
The Dashboard of Remote Monitoring System for Driver Fatigue

Ramanda Nur Hidayat , Prajna Deshanta Ibnugraha*

School of Applied Science, Telkom University, Bandung 40287, Indonesia

Corresponding Author Email: prajna@telkomuniversity.ac.id

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/jesa.580601 ABSTRACT

Received: 3 April 2025

Revised: 10 May 2025

Accepted: 20 May 2025

Available online: 30 June 2025

This research presents a real-time driver fatigue monitoring system that integrates

computer vision with web-based visualization and notification capabilities. The system

utilizes the You Only Look Once version 8 (YOLOv8) algorithm to detect signs of

drowsiness, such as closed eyes, mouth condition, head position, and yawning, achieving

a detection accuracy of 99.3% based on a dataset from Roboflow. Detection results are

transmitted via WebSocket to an interactive web dashboard, enabling live monitoring

without the need to reload the page. Additionally, real-time notifications are sent via a

Telegram Bot to the driver or operator when risky conditions are detected. To maintain

data security, the system implements JSON Web Token (JWT) authentication and

password hashing using bcrypt. Testing includes functional, performance, and API

evaluations under scenarios simulating driver fatigue and system load. The results show

stable response times ranging from 0.8 to 1.1 seconds and efficient API handling of up to

100 iterations. A comparative analysis indicates that the proposed system outperforms

traditional and YOLOv5-based methods in terms of accuracy and real-time capability.

Although user experience testing has not been conducted, the system has proven to be

technically reliable and holds strong potential to reduce traffic accidents.

Keywords:

driver monitoring, fatigue detection, real-time

notifications, WebSocket, JWT authentication

1. INTRODUCTION

Around the world, driving safety is still very important,

especially considering the number of traffic accidents caused

by unsafe driver behavior. The World Health Organization

(WHO) says that around 1.3 million deaths are caused by

traffic accidents each year, human factors such as drowsiness,

being distracted by mobile phones, or smoking while driving

are part of these causes [1].

According to Korlantas Polri, driver negligence is

responsible for about 61% of accidents in Indonesia, with

drowsiness as the main cause. Drivers are often unaware of the

dangerous conditions they are experiencing, such as

drowsiness or other activity distractions, which increase the

likelihood of an accident [2].

Conventional methods, such as manual surveillance or

vehicle sensors, have proven ineffective in addressing this

issue as drivers are often unable to spot danger signs on their

own. Moreover, the external sensors used by most current

monitoring systems are not always precise, especially in

detecting non-physical behaviors such as mobile phone

distraction or smoking activity while driving [3]. Therefore, to

reduce the possibility of accidents, there is a need for

intelligent technology-based products that can detect risky

driver behaviors in real-time with low latency and high

accuracy.

The aim of this research is to create an automated system

based on Artificial Intelligence (AI) and computer vision (CV)

that can detect dangerous driver behavior. The YOLOv8

algorithm-also known as You Only Look Once version 8-is

able to detect and classify various dangerous behaviors in real-

time, especially focusing on drowsiness and parameters such

as eyes, mouth, head position, and yawning with higher

accuracy in low-light conditions [4].

The developed system will help monitor drivers in real time

by displaying easy-to-read data and providing instant feedback

without the need to reload the page. The system is also

equipped with security technologies to protect user data,

including JSON Web Token (JWT) based authentication and

API keys to ensure secure communication between the

frontend and backend [5].

2. LITERATUR REVIEW

Chapter 2 discusses driving safety, which is a major issue

worldwide with many traffic fatalities each year. Human

factors such as fatigue and cell phone distraction are often to

blame; in Indonesia, driver negligence accounts for 61% of

accidents [1]. This chapter also discusses traditional methods

of monitoring drivers, such as the use of sensors to determine

if drivers are tired. However, these methods often fail under

light and cannot spot additional distractions such as cell

phones or smoking. AI and YOLOv8 technology can detect

risky behavior more accurately [3].

In this system, driver behavior data is obtained through

visual detection using the YOLOv8 algorithm, which has

proven effective in identifying facial features such as closed

Journal Européen des Systèmes Automatisés
Vol. 58, No. 6, June, 2025, pp. 1089-1100

Journal homepage: http://iieta.org/journals/jesa

1089

https://crossmark.crossref.org/dialog/?doi=10.18280/jesa.580601&domain=pdf

eyes, head tilt, and yawning in real-time. Recent research by

Zhang and Zhang [6] demonstrated that an optimized

YOLOv8 model can detect driver drowsiness with high

accuracy and real-time performance exceeding 50 FPS,

making it highly suitable for in-vehicle applications.

The detected data is then integrated into a web-based system

using WebSocket technology. WebSocket enables direct,

bidirectional communication between the server and the user

interface without requiring page reloads, which is essential for

delivering instant feedback in driver monitoring systems.

Studies have shown that WebSocket is particularly effective in

real-time applications due to its low latency and persistent

connection capabilities [7].

2.1 Driving safety and traffic accidents

Traffic accidents are still the leading cause of death and

injury in the world, making driving safety a growing problem

worldwide. According to the World Health Organization

(WHO), traffic accidents cause more than 1.3 million deaths

each year. Human factors such as smoking, drowsiness, and

mobile phone distraction are the main causes of many

accidents [1]. According to Korlantas Polri, driver negligence,

including fatigue and cell phone distraction, accounts for 61%

of traffic accidents in Indonesia. This suggests that drivers

increase the risk of accidents as they are often unable to detect

or identify danger signs [2].

2.2 Traditional methods of driver monitoring

The use of vehicle-based sensors and manual surveillance

are two conventional ways to monitor driver behavior. Sensors

based on physical measurements such as Eye Aspect Ratio

(EAR) are used to detect driver fatigue. While these systems

detect one driver behavior, such as fatigue, they cannot detect

other non-physical behaviors, such as mobile phone

distraction or smoking. According to research, these sensors

often fail in more complex situations or with poor lighting [3].

In addition, manual surveillance requires constant supervision

from an operator or supervisor, which can increase workload

and increase the likelihood of human error.

Attention will increasingly focus on the use of Artificial

Intelligence and computer vision to detect driver behavior.

Algorithms such as YOLOv8-also known as You Only Look

Once Version-are able to detect and classify objects in images

in real-time with a higher degree of accuracy even in low

lighting conditions. YOLOv8, which is widely used in

computer vision applications, can detect a variety of behaviors

that could endanger drivers, such as fatigue, mobile phone use,

and smoking [8]. The system utilizes images captured from

vehicle cameras to provide feedback and information about the

driver's status instantly [9]. Deep learning and Convolutional

Neural Networks (CNN) are also used in driver monitoring

applications, such as YOLO. CNNs can identify more

complex behavioral patterns and symptoms of fatigue or other

impairments. Compared to traditional methods, these

technologies can be more accurate in finding different types of

risky behaviors [10].

2.3 Backend integration and real-time detection system

For driver monitoring systems, real-time integration of data

from multiple sensor sources to the backend is a key issue.

Many current systems rely on separate external sensors,

resulting in delayed data delivery to the driver or vehicle

operator. By ensuring fast delivery of feedback, cloud-based

systems that use Socket.IO or REST APIs can solve this

problem. Socket.IO allows data to communicate between the

frontend and backend in real-time without the need to switch

pages, improving system responsiveness [11]. This integration

is crucial to ensure that drivers receive important information

immediately and can take precautions.

Data security and privacy in driver monitoring applications

is critical as the data collected can be highly sensitive. To

protect user data, the use of technologies such as JSON Web

Token (JWT) for authentication and API keys to ensure

authorized access is essential. These systems guarantee that

only identified persons can access the driver's personal data

and related information [5].

3. METHODOLOGY

In this chapter, methods are used to create a YOLO and

WebSocket-based driver fatigue monitoring system. The main

focus of the system is to detect signs of fatigue in drivers and

provide real-time feedback to improve road safety. In this

chapter, system design, data transmission, data security, and

testing are discussed. Socket.IO technology is used for real-

time communication between the frontend and backend, and

JWT is used to keep user access secure. This chapter will also

discuss how Telegram Bots can be used to notify drivers or

vehicle operators if dangerous behavior, such as fatigue, is

detected.

The YOLOv8 model employed in this system was pre-

trained to recognize driver behaviors such as eye closure,

yawning, and head posture. The training dataset was sourced

from the publicly available Roboflow platform, comprising

3,474 annotated images of drivers captured under diverse

conditions, including varying lighting, camera angles, and the

presence of accessories such as glasses and masks. The dataset

was partitioned into 87% for training, 8% for validation, and

4% for testing. To enhance model generalization, data

augmentation techniques were applied, including rotation,

zoom, shear, color adjustments, blur, and noise. The model

was trained using an input resolution of 416×416 pixels and

achieved a mean Average Precision (mAP), precision, and

recall of 99.3%. These results indicate that the detection model

provides highly reliable input for the web-based monitoring

system, enabling accurate real-time visualization and alert

delivery via the integrated dashboard and Telegram

notification service.

3.1 System design

In this chapter, methods are used to create a YOLO and

WebSocket-based driver fatigue monitoring system. The main

focus of the system is to detect signs of fatigue in drivers and

provide real-time feedback to improve road safety. In this

chapter, system design, data transmission, data security, and

testing are discussed. Socket.IO technology is used for real-

time communication between the frontend and backend, and

JWT is used to keep user access secure. This chapter will also

discuss how Telegram Bots can be used to notify drivers or

vehicle operators if dangerous behavior, such as fatigue, is

detected.

The system uses an interactive and easy-to-use web

interface to monitor driver behavior in real-time [11]. The

displayed data, including important information about the

driver's status during the trip, can be viewed by both the driver

1090

and the vehicle operator through this system. A login process

that uses JSON Web Token (JWT) based authentication allows

any user, both drivers and operators, to access the system [12].

This ensures that only authorized users can access sensitive

data.

The displayed data includes various parameters, such as the

identification of the monitoring session, the identity of the

driver identified as the driver being monitored, and the driver's

status, which includes the driver's eye condition, the driver's

mouth condition, the driver's head position, and yawing

(detection of yawning, which can indicate fatigue) [13]. In

addition, the driver's fatigue (drowsiness) status will also be

displayed based on the analysis of the driver's physical

condition. In addition, the system records the Start Time and

End Time for each monitoring session, thus providing an

overview of the driver's time in a given situation.

Figure 1. Architecture of real-time driver monitoring system

In Figure 1 illustrates the system architecture of the driver

monitoring system. The process begins with a camera

capturing real-time video of the driver, which is analyzed by

the YOLOv8 detection module to identify signs of fatigue such

as eye closure, yawning, and head tilt. The detection results

are sent to a centralized server via HTTP for further processing.

The server plays a central role in managing data flow and

system logic. It communicates with the WebSocket module to

push real-time updates to the Website Dashboard, allowing

monitoring personnel to visualize driver behavior without

needing to refresh the page [14]. If risky behaviors such as

drowsiness or distraction are detected, the server also triggers

the Telegram notification system to send alerts to the driver or

vehicle operator.

To ensure secure access, the system implements JSON Web

Token (JWT) authentication. Users must log in to the system,

and their credentials are verified before a token is issued. This

token is then used to authorize access to protected resources

and data.

This architecture ensures low-latency communication,

secure data handling, and timely alerts, making it highly

suitable for real-time driver monitoring applications.

Figure 2. Block diagram of driver fatigue detection system

In Figure 2, this flow, the process starts by activating YOLO

(You Only Look Once), a computer vision algorithm used to

identify the driver's fatigue level. When YOLO finds signs of

fatigue, data such as the driver's eye condition, mouth

condition, head position, yawning, and fatigue status are sent

to the server via HTTP. Once the data is sent, the server will

receive and process it. Furthermore, the processed data is

automatically displayed on the web interface by the driver or

vehicle operator. In addition, the system uses Telegram bots to

send notifications to the driver or operator regarding

dangerous situations such as driver fatigue or other

distractions. In this way, the system provides real-time

feedback that allows the driver or operator to take immediate

precautions to improve road safety. The Start Time and End

Time of the monitoring session are included in the data that

shows the driver's condition throughout the journey.

Figure 3. Flowchart system

In Figure 3, the process starts by accessing http://localhost,

which takes the user to the main page or dashboard of the

application. If a user account is available in the system, the

user can log in and start the user verification process. Upon

successful verification, the system will provide a JWT token

for additional authentication, which allows the user to access

the application's data and services [15]. After that, the process

will continue. The system will prompt the user to create a new

account if the user account is inaccessible.

YOLO data is collected from servers that track driver

behavior. This information is displayed on the internet and

sent via Telegram notifications to provide immediate feedback

to the driver or vehicle operator after the user logs in and gets

authenticated [16].

The data collected is then checked by the system to

determine if the driver is experiencing drowsiness. If

1091

drowsiness is detected, an alert will be immediately displayed

on the web and sent to the driver via Telegram. If it is not

detected, the system will return to the previous step or wait for

new input to be processed. Once this process is complete, the

user will receive feedback on the driver's status and can take

the necessary actions to ensure the driver's safety on the road

[17].

3.2 Data transmission system

For this project, WebSocket technology is used to connect

the frontend and backend with this data delivery system

enabling real-time two-way communication, which is essential

for tracking driver behavior live and providing feedback

quickly without interrupting or repeating requests. The data

delivery process starts with the frontend client connecting to

the server via WebSocket in the /api/detection namespace.

After a successful connection, the server starts sending driver

detection data, such as eye status, mouth, head position, and

drowsiness status. This data is collected from YOLO

processing on the backend [18].

The backend sends detection data to the client via

WebSocket whenever a new detection is made. Immediately

afterward, the data is processed and displayed on the web

dashboard. Conversely, if the driver's drowsiness or fatigue

status is detected, the system sends a notification via Telegram

Bot. This bot notifies the driver or vehicle operator to take

immediate precautions [19].

Figure 4. Communication between client and server

In Figure 4, WebSocket plays an important role in ensuring

instant and efficient communication between the frontend and

backend. Prior to the use of WebSocket, the communication

process between the client and server relied on separate HTTP

requests, which often resulted in delays and data inaccuracies

in applications such as this driver monitoring application that

require a quick response [20].

With WebSocket, data can be sent and received instantly

without the need to initiate a new request every time the data

changes. This reduces latency and provides real-time feedback

that is essential for driver monitoring. Socket.io is used to

manage various events, such as “disconnect”, which records

the connection status between client and server, and to handle

more stable WebSocket connections [18].

In addition, WebSocket enables full-duplex communication,

meaning that both the server and client can transmit data at any

time, which makes the interaction more dynamic and

responsive. For example, this improves driver safety and

convenience as drivers can instantly receive information about

their fatigue status without having to wait or perform manual

actions [19].

3.3 Data security

JSON Web Token (JWT) is a method used in web-based

applications to authenticate users and maintain secure

communication between client and server [15]. JWT is a

string-shaped token that contains encoded information used to

identify users and grant limited access to them without having

to store the session on the server. Due to its ease of

implementation, JWT is often used in RESTful API

applications and real-time applications.

Figure 5. JWT authentication flow between browser and

server

In Figure 5, the process starts when the user sends their

username and password via HTTP POST to login to the server.

Upon receiving the login request, the server verifies the user's

credentials. If the credentials are valid, the server then creates

a JWT containing the encrypted user information and signs it

with the secret key. This token is then sent back to the user's

browser. The browser stores this JWT for use in subsequent

requests.

Furthermore, when a user accesses a page or data that

requires authentication, the browser sends the JWT that has

been stored in the HTTP authentication header to the server.

The server then checks the received JWT signature by using a

secret key to ensure that the token is valid and has not been

altered. If valid, the server can retrieve user information from

the token and grant access to the requested resource [21].

Figure 6. JWT token generator logic in the authentication

module

In Figure 6 presents the core logic used to generate a JWT

token in the authentication module of the system. Upon

successful password verification, the server utilizes the

jsonwebtoken library to create a token that includes the user's

ID as its payload.

This token is signed using a secret key stored securely in the

environment variable (process.env.JWT_SECRET) and is

configured to expire within one hour (expiresIn: "1h"). This

expiration setting ensures that the token has a limited validity

period, reducing the risk of misuse or replay attacks [22].

The use of environment variables for storing the secret key

enhances security by preventing hardcoded credentials in the

source code. Additionally, the token generation process is

triggered only after the user's credentials are validated,

ensuring that only legitimate users receive access tokens. This

implementation supports a stateless authentication model,

where the server does not need to maintain session data,

thereby improving scalability and reducing server load [22].

1092

3.4 Telegram notification

Telegram Bot is a way to use Telegram bot to send

automated messages to users through the Telegram app [23].

Telegram bots are accounts that users can interact with and are

usually used to send alerts or important information. To use

this bot, we have to create a bot in Telegram and get an API

token that allows our application to use the bot to send

messages through it.

Driver detection data such as eye status, mouth status, head

position, drowsiness status, and detection time (start_time and

end_time) are sent to the POST server endpoint to start the

process. Then the data is stored in the database. After the data

is saved successfully, the system uses WebSocket to check if

there are any events that should be sent to the frontend. If there

is new detection data, the server sends a “new_detection”

event to the frontend to update the user display in real-time. In

addition to sending data to the frontend, the system also uses

the TelegramAlert send function, which sends a message to

Telegram Bot containing driver behavior detection

information, such as eye, mouth, and drowsiness status, as well

as the detection time. The Telegram Bot then sends an instant

notification to the driver or vehicle operator to alert them so

that precautions can be taken immediately. This allows the

driver or operator to respond immediately to risky conditions,

such as when a driver is detected to be drowsy, to improve

travel safety [24].

Figure 7. Drowsiness detection and notification flow to

telegram bot

In Figure 7, this process is clearly depicted in the Block

Diagram: (visual detection) detects the driver's drowsiness

status and then sends the data to the server via HTTP. Once

the data is received by the server, a message containing the

detection information is sent to the server's Telegram bot. In

addition, the Telegram bot notifies the driver or vehicle

operator of the notification. In this way, Telegram Bot

becomes an excellent tool for conveying important

information quickly and directly without the need to interact

with users manually. This ensures that any important alerts are

received quickly, lowering the risk of accidents caused by

driver negligence. With this integration, the system can

provide instant notifications to drivers or operators via

telegram to ensure a quick response to dangerous conditions

such as drowsy drivers to maintain safe travel [25].

3.5 Hashing implementation for user data security

Hashing is used as the main method to protect data security

in this project, especially to protect user passwords. The

process of converting input data, such as passwords, into a

shorter, consistent form is called hashing. This hash is created

using a specific mathematical algorithm that is one-way, or

one-way, and cannot be returned to the original data. Therefore,

sensitive information such as passwords are not stored in the

database in their original form, but only as hashes [26].

In Figure 8, Hashing is used in the figure to secure the user's

password. Using an algorithm called “hash function”, the

password entered by the user will be hashed by the system.

This process produces a hash text, which is an encrypted

version of the original password [27]. One of the benefits is

that the original password remains secure even if the database

is compromised because the hash cannot be restored to its

original form. Hashing protects sensitive data such as

passwords.

Figure 8. Transformation of password to hash text using

hash function

3.6 Hashing implementation for user data security

The database system used on this website is MySQL, a

relational database management system that is widely used

because of its stability and ability to manage large amounts of

data. Data storage in MySQL uses an SQL (Structured Query

Language) structure, which means data is stored in the form of

structured and interrelated tables. Each table has columns that

define specific types of data, making it easier to manage,

search, and analyze data. In addition to MySQL, the system

also allows integration with NoSQL-based storage, such as

MongoDB, which stores data in JSON format [28]. This

approach is beneficial for data that is more flexible and does

not always have a fixed structure, depending on the needs of

the system.

The main data stored in the database comes from the

detection results of driver behavior analyzed in real-time using

YOLO v8 (You Only Look Once version 8) technology, which

is a deep learning-based object detection model. This data

reflects the driver's physical state and facial expressions,

which are then processed to determine whether the driver is in

a drowsy state or not. This is very important in the context of

driving safety, as the system can provide early warnings if it

detects signs of fatigue.

Figure 9. Table structure for driver behavior and fatigue

monitoring

In Figure 9, To store driver status data, a special table is

used with the following column structure: driver_id, eye_state,

mouth_state, head_pose, yawning, drowsiness_status,

1093

start_time, duration, and end_time. These columns represent

various important parameters that are observed while the

driver is operating the vehicle. The determination of

drowsiness status is based on the analysis of several key

parameters, such as eye_state, head_position, mouth_state,

and yawning. If the system detects a certain combination of

these parameters indicating fatigue, the drowsiness_status will

be changed to “drowsy”, and the time and duration will be

recorded in the database.

3.7 Testing design

System testing is carried out to ensure that each component

of the YOLO and WebSocket-based driver fatigue monitoring

system runs according to the functions that have been designed.

Testing starts from the client side, namely the fatigue detection

module that runs on the driver's device. In this test, various

driver conditions are simulated, such as closed eyes, tilted

head position, and yawning, to see if the system can detect

correctly based on the YOLO model used. The success of

detection is seen from whether the status data is sent to the

backend server in real-time using the HTTP method [29].

Figure 10. Workflow of testing the driver monitoring and

telegram notification system

In Figure 10, Next, testing is done on the backend server.

The server is tested to process the data sent from the client,

save it to the database, and send it to the frontend using

WebSocket. At this stage, the speed and accuracy of data

transmission are the main focus. The backend is also tested to

ensure data security with the implementation of JWT-based

authentication [20]. Access from unauthorized users is denied,

and only users who have logged in with a valid token can

access the driver status information. This ensures that the

user's personal data remains secure.

The frontend or user interface was tested to display real-

time driver status data without the need to reload the page. The

display was tested under various conditions to ensure

responsiveness and clarity of information. In addition, the

Telegram notification feature was tested to send automatic

alerts when the system detects signs of fatigue. In addition,

tests were conducted on the data storage system, especially on

the user password storage mechanism [30]. Passwords were

tested to be stored in hashed form using the bcrypt algorithm

to avoid sensitive data leakage. All of these tests aim to ensure

that the system is reliable, real-time, secure, and can be used

effectively in monitoring the driver's condition to prevent

fatigue accidents.

In this study, User Acceptance Testing (UAT) was not

conducted due to the subjective nature of this type of

evaluation, which typically requires the involvement of

representative end-users. At the current stage of development,

the system remains in its prototype phase, and access to a

sufficiently diverse and representative user base was not

available. UAT is generally employed to assess the usability

and satisfaction of the system from the perspective of actual

users; however, such an evaluation is more appropriate once

the system reaches a more mature stage and is ready for

broader deployment.

To compensate for the absence of UAT, the research

focused on objective and quantifiable testing methodologies.

Functional testing was carried out to ensure that each

component of the system performed according to its intended

specifications. Performance testing was also conducted to

evaluate the system’s responsiveness and stability under

varying loads, particularly in scenarios involving real-time

data transmission and notification delivery. Furthermore, the

accuracy of the fatigue detection mechanism was validated by

comparing the system’s output with ground truth data, thereby

ensuring the reliability of the detection model.

These testing approaches were selected to provide a robust

technical evaluation of the system’s capabilities. While user-

centered evaluations such as UAT are valuable, they are

planned for future stages of development when the system is

deployed in real-world environments. At this stage, the

emphasis remains on verifying the technical soundness and

operational effectiveness of the system under controlled

conditions.

4. RESULT AND DISCUSSION

This chapter presents the test results of the web-based driver

behavior detection and notification system through the

Telegram application. The tests were conducted in a laboratory

using simulated drivers to test the efficacy of the system in

detecting signs of driver fatigue and non-compliance. The

system being tested is YOLO v8, a deep learning-based object

detection model that can detect various important parameters,

including eye condition, mouth movements, head position, and

yawning, which is the term for nodding or yawning. In

addition, the test will include Telegram alerts that will be sent

to drivers and vehicle operators in real-time if the system finds

signs of negligence or drowsiness in driving behavior.

It should be noted that these tests have not been conducted

in the field, so additional testing on drivers in real-life

situations is needed to more accurately assess the system's

performance. Testing in real-life situations will help assess the

system's performance in the face of external variables such as

environmental disturbances or more complex driver behaviors.

The results of these laboratory tests show that the web-based

driver fatigue detection and real-time notification technology

has great potential for use. However, additional testing is

needed to ensure that the system can operate well in more

complex and dynamic work.

4.1 Notifications delivery time testing

In the first test, measurements were taken to measure the

time to send notifications to the system when the driver's status

1094

on the web changed to “sleepy”. The purpose of this test was

to measure the responsiveness of the system in alerting the

driver and vehicle operator in real time. Parameters such as

eye condition, head position, mouth movement, and yawning-

or nodding or yawning-were used in the tested system to detect

signs of driver fatigue. If the driver system detects drowsiness,

the status on the web interface will change to “drowsy”, and a

notification will be sent via the Telegram app. This test

measured and recorded the time taken for the notification to be

sent. As part of the system evaluation, a series of ten trials were

conducted to verify the consistency of notification delivery

under various conditions. The test results showed that the

speed of notification delivery and the accuracy of the system

to identify the driver's status were excellent. Furthermore, the

test data was evaluated and compared with the previous test

results discussed in section 4.2 which tested the system's

performance in more complex situations. As such, this test also

provides an overview of the stability of the system in operating

under real-time conditions as well as potential enhancements

needed to improve the responsiveness of the system.

Figure 11. Response time for telegram notification delivery

Figure 11, In the first test, the main objective was to

measure the notification delivery time when the status is

changed to “sleepy” in the system. In this test, the system is

programmed to detect certain conditions, such as a change in

user status, and then send the relevant notification. The graph

depicts the response time in seconds at 10 different data points,

where each data point represents the time taken by the system

to send and process the notification. The test results show that

the response time is relatively consistent from Data 1 to Data

9, ranging from 0.8 to 1 second. This reflects the efficiency of

the system in managing notification requests under normal

conditions.

Figure 12. Telegram notification

Figure 12, however, in Data 10 there is a significant spike

in response time, reaching more than 1 second. This spike

could be caused by several factors, such as increased system

load, network delays, or less efficient management of the

notification queue. Overall, although the system showed stable

response times in most of the tests, the spike in Data 10

indicates a bottleneck or technical issue that needs to be

analyzed further.

To improve the efficiency of the system, it is necessary to

further analyze the cause of the spike on Data 10, including

evaluating server availability, queue management, and

network conditions. Future tests could involve simulations

with a larger number of notifications to test how the system

handles higher loads.

Figure 13. Notification logic flow from detection to telegram

alert delivery

Figure 13, the telegram notification mechanism is activated

after the detection data is processed and successfully stored in

the database. The system first verifies whether the WebSocket

connection (detectionend) has been properly initialized. If the

connection is active, a new_detection event is emitted to the

frontend to update the dashboard interface in real time. If the

WebSocket is not available, the system logs a warning and

skips the emission process to prevent runtime errors.

Subsequently, the system constructs a structured message

containing key detection parameters, including the driver ID,

eye and mouth conditions, drowsiness status, and the start and

end timestamps of the detection event. This message is then

passed to the sendTelegramAlert() function, which delivers

the alert to a designated Telegram chat using the Telegram Bot

API.

This logic ensures that notifications are only sent when

valid detection data is available and the system is in a stable

operational state. Furthermore, it prevents unnecessary alerts

by verifying the readiness of the communication channel

before attempting to emit or notify. This approach enhances

the reliability of the alert system and minimizes the risk of

false or redundant notifications.

4.2 Testing to obtain drowsiness condition parameter

responses

This test measures driver drowsiness by monitoring the

following parameters: Driver ID for driver identification, Eye

State for eye state (open or closed), Mouth State for mouth

state (open or closed), Head Pose for head position (normal or

tilted), Yawning to measure whether the driver yawns,

Drowsiness Status to indicate whether the driver is sleepy, and

Start Time, End Time, and Duration to record the start, end,

and duration times of the test. These parameters are used to

assess the drowsiness level of the driver.

In Table 1 present the result of the test, which recorded in

this table aims to measure the response time of sending data

1095

related to the drowsiness state of driver D001. Each row

records data about the driver indicating drowsiness, with

parameters such as eyes closed, mouth open, yawning (true),

and drowsy status. The data also records varying head

positions of the driver, such as normal, tilted, and slightly tilted

head positions, which can indicate fatigue or inattention. The

test duration for each data varies from 5 to 12 seconds.

Table 1. Data sending test results

Data
Response

(ms)

D001, closed, open, normal, true, drowsy, 2025-03-

15T12:00:00Z, 2025-03-15T12:05:00Z, 5s
35

D001, closed, open, tilted, true, drowsy, 2025-03-

15T12:10:00Z, 2025-03-15T12:18:00Z, 8s
53

D001, closed, open, normal, true, drowsy, 2025-03-

15T12:20:00Z, 2025-03-15T12:25:00Z, 5s

D001, closed, open, slightly tilted, true, drowsy,

2025-03-15T12:30:00Z, 2025-03-15T12:38:00Z, 8s
10

D001, closed, open, normal, true, drowsy, 2025-03-

15T12:40:00Z, 2025-03-15T12:45:00Z, 5s
54

D001, closed, open, normal, true, drowsy, 2025-03-

15T12:50:00Z, 2025-03-15T13:02:00Z, 12s

D001, closed, open, tilted, true, drowsy, 2025-03-

15T13:10:00Z, 2025-03-15T13:15:00Z, 5s
9

D001, closed, open, normal, true, drowsy, 2025-03-

15T13:20:00Z, 2025-03-15T13:28:00Z, 8s
13

D001, closed, open, normal, true, drowsy, 2025-03-

15T13:30:00Z, 2025-03-15T13:37:00Z, 7s

D001, closed, open, normal, true, drowsy, 2025-03-

15T13:40:00Z, 2025-03-15T13:45:00Z, 5s
12

Each line shows a “Success” status after successful data

transmission. For data transmission, milliseconds (ms) are

used to indicate the response time, which ranges from 9 ms to

106 ms. A faster response time, such as 9 ms, indicates faster

processing, while a longer response time, such as 106 ms,

indicates that data transmission takes a little more time,

although it remains within an acceptable range. Overall, these

tests were successful; they demonstrated the system's ability to

send and process data in a relatively quick time, which

suggests that the system is quite effective at identifying driver

drowsiness.

4.3 Dashboard testing

In Figure 14, In the dashboard section, tests were conducted

to monitor the driver's drowsiness condition using several

parameters, which were then displayed in tabular form on the

dashboard of the driver behavior detection system. The data

displayed in the table includes various attributes related to the

driver's drowsiness status, such as Driver ID, Eye State, Mouth

State, Head Pose, Yawning, Drowsiness Status, Start Time,

End Time, and Duration. From the table shown, it can be seen

that driver D001 experienced a drowsy condition in each test

conducted. In each row, the drowsiness_status shows the value

“Drowsy”, which means the driver is in a drowsy condition.

This can be seen from several parameters such as Eye State

which shows closed eyes, and yawning which indicates the

driver is yawning.

The test duration varies between 5 to 12 seconds. This

shows that the system can detect driver drowsiness in a

relatively short time. Although there is a slight variation in

duration, the overall system shows good responsiveness to the

driver's drowsy state.

In Figure 15, Testing on the POST detection endpoint was

performed with 100 iterations, resulting in a total test duration

of 8 seconds 720 milliseconds (8s 720ms). During the test, all

requests were successfully processed with a response status of

200, indicating that there were no errors in any of the API

requests. The average response time for each request was 20

milliseconds, indicating that the API responded very quickly.

The time distribution diagram also shows that most requests

completed within a short time, with little variation in response

duration. These test results show that the API works efficiently,

can handle the test load well, and provides fast and stable

results.

Figure 14. Dashboard Monitoring

Figure 15. Post-detection API test summary and response

times

In Figure 16, Testing on the GET detection endpoint was

conducted with 100 iterations, resulting in a total test duration

of 8 seconds 794 milliseconds (8s 794ms). During the test, all

requests were successfully processed with a response status of

200, indicating that the API worked well and as expected. The

average response time for each request was 7 milliseconds,

indicating that the API is very efficient in providing responses.

The time distribution diagram shows that most requests

completed with very fast and stable response times, with no

major fluctuations in duration. These test results show that the

API on the GET detection endpoint has excellent performance,

responsiveness, and stability.

Figure 16. Get-detection API test summary and response

times

4.4 User registration process with data security using

hashing

In Figure 17, figure explanation the application of hashing

is very important in securing user data in the sign-in and sign-

up system. In the view shown in figure, this is the sign-up page

for a new user, in this case an admin. The user is required to

enter a name, email, and password to create an account. After

registering, the data entered will be automatically sent to the

1096

server. One important step is that the entered password will be

converted into a hash value using a secure algorithm such as

bcrypt or SHA-256. This hashing process converts the original

password into a random string that cannot be restored to its

original form. This aims to keep in mind that even if the

database is accessed by unauthorized parties, they will only

see the hash value and not the original password which can be

misused.

Figure 17. User registration page for secure data access

In Figure 18, shows a view of the database that stores

registered user data. The password column indicates that the

value stored is not the original password entered by the user,

but the hash value generated from the hashing process. For

example, in the first row, the password entered by the user has

been converted into a long random string. This is the result of

the hashing algorithm applied at the time of sign-up. With this

method, even if this database is accessed by unauthorized

parties, they will not be able to know the user's original

password as only the hash value is visible. This strengthens the

security of user data by preventing the theft of sensitive data

such as passwords. The created_at field indicates the time of

account creation, which can be used to track when the account

was created.

Figure 18. Database entry for user encrypted password

The application of this hashing technique ensures that the

data stored in the database is safe from unauthorized access,

maintains user privacy, and prevents potential misuse of

personal data.

In Figure 19, shows a comparison of user data that has a

password in plain text or plaintext without hashing technology.

In this case, the password in the password field is the same as

the user entered, i.e. 12345678. This shows that this password

is no longer protected. Since the database is stored in an easily

accessible format, the password can be easily read and

misused if an unauthorized party is able to access it.

Figure 19. Database entry for user with plaintext password

4.5 Performance testing

In Figure 20 illustrates the response time graph obtained

during a 10-minute performance testing session. This test was

designed to evaluate the responsiveness of both the REST API

endpoints and the WebSocket communication channel under

varying virtual user loads. The number of simulated users was

gradually increased from 20 to 100 and then decreased back to

20, while monitoring the system’s ability to handle concurrent

requests and real-time data transmission.

Figure 20. Performance

The graph shows that the average response time

(represented by the blue line) remained relatively stable during

most of the test duration. However, significant spikes in

response time were observed as the number of concurrent

users increased. The first noticeable spike occurred around

15:00:40, coinciding with the initial rise in user load. The most

substantial spike was recorded at 15:01:28, when the system

reached its peak load of 100 users. At this point, the response

time exceeded 10,000 milliseconds (10 seconds), as indicated

by the sharp rise in the 95th and 99th percentile lines.

These results suggest that while the system performs

efficiently under normal conditions, it encounters performance

bottlenecks during peak load, particularly in handling

simultaneous WebSocket messages and REST API requests.

Once the load was reduced, the response time stabilized,

indicating the system’s ability to recover after high-stress

conditions.

This test highlights the need for further optimization, such

as implementing load balancing, asynchronous processing, or

message queuing, to enhance the system’s scalability and

ensure consistent performance under high concurrency.

4.6 Comparative analysis with existing

This test highlights the need for further optimization, such

as implementing load balancing, asynchronous processing, or

message queuing, to enhance the system’s scalability and

ensure consistent performance under high concurrency.

To evaluate the effectiveness of the proposed driver fatigue

monitoring system, a comparative analysis was conducted

against existing systems that utilize traditional sensor-based

methods and earlier versions of computer vision models such

as YOLOv5. The comparison focuses on key performance

indicators including detection accuracy, response time, real-

time feedback capability, and system scalability.

In Table 2, The proposed system demonstrates competitive

performance in terms of detection accuracy and response

speed. The YOLOv8 model employed in this system was pre-

trained to recognize driver behaviors such as eye closure,

yawning, and head posture. The training dataset was sourced

from the publicly available Roboflow platform, comprising

3,474 annotated images of drivers captured under diverse

conditions, including varying lighting, camera angles, and the

presence of accessories such as glasses and masks. The dataset

was partitioned into 87% for training, 8% for validation, and

4% for testing. Data augmentation techniques were applied to

enhance generalization, including rotation, zoom, shear, color

adjustments, blur, and noise. The model was trained using an

1097

input resolution of 416×416 pixels and achieved a mean

Average Precision (mAP), precision, and recall of 99.3%,

indicating highly reliable detection performance for real-time

monitoring and alert delivery via the integrated dashboard and

Telegram notification service [31].

Table 2. Comparative analysis

Featur

Proposed

System

(YOLOv8 +

WebSocket)

Traditional

Sensor Based

System

YOLOv5-

Based

System

Drowsiness

Detection

Accuracy

99.3%

(based on

Roboflow

dataset)

75% (EAR-

based sensors)

85%

(YOLOv5)

Real-Time

Notifications
Yes No Limited

Response

Time

0.8-1.1

Seconds
2-3 Seconds

1.5-2

seconds

Security

(JWT+

bcrypt_)

Strong

Weak

(no

encryption)

Moderate

YOLOv5-based systems trained on facial features such as

eye closure and yawning achieve approximately 73.7%

accuracy in detecting driver drowsiness, but it is limited in

responsiveness and adaptability to varying lighting conditions.

In contrast, traditional sensor-based systems relying on Eye

Aspect Ratio (EAR) or steering pressure typically reach

around 70-75% accuracy and are less suitable for real-time

applications due to their intrusive nature and lack of contextual

awareness [31, 32].

These findings highlight the superior performance of the

proposed YOLOv8-based system in both accuracy and

responsiveness, making it a more viable solution for real-

world deployment in dynamic driving environments.

4.7 Eror source and statical validation

Despite the high accuracy and responsiveness demonstrated

by the proposed driver fatigue monitoring system, several

factors may introduce variability or error in detection

outcomes. These factors must be critically examined to ensure

the robustness and reliability of the system in diverse

operational environments.

One of the primary sources of error is lighting conditions.

Inadequate or uneven illumination can significantly impair the

visibility of facial features, particularly the eyes and mouth,

which are essential for detecting signs of drowsiness. Similarly,

occlusions caused by accessories such as eyeglasses, face

masks, or headwear may obstruct key facial landmarks,

leading to misclassification or missed detections.

Another contributing factor is the camera angle and

resolution. Improper camera placement or low-resolution

video input can reduce the precision of the YOLOv8 detection

model, especially when subtle facial movements are involved.

Furthermore, driver variability—including differences in

facial structure, behavioral patterns, and expressions of

fatigue—can affect the generalization capability of the model

across different individuals.

Table 3, To evaluate the consistency of the system’s

performance, a statistical analysis was conducted using

response time data collected from ten trials of drowsiness

detection and notification delivery. The results are presented

in Table 3.7. The analysis yielded a mean response time of

0.91 seconds and a standard deviation of 0.09 seconds,

indicating a high level of consistency across trials. These

findings suggest that the system performs reliably under

controlled laboratory conditions.

For future work, it is recommended to incorporate more

advanced statistical validation techniques, such as hypothesis

testing and confidence interval analysis, to further substantiate

the significance of the experimental results. Additionally, field

testing under varied environmental conditions and with a

broader demographic of drivers will be essential to assess the

system’s robustness and scalability in real-world applications.

Table 3. Performance consistency test

Trial Response Time (Seconds)

1 0.8

2 0.9

3 0.8

4 0.9

5 1.0

6 0.8

7 0.9

8 1.1

9 0.9

10 1.0

5. CONCLUSIONS

This research has demonstrated the development of a real-

time driver fatigue monitoring system that combines computer

vision techniques with interactive web-based visualization and

notification features. Through the use of the YOLOv8

algorithm, the system can accurately identify fatigue-related

indicators—such as eye state, mouth activity, head orientation,

and yawning—achieving a 99.3% accuracy rate based on the

Roboflow dataset. Real-time detection data is streamed to a

responsive web dashboard via WebSocket, providing

continuous updates without requiring page reloads.

Simultaneously, alert messages are dispatched instantly

through Telegram Bot to inform users when potential danger

is detected. System evaluations, including functional and

stress testing, revealed consistent response times between 0.8

and 1.1 seconds and efficient API handling under a simulated

workload of 100 iterations. Compared to existing traditional

systems and those using YOLOv5, the proposed solution

delivers improved precision and responsiveness. While user-

centered evaluations were not part of this study, the system has

proven to be technically sound and scalable. Further research

is recommended to evaluate user interaction and refine the user

interface design to better support deployment in real-world

driving conditions.

REFERENCES

[1] Ahmed, S.K., Mohammed, M.G., Abdulqadir, S.O., El-

Kader, R.G.A., El-Shall, N.A., Chandran, D., Ur

Rehman, M.E., Dhama, K. (2023). Road traffic

accidental injuries and deaths: A neglected global health

issue. Health Science Reports, 6(5): e1240.

https://doi.org/10.1002/hsr2.1240

[2] Iridiastadi, H., Abdurrahman, I., Puspasari, M., Soetisna,

H.R. (2020). Fatigue and sleepiness during long-duration

driving: A preliminary study among Indonesian

1098

commercial drivers. Transport Problems, 15(2): 17-24.

https://doi.org/10.21307/tp-2020-016

[3] Sun, W., Si, Y., Guo, M., Li, S. (2021). Driver distraction

recognition using wearable IMU sensor data.

Sustainability, 13(3): 1342.

https://doi.org/10.3390/su13031342

[4] Aote, S.S., Tank, K., Khanna, A., Padole, V., Rewatkar,

A. (2024). Driver monitoring based on drowsiness and

yawning using YOLOv8. In 2024 International

Conference on Current Trends in Advanced Computing

(ICCTAC), Bengaluru, India, pp. 1-6.

https://doi.org/10.1109/ICCTAC61556.2024.10581349

[5] Sakthy, S.S., Sriraman, S., Krishna, R. (2024). DMS-

driver monitoring system for license test using machine

learning. In 2024 International Conference on Power,

Energy, Control and Transmission Systems (ICPECTS),

Chennai, India, pp. 1-5.

https://doi.org/10.1109/ICPECTS62210.2024.10780229

[6] Zhang, M., Zhang, F. (2024). Lightweight YOLOv8

networks for driver profile face drowsiness detection.

International Journal of Automotive Technology, 25(6):

1331-1343. https://doi.org/10.1007/s12239-024-00103-

w

[7] Sharma, N., Agarwal, R. (2023). HTTP, WebSocket, and

signalR: A comparison of real-time online

communication protocols. In International Conference

on Mining Intelligence and Knowledge Exploration.

Cham: Springer Nature, Switzerland. pp. 128-135.

https://doi.org/10.1007/978-3-031-44084-7_13

[8] Ibnugraha, P.D., Sani, M.I., Sari, M.I., Rizal, M.F.,

Hanifa, F.H., Kurniawan, A.P. (2023). Automatic

Passenger Counting (APC) for Online Event Data

Recorder (EDR). In 2023 International Conference on

Artificial Intelligence, Blockchain, Cloud Computing,

and Data Analytics (ICoABCD), Denpasar, Indonesia,

pp. 89-93.

https://doi.org/10.1109/ICoABCD59879.2023.1039096

0

[9] Ravichandran, M., Laxmikant, K., Muthu, A. (2023).

Efficient vehicle detection and classification using

YOLO v8 for real-time applications. In 2023 Global

Conference on Information Technologies and

Communications (GCITC), Bangalore, India, pp. 1-5.

https://doi.org/10.1109/GCITC60406.2023.10426587

[10] Zhou, L., Li, S., Wang, Y. (2023). Fatigue detection and

early warning system for drivers based on deep learning.

In 2023 IEEE 3rd International Conference on Data

Science and Computer Application (ICDSCA), Dalian,

China, pp. 1348-1351.

https://doi.org/10.1109/ICDSCA59871.2023.10392792

[11] Gote, A. (2024). Real-time interactivity in hybrid

applications with web sockets. International Research

Journal of Modernization in Engineering Technology

and Science, 6(1): 2459-2463.

https://www.doi.org/10.56726/IRJMETS48494

[12] Sengar, S.S., Kumar, A., Singh, O. (2024). VigilEye—
Artificial Intelligence-based real-time driver drowsiness

detection. arXiv preprint arXiv:2406.15646.

https://doi.org/10.48550/arXiv.2406.15646

[13] Sharma, K., Rahul. (2023). Vehicle registration using

blockchain and JSON web token for authentication on

restful web service from India perspective. In

International Conference on Soft Computing and Signal

Processing. Springer Nature, Singapore, pp. 83-92.

https://doi.org/10.1007/978-981-99-8628-6_8

[14] Du, X., Yu, C., Sun, T. (2024). Multi—Parameter fusion

driver fatigue detection method based on facial fatigue

features. Journal of the Society for Information Display,

32(9): 676-690. https://doi.org/10.1002/jsid.1343

[15] Abdul-Rahaim, L.A., Gheni, H.M., Ameen, H.A. (2022).

Real-time traffic violation system vehicles to cloud data

exchange based driver behaviour. In 2022 International

Congress on Human-Computer Interaction, Optimization

and Robotic Applications (HORA), Ankara, Turkey, pp.

1-6. https://doi.org/10.1109/HORA55278.2022.9800028

[16] Mahindraka, P. (2020). Insights of JSON web token.

International International Journal of Recent Technology

and Engineering, 8(6): 1707-1710.

https://doi.org/10.35940/ijrte.F7689.038620

[17] Pawar, S., Jadhav, D.B., Godse, D., Jadhav, R., Thakur,

S. (2024). Vision-based empty shelf detection in retail

with real-time telegram notifications for efficient

restocking. International Journal of Electronics and

Communication Engineering, 11(7): 180-187.

https://doi.org/10.14445/23488549/IJECE-V11I7P118

[18] Karthik, C., Praveen, K.N., Clarinda, S.S. (2025).

University transport connect: Real-time university bus

tracking system using Flask WebSocket, and machine

learning predictive analysis. International Journal for

Research Trends and Innovation, 10(1): a892-a895.

https://www.ijrti.org/papers/IJRTI2501107.pdf.

[19] Navaneethakrishnan, M.M.E., Joel, A.M.A., Raj, M.L.,

Kanna, K.S. (2021). Developing a cross-platform vehicle

tracking system using node.js and WebSocket.

International Journal of Advanced Research in Computer

Science Engineering and Information Technology, 6(3):

1420-1425.

[20] Dubey, A. (2023). Enhancing real time communication

and efficiency with WebSocket. International Research

Journal of Engineering and Technology, 10(8): 891-895.

https://www.irjet.net/archives/V10/i8/IRJET-

V10I8147.pdf.

[21] Sharma, A., Shrivastava, V., Pandey, A., Sharma, E.A.

(2024). Providing authentication using JSON web

tokens for enhancing user security. International Journal

of Research Publication and Reviews, 5(4): 5309-5312.

https://ijrpr.com/uploads/V5ISSUE4/IJRPR25377.pdf.

[22] Xu, B.W., Jia, S.J., Lin, J.Q., Zheng, F.Y., Ma, Y., Liu,

L.M., Gu, X.Z., Song, L. (2023). JWTKey: Automatic

cryptographic vulnerability detection in JWT

applications. In European Symposium on Research in

Computer Security, Springer Nature, Switzerland, pp.

263-282. https://doi.org/10.1007/978-3-031-51479-1_14

[23] Wahid, A., Parenreng, J.M., Kusnandar, W.C.K., Adi,

P.D.P. (2024). Telegram bot-based flood early warning

system with WSN integration. ILKOM Jurnal Ilmiah,

16(2): 151-160.

https://doi.org/10.33096/ilkom.v16i2.1699.151-160

[24] Satti, S.K., Rajareddy, G.N., Ravipati, N.V., Samanvita,

S.G. (2024). Drowsy alert: A system to detect and alert

driver's drowsiness for road safety. In 2024 IEEE

Students Conference on Engineering and Systems

(SCES), Prayagraj, India, pp. 1-6.

https://doi.org/10.1109/SCES61914.2024.10652546

[25] Dey, M., Majhi, M., Koda, Y., Maji, B., Chatterjee,, R.

(2024). Drowsy driver detection system. International

Journal for Research in Applied Science & Engineering

Technology, 12(v): 1488-1492.

1099

https://doi.org/10.22214/ijraset.2024.61832

[26] McGiffen, M. (2022). Hashing and salting of passwords.

In Pro Encryption in SQL Server 2022: Provide the

Highest Level of Protection for Your Data, USA, pp.

269-275. https://doi.org/10.1007/978-1-4842-8664-7_19

[27] Touil, H., El Akkad, N., Satori, K. (2021). Securing the

storage of passwords based on the MD5 HASH

transformation. In International Conference on Digital

Technologies and Applications, Fez, Morocco, pp. 495-

503. https://doi.org/10.1007/978-3-030-73882-2_45

[28] Matallah, H., Belalem, G., Bouamrane, K. (2021).

Comparative study between the MySQL relational

database and the MongoDB NoSQL database.

International Journal of Software Science and

Computational Intelligence (IJSSCI), 13(3): 38-63.

https://doi.org/10.4018/IJSSCI.2021070104

[29] Li, X., Li, X., Shen, Z., Qian, G. (2024). Driver fatigue

detection based on improved YOLOv7. Journal of Real-

Time Image Processing, 21(3): 75.

https://doi.org/10.1007/s11554-024-01455-3

[30] Kumbhar,, A.S.S., Athane, P.R., Nandangi, A.A., Pote,

S.S., Chopade, P.M. (2024). Driver drowsiness detection

system with real-time monitoring and historical tracking.

International Research Journal of Modernization in

Engineering Technology and Science, 6(2): 2259-2264.

https://www.doi.org/10.56726/IRJMETS49771

[31] El-Nabi, S.A., El-Shafai, W., El-Rabaie, E.S.M.,

Ramadan, K.F., Abd El-Samie, F.E., Mohsen, S. (2024).

Machine learning and deep learning techniques for driver

fatigue and drowsiness detection: A review. Multimedia

Tools and Applications, 83(3): 9441-9477.

https://doi.org/10.1007/s11042-023-15054-0

[32] Lazuardi, M.R., Hadi, M.Z.S., Sudibyo, R.W. (2023).

Driver drowsiness detection system using deep learning

method to reduce risk accident. In 2023 International

Electronics Symposium (IES), Denpasar, Indonesia, pp.

399-404.

https://doi.org/10.1109/IES59143.2023.10242431

1100

