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This study suggests an Artificial Neural Network (ANN)-based model implemented on a 

Field Programmable Gate Array for real-time sensor data validation. The proposed ANN 

model achieved 96.8% accuracy with a fast training time compared to other Machine 

Learnings (MLs) of about 0:00:01 sec. The Field-Programmable Gate Arrays (FPGA) 

design efficiently processed sensor inputs through parallel computation, ensuring high 

speed, low power, and stable performance. Regression analysis and confusion matrix 

evaluations were measured to prove the performances which confirmed the strong 

predictive accuracy with a regression value near 0.93297. In addition, minimum errors 

were achieved among all other MLs with only 3.2%. The integration of ANN + FPGA 

enabled reliable real-time validation for embedded sensor networks that are utilized for 

time-sensitive applications. Future work would be focused on optimizing ANN parameters 

and exploring hybrid FPGA architectures for improved performance. 
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1. INTRODUCTION

Sensor validation is considered a critical process for many 

industrial applications for healthcare monitoring systems. 

Some conditions such as environmental conditions and aging 

components affected the sensor's accuracy in spite of their 

valuable collected data. Systems need to deal with real-time 

data types with high performances to provide accurate 

decisions to ensure the reliability of sensor data. It refers to 

verifying sensors' accurate output and stability against 

physical parameters regarding any conditions. Enormous 

readings may lead to false conclusions or even system failures. 

For example, in the medical field, inaccurate data that has been 

collected from sensors directly affects the diagnosis process 

which leads in turn to the wrong treatment. In addition, 

industrial systems may lead to unsafe decisions with higher 

costs of the manufacturing process. Sensor validation needs 

mathematical models that assist readers in specifying the 

inconsistencies of reading data which may cause these faults 

in several field types as mentioned by Liu et al. [1]. Sensors 

have several error types that have a direct impact on reading 

such as the calibration, which means that sensors should be 

aligned well with reference values and need to be checked over 

time. Otherwise, these readings will be affected by the wrong 

alignment and lead to degrade resulting in drifting values as 

demonstrated Gano by Gano et al. [2]. Electromagnetic 

interferences also impact its performances, like inaccurate 

reading for some sensors affected by extreme temperature 

conditions as explained by Peng et al. [3]. In the study [4], the 

authors also explained other error types such as electrical noise 

and mechanical vibrations which add noising signals to the 

sensor signals that produce accurate readings as well. Regular 

validation is also necessary due to the aging effect that leads 

to drifting in sensor readings as in the study [5]. The actual 

values could drift due to these error types and impact decision-

making that needs techniques to detect the sensor 

discrepancies. Traditional techniques are available such as 

monitoring its readings over time and specifying outlier 

readings or any other reading deviations from the expected 

behavior. For example, any readings that fall outside the mean 

or standard deviation values of the actual readings should be 

flagged as explained by Seshan et al. [6]. In the study [7], the 

statistical process was applied for monitoring data over time, 

which provides simple detection of any outlier’s values based 

on a predefined threshold value. Some techniques are more 

interested in rule-based approaches to predefine values that 

may deviate from the originally expected readings, which are 

mainly based on the knowledge of a specific domain as 

defined by Jaber [8]. 

Using similar sensors for the same process as reference 

points to compare both readings was considered another 

common method for this validation. This process is applied 

especially when the calibration values are not available or even 

difficult to observe as explained in the studies [9, 10]. in spite 

of some techniques are not suited for real-time reading like the 

manual calibration process, but it was applied based on known 

standards. This approach could be time-consuming or even 

considered a resource-intensive process and cannot be applied 

for real-time readings. Dealing with large-scale systems in 

general makes these traditional techniques suffer from 

limitations. In addition, dealing with real-time reading 

processes or difficult environments introduces the same issues. 

As more utilization of sensors for different applications, 

automated approaches are also needed to provide dynamic and 
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accurate solutions for sensor validation. Machine learning 

(ML) has been used and applied as a powerful model for 

enhancing the accuracy of sensor validation processes but is 

limited in its ability to deal with large volumes of sensor data 

in real time. In addition, ML has another limitation with this 

process by adapting to variations in conditions. ML provides a 

dynamic alternative that may improve sensor validation by 

detecting anomalies and sensor failures before they occur. In 

the field of sensor validation, ML algorithms are utilized to 

analyze data collected from sensors to detect patterns with 

identify any deviations that may indicate sensor failure. By 

learning from these collected historical sensor data and its 

related feedback, it models predict future behavior related to 

these types of sensors making ML an invaluable tool in 

dynamic environments where sensor performance is subject to 

change. Any outliers that may deviate from the original 

behavior could be identified by using ML for anomaly 

detection applications. Based on the study [11], it indicates 

different sensor drifts with faults by applying various types of 

ML. In this article, the authors utilized AutoEncoders to 

compress data first and then reconstruct it. The wrong 

reconstruction process means that sensors indicate an 

anomaly. Some papers also deal with ML but using isolation 

data points that differ significantly from the rest of taken 

dataset as mentioned by Idowu [12]. Some types of ML are 

designed for this purpose based on their ability to classify 

these data depending on a hyperplane that separates the related 

classes as mentioned by Hinojosa-Palafox et al. [13] for the 

SVM technique. ML was applied not only for faulty sensor 

detection but also to reduce the need for manual oversight 

which led to improving efficiency. An impact field for ML is 

in predictive maintenance that could be trained to predict if 

sensors are degraded based on historical data with current 

sensor performance trends. This allows us to address any 

potential issues before leading to costly downtime or even data 

inaccuracies. In the study [14], regression models are utilized 

to analyze these related sensor data over time and to predict 

the behavior of sensors in the future. This process and 

prediction were useful to identify if the sensors need 

replacement or not based on ML results. Indicating upcoming 

failures needs models that deal with time series datasets such 

as LSTM as explained in the study [15], where LSTM is used 

to analyze the sensor sequential data. The identifications of 

sensor failures reduce the cost and provide higher operational 

uptime. In complex sensor networks, multivariate analysis 

helps to improve sensor validation by considering correlations 

between different sensors. ML models, particularly ensemble 

methods like RFT, are used to analyze multivariate sensor data 

with pattern detection across different sensor types. Alignment 

reading of connected sensors in a single network should be 

obtained otherwise; ML is used to compare the related sensor 

data to flag any drift. ML has also the ability to fuse data 

collected from multiple sensors across the network to generate 

a more accurate representation for the desired system that is 

mentioned by Chen et al. [16] for validation process 

enhancements. In the same field of sensor validation ML is 

utilized to validate sensor data by identifying inconsistencies, 

while for COVID-19 risk factor specification, ML is employed 

to analyze the redundancy between various features which rely 

on the ability of ML to process complex datasets that improve 

decision-making processes as in the study [17]. In the study 

[18], RFT has been used to develop high-performance 

prediction systems plus feature minimization to reduce 

unnecessary data dimensions. Both approaches for sensor 

validation and feature minimizations rely on the power of ML 

to manage large while filtering out noise. The common points 

were in focusing on enhancing prediction accuracy by 

optimizing the data input and processing techniques. These 

innovations demonstrated how ML was applied to diverse 

fields to ensure better decision-making with reliable outcomes. 

ML also can provide real-time sensor validation. Traditional 

validation techniques suffer from the volume of data generated 

by modern sensors which are widely used now. ML models 

continuously learn from new data and adjust their predictions 

dynamically which makes ML good matched for 

environments where sensor data changes in a rapid manner 

which is mentioned and explained by Tripathy et al. [19]. 

Online/reinforcement learning enables ML to adapt new 

patterns to improve the validation accuracy through real-time 

datasets. Manufacturing and healthcare are the most common 

industries that have used ML based on sensor validation field 

as explained by Ali et al. [20]. ML has revolutionized the field 

of sensor validation by offering more scalable solutions 

compared to traditional methods. ML is paving the way for 

more reliable sensor networks across various industries as 

explained in the above sections. As sensor technologies 

continue to evolve, the integration of ML will be essential in 

maintaining sensor accuracy, particularly in complex and 

rapidly changing environments. 
 

 

2. DATA DRIVEN ARCHITECTURE FOR SENSOR 

VALIDATION 
 

The shift towards data-driven approaches in sensor 

validation has been fueled by advancements in ML in addition 

to big data analytics. Traditional sensor validation systems 

often rely on rule-based algorithms and predefined thresholds. 

Which fail to handle the growing complexity of sensor 

networks that currently occur increasingly. On the other hand, 

this architecture uses data as the primary source for decision-

making to continuously validate sensor data in real time. It 

consists of several key components: data 

collection/preprocessing if needed followed by ML training 

then the real-time validation takes the list step and finally 

feedback mechanisms. These components work together to 

ensure that sensor data is continuously validated without the 

need for manual supervision. The first step is to collect data 

from sensors which is usually in real-time form. These data 

would be typically collected based on platforms or edge 

devices to gather from various sensor nodes in a specific 

network as mentioned by Patil et al. [21]. Preprocessing for the 

collected data will begin to remove noise and complete the 

missing values to provide consistency through filtering and 

different calculations such as normalization. This step was 

crucial to demonstrate that only high-quality data will be 

driven into the ML for the validation process as explained by 

Villegas-Ch et al. [22]. The normal behavior would be 

identified among the anomalous across various sensor types 

using the historical data and applying ML as defined and used 

in the study [23]. When ML has been trained, it will be 

deployed for real-time sensor validation by checking the 

incoming sensor data for any anomalous readings. This real-

time validation is important for ensuring the reliability of 

sensor networks, especially in critical applications such as 

industrial monitoring [24]. This system usually incorporates 

feedback loops where sensor performance is continually 

provided. If any anomalous is detected in the sensor readings, 

the system updates itself by learning from these instances to 
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improve validation accuracy as shown in Figure 1 as presented in the study [25]. 

 

 
 

Figure 1. Sensor data fusion architecture which referring to the process management 

 

Benefits of Data-Driven Architecture in Sensor Validation 

The transition to a data-driven architecture offers several 

significant advantages compared to traditional sensor 

validation methods which can be described as follows: 

•Traditional systems suffer when the number of sensors 

increases. 

•It is capable of adapting to sensor evolution or addition in 

a specific network. 

•Traditional methods are often based on static thresholds, 

which can be ineffective in dynamic systems. While Ml on the 

other hand, continuously improve by learning from the data 

they process. This allows for more accurate detection of sensor 

malfunctions making it better than the traditional techniques. 

•The ability to monitor sensor performance in real-time is 

considered one of the important benefits of this system. If 

sensor performance deviates from expected behavior, it will 

take immediate action to achieve cost reduction and downtime 

minimization. 

There are several challenges in implementing data-driven 

sensor validation systems and this could be considered as a gap 

that should be filled or dealt with. One of the main challenges 

is ensuring the quality of sensor data which leads to poor 

performance if the system deals with inaccurate data. Also, 

increasing calculations due to processing large amounts of 

sensor data which occurs in real-time, requires higher 

resources. Edge computing solutions in general are utilized to 

manage these requirements, but they come with additional 

complexities and even more costs. A data-driven architecture 

for sensor validation provides a robust solution to managing 

sensor networks. By applying and embedding advanced ML 

techniques with modern computing infrastructure, users 

improve the accuracy of sensor validation while reducing the 

required supervision. In spite of challenges related to data 

quality, the benefit of this validation system is to make this 

approach essential for modern sensor networks. Authors in 

different articles such in the studies [26, 27] try to solve the 

data quality issue by using robust data preprocessing 

techniques like outlier detection. Techniques like Kalman 

filters and wavelet transforms are commonly used to de-noise 

sensor data before it is fed into ML. Also, as sensor networks 

get more complex, managing and validating data becomes 

increasingly challenging. Large sensor networks generate a 

large amount of data that traditional data processing systems 

couldn’t deal with. Edge/cloud computing allows data to be 

processed closer to the sending sensor to reduce the need for 

large-scale data transfer as mentioned in the studies [28, 29]. 

While Presciuttini et al. [30] utilized Explainable AI (XAI) 

techniques to provide transparency in ML models by 

explaining their decision-making process step by step to be 

understood by organizations for future aspects. In the study 

[30], Shapley Additive Explanations and Local Interpretable 

Model-agnostic Explanations are applied to offer insights into 

the model behavior and to specify the importance of different 

features in sensor validation decisions. In the study [31], 

authors employed streaming data processing for managing 

data when it arrives which allows for immediate validation. 

The authors used Apache Kafka to implement real-time data 

pipelines for sensor validation, which is done to ensure low-

latency data processing. In addition, optimization techniques, 

such as model pruning are applied to reduce the computational 

cost of real-time validation tasks without sacrificing too much 

accuracy as introduced by Bagwari et al. [32]. Networks 

include different sensor types that operate under various 

conditions which may contain different levels of accuracy and 

different sample rates. These issues make sensor validation 

more complex which needs to deal with more complex data. A 

combination of transfer and multi-tasking could be applied to 

improve the working of ML across different types of sensors. 

These are used to adapt for application with other sensor types 

regardless of data limitation. While multi-task learning allows 

to learn from different sensors simultaneously to improve their 

ability to handle these issues as explained by Wang et al. [33]. 

Some issues are also becoming more important such as privacy 

and security especially when sensors are integrated into 

critical parts. Authors in the studies [34, 35] presented an 

explanation of secure ML to address these issues without 

sharing private data and securing data during processing. In 

spite of the benefits related to data-driven architectures for 

sensor validation, several challenges need to be addressed to 

ensure effective implementation. This article provides real-

time processing systems and security measures to overcome 

these mentioned challenges. As sensor networks grow in scale 

as well as the complexity of modern sensors added over time 

to the same networks, the development of robust sensor 

validation systems will have presented to be crucial for the 

successful operation of industrial applications. 
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3. GEOPHONE SG-10 

 

It is a specialized sensor used primarily for detecting ground 

motion and also to detect vibrations, which is used in oil 

exploration. It is a type of ground motion sensor that converts 

these vibes into electrical signals which are measured and 

written as voltage. The output voltage of these sensors is 

related to the ground motion and provides valuable data for 

analyzing subsurface structures. It is designed with advanced 

earth magnet technology, which provides several key benefits 

such as giving clean and accurate readings regardless of 

interference. In addition, it is used in maintaining accuracy in 

diverse conditions where the geophone suffers from even from 

its positions and tilt angle. It is designed and selected among 

other types due to its high versatility and help to tolerate these 

tilts. It is also built to meet the strictest criteria and to ensure 

that the sensor provides highly reliable data for any further 

studies. It was used in different environmental conditions like 

a variety of temperature conditions in the Arctic or Desert as 

well. The advanced magnetic design gives it the ability to 

detect very subtle ground motions, which is important for 

high-quality data collection. 

 

 

 
 

Figure 2. Geophone SG-10 main parts and architecture 

 

It consists of twelve individual geophones which are string-

connected in both ways of configurations (parallel and series). 

This connection setup allows for enhanced performance as the 

data from multiple geophones is combined to provide an 

accurate signal. It was one of the reasons to select this type in 

addition to consistent data collection across the entire string of 

geophones due to parallel configuration connections. For 

series connections, it helps in distributing the load which leads 

in turn to improve the sensitivity of the sensor system. The 

different faults of sensors that can be detected by this type 

include changes in resistance as well as the tilt of the 

Geophone. In addition to all of these points, it detects 

unwanted loss of electrical signal that leads to reducing the 

accuracy of collected data if not well classified. Moreover, the 

ability to detect high levels of noise which interferes with the 

detection of ground motion. All of these issues are detected 

using these Sensor characteristics and by monitoring these 

factors, it determines whether a geophone is functioning 

properly or not. Figure 2 shows the main parts and architecture 

of these sensor types as mentioned in the studies [36, 37]. 

Regarding the characteristics of the (SG-10) sensors, they 

were built in a vertical array at fixed intervals to ensure 

accurate spatial resolution of seismic events. Each geophone 

was firmly coupled to the ground surface using spike mounts 

to ensure optimal transmission. During the experiment, data 

were recorded at a sampling rate of 2 kHz, which is better for 

capturing high-frequency microseismic signals associated 

with hydraulic fracturing events. These details have been 

added to the (SG-10) section to improve experimental 

transparency. 

 

 

4. DATASET 

 

The related dataset belonged to fault detection which is used 

in the field of oil exploration. The primary goal of using this 

dataset is to detect faults in geophone sensors that have been 

used to measure vibrations during oil exploration. It includes 

data from 1232 sensors that contain 587 faults and 645 faults 

free. The four features utilized in this article based on a dataset 

for classification include resistance, noise, leakage, and tilt, 

which provide indicators of the sensor functionality. Table 1 

shows the number of samples recorded from sensor readings 

with related attributes. 

Table 1 describes the characteristics of the sample dataset 

used in this study. The data contains 1,232 samples, including 

587 errors and 645 errors-free that described by 4 different 

features. These data were obtained from microseismic 

monitoring of hydraulic fracturing operations, and collected as 

described in the studies [36, 37] for hydrocarbon fields in 

Ukraine. The seismic sensor data measurement protocols are 

structured in CSV format, facilitating straightforward 

processing and analysis. 

The related features of the selected dataset contain 8 

attributes; the first one is related to a unique identifier that 

belongs to each point of the network which means a sensor. 

The second attribute related to the sensor model that was used 

to collect such required data. The sequence of sensors in a 

specific network is also identified with a point value. In 

addition, the condition variations due to many reasons for 

sensors were affected by the resistance value which was also 

recorded in ohm. Noise level was also recorded as one of these 

features due to its main effectiveness on sensor performances. 

The losing energy was also provided by this data as a leakage 

measurement feature. Finally, the tilt of the sensor is also 

considered as one of the impact features on sensor reading. 

Total sample numbers are 1232 with 587 as a faulty sample 

(when sensors were not working correctly due to several 

feature reasons) and 645 free when sensors were working 

properly as utilized in the studies [36, 37]. 
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Table 1. The sample dataset characteristics used in this study 

 
Parameter Description 

Number of samples 1,232 

False Reading (Faulty Readings) 587 

Positive Reading (Fault-Free Readings) 645 

Number of features 4 

Data Source Seismic microseismic monitoring data downloaded from: [36, 37]. 

Data Acquisition Method Data were collected using microseismic sensors during hydraulic fracturing operations. 

Data Format 
Structured dataset stored in CSV format, containing readings from 4 features representing 

seismic sensor outputs and associated parameters. 

 

 

5. PROPOSED METHODOLOGY 

 

This dataset was analyzed using several techniques in ML 

to determine the best performance approaches that identify 

fault readings fully corrected. The non-linear data need to be 

handled with a nonlinear model such as Naïve Bayes (NB) 

which applies Bayes rules. Also using a simple technique such 

as a decision tree to focus on the fast detection process. In 

addition, a coarse tree (CT) was to applied the dataset. a 

boosted version of the decision tree combined with Random 

Under Sampling (RUS) to apply it for unbalancing datasets 

when data has fewer fault samples. Another state-of-the-art 

technique was used from Support Vector Machine (SVM) 

which is fine fine-tuned version that is applied to nonlinear 

datasets. In addition, Neighbors (KNN) that applied to the 

dataset. Finally, the proposed method uses ANN that deals 

with complex patterns like sensor readings. Different type of 

metrics was measured such as Accuracy, the prediction cost, 

the speed of the total process, and the training time. This 

dataset is a valuable resource for exploring fault detection in 

geophone sensors that are commonly used in oil exploration. 

By utilizing different ML models, this article aimed to find the 

most effective method for classifying sensor readings. These 

techniques were combined with Field-Programmable Gate 

Arrays (FPGAs) which are considered as a powerful approach 

to accelerate the computation of the utilized model. This was 

especially applied for real time in addition to low latency 

predictions which could be found in embedded systems as 

mentioned for edge computing. FPGAs provide a high degree 

of parallelism which allows ML to be implemented efficiently 

with custom hardware accelerators. The proposed ANN 

architecture consists of one input layer with 4 neurons 

corresponding to the input features: resistance, noise, leakage, 

and tilt. This is followed by two fully connected hidden layers, 

that containing 100 neurons. A sigmoid activation function is 

applied in all layers, including the hidden layers and the output 

layer, to handle non-linear relationships and support binary 

classification. The output layer contains a single neuron that 

outputs the classification result, indicating whether the sensor 

data is faulty or fault-free. The main focus was on the 

utilization of FPGA and ANN among all other techniques. 

FPGAs perform operations in parallel across multiple 

processing units which is useful for the matrix operations in 

ANN. FPGAs are also more energy efficient than GPUs, 

especially for applications with a high-power value constraint 

that is connected to edge points such as mobile devices. In 

addition, FPGAs allow custom hardware designs, which assist 

researchers and designers in the same manner to optimize the 

hardware for the specific ANN architecture. Moreover, 

FPGAs are often applied for systems that require low latency 

inference which helps to reduce the time taken for inference 

significantly compared to traditional ML. Implementing an 

ANN + FPGA involves translating the computational graph of 

ANN into hardware description language (HDL) that will be 

correctly analyzed and then loaded into the FPGA. The main 

goal for using ANN + FPGA due to that FPGAs work better 

with fixed point arithmetic and input data and weights in the 

ANN are often taken to reduce the complexity and memory 

usage. For example, instead of using 32-bit floating point 

numbers for FPGA, it is reduced to 8-bit which leads to 

reduced power consumption and increases speed in turn. Also, 

the computation for each layer can be parallelized on an FPGA 

by using dedicated hardware blocks for convolutions. In 

addition, one of the critical challenges when combining ANNs 

+ FPGAs is efficiently managing memory. Since FPGAs have 

limited memory usage due to continuous data streaming and 

reuse of intermediate results. FPGAs have different stages of 

computation which have to be processed simultaneously that 

enable higher throughput. For ANN, pipelining is applied at 

the layer level to keep the hardware working continuously and 

maximize throughput. The validation system follows a 

sequential process, as shown in the flowchart in Figure 3.  

 

 
 

Figure 3. Flowchart of the validation system based on the 

main sequential process 
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Figure 4. The timing diagram based on the sequence of 

events during FPGA-based sensor data validation 

 

It begins with the input of raw sensor data, that preprocessed 

through normalization and feature extraction steps. After 

preprocessing, the data is passed to an ANN for validation. 

The ANN determines whether data is valid or invalid based on 

a threshold value. Then logic step follows, where the output of 

the ANN is checked to decide if the data meets the required 

criteria. Finally, validated sensor data is either passed on to 

complete the additional preprocessing steps or flagged as 

occurrence errors, completing the cycle of real-time sensor 

data validation on the FPGA as shown in Figure 3. The timing 

diagram describes the sequence of events during FPGA-based 

sensor data validation, explaining the parallel processing of the 

system. As sensor data arrives, it is directly input into the 

FPGA. The data passes through preprocessing steps, such as 

normalization in addition to feature extraction in parallel with 

the ANN processing. Once the data is processed by the ANN, 

it is passed through threshold logic to determine whether the 

sensor data is valid or invalid. The final validated data is then 

providing an output value or flagged for errors. Based on these 

steps in parallel and within a short time frame to ensure 

minimal time delay, which is impact for real-time applications 

as also shown in Figure 4. 

The design of ANN was in a high-level framework using 

TensorFlow to be implemented more efficiently on the FPGA. 

A software library for deploying these models on Xilinx 

FPGAs that provides tools to compile models for FPGA 

execution. Using a toolkit (named OpenVINO) allows for 

deploying ANN on Intel FPGAs to optimize performance 

models. In addition, High-Level Synthesis (HLS) is used to 

convert high-level code into HDL for FPGA implementation. 

This allows for easier implementation of complex algorithms 

regarding ANN on FPGAs. Another tool used for analyzing 

and also for optimizing HDL designs for ANN was the Vivado 

Design Suite. When the design is optimized, it will be 

converted to VHDL to generate the hardware design from the 

code. After this step, the design is deployed onto the FPGA. 

The FPGA will run the inference tasks for the neural network 

in parallel. The challenges in this application and proposed 

methodology were that designing ANNs + FPGAs requires 

knowledge of hardware design with HDL and how to optimize 

ANN for hardware. the optimization of FPGA architecture 

needs better code and better time-consuming using ANN as 

well. Using FPGAs + ANN allows for high performance with 

low power in addition to the ability of real-time applications. 

The combination of hardware parallelism and ANN makes 

FPGAs an attractive option for deploying neural networks in 

resources which has some limitations and constraints. 

However, it requires knowledge to fully leverage the potential 

of FPGAs for ML tasks. The main steps of combining ANN + 

FPGA are shown in Figure 5. 

 

 
 

Figure 5. ANN + FPGA. Combination process for validating sensor data 

 

 

6. RESULTS 

 

Several techniques have been applied to select the best 

parameters that are related to cost with prediction speed and 

training time. The observation as shown in Table 2 showed 

that ANN-related model 6 had the highest accuracy with about 

96.8% and the cost 0.93297 with the good prediction speed 

under 0.0317 at 1000 epoch for observation numbers in a 

single second. In addition, it had the fastest training time 

0:00:01sec. Model 5 (related to KNN) was also highly 
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accurate with about 96.1% and had the highest prediction 

speed of 32,000 for observation numbers in a single second 

but took slightly longer to train with about 3.0172 sec. 

However, model 4 which was related to SVM was also highly 

accurate with about 93.6% and had the highest prediction 

speed 53,000 for observation numbers in a single second but 

took slightly longer to train with about 4.597 sec. Model 3 

which was related to the RUS boost version of the tree 

technique performed well but had a slower prediction speed of 

about 14,000 and had a higher misclassification cost of 129 

compared to previous models 4 and 5. however, model 2 

related to CT had the highest prediction speed of 19,000 but 

had a higher cost of about 142. Moreover, the related NB 

model 1 had the lowest accuracy among all methods with 

about 87.5% and the slowest speed equal to 7,600. 

Table 3 compares the performance of 6 different ML used 

for sensor data validation. The ANN model (Model 6) 

achieved the highest accuracy of 96.8%, with a low 

misclassification cost and a fast training time of just 1 second. 

The KNN model (Model 5) also performed well with 96.1% 

accuracy and the second-fastest prediction speed. The SVM 

model (Model 4) had a slightly lower accuracy (93.6%) but 

offered the highest prediction speed of 53,000 observations per 

second. Although the NB (Model 1) had the lowest accuracy 

(87.5%) and slowest prediction speed, it required minimal 

training time. Overall, the ANN model demonstrated the best 

balance between accuracy, speed, and cost, making it the most 

suitable for accurate and efficient sensor data validation.

 

Table 2. ML performances according to geophone sg-10 collected dataset 

 

Model Accuracy Cost 
Prediction Speed 

(obs/sec) 

Training Time 

(sec) 

Proposed 

Model 
Parameters 

3.2 87.5% 154 7,600 4.5316 NB Gaussian kernel with 4 splits 

5.3 88.5% 142 19,000 4.2039 DT Gini’s diversity index 

5.25 89.5% 129 14,000 9.6724 RUS  
20 splits and 30 learners with 0.12 

learning rate 

5.12 93.6% 79 53,000 4.597 KNN Gaussian kernel with 0.5 scale 

6.2 96.1% 48 32,000 3.0172 ANN 10 neighbors with Euclidean distance 

 

Table 3. Performance comparison of ML models for sensor data validation 

 
Model 

No. 

Model Type Accuracy 

(%) 

Misclassification 

Cost 

Prediction Speed 

(obs/sec) 

Training Time 

(sec) 

1 Naïve Bayes (NB) 87.5 2.0 7,600 0.5 

2 Classification Tree (CT) 90 1.42 19,000 1.2 

3 RUSBoosted Tree 91.5 1.29 14,000 2.1 

4 Support Vector Machine (SVM) 93.6 1.1 53,000 4.597 

5 K-Nearest Neighbors (KNN) 96.1 1.0 32,000 3.0172 

6 Artificial Neural Network 

(ANN) 

96.8 0.93297 31.7 1.0 

 

 
 

Figure 6. The main ANN architecture of data driven data by 

sensor validation 

 

Figure 6 shows the ANN architecture which was designed 

using MATLAB based on ML models and according to the 

data-driven architecture for sensor validation. Figure 7 

indicated the best training performance achieved by ANN and 

had an MSE value of about 0.031708 at iteration number 1000. 

This is considering that the difference between the predicted 

and actual values was so low. Figure 8 provided details about 

the training state of ANN at epoch 1000 with a gradient value 

of about 0.023228 which meant that the rate at which the ANN 

loss function has been minimized. This value meant that the 

lower value of the gradient indicated that ANN had 

approached a minimum value for these data. The Validation 

Checks section indicated points at which ANN performance 

on a validation set was checked.  

 

 
 

Figure 7. The best training ANN performances based on data 

driver dataset 

 

Figure 9 shows an error histogram with 20 bins, which 

determines the distribution of errors across the training and 

test. This figure showed that the error was near zero error 

which referred to that ANN was an accurate predictor for the 

related data. Figure 6 through Figure 9 shows the ANN 

performances which were measured using MSE and its 
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training progress has been monitored through gradient values 

in addition to validation checks. Figure 9 also provided 

insights into the distribution of prediction errors, which is used 

to understand ANN accuracy in validating sensor data. 

 

 
 

Figure 8. The gradient and validation check for proposed 

ANN 

 

 
 

Figure 9. The error histogram for the training/testing based 

on data driven by sensors 

 

 
 

Figure 10. The confusion matrix of proposed ANN model 

for validating sensor data 

 
 

Figure 11. The regression performance plots of ANN model 

for validating sensor data 

 

Figure 10 shows the confusion matrix that was used for the 

performance evaluation of ANN classification. It also shows 

some points that should be noted for the next process related 

to FPGA design. Figure 10 showed the actual target classes as 

rows, while the output predicted values were represented in 

columns. The correct prediction in elements (1,1) and (2,2) in 

the main diagonal represented the correct predictions that 

matched the actual classes. The secondary diagonal as (1,2) 

and (2,1) represented the incorrect predictions where this 

prediction did not match the actual values. ANN predicted 636 

samples correctly as class 1 with 61.6% of the total predictions 

for this class. Only 29 samples were incorrectly predicted 29 

instances as class 2 with only 2.4% of the total predictions. 

The total accuracy for this class 1 was 95.6% with an error rate 

of about 4.4%. On the other hand, ANN predicted 556 samples 

correctly as class 2 with 45.1% of the total predictions, and 

only 11 samples were incorrectly predicted that had 0.9% of 

the total class 2 predictions. The total accuracy for this class 2 

was 98.1% with an error rate of about 1.9%. The overall 

accuracy of ANN is about 96.8%, with an overall error rate of 

about 3.2%. From this matrix evaluation, ANN performed 

slightly better in class 2 with 98.1% compared to class 1 with 

95.6%. ANN's proposed model was performing well overall 

with high accuracy and low error rates for both classes. In the 

context of sensor validation, this confusion matrix could have 

been utilized to evaluate the model performances in 

classifying sensor data among different states. 

Figure 11 contained three subplots that showed regression 

performance for the ANN during the learning process to 

evaluate the predicted outputs matching percentage to the 

target values. This figure represented the best-fit line 

according to the target value in the x-axis and according to the 

value of the predicted value. The subplot in the top left was 

related to training data ANN performances with a regression 

coefficient equal to 0.93444 R which meant that the model had 

a strong correlation between predictions and actual values. The 

left top subplot with green line indications represented the 

testing data for ANN model performances with R=0.92855, 

which was lower than training, indicating good generalization. 

The last subplot figure with red line indicators represented the 
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overall system performances with a value of 0.93297 which 

combined training and test data. These values of training, 

testing, and overall system near 1 indicate strong predictive 

performances. In Figure 12, the ROC curve was presented to 

determine the classification performances for the ANN model. 

In this figure, the false positive coordinator was on the x-axis 

while the correctly classified sample was on the y-axis. Two 

lines represented two class classifications; the ANN model 

represented high accuracy due to the closeness of the top left 

corner for ROC. It also means that the ANN model effectively 

distinguishes between classes with minimal false error for both 

classes. This model based on these results demonstrated a 

strong regression accuracy with excellent classification ability 

due to the high value of ROC. It also meant that ANN is well 

trained and also had a good optimization for the given dataset. 

Figure 13 represents a Simulink model for implementing 

ANN on an FPGA for sensor data validation. This design 

processed multiple sensor inputs using an ANN implemented 

in FPGA hardware. The input sensor data was processed 

through an FPGA pipeline consisting of many steps such as 

preprocessing and ANN computation. The ANN was 

structured to analyze the incoming data and determine if it 

needed any processing to fit the whole process. 

The design consists of: 

1. Input Blocks that contain: 

I. Gateway in blocks were indicated in yellow color which 

is used to receive data and connect sensors with FPGA logic 

circuits.  

II. Preprocessing blocks which were indicated in blue color 

that contained gain controllers and feature extraction layers 

which were important for scaling data before making 

predictions. 

2. ANN Layers that contain: 

I. Fully connected layers that were indicated as gray and 

blue blocks to process sensor data through weighted 

connections that were trained previously. 

II. Sub-system blocks which represent the hidden layer of 

ANN and consist of neurons to finalize the calculations based 

on weights and biases. The connection between figure blocks 

represented the forward propagation in an ANN. 

3. Output Processing that contains: 

I. Threshold blocks which are indicated in gray color to 

determine whether the processed data from the ANN meets a 

validity threshold or not.  

II. Gateway out blocks which were indicated in yellow to 

send the processed and validated sensor data back to the 

system for another action if required. 

 

 
 

Figure 12. The ROC curve of proposed ANN model for 

validating sensor data 

 

 
 

Figure 13. Overview of the FPGA based ANN design for validating sensor data 
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Table 4. Device utilization summary 

 
Logic Utilization Used Available Utilization 

Number of Slice Flip Flops 1,538 47,744 3% 

Number of 4 input LUTs 15,707 47,744 32% 

Number of occupied Slices 9,508 23,872 39% 

Number of Slices containing only related logic 9,508 out of 9,508 100% 

Number of Slices containing unrelated logic 0  9,508 0% 

Total Number of 4 input LUTs 17,122 out of 47,744 35% 

Number used as logic 15,695   

Number used as a route-thru 1,415   

Number used as Shift registers 12   

Number of bonded IOBs 50  469 10% 

Number of DSP48As 104  126 82% 

Average Fanout of Non-Clock Nets: 2.13   

 

 
 

Figure 14. The confusion matrix of proposed ANN model 

for validating sensor data 

 

Figure 13 details the computational flow of an FPGA-

implemented model for sensor data validation. The normalized 

input data was labeled from In. 1 to In. 4, which represents any 

type of reading data such as temperature, and vibration signals. 

The values were determined by scaling mechanism to match 

the ANN training range and to maintain the high regression 

accuracy which was near 0.39 as noted in Figure 14. The 

processing blocks were noted as Computational Modules 

(CM) to make the multiplications and activation functions 

from the ANN previously trained layers. In addition, the 

AddSub. Blocks that combined intermediate results such as 

merging outputs from parallel ANN layers. The structured 

flow ensures deterministic processing, crucial for real-time 

systems where sensor data must be validated based on strict 

constraints related to time. Figure 13 also has constant blocks 

with a fixed value to convert normalized ANN output value 

back to physical value. Moreover, Figure 13 consists of Out.1 

which represents the final validated sensor value, if this part 

deviates significantly from expected sensor behavior the 

system flags an error. The optimization process of FPGA 

allowed for efficient hardware mapping. 

CM/AddSub. blocks when each block was implemented as 

a dedicated circuit. The high regression value depends on the 

computational flow to ensure ANN predictions align with 

ground truth sensor behavior. Out1. Was also used to 

distinguish between valid/invalid data reliably based on a 

threshold value. The parallel CM blocks act as sensor inputs at 

hardware speeds, which is important for time-sensitive 

applications. Also, this design eliminated software-related 

unpredictability in addition to ensuring consistent validation 

under different environments like heavy sensor data loads. 

Also, this design was ideal for embedded systems that required 

minimum power due to the optimization process. Table 4 

shows a summary of the use of the components of the FPGA. 

The Xilinx Artix-7 FPGA was selected for this design due 

to its optimal balance of performance, cost, and power 

efficiency. It provides sufficient logic resources to implement 

complex neural network architectures while remaining 

affordable for research and prototyping. Additionally, the 

Artix-7 series is well supported by MATLAB and Simulink 

FPGA design tools, which facilitates low code generation, and 

hardware verification. This makes it an ideal choice for 

efficient development and deployment of FPGA-based 

Artificial Neural Network models. 

 

 

7. CONCLUSION 

 

This study presented a data-driven approach for sensor 

validation using machine learning (ML) techniques, with a 

particular focus on real-time performance, accuracy, and 

adaptability. A comprehensive analysis of six machine 

learning models—including ANN, KNN, SVM, and others—

was conducted to determine their suitability for validating 

sensor data in critical applications. Among these, the Artificial 

Neural Network (ANN) model demonstrated the highest 

accuracy (96.8%), lowest misclassification cost, and efficient 

training time, making it the most effective solution for real-

time validation of sensor readings. The proposed methodology 

was designed with scalability and adaptability in mind, 

addressing common challenges in sensor networks such as 

noise, drift, aging, and environmental interference. A robust 

literature review was integrated into the paper, contextualizing 

the study within existing research and highlighting the 

limitations of traditional methods. The Geophone SG-10 

sensor, known for its sensitivity and resilience in extreme 

conditions, was also analyzed as a practical application of the 

validation system. The system demonstrated strong 

performance, with the ANN model achieving 96.8% accuracy, 

a low error rate (3.2%), and fast training time. The FPGA 

implementation ensured deterministic, high-speed processing 

critical for real-time sensor monitoring. This combination of 

ANN and FPGA marries the predictive accuracy of machine 

learning with efficient hardware acceleration, making it highly 

suitable for embedded and industrial sensor networks. Future 

work may focus on optimizing ANN parameters and 

investigating hybrid FPGA architectures to further enhance 

processing speed and scalability. The novelty of this work lies 

in combining ANN-based validation with a data-driven 
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architecture that supports continuous learning, error detection, 

and system feedback. This framework enables autonomous 

monitoring with minimal human intervention and is adaptable 

to complex sensor environments. Future work will focus on 

implementing this validation architecture in real industrial and 

healthcare systems, integrating edge computing for faster 

decision-making, and exploring explainable AI (XAI) 

techniques to improve transparency in model predictions. 

Additionally, further optimization of model performance 

under varying network sizes and real-time constraints will be 

considered to ensure deployment readiness in scalable sensor 

networks. 
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