equivalent diagram is shown in Figure 1: 

Figure 1. Brushless motor equivalent diagram 

Single-phase electrical equation for a BLDC motor can be 

expressed as: 

𝑣𝑎 = 𝑅 ⋅ 𝑖𝑎 + 𝐿 ⋅
𝑑𝑖𝑎

𝑑𝑡
+ 𝑒𝑎 (1) 

Phase voltage equation in matrix form for a three-phase 

BLDC motor is: 

[

𝑣𝑎

𝑣𝑏

𝑣𝑐

] = 𝑅 [

𝑖𝑎

𝑖𝑏

𝑖𝑐

] + 𝐿
𝑑

𝑑𝑡
[

𝑖𝑎

𝑖𝑏

𝑖𝑐

] + [

𝑒𝑎

𝑒𝑏

𝑒𝑐

] (2) 

Phase voltage equation based on line voltage can be derived 

as: 

𝑣𝑎𝑏 = 𝑣𝑎 − 𝑣𝑏 = 𝑅(𝑖𝑎 − 𝑖𝑏) + 𝐿
𝑑(𝑖𝑎−𝑖𝑏)

𝑑𝑡
+ (𝑒𝑎 − 𝑒𝑏) (3) 

Instantaneous electromagnetic power transferred to the 

rotor is given by: 

𝑃𝑒𝑚 = 𝑒𝑎𝑖𝑎 + 𝑒𝑏𝑖𝑏 + 𝑒𝑐𝑖𝑐 (4) 

Represents the useful power (excluding losses), directly 

linked to torque production. Assuming no mechanical or 

parasitic losses: 
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𝑃𝑒𝑚 = 𝑇𝑒 ⋅ Ω (5) 

The electromagnetic torque can be expressed as: 

𝑇𝑒 =
3

2
⋅ 𝑃 ⋅ 𝐾𝑡 ⋅ 𝜓 ⋅ sin(𝜃) (6) 

Or, in general: 

𝑇𝑒 =
3

2
⋅ 𝑃 ⋅ (𝑒𝑎𝑖𝑎 + 𝑒𝑏𝑖𝑏 + 𝑒𝑐𝑖𝑐)/Ω (7) 

The dynamic equation describing rotor motion is: 

𝑇𝑒 − 𝑇𝑟 = 𝐽 ⋅
𝑑Ω

𝑑𝑡
+ 𝐵 ⋅ Ω (8) 

3. FUNDAMENTALS OF REINFORCEMENT 

LEARNING

This section is structured into two subsections. The first 

presents the fundamental principles of reinforcement learning, 

detailing its key components and main algorithms, as well as 

the rationale for algorithm choice, with a particular focus on 

the algorithm used in this article to design and train the agent 

dedicated to brushless motor control. The second subsection is 

devoted to an in-depth analysis of the agent training results, 

with the aim of evaluating its performance and effectiveness 

in motor control. 

3.1 The fundamental principles of reinforcement learning 

Reinforcement learning is a machine learning technique in 

which an agent learns to perform optimal actions by 

interacting with an environment [24]. Unlike supervised 

learning, which requires labeled datasets, reinforcement 

learning operates through a trial-and-error process, where the 

agent receives feedback in the form of rewards based on the 

actions it takes [25]. This makes RL particularly well-suited 

for problems where it is difficult to define explicit rules or 

provide comprehensive training data. 

Reinforcement learning is based on the components 

illustrated in Figure 2. These components are defined on a 

rigorous mathematical foundation, and each plays a vital role 

in the overall RL process, contributing to decision-making and 

the optimization of the agent’s performance. 

Figure 2. Diagram of the learning process with the various 

functions 

Agent: Acts as a central learning and decision-making 

entity. It interacts with the environment by observing it, 

performing appropriate actions and adjusting its behavior 

according to the rewards received based on the quality of its 

decisions [26]. 

Environnement: Describes the external system with which 

the agent interacts. It provides the agent with observations 

about its current state, reacts to actions by evolving towards 

new states, and assigns rewards according to the effects of 

these actions [27]. 

States: State, Denoted s, describes the configuration of the 

environment at a given moment and provides essential 

information that the agent uses to guide its decisions. In the 

context of motor control, a state can represent physical 

quantities such as motor speed, position or current [28]. 

Actions: Actions, a, represent the decisions or interventions 

the agent can make to influence the environment. For example, 

in the case of a motor, this might involve adjusting the applied 

voltage or switching the inverter control signals. The agent's 

main objective is to choose the most effective actions to obtain 

favorable results [29]. 

Policy: The policy, noted π, defines the agent's decision-

making strategy by establishing a correspondence between the 

observed states and the actions to be taken. It governs the 

agent's behavior in each situation. A policy can be 

deterministic, associating a single action with each state, or 

stochastic, selecting actions according to a probability 

distribution [30]. 

Reward: The reward, r, is a digital signal sent by the 

environment to the agent after each action, indicating the level 

of relevance or quality of the result obtained. It can be positive, 

negative or zero, and plays a central role in learning by guiding 

the agent towards the desired control objectives. For example, 

a high reward may be assigned when the target speed is 

reached, while exceeding current limits may result in a penalty. 

A reward function is often defined to minimize speed error 

while respecting system constraints [31]. 

Algorithm: Reinforcement learning algorithms are widely 

used in motor control, each offering specific advantages 

depending on its learning approach. Value-based methods, 

such as Deep Q-Networks (DQN), estimate the value of 

actions to guide policy selection and have proven effective in 

high-dimensional control tasks. Policy-based methods, such as 

Policy Gradient (PG), directly optimize the control policy 

without relying on a value function, allowing flexible 

adaptation to complex environments. Actor-critic methods 

combine both approaches for improved performance [32]. 

Among these, the Deep Deterministic Policy Gradient (DDPG) 

algorithm is particularly well-suited for continuous control in 

motor applications. Building on DDPG, the Twin Delayed 

Deep Deterministic Policy Gradient (TD3) algorithm 

introduces significant improvements by reducing 

overestimation bias in the critic network, enabling more stable 

and reliable learning. TD3 stands out as a powerful and 

efficient solution for precise control of brushless motors in 

continuous action spaces. 

In this study, the choice of the Twin Delayed Deep 

Deterministic Policy Gradient algorithm for controlling the 

speed of a BLDC motor is justified by the fact that TD3 

represents an enhanced version of the Deep Deterministic 

Policy Gradient. DDPG relies on an actor–critic architecture, 

where the actor 𝜇(𝑠|𝜃𝜇) generates a deterministic action for a

given state, and the critic 𝑄(𝑠, 𝑎|𝜃𝑄) estimates the value of

that action. The critic is updated by minimizing the following 
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loss function: 

𝐿(𝜃𝑄) = 𝔼(𝑠,𝑎,𝑟,𝑠′)∼𝒟 [(𝑄(𝑠, 𝑎|𝜃𝑄) − (𝑟 +

𝛾𝑄(𝑠′, 𝜇(𝑠′|𝜃𝜇′
)|𝜃𝑄′

)))
2

] 
(9) 

However, DDPG generally suffers from instability issues 

due to Q-value overestimation, poorly controlled noisy 

exploration, and policy update oscillations. To overcome these 

limitations, TD3 introduces three major enhancements: 

• Clipped Double Q-learning: Two Q-value estimators

𝑄1 and 𝑄2 are used, and the target value is computed

using their minimum to reduce overestimation:

𝑦 = 𝑟 + 𝛾min
𝑖=1,2

𝑄𝑖(𝑠′, 𝑎′)where 𝑎′ = 𝜇(𝑠′|𝜃𝜇′
) +

𝜖, 𝜖 ∼ 𝒩(0, 𝜎2)
(10) 

• Target Policy Smoothing: Gaussian noise is added to

the target action to make the policy more robust to

minor variations:

𝑎′ = 𝜇(𝑠′) + clip(𝜖, −𝑐, 𝑐) with 𝜖 ∼ 𝒩(0, 𝜎2) (11) 

This prevents the agent from exploiting irrelevant sharp 

changes in the value function 3. Delayed Policy Updates: The 

policy network 𝜇, along with the target networks 𝑄′  and 𝜇′,

are updated less frequently (every 𝑑  steps), which helps 

reduce variance and improve learning stability. Thanks to 

these enhancements, the TD3 algorithm is employed in this 

study to enhance the robustness of the BLDC motor speed 

control in the presence of load torque disturbances. 

Experimental results demonstrate that TD3 achieves superior 

performance in terms of Integral Square Error (ISE), reduced 

overshoot, and improved robustness compared to DDPG. 

Moreover, TD3 generates a smoother control effort, thereby 

minimizing mechanical and thermal stress on the motor and its 

power electronics. Consequently, the selection of TD3 for this 

application is strongly supported by its ability to learn more 

stable, accurate, and generalizable control policies in dynamic 

and noisy environments such as those encountered in BLDC 

motor systems. 

The Table 1 shows the algorithm defining a reward function 

used by a reinforcement learning (RL) based controller for 

speed control of a BLDC motor. The algorithm is initiated by 

estimating the absolute error between speed reference and 

actual motor speed. If this error is greater than or equal to 1, a 

quadratic penalty is applied in the form of a negative reward 

−𝑒2, to discourage large errors. On the other hand, for errors

less than 1, a non-linear transformation is applied, assigning

the error a negative value of its square root, which reinforces

learning even in the case of small deviations. If the error is

strictly negative (a rare but covered theoretical case), it is

simply reduced to zero. This reward mechanism ensures fast,

accurate tracking of the speed setpoint, while guaranteeing

learning stability and robustness to disturbances. By

dynamically decoupling from the error amplitude, this

function enables the RL agent to adjust the control signal

efficiently to minimize speed deviation in non-linear and

uncertain environments.

Table 1. An algorithm for the process of learning 

Algorithm: Reward Function 

1:  e ← |error| 

2:  if e ≥ 1 then 

3:   reward ← −(e²) 

4:  else 

5:   if e ≥ 0 then 

6:   e ← −√e 

7:   else 

8:   e ← 0 

9:   end if 

10: end if 

Figure 3. The evolution of reward per episode during training of a TD3 agent 
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Figure 4. The table of training progress 

3.2 Training agent and results analysis 

The Figure 3 illustrates the evolution of the reward per 

episode during training of a Twin Delayed Deep Deterministic 

Policy Gradient agent for speed control of a BLDC motor. The 

x-axis represents the episode number, while the y-axis shows

the reward obtained, reflecting the control performance. The

curves show both rewards per episode (thin, irregular lines)

and rolling averages (thick lines), highlighting the agent's

progressive improvement over time. Initially, rewards are low,

reflecting an inefficient control strategy. However, with

learning, rewards increase steadily, indicating that the agent is

progressively optimizing motor speed control. Convergence

towards a higher reward reflects a stabilization of the agent's

strategy, and thus a more efficient and stable speed control.

Figure 4 shows a summary of the training of an rlTD3Agent 

agent applied to the speed control of a BLDC motor via a TD3-

based reinforcement algorithm. Training took place over 100 

episodes and lasted about 7 minutes, ending normally after 

reaching the maximum number of episodes. Rewards 

indicated control performance: the final episode reward was -

2541.72, and the average reward over all episodes was -

3046.06, showing progressive improvement. The Q0 value for 

the episode (-2216.58) reflects the estimated quality of the 

policy in the initial state. These results show that the agent has 

learned a relatively effective, albeit perfectible, control 

strategy for stabilizing engine speed while minimizing error. 

4. SIMULATION DETAILS

This section aims to provide a detailed description of the 

MATLAB/Simulink simulation used to implement the speed 

control of a Brushless DC motor, based on the Twin Delayed 

Deep Deterministic Policy Gradient Algorithm Figure 5. The 

simulation diagram is structured into four main functional 

blocks, each serving a specific role in the learning and control 

loop. The first block defines the reference speed profile, 

representing the desired trajectory that the motor must follow. 

This reference is compared to the actual motor speed to 

generate a tracking error, which is passed to the Calculate 

Reward block. This block evaluates the effectiveness of the 

action selected by the TD3 agent, with the goal of minimizing 

the tracking error. The aim is to guide the reinforcement 

learning agent toward a more optimal and high-performance 

behavior over time. 

The reward function is constructed using two penalty terms: 

• The first, called errorPenalty, is the squared tracking

error weighted by a constant factor:

errorPenalty = 𝐾1 ⋅ (error)2 with 𝐾1 = 1.125

• The second, named actionPenalty, penalizes the

magnitude of the control action (i.e., the applied

voltage), also scaled by a factor:

actionPenalty = 𝐾2 ⋅ 𝑢2 with 𝐾2 = 0.012

The final reward is then calculated as: 

Reward = −(errorPenalty + actionPenalty) 

Consequently, the smaller the tracking error and the 

smoother the control action, the higher (i.e., less negative) the 

reward, which drives the TD3 agent to learn precise, efficient, 

and energy-conscious control strategies. 

The Generate Observations, block processes the error 

between the reference and actual motor speeds, as well as the 

integral of this error, to form a meaningful representation of 

the system’s current state. These signals are then transformed 

into normalized observations, which serve as inputs to the TD3 

agent. Based on these observations, the agent generates a 

continuous control action in this case, a DC voltage signal 

which is applied to the BLDC motor in order to regulate its 

speed. 

This action is transmitted to the BLDC motor model, which 

is mathematically described by a set of differential equations 

capturing both electrical dynamics (including inductance L, 

resistance R, and torque constant Kt) and mechanical 

dynamics (such as moment of inertia J, friction coefficient B, 

and external load torque). The model also includes back 

electromotive force (EMF) feedback through the constant Ke, 

ensuring a highly realistic and physically accurate simulation 

of the motor’s behavior.  

For the Terminate Early block, enables early termination of 

the simulation if specific performance or safety criteria are 

violated. This mechanism enhances training efficiency by 

avoiding unnecessary computations during episodes where 

learning is no longer productive or could lead to unstable 

behaviors. 

5. RESULTS AND DISCUSSION

This section aims to present and analyze the results obtained 

from the simulation carried out using MATLAB Simulink for 

the speed control of a brushless motor, by using one of the 
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machine learning tools, which is reinforcement learning. The 

analysis of the results is conducted through two scenarios to 

thoroughly evaluate the validity of the controller used. The 

first focuses on the tracking performance of the imposed speed 

reference, and the second on robustness, by varying the load 

torque to observe the system's response. The parameters used 

in this simulation are presented in the Table 2. 

Figure 5. Simulation diagram of this BLDC motor speed control study using RL 

Table 2. Parameters for the simulation [33] 

Variable Mark 

Vdc 300 V 

R 1.5 Ω 

L 0.0115 H 

M 0.005 H 

Kt 60.3e-3 Nm/A 

Ke 60.3e-3 Vs/rad 

J 0.001 Kg.m2 

B 0.002 N.m 

Figure 6. Motor speed variation during change in reference 

speed without load condition 

5.1 First scenario: Tracking performances 

5.1.1 Performance tracking under no-load conditions 

The purpose of this part of the first scenario is to study the 

motor's response at no load, without applying any load torque. 

Figure 6 shows the motor response with a reference variation 

from 80 rad/s to 100 rad/s. For the first startup interval, the 

motor speed follows the 80 rad/s reference after just 1.5 

seconds, and for the second interval, it follows the 100 rad/s 

reference after just 1.2 seconds. As for the error, it vanishes, 

as shown in Figure 7. Figure 8 illustrates the controller’s 

output voltage during the speed variations, clearly showing the 

interaction of the agent, which forms the basis of the controller, 

with the speed changes. Due to the proportionality between the 

brushless motor speed and the voltage applied to the motor, 

the controller generates a voltage of 125 V for a speed of 80 

rad/s and 156 V for a speed of 100 rad/s. These results in this 

section are obtained in the absence of load torque, as shown in 

Figure 9. 

Figure 7. Speed tracking error with null load torque 

Figure 8. Controller output voltage during speed reference 

variations without load torque 
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Figure 9. Load torque applied to the motor 

Figure 10. Motor speed variation during change in reference 

speed with load condition 

Figure 11. Motor speed variation when decreasing reference 

speed with load torque 

5.1.2 Performance tracking under load conditions 

In order to further evaluate the performance, this second 

part of the first scenario applies a constant load torque to the 

motor, T = 2 Nm. As already mentioned in the first part, Figure 

10 shows the motor's response to a variation in the reference 

speed from 80 rad/s to 100 rad/s, but this time with a load 

torque equal to 2 Nm. At startup, the motor follows the 

reference after 1.9 seconds, and for the second variation, the 

response follows the reference after 1.5 seconds. Similarly, 

when decreasing the speed from 100 rad/s to 80 rad/s, the 

results are the same, as shown in Figure 11. Regarding the 

error between the two speeds, it vanishes, as shown in Figure 

12. Figure 13 shows the controller output applied to the

brushless motor. The controller generates a voltage of 174.5 V

to reach the reference speed of 80 rad/s, and 205.7 V to reach

the speed of 100 rad/s. These results are obtained under the

application of a constant load torque of 2 Nm, as shown in

Figure 14. To more rigorously evaluate the speed tracking

performance, a more complex reference speed scenario was

adopted, as illustrated in Figure 15. The resulting curve 

demonstrates accurate and fast speed tracking, even in the 

presence of abrupt changes in the reference, with a response 

time ranging from 0.5 s to 1.8 s. 

Figure 12. Speed tracking error with load condition 

Figure 13. Controller output voltage during speed reference 

variations with load torque 

Figure 14. Load condition applied to the motor 

5.2 Second scenario: Robustness performances 

Regarding the robustness of the controller against external 

disturbances such as load torque variations, two tests were 

carried out to properly evaluate its robustness. The first test 

involves varying the torque in an increasing manner, from 2 

Nm to 4 Nm. Figure 16 shows that the motor speed closely 

follows the desired value of 100 rad/s, with a downward 

deviation of about 20% from 100 rad/s, which is expected 
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during a torque increase. However, the speed returns to its 

reference value after only 1.8 seconds, which sufficiently 

demonstrates the effectiveness of the controller in handling 

torque variations. Figure 17 shows that the speed error is 

eliminated. The voltage generated by the controller is 

illustrated in Figure 18, where it can be seen that the motor 

supply voltage increases from approximately 205.7V to 

255.5V as the load torque varies from 2 Nm to 4 Nm. These 

measurements were taken under a variable load torque 

increasing from 2 Nm to 4 Nm, as shown in Figure 19. 

Figure 15. Load condition applied to the motor 

Figure 16. Variations in motor speed as load torque increases 

Figure 17. Speed error during load torque variation and growth 

Regarding the second robustness test, it consists of varying 

the load torque in a decreasing manner, from 4 Nm to 2 Nm, 

in order to observe the response of the controller-motor system. 

Figure 20 shows that the motor speed perfectly follows the 

desired value of 100 rad/s, with an overshoot of about 20% 

relative to 100 rad/s, which is logical when the load torque 

decreases. However, the motor returns to its reference speed 

after only 1.6 seconds, which sufficiently demonstrates the 

effectiveness of this controller in handling torque variations. 

Figure 21 shows that the speed error cancels out. The voltage 

generated by the controller is illustrated in Figure 22, where it 

can be seen that the motor supply voltage drops from 

approximately 255.5 V to 205.7 V as the load torque decreases 

from 4 Nm to 2 Nm. These measurements were taken under a 

decreasing variable load torque from 4 Nm to 2 Nm, as shown 

in Figure 23. These two robustness tests demonstrate the 

reliability and the advantages of using reinforcement learning-

based agents employing the Twin Delayed Deep Deterministic 

Policy Gradient algorithm in the regulation and control of 

brushless motors. To further evaluate the robustness of the 

TD3-based reinforcement learning controller, Figure 24 

illustrates its resilience against sudden and rapid load torque 

disturbances ranging between 0 N.m, 1 N.m, and 2 N.m 

showed in the Figure 25. The controller maintains a high-

performance response with ripple limited between 20% and 

30%, and a response time ranging from 0.5 s to 1.8 s. 

Figure 18. Controller output voltage as load torque increases 

Figure 19. Increasing load condition applied to the motor 

Figure 20. Variations in motor speed as load torque 

decreases 
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Figure 21. Speed error when varying and decreasing load 

torque 

Figure 22. Controller output voltage as load torque decreases 

Figure 23. Decreasing load condition applied to the motor 

Figure 24. Speed response to load torque variations 

As part of the evaluation and enhancement of the approach 

studied in this article, which focuses on speed regulation of a 

BLDC motor using a Reinforcement Learning-based 

controller (TD3 algorithm), this section presents a 

comparative study between the RL controller and two 

conventional controllers: PID and Fuzzy Logic. The 

comparison is based on four key criteria: robustness to 

disturbances, real-time adaptation capability, design 

complexity, and maintenance requirements. It is worth noting 

that the performance of the RL-based controller, as 

demonstrated in this work, could be further improved with a 

more powerful PC and CPU, since the approach requires a 

significant training time. The results of this comparative 

analysis are summarized in the following Table 3. 

Figure 25. The variation in load torque applied to the motor 

Table 3. Comparison table between the three controllers 

Criterion PID 
Fuzzy 

Logic 
RL Based TD3 

Robustness to 

disturbances 
Average Good Excellent 

Real-time 

adaptation 
No Partial 

Yes (self-

adjustment 

through 

continuous 

learning) 

Design 

complexity 

Low (gain 

tuning) 

Medium 

(rule base to 

be defined) 

High (initial 

training 

required) 

Maintenance 

Regular 

manual 

tuning 

Rule 

updates 

possible 

Self-adaptation, 

no manual 

retuning 

required 

6. CONCLUSIONS

This article aims to study and simulate the development of 

a controller based on machine learning, specifically using 

reinforcement learning, built upon the Twin Delayed Deep 

Deterministic Policy Gradient (TD3) algorithm for the control 

of a brushless motor. The results clearly demonstrate the 

performance in terms of tracking the motor speed set as a 

reference, as well as the robustness in maintaining this 

tracking despite external constraints, such as a variable load 

torque. This article also confirms the relevance of using AI-

based controllers, particularly reinforcement learning, in the 

field of electric motor control, especially in the automotive 

sector. The next steps, as future perspectives, include 

experimentally validating this RL-based control approach in 

the laboratory and applying it to both synchronous and 
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asynchronous motors to better highlight the potential of this 

method for nonlinear systems. Comparisons with other 

controllers such as ANN, ANFIS, Fuzzy Logic Controllers, 

and the PID controller are also planned. 
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