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 This paper attempts to find a way to complete optic disc segmentation in retinal images both 

accurately and efficiently. For this purpose, an optic disc segmentation method was designed 

based on active contour tracking. Firstly, the original retinal image was denoised, and its 

contrast was enhanced. Then, the center of optic disc was preliminarily identified by least 

squares method. Next, the region of interest (ROI) was determined based on the features and 

center of optic disc. Finally, the actual boundaries of optic disc were obtained by active contour 

tracking. Our method was tested on 522 retinal images from four representative public 

databases on retinal images, namely, Digital Retinal Images for Vessel Extraction (DRIVE), 

Structured Analysis of the Retina (STARE), Drishti-GS1 and Messidor. The experimental 

results show that our method achieved a segmentation accuracy of 100%, 92.6%, 99%, 95.7%, 

respectively, on the four databases, and exhibited better robustness and speed than the two 

contrastive methods. Our method was especially effective in retinal images with mild diseases 

or poor contrast. The research findings lay the basis for prediction and computer-aided 

diagnosis of fundus diseases. 
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1. INTRODUCTION 

 

The optic disc represents the beginning of the optic nerve 

and the entry point for the major blood vessels that supply the 

retina. In retinal images like Figure 1, the optic disc is often 

the brightest part with light yellow or white color, taking the 

shape of a circle or a slightly eccentric vertical ellipse. The 

shape, area and depth of optic disc are important indicators of 

fundus health, and are often employed to predict and diagnose 

eye diseases, such as diabetic retinopathy and glaucoma [1-3]. 

However, the positioning and segmentation of optic disc are 

no easy task, owing to individual differences, fundi diseases, 

retinal vascular occlusion, uneven illumination, noises, or 

blurred edges [4]. 

Traditionally, optic disc images are usually positioned and 

segmented manually, which is time-consuming and prone to 

human errors. What is worse, the positioning and 

segmentation results may not be accurate or effective, 

hindering the analysis of retinal image and diagnosis of eye 

diseases. To solve the problem, many techniques have been 

adopted to improve the traditional methods, aiming to predict 

or diagnose eye diseases precisely in a short time. For instance, 

the digital image processing has often been used, because it 

can reduce doctors’ workload, quickly output objective and 

accurate results, and support repeated use. 

In essence, the positioning of optic disc requires the 

measurement of optic disc center, and the segmentation relies 

on the detection of optic disc boundaries. The existing optic 

disc segmentation methods roughly falls into three categories: 

some are based on the shape of optic disc, some are based on 

the appearance of optic disc, and some are based on the 

structure of retinal vessels and the appearance of optic disc. 

The shape-based methods generally consider the optic disc 

as a circle or ellipse [5-7], and rely on circular and elliptical 

templates to complete the segmentation. But the actual optic 

disc is not always a regular circle or ellipse. For optic disc 

images in the Messidor database, the mean goodness of fitting 

to regular circle is 92% and that to regular ellipse is 97% [8]. 

The appearance-based methods take full advantage of the 

relative brightness of optic disc in retinal image. For example, 

Sinthanayothin et al. [9] detected optic disc in retinal images, 

based on the law that the pixels of optic disc are much brighter 

than those of retinal vessels. Lu [10] designed multiple line 

operators in specific directions to capture circular brightness 

structures. Walter and Klein [11] segmented the brightest 

region in retinal image, taking this region as optic disc. 

Morales et al. [12] obtained the binary mask of optic disc 

through stochastic watershed transform. Cheng [13] adopted 

support vector machines (SVMs) to differentiate between 

optic disc pixels from the other pixels on the super-pixel level. 

The above methods can segment optic disc correctly in normal 

retinal images. However, these approaches are no longer 

robust if the optic disc is blurred by large bright spots, affected 

by nonuniform illumination, or deformed by illness. 

The structure/appearance-based methods take account of 

vessel direction, brightness, optic disc boundaries and size of 

bright regions to segment optic disc [14-16]. For instance, 

Youssif et al. [14] presented an algorithm to detect optic disc, 

which firstly matches the directional filtering template with 

the structure of blood vessels, and then identifies optic disc 

from candidate regions with similar shape and grayscale to 

optic disc. Based on global Hough transform, Zhang and Zhao 

[15] developed a fast optic disc detection method utilizing 

vessel distribution and direction. Foracchia et al. [16] 

constructed a geometrical model based on vessel structure for 
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optic disc detection, in which the major vessels are viewed as 

the common vertices of parabolas, the center of optic disc is 

seen as the center of the model. The above methods boast a 

high accuracy in normal retinal images, but often fail on 

abnormal retinal images. Moreover, the high accuracy comes 

at the cost of a long computation time [14]. 

To sum up, there is not yet a strategy that can complete optic 

disc segmentation in retinal images both accurately and 

efficiently. To make up for this gap, this paper develops a 

novel optic disc segmentation method coupling active contour 

tracking and level set method, eliminating the need for 

reinitialization. The proposed method was verified on public 

databases like Digital Retinal Images for Vessel Extraction 

(DRIVE), Structured Analysis of the Retina (STARE), 

Drishti-GS1 and Messidor, and proved to have a mean 

accuracy of above 90%. 

The remainder of this paper is organized as follows: Section 

2 describes the proposed optic disc segmentation method; 

Section 3 carries out experimental verification of the method 

and analyzes the experimental results; Section 4 puts forward 

the research conclusions. 

 

 

2. OUR OPTIC DISC SEGMENTATION METHOD 

 

This section mainly introduces the three steps of our optic 

disc segmentation method. 

 

2.1 Image preprocessing 

 

As shown in Figure 1, a color retinal image contains three 

channels: Red, Blue and Green. The Red channel features high 

brightness and low contrast, the Blue channel has low 

brightness, low contrast and some noise points, and the Green 

channel boasts a high contrast. In general, the Green channel 

presents optic disc and retinal vessels clearer than the other 

channels, which facilitates the detection of optic disc. 

Therefore, the Green channel image was selected for optic disc 

segmentation. 

 

   
(a) Color retinal image       (b) Red channel 

   
(c) Green channel          (d) Blue channel 

 

Figure 1. Color retinal image and its RGB channels 

 

Original retinal images are often too blurry and dark for 

object detection. Therefore, the Green channel image was 

enhanced in two steps: noise suppression by adjusting the 

magnitude of curvelet coefficients of different sub-band 

images [17], and nonlinear enhancement of contrast. 

 

2.2 Positioning of optic disc and extraction of region of 

interest (ROI) 

 

To position optic disc, the center of the brightest and least 

eccentric region was searched for in the preprocessed Green 

channel image, which has been converted into a binary image 

by adaptive threshold. The optic disc positioning and ROI 

extraction is explained in Figure 2, where O is the center of 

optic disc, and A~D are the midpoints on the left, right, up and 

lower edges of optic disc, respectively. The least squares 

method was adopted to fit the optic disc with a circle, due to 

its simplicity and rapidity. The center of the circle was a rough 

estimation of the centroid of the optic disc. 

 

   
(a) Green channel image    (b) Binary image 

   
(c) Least squares method         (d) ROI 

 

Figure 2. The optic disc positioning and ROI extraction 

 

The circle fitted by least squares method [18] can be 

expressed as: 

 
222 )()( ryyxx oo =−+−                         (1) 

 

where, (xo, yo) are the coordinates of circle center; r is radius 

of the circle. 

Let a=-2xo, b=-2yo, and 
222 ryxc oo −+= . Then, the 

curve equation can be rewritten as: 

 

022 =++++ cbyaxyx                     (2) 

 

The coordinates of circle center and radius can be derived 

from parameters a, b and c: 
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The least squares method finds the best matching equation 

of the sample points that minimizes the sum of squares for 

error (SSE). Here, the SSE can be expressed as the function Q 

(a, b, c) about parameters a, b and c, all of which must be 

greater than or equal to zero. The minimum SSE can be 

obtained using the function Q (a, b, c) when the partial 

derivatives of a, b and c are zeros, and substituting the extreme 

points into the function. In this way, the a, b and c that 

minimizes the function value can be acquired. 

The distance from a sample point (xi, yi) i∈(1,2,3,…,N) to 

the circle center can be computed by: 

 
2

id =
22 )()( oioi yyxx −+−                     (4) 

 

The difference between the square of distance of the sample 

point to circle edge and the square of radius can be described 

as: 

 
22 rdii −= =
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(5) 

 

Taking Q(a, b, c) as the sum of δi squares, the a, b and c that 

minimizes Q(a, b, c) can be found as: 

 

),,( cbaQ = 2

i =
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Under the principle of minimizing the SSE, the least squares 

estimation for circle parameters can be expressed as: 
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where, (x1, y2), (x2, y2) and (x3, y3) are the coordinates of three 

of the four points A~D. The circle center of each case was 

computed, and the mean value of all four cases was taken as 

the center of optic disc. 

In the target image, only the ROI is useful in our research. 

Hence, the image was cropped into the square covering the 

position of optic disc (Figure 2(d)). 

 

2.3 Optic disc segmentation by active contour tracking 

 

Actual optic discs are not necessarily regular circles or 

ellipses. Based on the ROI image, the actual boundaries of 

optic disc were detected by active contour tracking, rather than 

view optic disc as a circle or ellipse. 

The edge detection has long been a research hotspot. The 

snake model developed by Kass has been widely used in edge 

detection, moving object tracking and other fields [19]. The 

snake model was later extended by Kichenassamy and 

Caselles [20], who applied level set method to active contour 

tracking and model solving, ensuring that the curve topology 

changes through evolution. The extension improves the snake 

model’s tolerance of texture features and immunity to local 

optimal trap. Li [21] proposed a level set method without 

reinitialization: a penalty term is added to the energy function, 

keeping the level set function as a symbolic distance function 

through evolution, eliminating the need for repeated 

reinitializations. 

In the light of the features of retinal image, the active 

contour tracking was coupled with level set method without 

reinitialization to detect the boundaries of optic disc. 

In image segmentation, the active contour model 

approximates the target edge through dynamic evolution of the 

initial curve. Thus, the external energy of the image can be 

defined to approximate the zero level set to target edge [21]. 

For retinal image I, the edge indicator function can be 

described as: 
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The ROI image energy can be expressed as [18, 21] 

 

)()()( ,,   vgEPE +=  

= dxdy2)1|(|
2

1
−



 + )()(  gg vAL +
 

= dxdy2)1|(|
2

1
−



 + dxdyg ||)(  


 

+ dxdyHv


− )(          (10) 

 

where, Ω is the image field; λ>0 and v are constants; φ(x, y, t) 

is a symbolic distance function; d is the shortest distance from 

point (x, y) to curve; φ(x, y, t)=±d; P(φ) is the penalty term that 

maintains the level set function as a symbolic distance function; 

𝜇 is the penalty weight; δ(⋅) is a Dirac delta function; H(⋅) is a 

Heaviside step function. 

The evolution of symbolic distance function φ is 

accompanied by internal energy μ⋅P(φ), which keeps the 

evolution close to the predefined set of values of the function. 

Meanwhile, the external energy Eg,λ,v(φ) drives the moving 

points to the zero level set. 

Using variational inference, we have: 
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where, △ is the Laplace operator. To minimize the energy E, 

the Euler-Lagrange formula 
𝜕𝐸

𝜕𝜑
 must equal zero. 

Then, the gradient flow, the evolution of the level set 

function, can be obtained by the method of steepest descent: 
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where, the second and third terms on the right are the zero-

level curve approaching the target edge. The gradient flow in 

the internal energy μ⋅P(φ) can be described as: 
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where, (1 −
1

|𝛻𝜙|
) is the diffusion rate. If |∇ϕ|>1, the diffusion 

is positive and the gradient needs to be reduced; if |∇ϕ|<1, the 

diffusion is negative and the gradient needs to be increased. 

According to finite-difference method, the term 
𝜕𝜙

𝜕𝑡
 in 

formula (12) was subjected to forward difference, while 
𝜕𝜙

𝜕𝑥
 

and 
𝜕𝜙

𝜕𝑦
  to center difference. Then, formula (12) can be 

rewritten as: 
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To ensure convergence, the time step τ and the penalty 

weight μ must satisfy: 

 

τ.μ≤1/4                                     (15) 

 

2.4 Flow of our method 

 

Our optic disc segmentation method is implemented in six 

steps as shown in Figure 3 below. 

 

Input color fundus image

Obtain actual boundary of optic disc with active 

contour tracking 

Image preprocessing

Green channel image extracted, image denoised and 

enhanced

Initially  determine   mass center of optic disc  

ROI sub-image extracted

Evaluate the segmentation  results of optic disc 
 

 

Figure 3. The flow of our method. 

 

 

3. EXPERIMENTS AND RESULTS ANALYSIS 

 

3.1 Databases 

 

Our method was compared with Hough circle detection and 

least squares ellipse fitting through experiments on four 

representative public databases on retinal images, namely, the 

DRIVE, the STARE, Drishti-GS1 and Messidor. The DRIVE 

offers 40 retinal images (565×548 pixels), the STARE 

contains 400 retinal images (605×700 pixels), Drishti-GS1 

provides 101 retinal images (2047×1748 pixels) and Messidor 

hosts 1200 retinal images of three different sizes (2240×1488 

pixels, 1440×960 pixels and 2304×1356 pixels). All four 

databases have some abnormal retinal images. The image 

properties of each database are summed up in Table 1. The 

experiments were carried out on Matlab R2012b on a personal 

computer (3.2GHz; 4GB RAM). 

 

Table 1. Image properties of the four experimental databases 

 

Database DRIVE STARE 
DRISHTI-

GS1 
MESSIDOR 

Normal image 33 42 31 546 

Diseased image 7 358 70 654 

Total images 40 400 101 1200 

 

3.2 Evaluation of segmentation method 

 

The experiments and validation of our method has been 

carried out on 4 different public databases. Various 

quantitative evaluation have been applied to the optic disc 

segmentation results. Among them, the average segmentation 

accuracy rate, running time and overlapping ratio are 

considered as the performance metric [3, 5, 9, 22, 23]. 

The overlapping ratio (R) is calculated using following 

formula [5, 22, 23]: 
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=                          (16) 

 

where, AM is the optic disc area manually segmented and AT is 

optic disc area which is segmented by algorithms in the paper. 

The value of R varies between 0 and 1. The greater the value, 

the larger the overlap between segmented optic disc area and 

the manual one. 

 

3.3 Segmentation results 

 

Figure 4 displays some experimental results, marked with 

blue asterisks in Figure 4(b), of optic disc positioning. The 

ROI image in Figure 4(c) was processed by active contour 

tracking to obtain the boundaries of optic disc. The acquired 

boundaries are shown as white lines in Figure 4(d). 

The segmentation performance of the proposed algorithm 

on the four databases were compared in terms of average 

accuracy and average time (Table 2). 

 

Table 2. Average accuracy and average time on four 

databases 

 

Database DRIVE STARE 
Drishti-

GS1 
Messidor 

Test Number 40 81 101 300 

Optic Disc Detected 40 75 100 287 

Average Accuracy/% 100 92.6 99 95.7 

Average Time/s 1.36 1.22 1.71 1.92 

 

The segmented results of Hough circle detection and least 

squares ellipse fitting are compared with those of our method 

on DRIVE database are contrasted in Figure 5 and Table 3 

below. 

 

Table 3. The test results of the three methods on DRIVE 

database 

 
Methods Hough Circle Ellipse fitting Our Method 

Average Accuracy/% 92.5 97.5 100 

Average Time/s 17 0.25 1.36 

Average R 0.87 0.83 0.91 
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(a) Original image (b) Optic disc positioning (c) ROI image (d) Results of our method 

 

Figure 4. Some experimental results 
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(a) Original image (b) Least squares ellipse fitting (c) Hough circle detection (d) Results of our method 

 

Figure 5. Some results of the three methods on DRIVE database 

 

3.4 Discussion 

 

As shown in Table 2 and Figure 4, our method has achieved 

accuracies of 100%, 92.6% , 99% and 95.7% in the DRIVE, 

STARE, Drishti-GS1 and Messidor databases respectively. 

Nevertheless, the positioning and segmentation accuracies of 

our method were relatively low on the STARE, due to the 

heavy presence of abnormal retinal images. Some of the 

images contain serious lesions and even destroyed optic discs. 

The results on Messidor database show that segmentation 

accuracy is severely affected by low contrast and bright edges 

in the images. Our method managed to achieve a relatively 

high accuracy, as it has enhanced the contrast and reduced the 

edge brightness in advance (Figure 4(d)). However, even our 

method could not correctly detect optic disc when the image 

contains serious eye diseases. 

As shown in Table 3 and Figure 5, our method 

outperformed the two contrastive approaches in the 

experiment on the DRIVE database.  

Comparing Figure 4 and Figure 5, it is learned that both 

Hough circle detection and least squares ellipse fitting 

managed to detect the boundaries of optic disc. However, their 

results were regular circle or ellipse, which deviate from the 

actual shape. In addition, our method was 10 times faster than 

Hough circle detection. To sum up, our method is an effective 

way to segment optic disc, capable of outputting close-to-

reality boundaries and a high overlapping ratio. 

 

 

4. CONCLUSIONS 

 

The speed and accuracy of optic disc positioning and 

segmentation are critical to the diagnosis of fundus diseases. 

However, many difficulties arise from uneven illumination 

and low contrast of retinal image, the influence of bright spot 

lesions and pathological changes. To overcome the difficulties, 

this paper proposes an optic disc segmentation method that 

identifies the center of optic disc by least squares method and 

detects the boundaries of optic disc through active contour 

tracking. The proposed method was compared with two other 

approaches on 4 public databases. The results show that our 

method achieved higher segmentation accuracy and lower 

computing complexity than the contrastive methods, and 

remained effect despite the low contrast or mild pathological 

changes in retinal images. Future research will try to improve 

the accuracy of our method on retinal images with severe 

lesions. 
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