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This paper presents a Convolution Neural Network-Long Short Term Memory (CNN-
LSTM) network architecture technique for defect diagnosis of squirrel cage induction 
motors. The CNN-LSTM strategy uses LSTM's ability to represent sequential data and 
CNN's ability to extract spatial features. The process involves gathering and preprocessing 
motor sensor data, processing it as 1D representations, and extracting spatial 
characteristics. CNN layers identify patterns in the data, while an LSTM network captures 
dependencies temporarily within feature sequences. The CNN-LSTM model classifies 
motor condition into fault categories or normal functioning. Extensive experimentation is 
conducted for assessing effectiveness of the CNN-LSTM technique, with the accuracy 
highest of 90.6% compared with technique existing. This method provides a reliable and 
effective method for defect diagnosis in industrial applications.  
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1. INTRODUCTION

Nikola Tesla and Galileo Ferraris contributed to the
development of squirrel-cage induction motors in the late 19th 
century, marking a turning point in electrical engineering. 
These motors, patented in 1888, were crucial in the Second 
Industrial Revolution, supplying energy to machinery like 
conveyor belts and pumps [1]. Their simplicity, dependability, 
and efficiency influenced automation and factory productivity 
[2]. The motors' operations rely on electromagnetic induction 
principles and are used in different applications of industries, 
which include pumps, conveyor belts, and manufacturing 
equipment. 

Squirrel cage induction motors are increasingly used in 
industrial settings due to their durability, high starting torque, 
and resilience in harsh industrial environments [3]. Essential 
in production line elements, petrochemical, mining, Heating, 
Ventilation, and Air Conditioning (HVAC), irrigation 
systems, water treatment plants, and electric trains and trams. 
However, they are susceptible to defects due to factors like 
vibration, temperature, current, acoustic noise, speed, voltage, 
and humidity [4]. To ensure their longevity, proactive 
monitoring, routine maintenance, and environmental 
considerations are crucial [5]. In recent years, deep learning-
based fault identification has become an exciting field of 
study. Because of its complex structure, the deep learning 
(DL) algorithm can understand a wide data range associated
with various levels of abstraction [6]. By independently
extracting several signal features from, deep learning
overcomes the difficulties of ML classifiers. Convolution
Neural Network (CNN), deep neural networks, recurrent
neural networks (RNN), deep Boltzmann machines, and

stacked auto encoders (SAE) are DL methods examples. In 
fields like pattern recognition, human language understanding, 
picture analysis, and machine malfunction detection, DL has 
made major commitments [7]. Researchers in reference [8] 
have looked into the usage of STFT and deep learning to 
bearing defect diagnosis. A one-dimensional CNN algorithm 
is been suggested by researchers [9] for the identification of 
mechanical faults. A deep CNN algorithm is been used for 
identifying problems based on images created from 
unprocessed data using time-frequency representation [10].  

Lee et al. [11] have used the CNN network for detecting 
broken bars and bearing problems. A number of deep learning 
techniques, which include DBM, SAE, and Deep Boltzmann 
Machine, are used to detect bearing failures. The authors in 
their work have published a CNN framework for identifying 
bearing defects using the envelope ordering spectrum from 
vibration signals [12]. Pandarakone et al. [13] suggested an 
anomaly diagnosis method using CNN and the Fast Fourier 
Transformation to detect bearing issues in induction motors. 
The authors proposed a CNN and inductive Wavelet transform 
method for detecting induction motor bearing failure [14]. In 
order to investigate the identification of bearing irregularities, 
Li et al. [15] employed a CNN model, the rapid Fourier 
Transformation analysis of vibration, and the root mean square 
results from the rapid Fourier transform computation.  

Scientists examined the utilization of the CNN network and 
STFT of signals from vibration for fault identification in 
machines [16]. An approach for categorizing mechanical 
breakdowns utilizing CNN-based hidden Markov models was 
put out by Wang et al. [17]. Researchers suggested a 
hierarchical CNN to recognize various rolling bearings failure 
conditions [18]. With the aid of a hierarchical adaptable The 
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CNN network approach, Guo et al. [19] have proposed a 
bearing anomaly identification methodology. 

Because of their ease of use and interpretability, traditional 
diagnostic techniques like the Fast Fourier Transform (FFT), 
Short-Time Fourier Transform (STFT), and Support Vector 
Machines (SVM) algorithms were used in the identification of 
motor faults. While STFT gives restricted time-frequency 
resolution because of its set window size, FFT delivers 
frequency-domain analysis but lacks temporal localization. 
Without domain-specific feature engineering, SVMs have 
trouble capturing complicated feature interactions, despite 
their effectiveness in linear separability [20]. 

On another hand, due to automatically extract abstract and 
hierarchical features from unprocessed sensor data from deep 
learning methods, they provide notable performance gains, 
especially when it comes to CNNs and RNNs. For instance, a 
comparison study by the researchers in their work, showed that 
a CNN model obtained over 96% accuracy on the same 
dataset, whereas SVM only achieved 85% classification 
accuracy in noisy settings [21]. Similarly, STFT-based 
techniques demonstrated a 78% detection rate under varied 
load conditions, whereas Long Short-Term Memory (LSTM) 
networks attained an accuracy of up to 94%. The better defect 
recognition capabilities, and resilience are amply 
demonstrated by these quantifiable differences, particularly 
when included with Industrial IoT (IIoT) frameworks. Table 1 
represents the comparison of various motor fault detection 
methods. 

Table 1. Quantitative comparison of traditional diagnostic 
methods and learning techniques for fault detection of motor 

[21] 

Method Accuracy
under Noise 

Accuracy 
under Load 
Variation 

Feature 
Engineering 

Required 
FFT ~75% ~68% Yes 

STFT ~78% ~72% Yes 
SVM ~85% ~80% Yes 
CNN ~96% ~92% No 

LSTM ~94% ~90% No 

The study proposes a hybrid method combining LSTM 
networks and CNNs to accurately diagnose faults in induction 
motors. The method unifies multi-modal sensor data, 
including vibration, temperature, current, sound, speed, and 
voltage measurements, allowing for a comprehensive 
examination of motor health. The CNN-LSTM model can 
identify defects early, allowing for preventative maintenance 
procedures. This innovative approach improves equipment 
performance and reduces downtime, making it a valuable tool 
for industrial machinery maintenance and defect finding.  

2. LITERATURE WORK

This study proposes a hybrid CNN-MLPAM model for
identifying motor malfunctions using multiple sensors. It uses 
attention mechanisms and Fast Fourier Transform to analyze 
signals, identifying essential information through sound 
features and time-frequency images. The model outperforms 
traditional vibration-based approaches, but lacks exploration 
of fault mechanisms [21]. 

The study focuses on detecting and isolating stator and rotor 
winding issues in squirrel-cage induction motor structures, 

improving the security and reliability of China Railway High-
speed trains. 

This research proposes a technique to analyze motor current 
data for diagnosing bearing issues in induction motors. Using 
statistical attributes, genetic algorithms, and machine learning 
models, the technique improves accuracy and simplifies 
computation. The results show that the proposed approach is 
suitable for fault diagnosis in IM bearings, requiring more 
information than direct signals [22]. 

This article uses machine learning to identify 
demagnetization faults in PMSM drive systems, analyzing 
frequency and time components using STFT. It compares k-
nearest neighbors and multilayer perceptron models, focusing 
on individual elements' impact on model performance [23]. 

This study proposes a novel approach for detecting and 
diagnosing issues in permanent magnet synchronous motors 
(PMSM) using stator phase currents. It integrates VMD, 
Hilbert-Huang transform, and a convolutional neural network 
to analyze current signals, detect faults, and classify motor 
malfunctions [24]. 

This article recommends using a one-dimensional 
convolutional neural network for detecting motor 
malfunctions in PMSM. This model uses weak supervision 
and features to assess motor strength and electrical signals, 
identifying causes of issues like speed, load variations, and 
eccentricity. The approach outperforms traditional machine 
learning techniques but has significant costs [25]. 

3. PROBLEM STATEMENT

The complex issue of guaranteeing the steady and effective
performance of squirrel cage induction motors in the diverse 
range of industrial applications is the current problem [26]. In 
industrial operations, motors are essential, but flaws such 
electrical anomalies, unbalance, and bearing wear can result in 
expensive downtime, equipment damage, and production 
delays [27]. With an emphasis on precise problem 
identification and early fault detection, this project attempts to 
create an advanced defect detection system for industrial 
squirrel cage induction motors. It places a strong emphasis on 
upholding operational uptime, cutting maintenance expenses, 
and real-time monitoring.  

In order to identify more serious issues, the system analyzes 
sensor data both geographically and temporally using CNNs 
and LSTM networks. It is resilient, able to handle noise and 
disruptions in industrial settings, and adjustable to different 
motor types and configurations. The optimal utilization of 
sensor data, which is routed through the neural network 
architecture for the optimum feature extraction and sequence 
modeling, is essential to the system's success in the search for 
data-driven insights. Computational efficiency is a critical 
component that guarantees the system can manage the 
continuous deluge of data generated by the requirements of 
real-time monitoring without putting undue strain on its 
processing capacity. Ultimately, the primary goal is simple: to 
create a fault detection system that is excellent at accurately 
identifying and classifying motor faults while simultaneously 
giving industrial operators timely and practical insights. This 
technology serves as a sentinel in the ever-evolving realm of 
industrial applications, guaranteeing the lifetime, 
dependability, and efficiency of squirrel cage induction 
motors. Its success could lead to enhanced production 
processes, cost savings, and increased industrial resilience in 
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the face of complex and dynamic difficulties in the industrial 
process. 

4. OUTLINE OF THE PROPOSED MECHANISM

The suggested methodology is a systematic and
meticulously planned process for the efficient fault diagnosis 
of squirrel cage induction motors in industrial applications 
using a CNN-LSTM approach. It begins with the gathering of 
sensor data from these important motors in industrial settings, 
which includes measurements of vibration, voltage, current, 
and temperature. Following the addition of annotations, this 

data is further enhanced, allowing for the classification of 
various motor running conditions, including both normal 
states and numerous fault scenarios, such as bearing wear, 
imbalance, and electrical anomalies. The innovative 
application of Convolutional Neural Networks (CNNs) for 
spatial feature extraction forms the basis of the methodology. 
The sensor data is processed as 1D representations in this 
stage, similar to spectrograms or time-domain signal profiles, 
enabling the CNN to independently identify and extract useful 
spatial characteristics from the information. After doing a 
geographic analysis, the task is handed off to LSTM networks, 
which are built to understand temporal connections within 
spatial feature sequences.  

Figure 1. MQTT-based IIoT communication architecture for predictive motor maintenance 

The suggested system's process is depicted in Figure 1. The 
next phases involve the training and validation of the model, 
which requires splitting the dataset into discrete sets. The 
training set is used to meticulously train the CNN-LSTM 
model, and continuous validation ensures that the hyper 
parameters are changed as necessary. Depending on the 
particular diagnostic goal, either a classification layer that 
allows for the multi-class classification of motor states or an 
anomaly detection layer that allows for the identification of 
deviations from conventional operational behavior complete 
the model design. Throughout the evaluation process, the 
model's performance is carefully assessed using metrics such 
as accuracy, precision, recall, and area under the ROC curve 
(AUC) to ascertain its effectiveness. Motivated by the influx 
of fresh data, a monthly maintenance and retraining program 
is implemented to sustain the model's ongoing effectiveness. 
This iterative process guarantees that the model may be 
modified to adapt to evolving motor conditions, enhancing 
motor dependability, reducing downtime, and simplifying 
industrial processes. This proposed methodology offers a 
thorough and efficient solution for industrial applications by 
utilizing the complementary strengths of CNNs and LSTMs to 
tackle the challenging issue of defect detection in squirrel cage 
induction motors. 

4.1 Data collection and transmission 

The ESP8266 microcontroller module was used to collect 
and analyze data from squirrel cage motor sensors, including 

vibration, temperature, current, acoustics, speed, voltage, and 
humidity. This extensive sensor data was efficiently and 
effectively transmitted according to the chosen 
communication protocol, MQTT, making sure it arrived at its 
destination safely and in real-time. Once transferred, the data 
was safely housed on the Raylog Cloud platform. It is present 
here pending additional examination and interpretation. This 
collection of sensor data is a useful tool for in-depth research 
and understanding of the motor's operation. Engineers and 
analysts can gain access to a plethora of knowledge by 
utilising the data kept on the Raylog Cloud, allowing them to 
forecast probable defects, improve overall reliability, and 
optimise the motor's performance. 1000 labeled samples 
representing a range of motor operating conditions, including 
both normal and fault scenarios (e.g., bearing defects, 
unbalance, misalignment) comprise the dataset used for this 
study. Sensors that measured vibration, temperature, current, 
voltage, speed, humidity, and acoustic signals were used to 
gather the data.  

The dataset was divided as follows for the purpose of 
developing the model: 
 700 training samples (70%)
 For validation, 150 samples (15%)
 For testing, 150 samples (15%)
In order to evaluate the model's generalization performance,

this division made sure it was trained efficiently and tested on 
unseen data. Despite its small size, the dataset is used as a 
controlled experimental benchmark to verify the CNN-LSTM 
framework that has been suggested for predictive motor fault 
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detection. Table 2 shows 10 sample datasets with several motor conditions-related metrics. 
 

Table 2. Data description 
 

Label Vibration Temperature Current Acoustic Speed Voltage Humidity Condition 
0 1.26 60 19.01 69 1468 385 59 Normal 
1 2.98 61 19.78 69 1542 405 52 Normal 
2 3.40 63 20.84 66 1438 402 58 Fault 
3 3.57 77 19.01 66 1497 383 60 Normal 
4 5.18 71 21.10 62 1474 395 52 Fault 
5 1.84 59 18.50 70 1475 388 55 Normal 
6 4.22 72 21.42 67 1428 397 60 Fault 
7 3.01 69 20.01 65 1459 390 57 Fault 
8 1.92 60 18.84 68 1490 386 56 Normal 
9 5.09 75 22.05 63 1410 398 61 Fault 

4.1.1 MQTT-based communication architecture 
Because of its lightweight architecture and applicability for 

real-time industrial applications, the Message Queuing 
Telemetry Transport (MQTT) protocol is used in the proposed 
IIoT system.  

In the publish-subscribe architecture of the system, edge 
sensor nodes act as MQTT clients, transmitting motor 
condition parameters (e.g., vibration, temperature, current, 
acoustics, speed, voltage, and humidity) to a MQTT broker. 
The broker is hosted on either a local edge server or cloud-
based solutions such as Raylog Cloud.  

Each sensor node is connected to an ESP8266 
microcontroller, which gathers sensor data and publishes it to 
certain MQTT topics. The subscriber modules, which consist 
of an edge analytics engine and a cloud-based deep learning 
inference system, receive this data in real time. This 
architecture supports Quality of Service (QoS) level 1, which 
ensures at-least-once message delivery, improving reliability 
in noisy industrial environments. 

 
4.1.2 Preprocessing of data 

Z-score data normalization is a crucial preprocessing 
technique used on squirrel cage motor sensor data to provide 
uniformity and comparability to the diverse range of sensor 
readings. The effective processing and use of data from 
multiple sensors, such as vibration, temperature, and current, 
are made possible by this technology. First, the mean and 
standard deviation are computed for every sensor variable 
throughout the whole dataset. Z-scores are then computed for 
each individual data point by deducting the mean and dividing 
by the standard deviation. The Z-scores that are produced 
display the standard deviation of a data point's distance from 
the mean. The data distribution is essentially reshaped by this 
transformation, which centers it around a mean of 0 and scales 
it to have a standard deviation of 1. The following equation 
determines the Z-score (Z) for a given data point (X): 

 
𝑍𝑍 = 𝑋𝑋−𝜇𝜇

𝜎𝜎
  (1) 

 
where, μ is the standard deviation from the mean and is the 
mean (average); σ is the standard scores (also known as z 
scores) of the samples. The analysis is initially prevented from 
being dominated by variables with greater numerical ranges 
by removing discrepancies in characteristic scales. 
Furthermore, Z-scores could be utilised to evaluate the 
standard deviations by which each data point deviates from the 
mean. Understanding the meaning of sensor readings is made 
much easier with the help of this knowledge. In conclusion, Z-
score normalisation opens the door for thorough and 

perceptive analysis of squirrel cage motor sensor data, 
facilitating industrial tasks including fault identification, 
proactive maintenance, and performance enhancement. 

To guarantee data quality and model reliability, the 
preprocessing pipeline consists of a number of crucial steps in 
addition to Z-score normalization, which centers and scales the 
input features to standardize them. 

Denoising: Because of mechanical disruptions or 
electromagnetic interference, sensor signals—particularly 
vibration and acoustic data—frequently contains high-
frequency noise. This was lessened by applying a low-pass 
Butterworth filter, which eliminated noise above 100 Hz 
without changing the pertinent fault signatures. 

Sampling rate alignment: To guarantee temporal 
synchronization, all signals were resampled to a consistent rate 
of 1 kHz because various sensors (such as temperature, 
current, and acoustic) function at various sampling 
frequencies. For precise multimodal feature fusion, 
particularly in time-series models like LSTM, this alignment 
is essential. 

Outlier handling: To maintain continuity without skewing 
the model, data points that deviated more than three standard 
deviations from the mean were identified as possible outliers 
and handled via interpolation. 

These preprocessing enhancements increase the CNN-
LSTM architecture's input quality and enable reliable feature 
extraction from noisy industrial settings. Sensor data is 
transmitted at speeds optimized for accuracy and bandwidth: 

Vibration and current: once every second. 
Temperature: once every 5 seconds. 
This design provides the best possible balance between 

energy consumption, bandwidth efficiency, and 
responsiveness, especially when wireless connectivity is 
implemented. The capability of the MQTT broker to buffer 
messages during short-term network failures adds robustness. 

 
4.1.3 Actual deployment configuration 

The proposed architecture was tested on a three-phase 
squirrel cage induction motor under different mechanical 
stress conditions. Temperature sensors (Resistance 
Temperature Detector), vibration sensors (MEMS-based), 
ultrasonic sensors (Acoustic), and current transducers (Hall 
Effect) were all interfaced with the ESP8266 module. These 
sensor nodes used a Wi-Fi-based MQTT network to transmit 
data to the Raylog cloud. The average end-to-end 
communication delay was found to be less than 100 
milliseconds, and more than 97% of messages were sent in real 
time. The implementation verified the system's ability to 
deliver real-time problem identification and fast fault 
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notifications under a range of operational situations. 

4.2 Convolutional neural network based feature extraction 

CNNs revolutionize computer vision and image analysis by 
mimicking human visual system's ability to identify patterns, 
objects, and features in images [28]. This study explores the 
complex operations and significant consequences of CNNs in 
various fields such as image classification, object 
identification, facial recognition, medical image analysis, and 
autonomous vehicle navigation [29]. CNNs are powerful tools 
for studying time series data, aiding in finance, speech 
recognition, and healthcare, and can be enhanced with hybrid 
designs. 

Squirrel cage induction motor fault diagnosis using CNNs 
prevents costly breakdowns and production downtime, 
improving operational effectiveness and motor longevity [30]. 

In order to effectively extract spatial and temporal features 
from multivariate sensor data, the CNN-LSTM model was 
proposed. As the first feature extractors, the convolutional 
layers employ 64 filters with kernel size 3 and stride 1 in the 
first layer, and 128 filters in the second layer, both of which 
have kernel size 3 and stride 1. In both layers, the ReLU 
activation function is utilized. To minimize spatial dimensions 
and manage overfitting, a max pooling layer is used, with a 
pool size of two and a stride of two. To improve 
generalization, the CNN block's output is sent to an LSTM 
layer made up of 100 units with a 0.2 dropout rate. For the 
purpose of temporal learning, the LSTM layer is set up to 
return sequences. A fully connected dense layer with 64 
neurons that have been activated by ReLU comes next, 
followed by a final softmax output layer with two units that 
represent fault and normal conditions. Grid search was used to 
optimize hyper-parameters in order to balance the small 
dataset size with model complexity. 

4.3 Long Short-Term Memory 

A network structure called long short - term was created to 
address the persistent issues with gradients explosion and 
gradients vanishing in recurrent neural network. It has an own 
memory which is capable to make forecast that is reliable 
reasonably. Hence, it’s been utilised frequently in textual 
assessment, emotional analytics and identification of speech. 
Recently in extraction of polycyclic aromatic hydrocarbon, 
this method was utilised. Typically, in RNN, their exist one 
module for recurring and which has a structure of straight 
forward. In the tanh layer, four of LSTMs components work 
interactively and resemble as regular RNNs components. 
Three components of LSTM cell are output gate, input gate, 
and forget gate. The steps in the LSTM computation are as 
described in the following: 

•The forget gate receives the value yields of the recent
instant and values of present input time, which then calculated 
for producing the output result of forget gate's, as presented in 
the below equation: 

𝐹𝐹𝑔𝑔 = 𝜎𝜎(𝑙𝑙𝐹𝐹 . [𝑝𝑝𝑛𝑛−1, 𝑦𝑦𝑛𝑛] + 𝑎𝑎𝐹𝐹) (2) 

where, parameter range of 𝐹𝐹𝑔𝑔 was (0,1), 𝑎𝑎𝐹𝐹 is the forget gate's 
biases, 𝑙𝑙𝐹𝐹 mass of forget gate's, 𝑝𝑝𝑛𝑛−1 is the result of the most 
recent occurrence and 𝑦𝑦𝑛𝑛 is the present time's input values. 

•Input gates receives final output from the previous period
and intake values of present time, that are calculated to 

produce the values of yield and potential cell condition of 
intake gate, as indicated in the preceding equations: 

𝐼𝐼𝑔𝑔 = 𝜎𝜎(𝑙𝑙𝐼𝐼 . [𝑝𝑝𝑛𝑛−1, 𝑦𝑦𝑛𝑛] + 𝑎𝑎𝐼𝐼) (3) 

�̀�𝑑𝑛𝑛 = tanh(𝑙𝑙𝑑𝑑 . [𝑝𝑝𝑛𝑛−1, 𝑦𝑦𝑛𝑛] + 𝑎𝑎𝑑𝑑) (4) 

where, the 𝑙𝑙𝐼𝐼 is input gate's mass, 𝑙𝑙𝑑𝑑  is proposed input gate's 
value, 𝑎𝑎𝐼𝐼  is input gate's biasing, and 𝑎𝑎𝑑𝑑  is proposed input 
gate's biases, and 𝐼𝐼𝑔𝑔 parameter ranges are (0,1). 

•As mentioned below do change the present unit.

𝑑𝑑𝑛𝑛 = 𝐹𝐹𝑔𝑔 ∗ 𝑑𝑑𝑛𝑛−1 + 𝐼𝐼𝑔𝑔 ∗ �̀�𝑑𝑛𝑛 (5) 

where, 𝑑𝑑𝑛𝑛's values fall possible in the limit (0, 1). 
•At time n, 𝑝𝑝𝑛𝑛−1 and 𝑦𝑦𝑛𝑛 are received at output gates. Also,

outcome 𝑂𝑂𝑔𝑔is defined as follows: 

𝑂𝑂𝑔𝑔 = 𝜎𝜎(𝑙𝑙𝑂𝑂 . [𝑝𝑝𝑛𝑛−1, 𝑦𝑦𝑛𝑛] + 𝑎𝑎𝑂𝑂) (6) 

where, 𝑎𝑎𝑂𝑂  is biases of yield gate's, 𝑙𝑙𝑂𝑂  is mass of output 
gate's, 𝑂𝑂𝑔𝑔 's possible value is fall within limit (0, 1). 

•The following equation illustrates the outcome computing
of output nodes and LSTMs final output cell yield condition. 

𝑝𝑝𝑛𝑛 = tanh(𝑑𝑑𝑛𝑛) ∗ 𝑂𝑂𝑔𝑔 (7) 

4.4 Efficient fault diagnosis with CNN-LSTM fusion 

A hybrid CNN-LSTM approach greatly improves squirrel 
cage induction motor fault detection. This technique combines 
LSTM's prowess in identifying temporal dependencies with 
CNN's capacity to extract spatial features from sensor data, 
including vibration, temperature, current, voltage, and 
acoustics. Prior to entering the model, raw sensor signals are 
preprocessed (noise filtered and normalized). A rich 
multimodal feature representation is produced by CNN layers 
identifying local patterns and LSTM layers learning time-
based variations. Through differentiation from typical 
behavior, the trained model correctly classifies fault types, 
including misalignment, unbalance, and bearing damage. The 
model increases operational reliability, prolongs motor life, 
and reduces unscheduled downtime when integrated into a 
real-time monitoring system. The model's basic structure, 
which includes input layers, one-dimensional convolutional 
layers, pooling layers, LSTM hidden layers, and fully 
connected layers, is depicted in Figure 2. 

5. RESULTS AND DISCUSSION

The study's conclusion was accomplished through the
implementation of the suggested technique into practice with 
Python software with the intention of evaluating how well it 
worked for diagnosing motor faults. The findings of the study, 
which used performance metrics, conclusively show that the 
suggested method outperforms the already employed 
techniques in terms of accuracy and dependability. This 
accomplishment highlights the usefulness of the suggested 
method in improving the accuracy and effectiveness of motor 
fault diagnosis, making a significant contribution to the fields 
of industrial maintenance and machinery reliability. 
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Figure 2. Architecture of the proposed hybrid deep learning model for motor fault diagnosis 
 
5.1 Experimental outcome 

 
Visualizing important characteristics of squirrel cage 

induction motors, such as vibration (represented as a time-
series graph showing amplitude variations), temperature 
(represented as a line graph showing temperature fluctuations 
over time), current (represented similarly to temperature, with 
current values on the y-axis), acoustic data (typically 
visualised as a spectrogram revealing intensity across 
frequency ranges), and motor speed (plotted as a line graph 
showing RPM or Hz variation). These graphical depictions act 
as useful diagnostic tools, enabling engineers and operators to 
quickly spot anomalies, trends, or inconsistencies in motor 
behaviors. This enables prompt maintenance and ensures the 
dependability of industrial machinery. 

The aforementioned charts would make it easier to 
comprehend how the counts of particular events or 
occurrences (such as vibrations, temperature spikes, current 
anomalies, acoustic events, speed variations, or voltage 
fluctuations) correlate with the associated parameter values. 
This could have implications for the health and performance 
of the motor system. Figure 3 displays a graph of the squirrel 
cage motor's count in relation to vibration, temperature, 
current, acoustic speed, and voltage. 

 

 
 

Figure 3. Graphical representation of vibration, temperature, 
current, acoustic, speed and voltage 

5.1.1 Fault diagnosis assessment 
Vibration, Temperature, Current, Acoustic, Speed, and 

Voltage are key metrics that must be thoroughly analysed and 
plotted against two different motor situations, "Normal" and 
"Fault." These representations are essential for assessing how 
well motor fault detection methods work. Engineers can 
identify anomalous vibration patterns that point to defects by 
visualising vibration data. Temperature charts reveal 
temperature changes and reveal overheating problems that are 
frequently linked to flaws. Electrical current changes are 
highlighted in current graphs, indicating probable motor 
abnormalities. Visualisations of acoustic intensity aid in the 
detection of anomalous noise patterns linked to problems. 
Speed charts show variations in motor rotation speed 
associated with different fault types. Visualising voltage data 
could illustrate voltage variations associated with motor 
problems. Figure 4 illustrates how graphical evaluations 
enable operators and maintenance staff to quickly identify and 
address motor defects, improving motor reliability, lowering 
downtime, and optimising industrial operations. 
 
5.1.2 Heat map 

In order to visualise the correlations among several 
variables, a heatmap could be helpful. Although humidity and 
condition are categorical or binary variables and do not lend 
themselves well to this type of graphical representation, it is 
crucial to highlight that they are not often represented in a 
heatmap. However, you can make a heatmap to see the 
connections between the other continuous variables in your 
dataset (such as vibration, temperature, current, acoustic 
speed, and voltage).  

To see how different parameters of a squirrel cage induction 
motor interact with one another and correlate with one another, 
a heatmap is created. The variables are Motor Speed (in RPM 
or Hz), Acoustic Intensity (across frequency ranges), 
Vibration (measured in mm/s or g), Temperature (in degrees 
Celsius or Fahrenheit), Current (in amperes), and Voltage (in 
volts). Each heatmap cell indicates the correlation coefficient 
between two parameters, with the intensity and direction of the 
association denoted by a colour scale. Warm hues like red or 
orange denote positive correlations, indicating that the 
tendency is for the two parameters to rise together as one 
increase. In contrast, cool hues like blue signify negative 
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correlations, which suggests that as one parameter rises, the 
other tends to fall. Such a heatmap offers insights into potential 
cause-and-effect linkages and highlights areas of interest for 
additional research or investigation The Heatmap for the 
suggested technique is displayed in Figure 5. 

 
5.1.3 Training accuracy and loss 

The model's ability to correctly categorise cases in the 
training dataset is how well it performs in terms of failure 
identification for motors.  

It calculates the percentage of both normal and problematic 
motor circumstances that the model is able to identify during 
training. A high training accuracy indicates that the model is 
effectively learning to distinguish between healthy and 
unhealthy motor behavior using the data at hand. However, 
high training accuracy by itself does not guarantee that the 
model will generalize well to novel motor scenarios or data, 
and over-fitting needs to be closely monitored. Training loss, 
sometimes expressed as a loss function or cost function, is the 

discrepancy between the model's predictions and the actual 
fault labels or conditions in the training dataset.  

During training, the model iteratively adjusts its internal 
parameters to lessen this loss. For fault detection; the loss 
function calculates the difference between the actual motor 
state and the expected motor state, which can be either normal 
or defective. 

In order to evaluate the development of your defect 
detection model during training, it is crucial to keep track of 
both training loss and accuracy. To evaluate how successfully 
the model generalises to novel, unforeseen motor 
circumstances or data, it is necessary to combine these 
measures with validation metrics, like loss validation and 
accuracy. Additionally, to guarantee the model's dependability 
and to identify potential problems like overfitting or 
underfitting, you should think about utilising approaches like 
cross-validation and monitoring learning curves. Figure 6 
displays the suggested model's training accuracy and loss. 

 
 

 

 
 

Figure 4. Fault diagnosis in motor with different parameters 
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Figure 5. Heat map 

A batch size of 32 was used to train the model and 
categorical cross-entropy loss over 200 epochs. To improve 
generalization and lessen overfitting, a five-fold cross-
validation approach was employed. To maximize training 
efficiency, a dynamic learning rate scheduler and early 
stopping were used. 

Figure 6. Training accuracy and loss 

5.1.4 Testing accuracy and loss 
The indicators for testing accuracy and testing loss in Table 

3 combined imply that the fault detection model performs 
pretty well on the testing dataset. The model's predictions are 
typically close to the actual fault states, as shown by the 
comparatively low testing loss, and the model's high testing 
accuracy, which emphasises its skill in correctly recognising 
motor faults. These metrics offer insightful evaluations of the 
model's performance in practical fault detection applications. 

Table 3. Testing accuracy and loss 

Metric Ratio (%) 
Testing Loss 0.2991 

Testing Accuracy 0.9060 

Figure 7. Testing accuracy and loss 

The testing loss, also known as the cost function or loss 
function, finds how well the trained defect detection model 
performs when generating predictions on an unrelated testing 
dataset. An average amount of error or disparity among 
model's predictions and the actual fault labels or circumstances 
in the testing dataset is indicated by a testing loss of 0.2991 in 
this case. Better model performance is often shown by lower 
testing loss values, which imply that predictions of model 
match closely the actual fault states in the testing data. The 
percentage of accurate predictions the fault detection model 
made when used on the testing dataset is represented by the 
testing accuracy. In this instance, a testing accuracy of 0.9060 
denotes that roughly 90.60% of the occurrences in the testing 
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dataset had fault circumstances correctly detected by the 
model. The testing accuracy and loss ratio of the proposed 
approach are shown in Figure 7. 

 
5.1.5 ROC curve 

The complete evaluation of a binary classification model, 
particularly in the framework of defect detection in motors, is 
provided by the ROC (Receiver Operating Characteristic) 
curve and an Area Under the Curve (AUC) value of 0.91. The 
True Positive Rate (Sensitivity) vs the False Positive Rate (1-
Specificity) of the ROC curve, which contrasts the model's 
ability to distinguish between healthy and unhealthy motor 
states across different categorization thresholds, graphically 
indicates how well the model performs in this regard. With a 
91% chance of properly prioritising a randomly chosen 
defective motor above a healthy one, the model shows 
exceptional performance in this discriminating test, as 
indicated by its AUC of 0.91. This high AUC value highlights 
the model's durability and highlights its ability to draw solid 
conclusions, demonstrating its efficacy as a tool for motor 
failure identification when precision is crucial. The ROC 
Curve for the proposed approach is shown in Figure 8. 

 

 
 

Figure 8. ROC-curve 
 

5.1.6 Precision-Recall curve 
Figure 9 shows a graphic representation of the Precision-

Recall curve, which is employed to evaluate the effectiveness 
of a binary classification model, especially when working with 
unbalanced datasets or circumstances where one class is more 
important to identify than the other. As the classification 
threshold changes, Precision is plotted on the y-axis and Recall 
(Sensitivity) on the x-axis. Recall quantifies the model's 
capacity to properly identify every occurrence of a positive 
prediction, whereas Precision measures the accuracy of 
positive predictions. This curve demonstrates the trade-off 
between recall and precision as the classification threshold for 
the model changes. Precision measures how well the model 
can recognise motor defects, guaranteeing that when it 
forecasts a fault, it is very likely to be right. Recall, on the other 
hand, measures how well the model can detect all genuine 
motor defects while minimising false negatives. 

The Precision-Recall curve offers a specific evaluation in 
situations like fault detection in motors, where the expense of 
failing to detect a fault (false negatives) or performing 
unneeded maintenance (false positives) might be significant. 
It offers insights on the model's ability to retain high precision 
while making sure that a sizable portion of genuine problems 

is discovered (high recall) by focusing on precision-recall 
trade-offs. The performance of the model as a whole is 
quantified by the area under the Precision-Recall curve (AUC-
PR), with higher values suggesting better precision-recall 
balances. A high AUC-PR indicates that the model can 
reliably identify motor defects in fault detection applications 
while minimizing expensive false alarms, making it a crucial 
tool for assuring motor dependability and operational 
efficiency. 

 

 
 

Figure 9. Precision-Recall curve 
 

5.1.7 Confusion matrices 
A more detailed assessment of misclassification patterns is 

made possible by the confusion matrix, which displays true 
positives, false positives, true negatives, and false negatives 
for every class as shown in Figure 10. This analysis facilitates 
additional model improvement by highlighting the fault 
categories that are most likely to cause confusion. 

 

 
 

Figure 10. Confusion matrix showing CNN-LSTM model 
performance for normal and fault classification 

 
The CNN-LSTM model's confusion matrix, which displays 

its classification performance under both normal and fault 
conditions, is shown here. It helps assess how well the model 
differentiates between normal operation and motor faults by 
providing a visual summary of the number of instances for 
each class that were correctly and incorrectly classified. 

 
5.2 Effectiveness assessment of the proposed approach 

 
Precision: Precision is defined as the proportion of 
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prediction correctly classified as belonging to a class to all 
prediction correctly classified as belonging to a class. Since it 
is sensitive to incorrect classification, precision is in fact a 
crucial factor in TC results. Additionally, incorrect 
categorisation produced less precise findings. 

 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝐹𝐹𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
 (8) 

 
Recall: Recall is defined as the number of predictions that 

were correctly assigned to the class divided by the total 
number of predictions that actually belonged to the class. 

 
𝑅𝑅𝑃𝑃𝑃𝑃𝑎𝑎𝑙𝑙𝑙𝑙 = 𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝+𝐹𝐹𝑁𝑁𝑝𝑝𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
  (9) 

 
5.2.1 Accuracy comparison 

The following Table 4 shows the accuracy obtained in based 
on four different methods. From the table it shows that the 
Proposed (CNN-LSTM) has the better accuracy than other 
three methods and the graphical representation of the 
comparison is shown in Figure 11. 

 
Table 4. Accuracy comparison 

 
Technique Accuracy 

CNN 88 
MLP 81 
SVM 78 

LSTM 83 
Proposed (CNN-LSTM) 90.6 

 
In this comparative analysis of various techniques for a 

specific task, accuracy scores were measured for 
Convolutional Neural Networks (CNN) at 88%, Multilayer 
Perceptron (MLP) at 81%, Support Vector Machine (SVM) at 
78%, Long Short-Term Memory (LSTM) at 83%, and a 
proposed approach combining CNN and LSTM (CNN-LSTM) 
outshining the others with an impressive accuracy rate of 
90.6%. These findings show that, when compared to 
conventional machine learning techniques like MLP and 
SVM, as well as individual neural network architectures like 
CNN and LSTM, the proposed CNN-LSTM methodology 
outperforms in accuracy. 

 

 
 

Figure 11. Accuracy comparison of the suggested approach 
 
5.3 Discussion 

 
The study demonstrates high fault diagnostic accuracy in 

industrial applications by integrating CNNs for spatial feature 
extraction and LSTM networks for temporal analysis. It 
identifies issues early, preventing downtime and equipment 
damage. Real-time monitoring and warning systems are 
included, ensuring maintenance team response. The study's 
generalizability and adaptability make it suitable for various 

industrial configurations and squirrel cage induction motors. 
 
 

6. CONCLUSION AND FUTURE WORK 
 
The CNN-LSTM technique has been shown to be highly 

accurate and efficient in diagnosing faults in squirrel cage 
induction motors in industrial applications. It can distinguish 
between normal motor performance and various fault 
conditions, such as bearing wear, imbalance, and electrical 
problems. This high level of accuracy is crucial in industrial 
settings, where machinery reliability and effectiveness are 
crucial. The model's ability to integrate spatial and temporal 
analysis of sensor data is crucial for capturing subtle spatial 
patterns and complex temporal relationships within the 
motor's operational data. The CNN-LSTM model has the 
potential to increase industrial production and reduce costs 
when used in real-time motor condition monitoring systems. It 
can quickly identify anomalies, enable proactive maintenance 
procedures, and prevent unanticipated shutdowns. This 
proactive approach optimizes manufacturing procedures, 
protecting machinery and boosting overall productivity. 
Regular updates and retraining with fresh data are necessary 
to maintain the high accuracy of the CNN-LSTM model over 
time. This allows the model to adapt to changing operating 
conditions and motor behavior changes, maintaining its 
efficacy in fault diagnostics. In conclusion, the CNN-LSTM 
approach offers an effective and precise solution for defect 
diagnosis in industrial applications, with an accuracy of 
90.6%.  

Apart from the prediction accuracy of the model, its 
practical deployment factors were also taken into account. 
Because of its small size about 2.5 MB, the final CNN-LSTM 
model can be deployed on edge devices with limited resources. 
Real-time fault detection is made possible by an average 
inference time per sample of less than 50 milliseconds. 
Because of the model's small memory footprint and low 
computational complexity, it integrates seamlessly with edge 
computing systems, enabling on-site decision-making 
independent of constant cloud access. This improves 
responsiveness and lowers communication overhead, which 
makes the method ideal for industrial IoT settings where 
dependability and latency are crucial. 

Future studies could explore the approach's ability to handle 
larger datasets and explore edge computing approaches to 
lower processing requirements. Field tests and case studies 
conducted in actual industrial settings would also confirm the 
effectiveness of this strategy in practice. 
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