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The invariance of complex visual information in natural images is not considered in existing 

slow feature (SF) extraction algorithm. To solve the problem, this paper designs an adaptive 

SF extraction algorithm for natural images based on visual invariance. Firstly, the principal 

component analysis (PCA) was improved by the topologically independent component 

analysis (TICA), aiming to adaptively extract the invariance features of complex visual 

information in natural images. Next, the Markov chain Monte Carlo (MCMC) algorithm and 

the visual smoothness theory were combined to solve two defects of the conventional slow 

feature analysis (SFA): the nonlinear expansion algorithm has nothing to do with the visual 

invariance of the natural images; the sampling algorithm causes the loss of key visual 

information. Finally, the probability classification was introduced to our algorithm. The 

experimental results show that our algorithm achieved higher recognition rate and lower 

computing complexity than conventional algorithms, and exhibited strong robustness and 

geometric invariance. 

Keywords: 

invariant, slow feature (SF), visual 

computing, receptive field, topology 

1. INTRODUCTION

The invariant is the component changing at the slowest 

rate within a fast-changing signal in the time domain. The 

presence of such a component indicates that the signal source 

has some inherent properties and that the properties have 

stable relationships. Therefore, the invariant can be regarded 

as an abstract invariant information in the high-level 

expression of high-frequency input signal. The analysis based 

on invariant learning, a.k.a. slow feature analysis (SFA), can 

extract the slowly varying properties of the signal source. 

The research development on slow features (SFs) can be 

divided into three phases. 

The first phase saw the formation of the SF theories and 

algorithms. In 1989, Hinton [1] proposed the basic concept, 

theories and assumptions of the SF, and established the 

preliminary theory on slow feature extraction. In 1991, 

Földiák [2] analyzed the SFs based on online learning theory. 

Wiskott and Sejnowski relied on transitive closure algorithm 

to explore the SF algorithms and theories, respectively in 

1989 and 2002. In 2002, Wiskott and Sejnowski [3] put 

forward the SFA, a milestone in the SF research. In 2007, 

Franzius et al. [4] examined the properties of invariant on 

brain cells in the hippocampus, laying the physiological basis 

for invariant learning. Sprekeler and Wiskott [5] developed 

the cosine optimization form of slowly changing features, 

ensuring that the SFA can converge to the global optimal 

solution in the considered function space. In 2008, Franzius 

et al. [6] successfully used the SFA to extract and identify the 

invariant features of the position and rotation angle of 

cartoon fish, an evidence to the SFA’s ability to extract 

classification information. The above are the preliminary 

results on the analysis, algorithms and physiological theory 

of the SF, which basically prove the excellence of the SFA in 

feature extraction and recognition. 

In the second phase, the SFA was improved and optimized. 

Inspired by divide-and-conquer strategy, Kompella et al. [7] 

presents a hierarchical SFA to reduce the computing 

complexity. However, much information is lost due to the 

hierarchical structure, weakening the algorithm’s ability to 

acquire enough global optimal features. To solve the problem, 

Porcal et al. [8] develops the SFA based on graph theory 

(GSFA), which trains the SFA with the complex structure of 

the training graph, and extracts features according to the 

graph structure. 

In the third phase, great progress was made in the 

application of the SFA. With the rapid development of the SF 

theories and algorithms, the SFA has been extensively 

applied in such field as human behavior recognition [9-11], 

text recognition [12], path tracking [13-15], blind source 

separation [16, 17], 3D feature extraction [7, 18] and 

receptive field learning of complex cells [4]. 

So far, much progress has been made in the theories and 

application of the SFA. Nonetheless, there are several defects 

with the conventional SFA: (1) The algorithm only extracts 

the SF, without capturing the slowly varying topological 

relationship between these features; (2) The chromatographic 

features of natural light or natural materials are extracted by 

the principal component analysis (PCA), which cannot obtain 

the invariant visual features adaptively according to the 

complex visual features contained in natural images; (3) The 

SFs are expanded by the nonlinear expansion algorithm 

based on polynomial product, but this algorithm cannot 

expand the invariant features adaptively according to the 

complex visual features of the target image. 

To overcome these defects, this paper designs and 

implements an adaptive SF extraction algorithm for natural 

images based on visual invariance. Firstly, the visual SFs of 
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natural images were divided into slowly varying information 

(SVI) and SVI-containing slowly varying topology graph 

(SVTG). The two types of the SFs were extracted from the 

target natural image by topologically independent component 

analysis (TICA) [19], solving the second defect of the 

conventional SFA. In this way, the invariant features can be 

extracted adaptively from the complex visual information in 

natural images. In addition, the Markov chain Monte Carlo 

(MCMC) algorithm and the visual smoothness theory were 

combined to expand the base elements of the TICA and 

create an overcomplete set of weighted near-orthogonal bases. 

Finally, the probability classification was introduced to our 

algorithm. 

 

 

2. ALGORITHM DESIGN 

 

Natural images are collected by sensors, and contain 

features that slowly evolve with the natural environment [1]. 

The slow evolution is similar to the visual structure and 

functions of humans. Inspired by the theories on the 

selectivity and smoothness of human vision, the SFs of the 

complex visual information in natural images could be 

divided into the SVI and the SVTG. The SVI represents the 

complex visual invariance information within natural images, 

while the SVTG, consisting of the SVI topology in the visual 

space, reveals the visual space distribution of the SVI, and 

thus boasts good SFs.  

In the same scene, the natural images captured by cameras 

with the same parameters both reflect the evolution of the 

natural environment, and the concurrent slow variation of the 

visual space. Therefore, the shooting effects of different 

cameras can be unified through image processing. 

In a natural image, the SFs of the complex visual 

information can be defined as: 

 

SF={SVI, SVTG}                               (1) 

 

As shown in formula (1), the SFs of the natural image in 

complex visual space contain two SF sets, namely, the SVI 

and the SVTG. Among them, the SVI represents the complex 

visual invariance information within the natural image, and 

the SVTG describes the SVI topology in the visual space. 

Together, the two SF sets can effectively depict the essence 

of the natural image. 

The conventional SFA extracts the SFs with the PCA. By 

the PCA, both the natural light and the chromatograms of the 

light reflected from natural materials can be characterized, 

and the simple “on-off” visual edge features of natural 

images can be acquired by cone cells. However, the PCA 

cannot illustrate the complex visual features of natural 

images in the visual space. This paper attempts to improve 

the PCA with the TICA, which can extract the complex 

visual SVI expressed by the topologically independent 

components of natural images and interpret the slow 

variation of complex visual information in natural images 

from the independence of visual components. Through the 

improvement, the slow features of a natural image in 

complex visual space were extracted, forming an SF set. Next, 

the spatial topological relationships between independent 

components in the natural image were established and 

collected to an SVTG set. 

In the conventional SFA, the feature space is expanded to 

higher dimensions by the nonlinear expansion algorithm 

based on polynomial product. This algorithm expands the 

SFs in the form of polynomial product. However, the 

expansion method does not consider the continuous 

distribution of complex visual features in natural images, 

failing to reflect the impacts of these features on the 

extension elements. Drawing on the visual smoothness theory 

of natural images, the author computed the probability 

distribution of SVI set elements in the visual space. Then, the 

MCMC algorithm was initialized based on the distribution, 

and used to improve the nonlinear expansion algorithm based 

on polynomial product. The improved algorithm can produce 

an overcomplete SF set through simultaneous optimization of 

the SVI and SVTG sets, and optimize the set with near-

orthogonal pruning. 

Through the above improvements, our algorithm can 

adaptively extract the visual SFs from natural images based 

on the invariance of the complex visual information in the 

images, forming a distinguishable SF set. In this way, the 

proposed algorithm overcomes the defects of conventional 

SFA. 

 

 

3. ALGORITHM DESCRIPTION 

 

3.1 Improved SF extraction algorithm 

 

The improved SF extraction algorithm is implemented in 

the following steps: 

Step 1. Initialize SF={Φ, Φ}, SVI= Φ and SVTG= Φ. 

Step 2. Sequentially select an image I from the image 

training set. Taking M×N as the sample size, randomly 

sample max_k sub-images from image I, creating a sub-

image training set training_set. Note that M and N are odd 

numbers smaller than the image size. 

Step 3. Execute Step 2 repeatedly until all images in the 

image training set have been processed, creating a set of sub-

image training sets training_set={sub_image: label}, where 

sub-image is a sub-image training set and label is the label of 

that sub-image training set. 

Step 4. Normalize the set of sub-image training sets. 

Step 5. Fit the sub-image elements in the set of sub-image 

training sets with the Gabor function of the TICA, and 

generate the SVI of each set SVI={SVI(i): label| i=1, 2, 3, 

4…N}, where i is the type of image. 

Step 6. Calculate the joint distribution probability of the 

frequency and direction angle of the Gabor element in SVI(i). 

On this basis, initialize the MCMC algorithm and use it for 

nonlinear expansion of SVI(i). Then, perform near-orthogonal 

pruning over the expanded Gabor function and the Gabor 

function extracted from the images, using the near-

orthogonal criterion R_cross. Remove the elements of the 

expanded SVI(i) that are not orthogonal to the SVI elements, 

and thus optimize the SVI set. 

The near-orthogonal criterion R_cross can be expressed as: 

 

Pr ,

Reserve the element, if ,

une the element if
operation

  

  

 •
= 


       (2) 

 

where, α and β are elements in the expanded SVI set SVI (i); 

ε is the pruning control coefficient, whose value could be any 

positive decimal. 

Step 7. Define the topology criterion in complex visual 

space R_complex_visual and use this criterion to convert the 
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SVI into a complex visual invariant feature distribution 

matrix. In addition, set up the spatial topology matrix SVTG 

(i) of each image based on the distribution of SVI (i).  
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where, gij is a Gabor function depicting the invariant complex 

visual features; vij indicates whether the SVI(i) has invariant 

complex visual features or not. The SVI is a global matrix 

generated from the image training set, while the SVTG matrix 

presents the topological relationship of local invariance in a 

specific image. 

The topology criterion in complex visual space 

R_complex_visual is explained as follows. 

(1) SVI generation rule:  

Divide the SVI(i) into K rows by frequency. Each row has 

p×360 elements, where p is the algorithm resolution. Next, 

assign the row non-deformation feature to specified positions 

according to the direction angle of the Gabor function, 

creating the hierarchical traversal diagram of the invariance 

of complex visual features SVI.  

(2)SVTG generation rule: 

The slowly varying topology of the i-th image in the 

complex visual space can be expressed as: 

 

1 ( , ) 0
( )

0 ( , ) 0

gabor i j
SVTG i

gabor i j


= 

=

                        (3) 

 

Thus, the invariant complex visual features can be 

described as SF={SVI, SVTG}. 

 

3.2 Image recognition method 

 

Step 1. Select image I from the image training set. 

Generate the test set test_set by windowing the training 

images. 

Step 2. Compute the row-by-row convolution of test_set 

and SVI, according to the distribution of nonzero elements of 

SVTG(i) in each row of the SVI. If the convolution value is 

close to 1, assign 1 to the corresponding position of the 

feature set; otherwise, assign 0 to that position. In this way, 

generate the feature set feature_set. 

Step 3. Compute the Mahalanobis distance similarity 

between feature_set and SVTG(i). If the similarity is close to 

1, then the image belongs to the i-th type. 

Step 4. Execute Steps 2~3 repeatedly until all elements in 

the SVTG have been processed. 

 

 

4. EXPERIMENTAL VERIFICATION AND RESULTS 

ANALYSIS 

 

4.1 Sample collection and processing 

 

A total of 1,000 images were selected from the natural 

image database INRIA Holidays dataset, forming a set of 

original images resource_set. Then, random affine 

transformations were performed on this set. For each image, 

six new images were created through rotation by less than 

10°, 7 were created by translation, and 6 were created by 

scaling. Overall, 19 new images were obtained from each 

image in the resource_set. The new images and the new 

images were combined into the image database for our 

experiment. The 20,000 images in the database were divided 

into two parts. The first 15,000 images were grouped into the 

training set train_set, and the remaining 5,000 were collected 

into the test set test_set. Each set contains the 1,000 original 

images. Figure 1 presents some samples from the natural 

image database. 

 

 
(a) Some samples from INRIA   (b) Sample 102400 and its  

Holidays dataset                     area of interest 

 

Figure 1. Some samples from the natural image database  

 

4.2 Invariance of the number of base elements 

 

The pixels on sample 102400 were collected seven times 

from the specified areas A, B, C and D, respectively. The 

number of pixels being collected each time can be defined as 

2N (N=7, 8, 9, 10, 11, 12, 13). The four areas are of the size 

M1×N1=7×7, where M1 and N1 are the number of pixels. 

Then, the proposed algorithm was adopted to determine the 

relationship between the number of base elements in complex 

visual space of the natural image and the number of sample 

collections. 

 

 
 

Figure 2. Invariance of the number of base elements 

 

As shown in Figure 2, with the increase in the number of 

sample collections, the number of base elements in complex 

visual space of the natural image firstly increased and then 

stabilized, if they are within the identical or similar visual 

function areas in the natural image. The results demonstrate 

the slow variation of the number of base elements in complex 

visual space of the natural image. When the number of 

samples reached 1,024, the number of base elements in 

complex visual space of the natural image tended to be stable. 
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Thus, the information loss induced by sampling can be solve 

by increasing the number of sample collections. 

 

4.3 Invariance of the local topology of base elements 

 

The pixels were collected from sample 102400 by the 

same method as in subsection 4.2. Then, the proposed 

algorithm was adopted to determine the relationship between 

the local topology of base elements and the number of 

sample collections. 

 

 
(a) N=7; (b) N=8; 

 
(c) N=9; (d) N=10; 

 
(e) N=11 

 

Figure 3. Invariance of the local topology of base elements 

 

As shown in Figure 3, the local topology of base elements 

in complex visual space did not change significantly with the 

growth in the number of sample collections, if they are of 

identical or similar frequencies. This means the local 

topology of base elements in different complex visual spaces 

is slowly varying, if they belong to the same visual function 

block; but the number of base elements will increase. When 

the number of sample collections N reached 10, the number 

of base elements became stable in the main area generated by 

the algorithm.   

 

4.4 Invariance of the types and global topology of base 

elements 

 

The pixels on sample 102400 were collected randomly 

thirteen times. The number of pixels being collected each 

time can be defined as 2N (N=5, 6, 7, …, 17). The collection 

area is of the size M1×N1=7×7. The collected samples were 

accumulated. Then, the proposed algorithm was adopted to 

determine the relationship between the number of base 

element types in the natural image and the number of sample 

collections, and that between the global topology of base 

elements and the number of sample collections. 

 

 
 

Figure 4. Invariance of the types of base elements 

 

 
a) The value of frequency is 25.63 HZ 

 
b) The value of frequency is 34.56 

 
c) The value of frequency is 41.45 HZ 
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d) The value of frequency is 60.19HZ 

 

Figure 5. Invariance of global topology of base elements 

 

As shown in Figure 4, with the increase in the number of 

sample collections, the number of base elements in complex 

visual space of the natural image firstly increased and then 

stabilized. After the samples had been collected six or more 

times, the number of perceptive fields in the set stabilized at 

around 30. These trends could be explained by following: 

Under a limited number of sample collections, some pixels 

may be collected from the same area(s). Then, the collected 

samples cannot represent the visual blocks of the entire 

image, causing the oscillation of complex visual blocks. By 

contrast, repeated sample collections can acquire the complex 

visual blocks of the natural image stably. Due to the slow 

variation in the number of visual function blocks, the number 

of base element types in the complex visual space will 

remain unchanged.  

As shown in Figure 5, with the increase in the number of 

sample collections, the topology of different base elements of 

the natural image became increasingly stable, under all 

frequencies and in all direction angles. This proves the slow 

variation in the global topology of base elements in complex 

visual space of the natural image.   

 

4.5 Invariance of visual structure SFs  

 

The pixels on natural image P001 were collected randomly 

one hundred times. Each time, 1,024 pixels were collected. 

The collection area is of the size M1×N1=7×7. The collected 

samples were accumulated. Then, the proposed algorithm 

was adopted to analyze the visual structure SFs of the four 

main distribution planes of the natural image. 

 

 
 

Figure 6. Invariance of visual structure SFs 

 

As shown in Figure 6, the base elements in complex visual 

space, which make up the visual structure SFs, were invariant 

in terms of their types, numbers, local topology and global 

topology. This shows the slow variation in the visual 

structure of the natural image. 

To sum up, the microscopic analysis on the complex vision 

of natural images shows that the types and numbers of the 

base elements in complex visual space are invariant, so are 

the local and global topologies of these base elements.  

 

4.6 Classification performance of our algorithm 

 

A total of 1,024 samples were collected from the test set 

test_set and the training set train_set, respectively, with the 

collection areas of the size M1×N1=7×7. Then, our algorithm 

was adopted to compute the intra-class distribution and inter-

class distribution. 

 

 
(a) Intra-class distribution 

 
(b) Inter-class distribution 

 

Figure 7. The classification performance of our algorithm 

 

As shown in Figure 7, when the threshold was 0.35, our 

algorithm correctly recognized 99.96 % of all samples. Both 

false acceptance rate (FAR) and false rejection rate (FRR) 

were smaller than 3 ‰. The results prove the strong 

classification ability of our algorithm. 

 

4.7 Performance comparison 

 

The samples were collected randomly one hundred times 

from the test set test_set and the training set train_set, 

respectively. Each time, 1,024 samples were collected. The 

collection area is of the size M1×N1=7×7. Then, the 

proposed algorithm, the SFA [3], the GSFA [8] and the TICA 

[19] were separately applied to recognize the samples. The 

comparative results are plotted as Figure 8. 

As shown in Figure 8, our algorithm outperformed the 

three contrastive algorithms in classification ability. The 

advantage increased with the number of sample collections. 
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The recognition rate of our algorithm finally stabilized at 

99.89 %. 

 

 
 

Figure 8. Comparison of recognition performance 

 

4.8 Noise immunity 

 

The samples were collected by the same method as in 

subsection 4.7. Then, the author analyzed the effects of 

sampling window size, noise type and noise intensity on our 

algorithm. 

As shown in Figure 9, when the noise type remained the 

same, the recognition rate of our algorithm declined with the 

growth in noise intensity; when the noise intensity remained 

constant, the recognition rate of our algorithm plunged if the 

noise type was similar to the type of the receptive filed; the 

smaller the sampling window, the greater the impacts of 

noise on the recognition rate; the number of sampling 

windows has no significant effect on the recognition rate. 

Below is a detailed analysis on the effect of each type of 

noise. 

 
(a) Effects of sampling window size 

 
(b) Effects of noise type and noise intensity 

 

Figure 9. Effects of sampling window size, noise type and 

noise intensity on our algorithm 

 

(1) Gaussian noise has an obvious “on-off” selectivity, and 

its function expression is a subset of the Gabor function. 

Thus, the increase of Gaussian noise will change the 

attributes and features of the base function for local visual 

space, such that the extracted Gabor function cannot describe 

the essence of the original natural image. However, Gaussian 

noise has little impact on topology. 

(2) Salt-and-pepper noise carries the features of black and 

white point noise, and has a small amount of visual “on-off” 

selectivity. This type of noise exerts a major impact on the 

extraction of local features, and greatly affects the extraction 

of regional Gabor function. The impact is particularly serious 

if the sampling window is relatively small. Salt-and-pepper 

noise has a greater effect on local and global topologies than 

Gaussian noise. 

(3) Compared with the above two noises, the speckle noise 

has a large single structure. Each speckle noise can form an 

independent visual Gabor function, and produce independent 

visual selectivity, while destroying the visual selectivity and 

blocks of the original natural images. Hence, the receptive 

field features extracted by our algorithm cannot characterize 

the exact visual features of the original images.  

In general, under the same noise intensity, speckle noise 

has the greatest impact on the recognition rate of our 

algorithm, followed in turn by salt-and-pepper noise and 

Gaussian noise. 

 

4.9 Geometric invariance 

 

The samples were collected by the same method as in 

subsection 4.7. Then, the relationship between geometric 

invariance and the performance of our algorithm was 

determined. 

 

Table 1. Relationship between geometric invariance and algorithm performance 

 

rotation Angle of Rotation 1 3 7 11 13 19 21 

Recognition rate 99.76 97.92 92.03 84.18 80.21 76.46 69.21 

translation the number of pixels 3 5 7 11 21 23 35 

Recognition rate 99.34 98.51 99.31 98.38 97.67 98.89 99.15 

scale the factor of scale 1 2 3 1/2 1/4 1/8 1/16 

Recognition rate 99.51 98.81 96.11 98.61 97.81 87.26 84.21 
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As shown in Table 1, the performance of our algorithm 

was immune to a small rotation angle, and slightly affected 

by a large rotation angle. When the number of samples 

remained the same, the changing translation distance had no 

or slight impact on the algorithm performance, revealing the 

translation invariance of our algorithm. When the number of 

sample collections remained unchanged, the recognition rate 

of our algorithm gradually decreased with the growth in the 

scale. Hence, the scaling has only a little impact on the set 

invariance of our algorithm. 

 

 

5. CONCLUSIONS 

 

This paper puts forward an adaptive SF extraction 

algorithm for natural images based on visual invariance. 

Firstly, the invariance of complex visual features in natural 

images was highlighted, which is reflected by the invariance 

of complex visual information and the invariance of the 

topology of the base elements forming the information in the 

visual space. On this basis, the traditional SF extraction 

algorithm was improved, and then applied to extract the SFs 

from natural images, covering the type of complex visual 

components, the number of elements in each class, the intra-

class topology and the inter-class topology. In addition, the 

MCMC algorithm and the visual smoothness theory were 

introduced to create an overcomplete set of SFs, solving the 

computing complexity of the nonlinear expansion algorithm 

of the traditional SFA. The overcomplete set was optimized 

by the near-orthogonal pruning method, yielding the 

optimized near-orthogonal overcomplete SFs. The 

experimental results show that the complex visual 

information of natural images does have the SFs, and our 

algorithm outperformed the other algorithms in recognition 

rate, computing complexity and feasibility. In addition, our 

algorithm was found to have strong noise-resistance and set 

invariance under priority conditions. 

The future research will further improve our algorithm 

from three aspects: (1) explore the algorithm performance on 

large sample sets; (2) employ the algorithm in other image 

applications; (3) explore the deep structure and parallel 

application of the algorithm from the angle of deep visual 

network. 
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