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This research presents a real-time driver fatigue monitoring system that integrates 

computer vision with web-based visualization and notification capabilities. The system 

utilizes the You Only Look Once version 8 (YOLOv8) algorithm to detect signs of 

drowsiness, such as closed eyes, mouth condition, head position, and yawning, achieving 

a detection accuracy of 99.3% based on a dataset from Roboflow. Detection results are 

transmitted via WebSocket to an interactive web dashboard, enabling live monitoring 

without the need to reload the page. Additionally, real-time notifications are sent via a 

Telegram Bot to the driver or operator when risky conditions are detected. To maintain 

data security, the system implements JSON Web Token (JWT) authentication and 

password hashing using bcrypt. Testing includes functional, performance, and API 

evaluations under scenarios simulating driver fatigue and system load. The results show 

stable response times ranging from 0.8 to 1.1 seconds and efficient API handling of up to 

100 iterations. A comparative analysis indicates that the proposed system outperforms 

traditional and YOLOv5-based methods in terms of accuracy and real-time capability. 

Although user experience testing has not been conducted, the system has proven to be 

technically reliable and holds strong potential to reduce traffic accidents. 
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1. INTRODUCTION

Around the world, driving safety is still very important, 

especially considering the number of traffic accidents caused 

by unsafe driver behavior. The World Health Organization 

(WHO) says that around 1.3 million deaths are caused by 

traffic accidents each year, human factors such as drowsiness, 

being distracted by mobile phones, or smoking while driving 

are part of these causes [1].  

According to Korlantas Polri, driver negligence is 

responsible for about 61% of accidents in Indonesia, with 

drowsiness as the main cause. Drivers are often unaware of the 

dangerous conditions they are experiencing, such as 

drowsiness or other activity distractions, which increase the 

likelihood of an accident [2]. 

Conventional methods, such as manual surveillance or 

vehicle sensors, have proven ineffective in addressing this 

issue as drivers are often unable to spot danger signs on their 

own. Moreover, the external sensors used by most current 

monitoring systems are not always precise, especially in 

detecting non-physical behaviors such as mobile phone 

distraction or smoking activity while driving [3]. Therefore, to 

reduce the possibility of accidents, there is a need for 

intelligent technology-based products that can detect risky 

driver behaviors in real-time with low latency and high 

accuracy. 

The aim of this research is to create an automated system 

based on Artificial Intelligence (AI) and computer vision (CV) 

that can detect dangerous driver behavior. The YOLOv8 

algorithm-also known as You Only Look Once version 8-is 

able to detect and classify various dangerous behaviors in real-

time, especially focusing on drowsiness and parameters such 

as eyes, mouth, head position, and yawning with higher 

accuracy in low-light conditions [4]. 

The developed system will help monitor drivers in real time 

by displaying easy-to-read data and providing instant feedback 

without the need to reload the page. The system is also 

equipped with security technologies to protect user data, 

including JSON Web Token (JWT) based authentication and 

API keys to ensure secure communication between the 

frontend and backend [5]. 

2. LITERATUR REVIEW

Chapter 2 discusses driving safety, which is a major issue 

worldwide with many traffic fatalities each year. Human 

factors such as fatigue and cell phone distraction are often to 

blame; in Indonesia, driver negligence accounts for 61% of 

accidents [1]. This chapter also discusses traditional methods 

of monitoring drivers, such as the use of sensors to determine 

if drivers are tired. However, these methods often fail under 

light and cannot spot additional distractions such as cell 

phones or smoking. AI and YOLOv8 technology can detect 

risky behavior more accurately [3]. 

In this system, driver behavior data is obtained through 

visual detection using the YOLOv8 algorithm, which has 

proven effective in identifying facial features such as closed 
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eyes, head tilt, and yawning in real-time. Recent research by 

Zhang and Zhang [6] demonstrated that an optimized 

YOLOv8 model can detect driver drowsiness with high 

accuracy and real-time performance exceeding 50 FPS, 

making it highly suitable for in-vehicle applications. 

The detected data is then integrated into a web-based system 

using WebSocket technology. WebSocket enables direct, 

bidirectional communication between the server and the user 

interface without requiring page reloads, which is essential for 

delivering instant feedback in driver monitoring systems. 

Studies have shown that WebSocket is particularly effective in 

real-time applications due to its low latency and persistent 

connection capabilities [7]. 
 

2.1 Driving safety and traffic accidents 
 

Traffic accidents are still the leading cause of death and 

injury in the world, making driving safety a growing problem 

worldwide. According to the World Health Organization 

(WHO), traffic accidents cause more than 1.3 million deaths 

each year. Human factors such as smoking, drowsiness, and 

mobile phone distraction are the main causes of many 

accidents [1]. According to Korlantas Polri, driver negligence, 

including fatigue and cell phone distraction, accounts for 61% 

of traffic accidents in Indonesia. This suggests that drivers 

increase the risk of accidents as they are often unable to detect 

or identify danger signs [2]. 
 

2.2 Traditional methods of driver monitoring 

 

The use of vehicle-based sensors and manual surveillance 

are two conventional ways to monitor driver behavior. Sensors 

based on physical measurements such as Eye Aspect Ratio 

(EAR) are used to detect driver fatigue. While these systems 

detect one driver behavior, such as fatigue, they cannot detect 

other non-physical behaviors, such as mobile phone 

distraction or smoking. According to research, these sensors 

often fail in more complex situations or with poor lighting [3]. 

In addition, manual surveillance requires constant supervision 

from an operator or supervisor, which can increase workload 

and increase the likelihood of human error. 

Attention will increasingly focus on the use of Artificial 

Intelligence and computer vision to detect driver behavior. 

Algorithms such as YOLOv8-also known as You Only Look 

Once Version-are able to detect and classify objects in images 

in real-time with a higher degree of accuracy even in low 

lighting conditions. YOLOv8, which is widely used in 

computer vision applications, can detect a variety of behaviors 

that could endanger drivers, such as fatigue, mobile phone use, 

and smoking [8]. The system utilizes images captured from 

vehicle cameras to provide feedback and information about the 

driver's status instantly [9]. Deep learning and Convolutional 

Neural Networks (CNN) are also used in driver monitoring 

applications, such as YOLO. CNNs can identify more 

complex behavioral patterns and symptoms of fatigue or other 

impairments. Compared to traditional methods, these 

technologies can be more accurate in finding different types of 

risky behaviors [10]. 

 

2.3 Backend integration and real-time detection system 

 

For driver monitoring systems, real-time integration of data 

from multiple sensor sources to the backend is a key issue. 

Many current systems rely on separate external sensors, 

resulting in delayed data delivery to the driver or vehicle 

operator. By ensuring fast delivery of feedback, cloud-based 

systems that use Socket.IO or REST APIs can solve this 

problem. Socket.IO allows data to communicate between the 

frontend and backend in real-time without the need to switch 

pages, improving system responsiveness [11]. This integration 

is crucial to ensure that drivers receive important information 

immediately and can take precautions. 

Data security and privacy in driver monitoring applications 

is critical as the data collected can be highly sensitive. To 

protect user data, the use of technologies such as JSON Web 

Token (JWT) for authentication and API keys to ensure 

authorized access is essential. These systems guarantee that 

only identified persons can access the driver's personal data 

and related information [5]. 
 

 

3. METHODOLOGY  
 

In this chapter, methods are used to create a YOLO and 

WebSocket-based driver fatigue monitoring system. The main 

focus of the system is to detect signs of fatigue in drivers and 

provide real-time feedback to improve road safety. In this 

chapter, system design, data transmission, data security, and 

testing are discussed. Socket.IO technology is used for real-

time communication between the frontend and backend, and 

JWT is used to keep user access secure. This chapter will also 

discuss how Telegram Bots can be used to notify drivers or 

vehicle operators if dangerous behavior, such as fatigue, is 

detected. 

The YOLOv8 model employed in this system was pre-

trained to recognize driver behaviors such as eye closure, 

yawning, and head posture. The training dataset was sourced 

from the publicly available Roboflow platform, comprising 

3,474 annotated images of drivers captured under diverse 

conditions, including varying lighting, camera angles, and the 

presence of accessories such as glasses and masks. The dataset 

was partitioned into 87% for training, 8% for validation, and 

4% for testing. To enhance model generalization, data 

augmentation techniques were applied, including rotation, 

zoom, shear, color adjustments, blur, and noise. The model 

was trained using an input resolution of 416×416 pixels and 

achieved a mean Average Precision (mAP), precision, and 

recall of 99.3%. These results indicate that the detection model 

provides highly reliable input for the web-based monitoring 

system, enabling accurate real-time visualization and alert 

delivery via the integrated dashboard and Telegram 

notification service. 
 

3.1 System design 
 

In this chapter, methods are used to create a YOLO and 

WebSocket-based driver fatigue monitoring system. The main 

focus of the system is to detect signs of fatigue in drivers and 

provide real-time feedback to improve road safety. In this 

chapter, system design, data transmission, data security, and 

testing are discussed. Socket.IO technology is used for real-

time communication between the frontend and backend, and 

JWT is used to keep user access secure. This chapter will also 

discuss how Telegram Bots can be used to notify drivers or 

vehicle operators if dangerous behavior, such as fatigue, is 

detected. 

The system uses an interactive and easy-to-use web 

interface to monitor driver behavior in real-time [11]. The 

displayed data, including important information about the 

driver's status during the trip, can be viewed by both the driver 
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and the vehicle operator through this system. A login process 

that uses JSON Web Token (JWT) based authentication allows 

any user, both drivers and operators, to access the system [12]. 

This ensures that only authorized users can access sensitive 

data. 

The displayed data includes various parameters, such as the 

identification of the monitoring session, the identity of the 

driver identified as the driver being monitored, and the driver's 

status, which includes the driver's eye condition, the driver's 

mouth condition, the driver's head position, and yawing 

(detection of yawning, which can indicate fatigue) [13]. In 

addition, the driver's fatigue (drowsiness) status will also be 

displayed based on the analysis of the driver's physical 

condition. In addition, the system records the Start Time and 

End Time for each monitoring session, thus providing an 

overview of the driver's time in a given situation. 

 

 
 

Figure 1. Architecture of real-time driver monitoring system 

 

In Figure 1 illustrates the system architecture of the driver 

monitoring system. The process begins with a camera 

capturing real-time video of the driver, which is analyzed by 

the YOLOv8 detection module to identify signs of fatigue such 

as eye closure, yawning, and head tilt. The detection results 

are sent to a centralized server via HTTP for further processing. 

The server plays a central role in managing data flow and 

system logic. It communicates with the WebSocket module to 

push real-time updates to the Website Dashboard, allowing 

monitoring personnel to visualize driver behavior without 

needing to refresh the page [14]. If risky behaviors such as 

drowsiness or distraction are detected, the server also triggers 

the Telegram notification system to send alerts to the driver or 

vehicle operator. 

To ensure secure access, the system implements JSON Web 

Token (JWT) authentication. Users must log in to the system, 

and their credentials are verified before a token is issued. This 

token is then used to authorize access to protected resources 

and data. 

This architecture ensures low-latency communication, 

secure data handling, and timely alerts, making it highly 

suitable for real-time driver monitoring applications.  

 

 
 

Figure 2. Block diagram of driver fatigue detection system 

In Figure 2, this flow, the process starts by activating YOLO 

(You Only Look Once), a computer vision algorithm used to 

identify the driver's fatigue level. When YOLO finds signs of 

fatigue, data such as the driver's eye condition, mouth 

condition, head position, yawning, and fatigue status are sent 

to the server via HTTP. Once the data is sent, the server will 

receive and process it. Furthermore, the processed data is 

automatically displayed on the web interface by the driver or 

vehicle operator. In addition, the system uses Telegram bots to 

send notifications to the driver or operator regarding 

dangerous situations such as driver fatigue or other 

distractions. In this way, the system provides real-time 

feedback that allows the driver or operator to take immediate 

precautions to improve road safety. The Start Time and End 

Time of the monitoring session are included in the data that 

shows the driver's condition throughout the journey. 

 

 
 

Figure 3. Flowchart system 

 

In Figure 3, the process starts by accessing http://localhost, 

which takes the user to the main page or dashboard of the 

application. If a user account is available in the system, the 

user can log in and start the user verification process. Upon 

successful verification, the system will provide a JWT token 

for additional authentication, which allows the user to access 

the application's data and services [15]. After that, the process 

will continue. The system will prompt the user to create a new 

account if the user account is inaccessible. 

YOLO data is collected from servers that track driver 

behavior. This information is displayed on the internet and 

sent via Telegram notifications to provide immediate feedback 

to the driver or vehicle operator after the user logs in and gets 

authenticated [16]. 

The data collected is then checked by the system to 

determine if the driver is experiencing drowsiness. If 
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drowsiness is detected, an alert will be immediately displayed 

on the web and sent to the driver via Telegram. If it is not 

detected, the system will return to the previous step or wait for 

new input to be processed. Once this process is complete, the 

user will receive feedback on the driver's status and can take 

the necessary actions to ensure the driver's safety on the road 

[17]. 

 

3.2 Data transmission system 

 

For this project, WebSocket technology is used to connect 

the frontend and backend with this data delivery system 

enabling real-time two-way communication, which is essential 

for tracking driver behavior live and providing feedback 

quickly without interrupting or repeating requests. The data 

delivery process starts with the frontend client connecting to 

the server via WebSocket in the /api/detection namespace. 

After a successful connection, the server starts sending driver 

detection data, such as eye status, mouth, head position, and 

drowsiness status. This data is collected from YOLO 

processing on the backend [18]. 

The backend sends detection data to the client via 

WebSocket whenever a new detection is made. Immediately 

afterward, the data is processed and displayed on the web 

dashboard. Conversely, if the driver's drowsiness or fatigue 

status is detected, the system sends a notification via Telegram 

Bot. This bot notifies the driver or vehicle operator to take 

immediate precautions [19]. 

 

 
 

Figure 4. Communication between client and server 

 

In Figure 4, WebSocket plays an important role in ensuring 

instant and efficient communication between the frontend and 

backend. Prior to the use of WebSocket, the communication 

process between the client and server relied on separate HTTP 

requests, which often resulted in delays and data inaccuracies 

in applications such as this driver monitoring application that 

require a quick response [20]. 

With WebSocket, data can be sent and received instantly 

without the need to initiate a new request every time the data 

changes. This reduces latency and provides real-time feedback 

that is essential for driver monitoring. Socket.io is used to 

manage various events, such as “disconnect”, which records 

the connection status between client and server, and to handle 

more stable WebSocket connections [18]. 

In addition, WebSocket enables full-duplex communication, 

meaning that both the server and client can transmit data at any 

time, which makes the interaction more dynamic and 

responsive. For example, this improves driver safety and 

convenience as drivers can instantly receive information about 

their fatigue status without having to wait or perform manual 

actions [19]. 

 

3.3 Data security 

 

JSON Web Token (JWT) is a method used in web-based 

applications to authenticate users and maintain secure 

communication between client and server [15]. JWT is a 

string-shaped token that contains encoded information used to 

identify users and grant limited access to them without having 

to store the session on the server. Due to its ease of 

implementation, JWT is often used in RESTful API 

applications and real-time applications. 

 

 
 

Figure 5. JWT authentication flow between browser and 

server 

 
In Figure 5, the process starts when the user sends their 

username and password via HTTP POST to login to the server. 

Upon receiving the login request, the server verifies the user's 

credentials. If the credentials are valid, the server then creates 

a JWT containing the encrypted user information and signs it 

with the secret key. This token is then sent back to the user's 

browser. The browser stores this JWT for use in subsequent 

requests. 

Furthermore, when a user accesses a page or data that 

requires authentication, the browser sends the JWT that has 

been stored in the HTTP authentication header to the server. 

The server then checks the received JWT signature by using a 

secret key to ensure that the token is valid and has not been 

altered. If valid, the server can retrieve user information from 

the token and grant access to the requested resource [21]. 

 

 
 

Figure 6. JWT token generator logic in the authentication 

module 

 
In Figure 6 presents the core logic used to generate a JWT 

token in the authentication module of the system. Upon 

successful password verification, the server utilizes the 

jsonwebtoken library to create a token that includes the user's 

ID as its payload.  

This token is signed using a secret key stored securely in the 

environment variable (process.env.JWT_SECRET) and is 

configured to expire within one hour (expiresIn: "1h"). This 

expiration setting ensures that the token has a limited validity 

period, reducing the risk of misuse or replay attacks [22].  

The use of environment variables for storing the secret key 

enhances security by preventing hardcoded credentials in the 

source code. Additionally, the token generation process is 

triggered only after the user's credentials are validated, 

ensuring that only legitimate users receive access tokens. This 

implementation supports a stateless authentication model, 

where the server does not need to maintain session data, 

thereby improving scalability and reducing server load [22]. 
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3.4 Telegram notification 

 

Telegram Bot is a way to use Telegram bot to send 

automated messages to users through the Telegram app [23]. 

Telegram bots are accounts that users can interact with and are 

usually used to send alerts or important information. To use 

this bot, we have to create a bot in Telegram and get an API 

token that allows our application to use the bot to send 

messages through it. 

Driver detection data such as eye status, mouth status, head 

position, drowsiness status, and detection time (start_time and 

end_time) are sent to the POST server endpoint to start the 

process. Then the data is stored in the database. After the data 

is saved successfully, the system uses WebSocket to check if 

there are any events that should be sent to the frontend. If there 

is new detection data, the server sends a “new_detection” 

event to the frontend to update the user display in real-time. In 

addition to sending data to the frontend, the system also uses 

the TelegramAlert send function, which sends a message to 

Telegram Bot containing driver behavior detection 

information, such as eye, mouth, and drowsiness status, as well 

as the detection time. The Telegram Bot then sends an instant 

notification to the driver or vehicle operator to alert them so 

that precautions can be taken immediately. This allows the 

driver or operator to respond immediately to risky conditions, 

such as when a driver is detected to be drowsy, to improve 

travel safety [24]. 

 

 
 

Figure 7. Drowsiness detection and notification flow to 

telegram bot 

 

In Figure 7, this process is clearly depicted in the Block 

Diagram: (visual detection) detects the driver's drowsiness 

status and then sends the data to the server via HTTP. Once 

the data is received by the server, a message containing the 

detection information is sent to the server's Telegram bot. In 

addition, the Telegram bot notifies the driver or vehicle 

operator of the notification. In this way, Telegram Bot 

becomes an excellent tool for conveying important 

information quickly and directly without the need to interact 

with users manually. This ensures that any important alerts are 

received quickly, lowering the risk of accidents caused by 

driver negligence. With this integration, the system can 

provide instant notifications to drivers or operators via 

telegram to ensure a quick response to dangerous conditions 

such as drowsy drivers to maintain safe travel [25].  

 

3.5 Hashing implementation for user data security 

 

Hashing is used as the main method to protect data security 

in this project, especially to protect user passwords. The 

process of converting input data, such as passwords, into a 

shorter, consistent form is called hashing. This hash is created 

using a specific mathematical algorithm that is one-way, or 

one-way, and cannot be returned to the original data. Therefore, 

sensitive information such as passwords are not stored in the 

database in their original form, but only as hashes [26]. 

In Figure 8, Hashing is used in the figure to secure the user's 

password. Using an algorithm called “hash function”, the 

password entered by the user will be hashed by the system. 

This process produces a hash text, which is an encrypted 

version of the original password [27]. One of the benefits is 

that the original password remains secure even if the database 

is compromised because the hash cannot be restored to its 

original form. Hashing protects sensitive data such as 

passwords. 

 

 
 

Figure 8. Transformation of password to hash text using 

hash function 

 

3.6 Hashing implementation for user data security 

 

The database system used on this website is MySQL, a 

relational database management system that is widely used 

because of its stability and ability to manage large amounts of 

data. Data storage in MySQL uses an SQL (Structured Query 

Language) structure, which means data is stored in the form of 

structured and interrelated tables. Each table has columns that 

define specific types of data, making it easier to manage, 

search, and analyze data. In addition to MySQL, the system 

also allows integration with NoSQL-based storage, such as 

MongoDB, which stores data in JSON format [28]. This 

approach is beneficial for data that is more flexible and does 

not always have a fixed structure, depending on the needs of 

the system. 

The main data stored in the database comes from the 

detection results of driver behavior analyzed in real-time using 

YOLO v8 (You Only Look Once version 8) technology, which 

is a deep learning-based object detection model. This data 

reflects the driver's physical state and facial expressions, 

which are then processed to determine whether the driver is in 

a drowsy state or not. This is very important in the context of 

driving safety, as the system can provide early warnings if it 

detects signs of fatigue. 

 

 
 

Figure 9. Table structure for driver behavior and fatigue 

monitoring 

 

In Figure 9, To store driver status data, a special table is 

used with the following column structure: driver_id, eye_state, 

mouth_state, head_pose, yawning, drowsiness_status, 
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start_time, duration, and end_time. These columns represent 

various important parameters that are observed while the 

driver is operating the vehicle. The determination of 

drowsiness status is based on the analysis of several key 

parameters, such as eye_state, head_position, mouth_state, 

and yawning. If the system detects a certain combination of 

these parameters indicating fatigue, the drowsiness_status will 

be changed to “drowsy”, and the time and duration will be 

recorded in the database. 

 

3.7 Testing design 

 

System testing is carried out to ensure that each component 

of the YOLO and WebSocket-based driver fatigue monitoring 

system runs according to the functions that have been designed. 

Testing starts from the client side, namely the fatigue detection 

module that runs on the driver's device. In this test, various 

driver conditions are simulated, such as closed eyes, tilted 

head position, and yawning, to see if the system can detect 

correctly based on the YOLO model used. The success of 

detection is seen from whether the status data is sent to the 

backend server in real-time using the HTTP method [29]. 

 

 
 

Figure 10. Workflow of testing the driver monitoring and 

telegram notification system 

 

In Figure 10, Next, testing is done on the backend server. 

The server is tested to process the data sent from the client, 

save it to the database, and send it to the frontend using 

WebSocket. At this stage, the speed and accuracy of data 

transmission are the main focus. The backend is also tested to 

ensure data security with the implementation of JWT-based 

authentication [20]. Access from unauthorized users is denied, 

and only users who have logged in with a valid token can 

access the driver status information. This ensures that the 

user's personal data remains secure. 

The frontend or user interface was tested to display real-

time driver status data without the need to reload the page. The 

display was tested under various conditions to ensure 

responsiveness and clarity of information. In addition, the 

Telegram notification feature was tested to send automatic 

alerts when the system detects signs of fatigue. In addition, 

tests were conducted on the data storage system, especially on 

the user password storage mechanism [30]. Passwords were 

tested to be stored in hashed form using the bcrypt algorithm 

to avoid sensitive data leakage. All of these tests aim to ensure 

that the system is reliable, real-time, secure, and can be used 

effectively in monitoring the driver's condition to prevent 

fatigue accidents. 

In this study, User Acceptance Testing (UAT) was not 

conducted due to the subjective nature of this type of 

evaluation, which typically requires the involvement of 

representative end-users. At the current stage of development, 

the system remains in its prototype phase, and access to a 

sufficiently diverse and representative user base was not 

available. UAT is generally employed to assess the usability 

and satisfaction of the system from the perspective of actual 

users; however, such an evaluation is more appropriate once 

the system reaches a more mature stage and is ready for 

broader deployment. 

To compensate for the absence of UAT, the research 

focused on objective and quantifiable testing methodologies. 

Functional testing was carried out to ensure that each 

component of the system performed according to its intended 

specifications. Performance testing was also conducted to 

evaluate the system’s responsiveness and stability under 

varying loads, particularly in scenarios involving real-time 

data transmission and notification delivery. Furthermore, the 

accuracy of the fatigue detection mechanism was validated by 

comparing the system’s output with ground truth data, thereby 

ensuring the reliability of the detection model. 

These testing approaches were selected to provide a robust 

technical evaluation of the system’s capabilities. While user-

centered evaluations such as UAT are valuable, they are 

planned for future stages of development when the system is 

deployed in real-world environments. At this stage, the 

emphasis remains on verifying the technical soundness and 

operational effectiveness of the system under controlled 

conditions.  

 
 

4. RESULT AND DISCUSSION  
 

This chapter presents the test results of the web-based driver 

behavior detection and notification system through the 

Telegram application. The tests were conducted in a laboratory 

using simulated drivers to test the efficacy of the system in 

detecting signs of driver fatigue and non-compliance. The 

system being tested is YOLO v8, a deep learning-based object 

detection model that can detect various important parameters, 

including eye condition, mouth movements, head position, and 

yawning, which is the term for nodding or yawning. In 

addition, the test will include Telegram alerts that will be sent 

to drivers and vehicle operators in real-time if the system finds 

signs of negligence or drowsiness in driving behavior. 

It should be noted that these tests have not been conducted 

in the field, so additional testing on drivers in real-life 

situations is needed to more accurately assess the system's 

performance. Testing in real-life situations will help assess the 

system's performance in the face of external variables such as 

environmental disturbances or more complex driver behaviors. 

The results of these laboratory tests show that the web-based 

driver fatigue detection and real-time notification technology 

has great potential for use. However, additional testing is 

needed to ensure that the system can operate well in more 

complex and dynamic work. 
 

4.1 Notifications delivery time testing 

 

In the first test, measurements were taken to measure the 

time to send notifications to the system when the driver's status 
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on the web changed to “sleepy”. The purpose of this test was 

to measure the responsiveness of the system in alerting the 

driver and vehicle operator in real time. Parameters such as 

eye condition, head position, mouth movement, and yawning-

or nodding or yawning-were used in the tested system to detect 

signs of driver fatigue. If the driver system detects drowsiness, 

the status on the web interface will change to “drowsy”, and a 

notification will be sent via the Telegram app. This test 

measured and recorded the time taken for the notification to be 

sent. As part of the system evaluation, a series of ten trials were 

conducted to verify the consistency of notification delivery 

under various conditions. The test results showed that the 

speed of notification delivery and the accuracy of the system 

to identify the driver's status were excellent. Furthermore, the 

test data was evaluated and compared with the previous test 

results discussed in section 4.2 which tested the system's 

performance in more complex situations. As such, this test also 

provides an overview of the stability of the system in operating 

under real-time conditions as well as potential enhancements 

needed to improve the responsiveness of the system. 

 

 
 

Figure 11. Response time for telegram notification delivery 

 

Figure 11, In the first test, the main objective was to 

measure the notification delivery time when the status is 

changed to “sleepy” in the system. In this test, the system is 

programmed to detect certain conditions, such as a change in 

user status, and then send the relevant notification. The graph 

depicts the response time in seconds at 10 different data points, 

where each data point represents the time taken by the system 

to send and process the notification. The test results show that 

the response time is relatively consistent from Data 1 to Data 

9, ranging from 0.8 to 1 second. This reflects the efficiency of 

the system in managing notification requests under normal 

conditions. 

 

 
 

Figure 12. Telegram notification 

 

Figure 12, however, in Data 10 there is a significant spike 

in response time, reaching more than 1 second. This spike 

could be caused by several factors, such as increased system 

load, network delays, or less efficient management of the 

notification queue. Overall, although the system showed stable 

response times in most of the tests, the spike in Data 10 

indicates a bottleneck or technical issue that needs to be 

analyzed further.  

To improve the efficiency of the system, it is necessary to 

further analyze the cause of the spike on Data 10, including 

evaluating server availability, queue management, and 

network conditions. Future tests could involve simulations 

with a larger number of notifications to test how the system 

handles higher loads. 

 

 
 

Figure 13. Notification logic flow from detection to telegram 

alert delivery 

 

Figure 13, the telegram notification mechanism is activated 

after the detection data is processed and successfully stored in 

the database. The system first verifies whether the WebSocket 

connection (detectionend) has been properly initialized. If the 

connection is active, a new_detection event is emitted to the 

frontend to update the dashboard interface in real time. If the 

WebSocket is not available, the system logs a warning and 

skips the emission process to prevent runtime errors. 

Subsequently, the system constructs a structured message 

containing key detection parameters, including the driver ID, 

eye and mouth conditions, drowsiness status, and the start and 

end timestamps of the detection event. This message is then 

passed to the sendTelegramAlert() function, which delivers 

the alert to a designated Telegram chat using the Telegram Bot 

API. 

This logic ensures that notifications are only sent when 

valid detection data is available and the system is in a stable 

operational state. Furthermore, it prevents unnecessary alerts 

by verifying the readiness of the communication channel 

before attempting to emit or notify. This approach enhances 

the reliability of the alert system and minimizes the risk of 

false or redundant notifications. 

 

4.2 Testing to obtain drowsiness condition parameter 

responses 

 

This test measures driver drowsiness by monitoring the 

following parameters: Driver ID for driver identification, Eye 

State for eye state (open or closed), Mouth State for mouth 

state (open or closed), Head Pose for head position (normal or 

tilted), Yawning to measure whether the driver yawns, 

Drowsiness Status to indicate whether the driver is sleepy, and 

Start Time, End Time, and Duration to record the start, end, 

and duration times of the test. These parameters are used to 

assess the drowsiness level of the driver. 

In Table 1 present the result of the test, which recorded in 

this table aims to measure the response time of sending data 
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related to the drowsiness state of driver D001. Each row 

records data about the driver indicating drowsiness, with 

parameters such as eyes closed, mouth open, yawning (true), 

and drowsy status. The data also records varying head 

positions of the driver, such as normal, tilted, and slightly tilted 

head positions, which can indicate fatigue or inattention. The 

test duration for each data varies from 5 to 12 seconds. 
 

Table 1. Data sending test results 
 

Data 
Response 

(ms) 

D001, closed, open, normal, true, drowsy, 2025-03-

15T12:00:00Z, 2025-03-15T12:05:00Z, 5s 
35 

D001, closed, open, tilted, true, drowsy, 2025-03-

15T12:10:00Z, 2025-03-15T12:18:00Z, 8s 
53 

D001, closed, open, normal, true, drowsy, 2025-03-

15T12:20:00Z, 2025-03-15T12:25:00Z, 5s 

D001, closed, open, slightly tilted, true, drowsy, 

2025-03-15T12:30:00Z, 2025-03-15T12:38:00Z, 8s 
10 

D001, closed, open, normal, true, drowsy, 2025-03-

15T12:40:00Z, 2025-03-15T12:45:00Z, 5s 
54 

D001, closed, open, normal, true, drowsy, 2025-03-

15T12:50:00Z, 2025-03-15T13:02:00Z, 12s 

D001, closed, open, tilted, true, drowsy, 2025-03-

15T13:10:00Z, 2025-03-15T13:15:00Z, 5s 
9 

D001, closed, open, normal, true, drowsy, 2025-03-

15T13:20:00Z, 2025-03-15T13:28:00Z, 8s 
13 

D001, closed, open, normal, true, drowsy, 2025-03-

15T13:30:00Z, 2025-03-15T13:37:00Z, 7s 

D001, closed, open, normal, true, drowsy, 2025-03-

15T13:40:00Z, 2025-03-15T13:45:00Z, 5s 
12 

 

Each line shows a “Success” status after successful data 

transmission. For data transmission, milliseconds (ms) are 

used to indicate the response time, which ranges from 9 ms to 

106 ms. A faster response time, such as 9 ms, indicates faster 

processing, while a longer response time, such as 106 ms, 

indicates that data transmission takes a little more time, 

although it remains within an acceptable range. Overall, these 

tests were successful; they demonstrated the system's ability to 

send and process data in a relatively quick time, which 

suggests that the system is quite effective at identifying driver 

drowsiness. 

 

4.3 Dashboard testing 

 

In Figure 14, In the dashboard section, tests were conducted 

to monitor the driver's drowsiness condition using several 

parameters, which were then displayed in tabular form on the 

dashboard of the driver behavior detection system. The data 

displayed in the table includes various attributes related to the 

driver's drowsiness status, such as Driver ID, Eye State, Mouth 

State, Head Pose, Yawning, Drowsiness Status, Start Time, 

End Time, and Duration. From the table shown, it can be seen 

that driver D001 experienced a drowsy condition in each test 

conducted. In each row, the drowsiness_status shows the value 

“Drowsy”, which means the driver is in a drowsy condition. 

This can be seen from several parameters such as Eye State 

which shows closed eyes, and yawning which indicates the 

driver is yawning. 

The test duration varies between 5 to 12 seconds. This 

shows that the system can detect driver drowsiness in a 

relatively short time. Although there is a slight variation in 

duration, the overall system shows good responsiveness to the 

driver's drowsy state. 

In Figure 15, Testing on the POST detection endpoint was 

performed with 100 iterations, resulting in a total test duration 

of 8 seconds 720 milliseconds (8s 720ms). During the test, all 

requests were successfully processed with a response status of 

200, indicating that there were no errors in any of the API 

requests. The average response time for each request was 20 

milliseconds, indicating that the API responded very quickly. 

The time distribution diagram also shows that most requests 

completed within a short time, with little variation in response 

duration. These test results show that the API works efficiently, 

can handle the test load well, and provides fast and stable 

results. 

 

 
 

Figure 14. Dashboard Monitoring 

 

 
 

Figure 15. Post-detection API test summary and response 

times 

 

In Figure 16, Testing on the GET detection endpoint was 

conducted with 100 iterations, resulting in a total test duration 

of 8 seconds 794 milliseconds (8s 794ms). During the test, all 

requests were successfully processed with a response status of 

200, indicating that the API worked well and as expected. The 

average response time for each request was 7 milliseconds, 

indicating that the API is very efficient in providing responses. 

The time distribution diagram shows that most requests 

completed with very fast and stable response times, with no 

major fluctuations in duration. These test results show that the 

API on the GET detection endpoint has excellent performance, 

responsiveness, and stability. 

 

 
 

Figure 16. Get-detection API test summary and response 

times 

 

4.4 User registration process with data security using 

hashing 

 

In Figure 17, figure explanation the application of hashing 

is very important in securing user data in the sign-in and sign-

up system. In the view shown in figure, this is the sign-up page 

for a new user, in this case an admin. The user is required to 

enter a name, email, and password to create an account. After 

registering, the data entered will be automatically sent to the 
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server. One important step is that the entered password will be 

converted into a hash value using a secure algorithm such as 

bcrypt or SHA-256. This hashing process converts the original 

password into a random string that cannot be restored to its 

original form. This aims to keep in mind that even if the 

database is accessed by unauthorized parties, they will only 

see the hash value and not the original password which can be 

misused. 

 

 
 

Figure 17. User registration page for secure data access 

 

In Figure 18, shows a view of the database that stores 

registered user data. The password column indicates that the 

value stored is not the original password entered by the user, 

but the hash value generated from the hashing process. For 

example, in the first row, the password entered by the user has 

been converted into a long random string. This is the result of 

the hashing algorithm applied at the time of sign-up. With this 

method, even if this database is accessed by unauthorized 

parties, they will not be able to know the user's original 

password as only the hash value is visible. This strengthens the 

security of user data by preventing the theft of sensitive data 

such as passwords. The created_at field indicates the time of 

account creation, which can be used to track when the account 

was created. 

 

 
 

Figure 18. Database entry for user encrypted password 

 

The application of this hashing technique ensures that the 

data stored in the database is safe from unauthorized access, 

maintains user privacy, and prevents potential misuse of 

personal data. 

In Figure 19, shows a comparison of user data that has a 

password in plain text or plaintext without hashing technology. 

In this case, the password in the password field is the same as 

the user entered, i.e. 12345678. This shows that this password 

is no longer protected. Since the database is stored in an easily 

accessible format, the password can be easily read and 

misused if an unauthorized party is able to access it. 

 

 
 

Figure 19. Database entry for user with plaintext password 

 

4.5 Performance testing 

 

In Figure 20 illustrates the response time graph obtained 

during a 10-minute performance testing session. This test was 

designed to evaluate the responsiveness of both the REST API 

endpoints and the WebSocket communication channel under 

varying virtual user loads. The number of simulated users was 

gradually increased from 20 to 100 and then decreased back to 

20, while monitoring the system’s ability to handle concurrent 

requests and real-time data transmission. 

 

 
 

Figure 20. Performance 

 

The graph shows that the average response time 

(represented by the blue line) remained relatively stable during 

most of the test duration. However, significant spikes in 

response time were observed as the number of concurrent 

users increased. The first noticeable spike occurred around 

15:00:40, coinciding with the initial rise in user load. The most 

substantial spike was recorded at 15:01:28, when the system 

reached its peak load of 100 users. At this point, the response 

time exceeded 10,000 milliseconds (10 seconds), as indicated 

by the sharp rise in the 95th and 99th percentile lines. 

These results suggest that while the system performs 

efficiently under normal conditions, it encounters performance 

bottlenecks during peak load, particularly in handling 

simultaneous WebSocket messages and REST API requests. 

Once the load was reduced, the response time stabilized, 

indicating the system’s ability to recover after high-stress 

conditions. 

This test highlights the need for further optimization, such 

as implementing load balancing, asynchronous processing, or 

message queuing, to enhance the system’s scalability and 

ensure consistent performance under high concurrency.  

 

4.6 Comparative analysis with existing 

 

This test highlights the need for further optimization, such 

as implementing load balancing, asynchronous processing, or 

message queuing, to enhance the system’s scalability and 

ensure consistent performance under high concurrency.  

To evaluate the effectiveness of the proposed driver fatigue 

monitoring system, a comparative analysis was conducted 

against existing systems that utilize traditional sensor-based 

methods and earlier versions of computer vision models such 

as YOLOv5. The comparison focuses on key performance 

indicators including detection accuracy, response time, real-

time feedback capability, and system scalability. 

In Table 2, The proposed system demonstrates competitive 

performance in terms of detection accuracy and response 

speed. The YOLOv8 model employed in this system was pre-

trained to recognize driver behaviors such as eye closure, 

yawning, and head posture. The training dataset was sourced 

from the publicly available Roboflow platform, comprising 

3,474 annotated images of drivers captured under diverse 

conditions, including varying lighting, camera angles, and the 

presence of accessories such as glasses and masks. The dataset 

was partitioned into 87% for training, 8% for validation, and 

4% for testing. Data augmentation techniques were applied to 

enhance generalization, including rotation, zoom, shear, color 

adjustments, blur, and noise. The model was trained using an 
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input resolution of 416×416 pixels and achieved a mean 

Average Precision (mAP), precision, and recall of 99.3%, 

indicating highly reliable detection performance for real-time 

monitoring and alert delivery via the integrated dashboard and 

Telegram notification service [31]. 

 

Table 2. Comparative analysis 

 

Featur 

Proposed 

System 

(YOLOv8 + 

WebSocket) 

Traditional 

Sensor Based 

System 

YOLOv5-

Based 

System 

Drowsiness 

Detection 

Accuracy 

99.3% 

(based on 

Roboflow 

dataset) 

75% (EAR-

based sensors) 

85% 

(YOLOv5) 

Real-Time 

Notifications 
Yes No Limited 

Response 

Time 

0.8-1.1 

Seconds 
2-3 Seconds 

1.5-2 

seconds 

Security 

(JWT+ 

bcrypt_) 

Strong 

Weak 

(no 

encryption) 

Moderate 

 

YOLOv5-based systems trained on facial features such as 

eye closure and yawning achieve approximately 73.7% 

accuracy in detecting driver drowsiness, but it is limited in 

responsiveness and adaptability to varying lighting conditions. 

In contrast, traditional sensor-based systems relying on Eye 

Aspect Ratio (EAR) or steering pressure typically reach 

around 70-75% accuracy and are less suitable for real-time 

applications due to their intrusive nature and lack of contextual 

awareness [31, 32]. 

These findings highlight the superior performance of the 

proposed YOLOv8-based system in both accuracy and 

responsiveness, making it a more viable solution for real-

world deployment in dynamic driving environments.  

 

4.7 Eror source and statical validation 

 

Despite the high accuracy and responsiveness demonstrated 

by the proposed driver fatigue monitoring system, several 

factors may introduce variability or error in detection 

outcomes. These factors must be critically examined to ensure 

the robustness and reliability of the system in diverse 

operational environments. 

One of the primary sources of error is lighting conditions. 

Inadequate or uneven illumination can significantly impair the 

visibility of facial features, particularly the eyes and mouth, 

which are essential for detecting signs of drowsiness. Similarly, 

occlusions caused by accessories such as eyeglasses, face 

masks, or headwear may obstruct key facial landmarks, 

leading to misclassification or missed detections. 

Another contributing factor is the camera angle and 

resolution. Improper camera placement or low-resolution 

video input can reduce the precision of the YOLOv8 detection 

model, especially when subtle facial movements are involved. 

Furthermore, driver variability—including differences in 

facial structure, behavioral patterns, and expressions of 

fatigue—can affect the generalization capability of the model 

across different individuals. 

Table 3, To evaluate the consistency of the system’s 

performance, a statistical analysis was conducted using 

response time data collected from ten trials of drowsiness 

detection and notification delivery. The results are presented 

in Table 3.7. The analysis yielded a mean response time of 

0.91 seconds and a standard deviation of 0.09 seconds, 

indicating a high level of consistency across trials. These 

findings suggest that the system performs reliably under 

controlled laboratory conditions. 

For future work, it is recommended to incorporate more 

advanced statistical validation techniques, such as hypothesis 

testing and confidence interval analysis, to further substantiate 

the significance of the experimental results. Additionally, field 

testing under varied environmental conditions and with a 

broader demographic of drivers will be essential to assess the 

system’s robustness and scalability in real-world applications. 

 

Table 3. Performance consistency test 

 
Trial Response Time (Seconds) 

1 0.8 

2 0.9 

3 0.8 

4 0.9 

5 1.0 

6 0.8 

7 0.9 

8 1.1 

9 0.9 

10 1.0 

 

 

5. CONCLUSIONS  

 

This research has demonstrated the development of a real-

time driver fatigue monitoring system that combines computer 

vision techniques with interactive web-based visualization and 

notification features. Through the use of the YOLOv8 

algorithm, the system can accurately identify fatigue-related 

indicators—such as eye state, mouth activity, head orientation, 

and yawning—achieving a 99.3% accuracy rate based on the 

Roboflow dataset. Real-time detection data is streamed to a 

responsive web dashboard via WebSocket, providing 

continuous updates without requiring page reloads. 

Simultaneously, alert messages are dispatched instantly 

through Telegram Bot to inform users when potential danger 

is detected. System evaluations, including functional and 

stress testing, revealed consistent response times between 0.8 

and 1.1 seconds and efficient API handling under a simulated 

workload of 100 iterations. Compared to existing traditional 

systems and those using YOLOv5, the proposed solution 

delivers improved precision and responsiveness. While user-

centered evaluations were not part of this study, the system has 

proven to be technically sound and scalable. Further research 

is recommended to evaluate user interaction and refine the user 

interface design to better support deployment in real-world 

driving conditions. 
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