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This review discusses recent advances in detecting speed bumps with emphasis on the 

integration of vision-based, sensor-based, and machine learning approaches in hybrid 

models. A comparison of studies published from 2017 to 2024 highlights the performance, 

versatility, and real-world applicability in multiple detection approaches. Special focus is 

laid on the benefits of hybrid systems, such as increased robustness in dynamic conditions 

and reduced false alarms. Challenges like generalizability in data available, real-time 

processing, and low-cost applications in low-resource environments are also taken into 

account in this review. The critical voids in present research and the path forward for 

future development that enable scalable intelligent road safety systems are described. 
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1. INTRODUCTION

A transportation revolution is happening, and its two 

massive triggers are urbanization and digitization. As 

urbanization grows and the need for mobility is becoming ever 

greater, the demand also increases on road systems to not only 

perform but also to remain safe and durable. A key component 

in this transformation will be the rise of intelligent 

transportation systems, where the use of data, sensor 

technology, and automation can be used to mitigate hazards 

and improve the experience while travelling. In the era 

of digitalization, where everything ranges from automation 

to distraction, speed bump detection—a neglected cause has 

also marked its significance in the world of road safety and 

urban design. 

One of the oldest and most popular forms of traffic calming 

are speed humps, breakers or bumps. Placed mostly to slow 

down vehicular traffic in neighborhood strips that are popular 

among pedestrians—school zones, hospitals, or 

neighbourhoods, they are effective and inexpensive safety 

measures. But don’t let their simple build fool you they’re far 

too complex to use. Poorly designed and undocumented speed 

humps can make the life of those on board vehicle 

uncomfortable, slower the vehicle down and make life 

difficult for driver, passengers and goods. These challenges 

are even more profound in the case of autonomous vehicles 

(AVs) and Advanced Driver Assistance Systems (ADAS), 

which rely on onboard perception systems about the road 

structure to make decisions safely in real-time. 

Traditional speed bump mapping systems tend to be 

dependent on manual observation, reports from the public, or 

records held by local authorities, all of which are becoming 

less viable in an ever-changing city landscape. Without real-

time updating, standardization, and scalability for verification, 

these systems are of limited use in the age of active mobility. 

To fill these gaps, recent literature has proposed automatic 

systems for the detection and classification of speed bumps 

exploiting different technological channels, like computer 

vision, inertial sensors, LiDAR, GPS, and machine learning 

techniques. 

Both methods have specific advantages as well as 

limitations. Visual-based systems in setup, like employing 

photo processing and object recognition techniques, which 

mostly rely on CNN to spot the speed breaker, keep shape, 

color, and texture. These systems are highly accurate in 

controlled environment, but are sensitive to lighting, 

occlusion, weather condition, and orientation of the camera. 

On the other hand, sensor-based approaches rely on the 

accelerometers, gyroscopes, and magnetometers to sense 

vertical motional patterns. Although they are less susceptible 

to the visual clutter, these methods might not be able to 

differentiate between various types of abnormalities, for 

instance, potholes, rumble strips, and road cracks, which leads 

to a high occurrence rate of false alarms. 

To address the above gaps, hybrid models that fuse visual 

and inertial for enhanced detection robustness have been 

introduced. These systems, empowered by sensor fusion 

algorithms and machine-learning architectures, excel in 

adaptive response in difficult environmental conditions. For 

example, hybrid systems can be used to recognize visual 
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markers along with 'motion signatures' indicative of 

encountering a speed bump through the incorporation of 

inertial measurement unit data with real-time video feeds. 

Furthermore, edge computing devices (e.g., Raspberry Pi, 

Jetson Nano) facilitates deployment of such models in real-

world scenarios without relying on cloud based inference, 

which are of value in cost sensitive and latency critical 

applications. 

Impressive as these developments are, there are major 

hurdles. Limitations in datasets, the absence of ground truth 

validation and the variety of road-design standards, all make it 

that the existing models have only a limited generalization. In 

addition, since majority of the detection algorithms are trained 

using data obtained in developed countries and under near-

perfect conditions, they are not suitable for application in 

countries like India, where the quality of road is widely 

varying and even not documented properly. 

These voids are addressed in this paper with a focus on 

recent (2017-2024) speed bump detection works. A survey 

analysing various techniques: vision, sensor, and hybrid, and 

comparing their respective strengths and weaknesses, together 

with their performances in the field. It specifically focuses on 

model generalization challenges, the diversity of data, and 

hardware compatibility, which are of particular concern in 

resource-constrained or urbanizing areas. 

The rest of this section is structured as follows: Subsection 

1.1 highlights broader implications of speed bump detection 

within intelligent transportation systems, ranging from 

improved fuel-efficiency and reduced emissions to enhanced 

public safety; Subsection 1.2 provides a data-driven account 

of India's road safety concerns and their impact on detection 

technologies; Subsection 1.3 addresses practical challenges 

related to dataset acquisition, model validation, and 

deployment across different types of roads. 

 

1.1 Importance of speed bump detection in intelligent 

transportation systems (ITS) 

 

Speed bump recognition, albeit appearing as a small part of 

a large picture, can be related to several areas of not only 

intelligent transportation systems but also urban safety 

structures. Real-time, accurate detection supports operational 

safety, passenger comfort, and vehicle level intelligence. 

Enhancing Vehicle Autonomy and Comfort 

For a self-driving cars and semi-autonomous vehicles, 

unexpected speed bumps lead to unpredictable vehicle 

dynamics, hardware deterioration, and increased passenger 

discomfort. Detection systems enable the vehicle to anticipate 

and reduce vehicle speeds and adjustment of the vehicle 

suspension system, which keep a high comfort ride and protect 

vehicle mounted equipment. 

Enhancing Vehicle Autonomy and Comfort 

However, for robotic and semi-robotic systems, an 

unexpected speed bump can cause jerky movements, damaged 

gears and uncomfortable ride for passengers. The detection 

system permits vehicles to control speed and suspension, in 

anticipation, to ensure a comfortable ride and equipment 

onboard. 

Improving Navigation and Route Optimization 

Vehicles with a sensing module installed can dynamically 

plan routes according to an anomaly of the road surface. This 

kind of flexibility is crucial in route planning, particularly in 

an urban environment where diversions or bad road 

conditions occur. 

 
 

Figure 1. Unmarked speed bump on indian road 

 

Assisting Human Drivers through ADAS 

Speed bumps detection systems can also be used as 

additional safety assistance for human driver. Real-time 

warning, especially at night or when driving in strange trails, 

can may prevent accidents or equipment damage. 

Smart City Infrastructure and Data Analytics 

The detection results can be uploaded to city traffic control 

platforms. With this information, municipal officials are 

empowered to: 

• Detect unauthorized or failed bumps. 

• Routine maintenance and paint jobs. 

• Maximize routing of emergency vehicle. 

• Develop evidence-based urban planning strategy. 

Environmental and Operational Efficiency 

Unlabelled or oversized humps contribute to harsh braking, 

unnecessary fuel consumption and higher CO₂ emissions. 

Reliable detection also supports more environmentally-

friendly driving when it comes to fleet and public traffic. 

Equity and Accessibility 

Speed bumps that are not marked correctly can be a 

nightmare for individuals with disabilities, cyclists and the 

elderly who depend on commuting to get around as shown in 

Figure 1. Detection mechanisms might be used to educate 

inclusive design and guide governments in setting universal 

access standards. 

In conclusion, the detection of a speed bump is part of the 

local security and also part of the strategic operation of ITS in 

general. It's the sensored, intelligent grid implemented in the 

society and autonomy of the vehicle. 

 

1.2 Road safety challenges in India: A data-driven 

perspective 

 

India has the world's most serious road safety crisis. "On 

average, 155,000 died in road accidents in 2021," the Ministry 

of Road Transport and Highways (MoRTH) has said. 

However, anecdotal reports indicate that these figures may be 

underestimated by 40-80%, illustrating a fundamental 

problem with data quality and transparency. 

Infrastructure and Vehicle Growth 

In India, vehicle ownership spiked between 2011 and 2021: 

• Motorcycle ownership more than doubled from 

21.0% to 49.7% 

• Ownership of a car increased by half, 4.7% to 8.2% 

However, road building has not kept up with rising vehicle 

sales, particularly in tier-2 and tier-3 cities. National highways 

make up just 2% of India's total road length, but 36% of road 

deaths. Flawed design, insufficient signage and lighting also 

remain problematic urban and rural roads. 
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Disproportionate Impact on Vulnerable Users 

It’s pedestrians, motorcyclists, and cyclists who account for 

most deaths, yet road design virtually ignores them. In 

Chhattisgarh, motorcyclists contribute to nearly 60% of road 

fatalities, for example. 

Policy and Research Gaps 

India's tiny slice of road-safety research, which is under 1% 

of the world total, leaves it ill-equipped to come up with 

evidence-based interventions. The majority of crash reports 

simply include the cause to be “human error”, without 

considering systemic factors such as: 

• A crash investigation without power to speak of 

• Lack of crash data stores 

• Lax implementation of vehicle safety standards 

Need for Technological Intervention 

When used to populate smart city dashboards, and to guide 

driver GPS systems and policymaking, automated speed bump 

detection can address many of these deficiencies. Such an 

application can serve as both a preventive safety system and 

as a real-time data generator, to assist government agencies 

map high-risk zones and track crumbling infrastructure. Data 

from Indian road safety are also used to demonstrate how 

context-specific constraints and challenges should drive the 

design, training, and deployment of detection systems. 

 

1.3 Challenges in dataset availability, ground truthing, and 

road profile ambiguity in India 

 

The successful creation and validation of speed bump 

detection models rely on good quality, representative datasets. 

In India, there are several challenges to creating and 

harmonising such datasets. 

Non-Standardized Road Design 

Indian roads are highly varied in terms of: 

• Type of pavement (asphalt, concrete, combination). 

• The lines (or lack of lines) on the road. 

• Breadth, curvature, and height. 

Even on the scale of kilometres, infrastructure can change 

from urban to rural definition and model generalisation is very 

challenging. 

Absence of Annotated Datasets 

Some of the most common open-source global datasets are: 

• Taken in a perfect light/weather situation. 

• Western-geared infrastructure. 

• Deficiency of annotated speed bump labels. 

Instead, Indian roads need models that have been trained on 

real-world, unstructured, and uncurated datasets — and those 

don't exist yet. 

Inconsistent Sensor Data Across Vehicles 

The same bump can read differently between a motorcycle 

and an SUV in sensor-based systems. In the absence of 

vehicle-class-specific calibration, models produce 

inconsistent results. 

Barriers to Ground Truthing 

Although this type of ground truthing is necessary to 

validate models it is time and labor intensive and requires: 

• Manual inspection. 

• GPS-based tagging. 

• Cross-check by using video and IMU sensors. 

 

These processes are time-consuming and expensive, 

especially for academic and startup organizations with 

relatively limited financial resources. 

1.3.5 Lack of Data-Sharing Ecosystems 

In India, there is no single centralized database or public 

deposits of road irregularities. To this end, investigators are 

generally required to develop either new data, which is a: 

• Redundant effort. 

• Lack of benchmarking. 

• Poorly regulated labeling. 

Recommendations for Overcoming Data Challenges 

The strategy recommends the following immediate steps to 

respond to these gaps: 

• Open-source government datasets annotated with 

road anomalies. 

• Crowdsourcing based apps and mobile apps for bump 

reporting. 

• Collaborative research centres connecting academia, 

industry and municipal institutions. 

Pilot programs for incentivized collection of ground data. 

Until these systems become institutionalized, any cutting-

edge detection model will encounter real limitations in 

scalability and robustness when used in the real world. 

Research Problem and Paper Contributions 

Although there is an increasing interest in automatic speed 

bump detection systems, there is still a lack of integrated, 

context adaptive and low resource deployable solutions. Lack 

of Indian datasets, no standardized evaluation metrics and 

no benchmarks for real time processing obstruct both 

academic progress and commercial deployment. 

The main contributions of this paper are: 

• Structured review of sensor-based, vision-based, and 

hybrid approaches to detecting and monitoring 

people (2017-2024). 

• A comparison of such performance metrics as 

accuracy, latency and energy efficiency. 

• A comprehensive talk to describe data and 

infrastructure constraints in India. 

• Practice points for transfer learning, multi-modal 

sensing, real-time embedded deployment. 

 

 

2. RESEARCH METHODOLOGY 

 

To ensure rigorous, reproducible study, we have pursued an 

orderly approach toward reviewing the literature, focusing on 

recent innovations in speed bump identification. Our 

methodology involves several steps, including literature 

selection, classification, and synthesis, complying with 

accepted protocols for reviews. Below, the steps involved in 

our methodology are laid out: 

 

2.1 Literature selection and collection of data 

 

The first thing that we did while carrying out this study was 

locate and obtain relevant scientific papers. Keyword searches 

across well-known scholarly databases such as IEEE Xplore, 

SpringerLink, ScienceDirect, and Google Scholar were 

conducted. The terms that we searched included combinations 

of the terms "detection of speed bump," "detection of road 

anomaly," "road safety by computer vision," "application of 

machine learning in transportation," and "speed bump 

identification by sensors." The time span covered by the 

papers included those from the time period 2017-2024 so that 

recent work in the field could also be included. 

To enhance data strength, both forward and backward 

citation searching was conducted. In the backward search, 
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references cited by selected studies were examined, whereas 

the forward search identified recent studies that had cited the 

selected studies. Through this iterative method, there was 

extensive coverage of seminal studies as well as future studies. 

 

2.2 Inclusion criteria and exclusion criteria 

 

To ensure study relevance and credibility, predetermined 

inclusion and exclusion criteria were used. Table 1 outlines the 

parameters. In this review, only those scholarly, peer-reviewed 

papers from scholarly journals, as well as conference papers, 

both from the timeframe 2017-2025, delivered in the English 

language, discussing adaptive braking, speed bump detection, 

or road anomaly detection, were included. Studies unrelated to 

braking, road safety, or speed bump detection, as well as non-

peer-reviewed papers such as white papers, blogs, were 

excluded from this review. 

 

Table 1. Inclusion criteria and exclusion criteria 

 
 Criteria  Inclusion Exclusion 

 Timeframe  Studies published between 2017 and 2025 Studies published before 2017 

 Language  English-language studies Vision-based 3D detection using Kinect 

 Research Focus  
Speed bump detection, road anomaly detection, or adaptive 

braking mechanisms 
Non-English studies 

 Study Type  Peer-reviewed journals, conference papers 
Studies unrelated to road safety, speed bump 

detection, or braking 

 Full-text Accessibility  Available full-text Abstract-only or inaccessible full-text 

2.3 Data extraction and analysis 

 

For a structured review of existing techniques and datasets 

for road anomaly detection, a thorough data extraction and 

analysis work was carried out. Appropriate articles were 

identified from 2018 to 2024 based on the specific inclusion 

criteria, which include interest in pothole, speed bump and 

road anomaly detection and use of computational or sensor 

based approach. An extraction table was created for each 

included paper, incorporating information in relation to key 

attributes including: authorship; year; key methodology; and 

the primary findings. This resulted on the development of 

Table 2, that tabulates 22 seminal contribution mainly 

categorized on deep learning (CNN, YOLO), statistical 

techniques (Mahalanobis-Taguchi System, Genetic 

Algorithms) and sensor-based method (Zigbee, GPS, IMU). 
 

Table 2. Key contributions of selected studies 
 

 Authors Year Key Methodology Findings 

 Verma et al. [1] 2018 
Deep neural network using ZED camera images (no 

stride/pooling). 

Achieved 98.13% accuracy for pothole and speed bump 

detection using lightweight 7-layer CNN. 

 Lion et al. [2] 2018 Vision-based 3D detection using Kinect. Cost-effective and accurate detection of bump heights. 

 Wang et al. [3] 2018 Mahalanobis-Taguchi System for road quality. Differentiated potholes, manholes, and bumps effectively. 

 Ameddah et al. [4] 2018 Cloud-assisted lightweight road monitoring. Accurate real-time road condition monitoring. 

 Baldini et al. [5] 2018 Dynamic Time Warping for RSF detection. Achieved high accuracy in identifying road safety features. 

 Hameed et al. [6] 2018 Custom data logger for RSD classification. Publicly shared dataset; effective multiclass classification. 

 
Ukarande and 

Bhalekar [7] 
2018 Zigbee-enabled driver assistance for T-junctions. Reduced T-junction accidents significantly with low-cost tech. 

 
Lozano-Aguilar et 

al. [8] 
2018 

Genetic algorithms and logistic regression for 

detection. 
AUC values of 0.992 for genetic algorithm approach. 

 Dadras et al. [9] 2019 Stop sign detection using vehicle speed profiles. Reliable stop sign detection with high precision. 

 
Bello-Salau et al. 

[10] 
2019 Vision-based anomaly detection with OpenCV. Comprehensive review of vision-based methods. 

 Chen et al. [11] 2019 Crowdsourced scale-invariant anomaly detection. Real-time anomaly detection with robust scalability. 

 Edwan et al. [12] 2019 
Smartphone app with accelerometer for bump 

detection. 
Accessible and cost-effective bump warning app. 

 Joon et al. [13] 2019 
Random forest using vehicle GPS and wheel 

sensors. 
Achieved 80.9% accuracy in speed bump detection. 

 
Shah and 

Deshmukh [14] 
2019 CNN and YOLO for bump detection from images Achieved 88.9% accuracy for bump classification. 

 Yuan and Che [15] 2019 
Crowdsensing with acceleration and GPS 

clustering. 
Efficient clustering for real-time road condition monitoring. 

 
Ramakrishnan et 

al. [16] 
2020 IoT-based proximity and GPS mapping system. Effective mapping with reduced human intervention. 

 Zheng et al. [17] 2020 
Quick filter-based dynamic time warping for 

anomaly detection. 
Improved F1 score with reduced time consumption. 

 
Dewangan and 

Sahu [18] 
2020 CNN-based speed bump detection on Raspberry Pi. Achieved 98.54% accuracy in real-time environments. 

 Xu et al. [19] 2021 Semantic segmentation for bump recognition. Enhanced recognition for autonomous vehicles. 

 Carlos et al. [20] 2021 
Profiling road anomalies with detailed physical 

properties. 
Detailed characterization of speed bumps and potholes. 

 Lin and Ho [21] 2022 
Adaptive speed bumps with license plate 

recognition. 

Prototype achieved 96.67% identification rate for speed 

bumps. 

 Xiang et al. [22] 2024 
YOLOv5s for detecting multiclass speed bump 

defects. 
High accuracy (97.7%) for defect detection. 
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Table 3. Dataset characteristics 

 
 Authors Dataset Type Size Public Access 

 Lion et al. [2] 3D Kinect data 100+ samples No 

 Wang et al. [3] Accelerometer and gyroscope data Extensive city road test data No 

 Baldini et al. [5] IMU data 42.5 km data No 

 Hameed et al. [6] Custom vehicle sensor logs Large heterogeneous dataset Yes 

 Ukarande and Bhalekar [7] Zigbee communication logs Simulated test environment No 

 Chen et al. [11] Crowdsourced GPS data 50,000+ data points Yes 

 Joon et al. [13] GPS and vehicle sensor logs Collected via CAN-bus system No 

 Yuan and Che [15] Crowdsensed acceleration data Numerous GPS and acceleration data points Yes 

 Ramakrishna et al. [16] IoT-based proximity data Extensive IoT logs No 

 Dewangan and Sahu [18] Image-based speed bump dataset 3,450 augmented images No 

 Lin and Ho [21] Pressure sensor data Extensive real-world tests No 

 Xiang et al. [22] Drone-captured images 3820 images No 

 

 
 

Figure 2. System workflow for speed bump detection using YOLOv8 on raspberry Pi 

 

In order to further investigate these issues, the 

corresponding data sets analyzed in these studies were 

characterized in Table 3 based on the type of data sets used for 

the studies, the size and whether the data set is available. This 

not only revealed the wide range of data sources 

accelerometers, cameras, crowdsensing that these works tap 

into, but also emphasized that many of the real-world datasets 

are not publicly available, constituting yet another obstacle for 

reproducibility. Together, these tables also provide a 

comparison ground to understand current research axes, lack 

of open data availability and trends in the design of smart road 

anomalies detection systems. 

 

2.4 Data synthesis and analysis 

 

The following three-stage synthesis approach with both 

qualitative and quantitative procedures has been done. The 

procedure included stepwise identification, classification and 

validation of studies of vision-based, sensor-based and hybrid 

detection systems. 

Descriptive Synthesis: The retrieved papers were classified 

according to detection modality, algorithm employed 

(CNNs/SVM/Random Forest, etc.), platform for deployment 

(PC/embedded) and environment for testing and evaluation 

(simulation/real world/mixed). This allowed to detect trends 

regarding model accuracy, latency, and robustness to 

environmental change. 

Argumentative Synthesis: This stage involved mapping 

papers according to their experimental setups, datasets used, 

and validation strategies (e.g., k-fold cross-validation, 

confusion matrix analysis). Studies were then compared for 

replicability based on open-source code availability, dataset 

documentation, and metric consistency. For example, systems 

using CNNs with transfer learning were evaluated in contrast 

to those trained from scratch for domain adaptation 

performance. 

Systematic Review Mapping: A mapping framework was 

constructed to categorize gaps in: 

• Data availability (region-specific, annotated, sensor-

fused datasets) 

• Model generalizability (cross-road-type or cross-

vehicle validation) 

• Real-time feasibility (frame-per-second benchmarks 

on embedded systems) 

To further improve clarity, Figure 2 included a system-level 

flowchart depicting the interaction between modules: Input 

Acquisition, Preprocessing, Feature Extraction, Classification, 

and Result Interpretation. 

 

Each module is briefly explained below: 

• Input Acquisition: Involves capturing real-time data 

using cameras or IMUs mounted on vehicles. 

• Preprocessing: Includes image enhancement, signal 

smoothing, and noise filtering. 

• Feature Extraction: Extracts edge patterns, vertical 

displacement signals, or accelerometer spikes. 

• Classification: Uses supervised ML models (CNN, 

YOLO, SVM, or ensemble methods) to detect and 
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label speed bumps. 

• Interpretation Module: Converts raw predictions into 

actionable feedback (e.g., alert, brake assist, or map 

update). 

The selection of specific algorithms was guided by their 

prevalence in peer-reviewed literature and suitability for real-

time embedded applications. For example, CNNs were 

prioritized for their strong performance in image-based 

detection, while lightweight models like SVM and Decision 

Trees were noted for lower resource consumption. Hybrid 

approaches combining IMU and camera data were examined 

for their robustness in low-visibility conditions. 

To mitigate bias, inter-rater agreement tests were conducted 

across independent reviewers. Each paper was independently 

evaluated based on replicability, clarity in performance 

metrics, and transparency of datasets. The iterative process 

of forward and backward citation tracking, along 

with database triangulation, ensured broad and diversified 

coverage of literature. 
 

2.5 Limitations and future considerations 
 

The following three-stage synthesis approach with both 

qualitative and quantitative procedures has been done. The 

procedure included stepwise identification, classification and 

validation of studies of vision-based, sensor-based and hybrid 

detection systems. Although the present study uses a strict 

synthesis method, some limitations exist: 

Language and Database Bias: Studies not in English and 

those published in regional indexes could be inadvertently 

eliminated merely because of database access Restrictions. 

Fast-evolving Technology: The AI-based detection 

technology evolves rapidly, and it may not cover the recent 

preprints or the ongoing experiment at the time of our review. 

Partial Reporting: There was missing information from 

some articles regarding reproducibility information, open-

access dataset, etc., therefore some comparison couldn’t be 

made. 

(Hardware) Deployment: Few of the proposed models are 

evaluated in their performance on embedded and/or resource-

constrained hardware, which is a relevant need at real settings 

for several public safety applications. 

Despite these constraints, the methodology successfully 

uncovers important patterns, limitations, and opportunities 

across existing approaches. Future work should focus on: 

• Creating standardized datasets across diverse 

geographies 

• Conducting real-time testing on embedded systems 

• Applying multi-modal sensor fusion in low-light or 

occluded conditions 

• Exploring transfer learning and few-shot learning for 

low-data environments 

The synthesized findings provide a strong foundation for 

academic, industrial, and governmental stakeholders seeking 

to implement intelligent speed bump detection as part 

of broader smart mobility initiatives. 

 

 

3. LITERATURE REVIEW 

 

3.1 Conceptual background 

 

The detection of speed bumps, a subset of road surface 

anomaly detection, has emerged as a vital area of research 

within the broader discipline of intelligent transportation 

systems (ITS). This domain integrates diverse fields such as 

computer vision, sensor technology, machine learning, and 

vehicular signal processing to improve safety, navigation, and 

system intelligence in modern vehicles. As mobility 

ecosystems shift toward autonomy and real-time infrastructure 

awareness, the ability to detect and interpret road features like 

speed bumps becomes increasingly essential. 

Evolution from Manual to Automated Detection: 

Historically, speed bump detection was performed manually 

via field surveys and visual road inspections making the 

process time-consuming, labor-intensive, and unsuited for 

rapidly urbanizing or dynamically changing environments. 

Early efforts at automation relied on traditional image 

processing, such as edge detection and texture analysis. These 

methods attempted to isolate visual patterns in road imagery 

that could indicate the presence of a bump. While relatively 

efficient, such techniques lacked robustness in the face of 

environmental distortions, such as varying light, weather 

conditions, and camera angles. 

The next major leap came with the integration of sensor-

based techniques, which moved beyond surface appearance 

and instead focused on capturing physical road interactions. 

Vehicle-mounted accelerometers, gyroscopes, and IMUs 

became popular due to their ability to detect sudden vertical 

displacements or vibration patterns when a vehicle passed over 

a speed bump. These methods introduced real-time feedback 

loops into the system and laid the groundwork for multi-modal 

detection frameworks. 

Sensor-Based Detection and IMU Signatures: Sensor-based 

detection leverages the physical responses of vehicles as they 

interact with road features. Among these, Inertial 

Measurement Units (IMUs)—which combine accelerometers 

and gyroscopes—are particularly effective. When a vehicle 

moves over a speed bump, a distinct vertical displacement and 

vibration pattern is recorded in the sensor data. These patterns 

are typically analyzed using statistical features such as peak 

amplitude, frequency domain characteristics, or root mean 

square (RMS) values to determine the presence of a speed 

bump. 

While relatively lightweight and inexpensive to implement, 

the accuracy of sensor-based approaches depends heavily on: 

• Vehicle type and suspension system. 

• Driving speed. 

• Sensor placement and calibration. 

Moreover, such systems can sometimes misinterpret other 

road anomalies like potholes or rough patches—as speed 

bumps, leading to false positives. This limitation has led to 

increasing interest in sensor fusion and machine learning-

based filtering of raw signals. 

Computer Vision and Deep Learning Techniques: 

Computer vision-based detection uses image or video inputs 

from vehicle-mounted cameras to recognize speed bumps 

based on color, shape, texture, or elevation cues. Initially, 

methods used handcrafted features (e.g., HOG, SIFT, Gabor 

filters) in conjunction with traditional classifiers like SVMs or 

decision trees. However, these approaches struggled in 

complex real-world settings due to variations in perspective, 

occlusions, shadows, and poor road marking standards issues 

that are particularly common in countries like India. 

The introduction of deep learning, particularly 

Convolutional Neural Networks (CNNs), transformed vision-

based detection by automating the feature extraction process. 

CNNs learn hierarchical representations directly from data, 

making them more resilient to environmental noise. When 
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trained on large, labeled datasets, these models can generalize 

better across varying road conditions. Architectures such as 

YOLO (You Only Look Once), Faster R-CNN, and Mobile 

Net have been successfully adapted for this task, offering high 

accuracy and real-time inference capabilities. 

Nevertheless, the main challenge lies in the lack of 

comprehensive datasets for road anomalies that include speed 

bumps. Models trained on datasets from developed countries 

often perform poorly in Indian conditions due to unmarked, 

irregularly shaped, or deteriorating speed bumps, which are 

not represented in the training data. 

LiDAR and 3D Elevation Mapping: For high-precision 

applications, particularly in autonomous vehicles, LiDAR-

based detection offers three-dimensional insight into road 

surface geometry. LiDAR systems emit laser pulses and 

measure the return time to create dense point clouds of the 

surrounding environment. These can be analyzed to detect 

localized elevation changes, making them ideal for identifying 

road humps. 

LiDAR offers unmatched accuracy, especially in night 

driving and low-light conditions, and is not affected by paint 

wear or surface textures. However, the downside remains the 

high cost, large power consumption, and computational 

intensity, making widespread adoption challenging outside of 

research or premium-grade vehicle platforms. 

Hybrid Detection Models and Sensor Fusion: To overcome 

the limitations of individual techniques, recent research 

emphasizes hybrid approaches that combine vision and sensor 

data. These models use synchronized camera and IMU data 

streams to identify candidate anomalies and validate them 

through multi-modal consistency checks. Sensor fusion not 

only improves detection accuracy but also enhances resilience 

to noise, allowing systems to operate under challenging 

conditions. 

In such systems, computer vision provides contextual cues 

(e.g., road signs, markings, shapes), while inertial sensors 

confirm the presence of physical perturbations. Some studies 

also incorporate GPS to localize the detected bump, 

contributing to anomaly mapping and road condition 

databases for smart city applications. 

Deployment on Embedded Systems and Edge AI: Real-time 

speed bump detection must balance accuracy, latency, and 

resource usage, especially when deployed in commercial 

vehicles or public transport systems. Platforms such as 

Raspberry Pi, NVIDIA Jetson Nano, and Google Coral have 

enabled the implementation of lightweight deep learning 

models at the edge. Techniques like model quantization, 

pruning, and knowledge distillation help in reducing model 

size without sacrificing significant performance. 

Edge deployment is critical in areas where network latency 

or intermittent connectivity makes cloud-based solutions 

impractical. Moreover, on-device inference allows immediate 

vehicle response—such as automatic braking or alert 

generation—improving passenger safety and system 

reliability. 

Current Limitations and Research Gaps: Despite significant 

advancements, speed bump detection technologies still face 

key barriers: 

• Domain variability: Models trained in one 

geography often fail when deployed elsewhere due 

to infrastructural differences. 

• Lack of open datasets: No standardized, publicly 

available datasets exist that comprehensively 

include speed bump data, particularly in the Indian 

context. 

• Environmental robustness: Night-time detection, 

heavy rain, and crowded scenes remain 

problematic for both vision and sensor systems. 

• Distinguishability: Systems struggle to 

differentiate speed bumps from other vertical 

anomalies such as manholes or expansion joints. 

Future Directions: The next frontier in speed bump 

detection research lies in: 

• Adaptive learning models that can update 

parameters based on continuous feedback from 

vehicle dynamics. 

• Crowdsourced anomaly mapping, where fleet 

vehicles collaboratively build real-time road 

condition maps. 

• V2X integration, enabling vehicles to 

communicate road hazard data to nearby vehicles 

and infrastructure systems. 

• Standardization of datasets and benchmarking 

frameworks to support consistent evaluation of 

model performance. 

The conceptual landscape of speed bump detection is a 

multi-faceted domain involving perception, inference, and 

real-time processing. As smart mobility systems mature, and 

as the complexity of urban road infrastructure increases—

particularly in emerging economies—the importance of 

robust, scalable, and context-aware detection models will only 

grow. Continued advancements in sensor fusion, deep 

learning, and edge computing will be pivotal in translating lab-

based research into real-world safety solutions. 

 

3.2 Review of relevant works 

 

Over the past decade, significant research has emerged in 

the domain of intelligent transportation systems, particularly 

focused on speed bump detection, road anomaly recognition, 

and the broader deployment of ADAS on embedded platforms. 

This section reviews key contributions thematically, 

presenting advancements in detection systems, edge 

deployment, driver safety, and hybrid sensor integration. 

Speed Bump and Road Anomaly Detection: Speed bump 

detection has evolved from sensor-based methods to AI-

powered solutions. A smartphone-based system using 

accelerometer and gyroscope data to detect and geolocate 

speed bumps developed by Kyriakou et al. [23]. Their RUS 

Boosted Trees classifier achieved 99% accuracy, offering a 

scalable crowdsourced solution for pavement monitoring. 

Varma et al. [1] implemented a stereo vision-based model 

using SSD-MobileNet to identify both marked and unmarked 

speed humps. With up to 97.4% accuracy and precise depth 

estimation, their real-time embedded system demonstrated 

practical ADAS applicability. Similarly, Lee et al. [24] 

employed LiDAR to detect road surface roughness for 

dynamic suspension tuning, reducing body acceleration by 

54% and enhancing ride comfort in agricultural vehicles. In 

terms of infrastructure enhancement, Džambas et al. [25] 

reviewed intelligent speed bumps like Actibump, which 

adaptively engage based on vehicle speed. Their field studies 

in Sweden recorded a reduction of 11.1km/h in average speed 

and 35% improvement in pedestrian yielding, confirming their 

effectiveness in urban safety enforcement. Klco et al. [26] 

leveraged YOLOv5 for automated pothole detection using 

real-world datasets, emphasizing the importance of computer 

vision in predictive road maintenance. Nissimagoudar et al. 
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[27] extended this approach to detect both potholes and speed 

breakers with over 83% accuracy, proposing sensor 

integration for adaptive vehicle response. 

Deep Learning on Embedded Platforms: Edge AI 

deployment has become essential for real-time ADAS 

applications. Kortli et al. [28] proposed a CNN–LSTM model 

on Jetson Xavier NX for robust lane detection, achieving 

96.36% accuracy and demonstrating efficient LDWS 

integration. On a lower-cost platform, Civik and Yuzgec [29] 

implemented a CNN-based fatigue detection system on Jetson 

Nano, detecting drowsiness states with up to 94.5% accuracy 

at 6 FPS. Dhatrika et al. [30] presented a YOLO-based real-

time object detection system on edge devices, detecting 

various road objects with 91.9% mAP and 98.6% precision, 

ideal for embedded ADAS modules. Chen et al. [31] advanced 

distracted driving detection using lightweight ensemble 

networks, achieving 99\% accuracy with low latency on Jetson 

Nano. For lightweight optimization, Tie et al. [32] introduced 

LSKA-YOLOv8 for steel defect detection, achieving a 4.4% 

mAP boost while reducing parameters by 26.7%, 

demonstrating cross-domain adaptability of edge vision 

models. 

Hybrid Sensing and Semantic Scene Understanding: 

Multimodal sensor fusion offers enhanced environmental 

awareness. Ulusoy et al. [33] combined stereo vision with 

semantic segmentation (SegNet) to build an obstacle-avoiding 

autonomous vehicle using Jetson Nano and ROS for real-time 

path planning. In the forestry domain, Liu et al. [34] proposed 

LVI-ObjSemantic, a LiDAR-Visual-Inertial fusion system for 

tree-level SLAM, achieving ultra-low RMSE and proving its 

potential in GNSS-denied outdoor settings. Zamanakos et al. 

[35] offered a benchmark survey of LiDAR-based 3D object 

detection pipelines for autonomous vehicles, underscoring 

LiDAR's synergy with deep learning for spatial accuracy. 

Chen et al. [36] explored urban navigation using speed hump 

signatures from accelerometers to enhance GPS accuracy and 

reduce power consumption, offering a novel localization 

method in dense environments. 

ADAS User Acceptance and Driver Monitoring: Human 

factors play a crucial role in ADAS adoption. Damsara and de 

Barros [37] systematically reviewed 13 studies, identifying 15 

user acceptance factors including trust, system familiarity, and 

cognitive workload. They criticized traditional models like 

TAM and UTAUT for failing to account for driver-specific 

traits, advocating for a new ADAS-focused acceptance model. 

Badgujar and Selmokar [38] developed a gaze tracking system 

using IR-filtered dashboard cameras, detecting eyes-off-road 

behavior with 96% accuracy under varying lighting 

conditions. 

Emerging Architectures and Lightweight Models: Several 

studies focused on pushing the efficiency boundary of 

detection systems. Nimma et al. [39] combined YOLOv8 with 

attention and Transformer heads to enhance accuracy in 

complex scenes, achieving 96.89% recall and proving 

effective in crowded or low-light conditions. Kamath and 

Renuka [40] conducted a literature review of 167 studies to 

assess deep learning model design for edge deployment, 

identifying gaps and future trends in lightweight architecture 

for embedded AI. Chang et al. [41] introduced LWMG-

YOLOv5, a ghost convolution-based model for chip 

inspection, improving accuracy and speed while reducing 

production loss—showcasing its relevance to vision tasks in 

embedded ADAS systems. 

Assistive and Smart Infrastructure Applications: AI-driven 

road detection also benefits assistive navigation and smart 

cities. Paramarthalingam et al. [42] designed a YOLO-based 

pothole detector for the visually impaired, achieving 82.7% 

accuracy and 30 FPS performance in a mobile app, enhancing 

pedestrian safety in urban areas. Biswal et al. [43] proposed an 

IoT-enabled intelligent speed breaker alert system using RF 

and GPS modules. It can automatically reduce vehicle speed 

during poor visibility and logs location data to the cloud for 

infrastructure planning. Sheikh-Mohammad-Zadeh et al. [44] 

evaluated street performance pre- and post-speed hump 

installation using video-based trajectory analysis, revealing 

20-30% speed reduction and behavioral change in road users, 

supporting data-driven urban design. Darwiche and 

Mokhiamar [45] applied SVR models to determine optimal 

crossing speeds over humps, suggesting machine learning-

assisted suspension control for better comfort. 

Kanjanavapastit and Thitinaruemit [46] used a dual 

accelerometer setup and quarter car model to reconstruct hump 

geometry, enabling adaptive suspension systems to optimize 

comfort and speed hump traversal. Mathe et al. [47] reviewed 

the widespread utility of Raspberry Pi in domains like ADAS, 

smart mobility, and anomaly detection, reinforcing its role as 

a cost-effective platform for rapid edge AI deployment. 

Zebra Crossings, Pedestrian Interaction, and Visual 

Perception in Urban ADAS: With rising attention on 

pedestrian safety and intelligent road infrastructure, recent 

studies have explored detection, behavior modeling, and safety 

assessment at zebra crossings. Riveiro et al. [48] developed an 

algorithm for detecting zebra crossings using mobile LiDAR 

data, involving rasterization, intensity imaging, and Hough 

Transform techniques. Their method achieved 83% detection 

completeness and is highly applicable for road asset inventory 

in GIS-supported urban planning. From a behavioral 

standpoint, Ritchie et al. [49] conducted six video-based 

experiments to assess acceptable stopping behaviors of both 

human-driven and autonomous vehicles at zebra crossings. 

The study found that AVs are judged more critically than 

human drivers, and that participants preferred vehicles that 

stopped right before the line and resumed motion only after 

pedestrians cleared the crossing. Vignali et al. [50] used eye-

tracking to analyze driver behavior at roundabouts, confirming 

that zebra markings and median refuge islands significantly 

improved driver visual attention and pedestrian crossing 

visibility. Their intervention led to a doubling of the average 

distance at which drivers first fixated on the crosswalk. 

Expanding into large-scale safety assessments, Russon et al. 

[51] applied CNN-based models (ConvNextV2, ResNet50) to 

evaluate zebra crossings using paired aerial and ground-level 

images. Their deep segmentation approach demonstrated 

potential for automated pedestrian safety audits using data 

from underrepresented areas in France. In a unique socio-

cognitive context, Cowan et al. [52] used eye-tracking to 

compare fixation patterns of individuals with and without 

Autism Spectrum Disorder (ASD) in zebra crossings and 

shared zones. Findings revealed that zebra crossings elicited 

more traffic-relevant fixations than shared zones, highlighting 

their superior effectiveness for inclusive pedestrian safety. 

 

3.3 Comparative analysis, challenges, and real-world 

implications 

 

Publication Trend: A steady rate of increased study over 

time, peaking both in contributions over the years 2021 and 

2022, indicates the greater relevance of computerized road 

1300



 

processes. Figure 3 indicates the annual distribution of papers 

on studies of speed bumps over the period 2017-2023. 

 

 
 

Figure 3. Number of relevant publications by year 

 

Table 4. Publication trends 

 
 Year  Number of Publications Cumulative Percentage 

 2018  10 19.61 

 2019  8 35.29 

 2020  4 43.14 

 2021  5 52.94 

 2022  4 60.78 

 2023  10 80.39 

 2024  7 94.12 

 2025  3 100.0 

 

The line graph indicates an elevated level of steady interest, 

showing steady progress. Table 4 also substantiates this by 

showing the cumulative rate per annum of study papers, 

showing an elevated rate of contributions over the period 

2018-2025. 

The publication trend from 2018 to 2025 reflects a total of 

N=51 publications, with notable peaks in 2018 and 2023. The 

cumulative percentage CPᵢ for each year i was calculated using 

the formula: 

 

CPᵢ=(Σⱼ₌₂₀₁₈ⁱ Pⱼ)/(Σⱼ₌₂₀₁₈²⁰²⁵ Pⱼ)×100 

 

where, Pⱼ denotes the number of publications in year j. For 

instance, CP₂₀₁₉=(10+8)/51×100≈35.29%, indicating that over 

one-third of the research output occurred within the first two 

years. A simple statistical dispersion measure such as the 

mean: 

 

μ=(1/8)×Σⱼ₌₂₀₁₈²⁰²⁵ Pⱼ=51/8=6.375 

 

and the standard deviation: 

 

σ=√[(1/n)×Σᵢ(Pᵢ−μ)²]≈2.49 

 

further confirms variability in publication intensity across 

years. This non-uniform distribution implies fluctuations in 

research attention, possibly influenced by technological 

advancements or external events. These quantitative insights 

not only justify the continued relevance of the field but also 

frame the necessity of the present work in extending the 

current knowledge base. 

Publication Outlet Distribution: Figure 4 indicates an 

analysis by channel type, categorizing studies as papers 

presented in journals and papers presented in conferences. A 

vast majority (73 percent) of studies have emerged as papers 

presented in conferences, indicating that this discipline is 

evolving very dynamically with newer findings being 

presented quite frequently through conferences. In contrast, 

only 27 percent of contributions emerge as papers presented in 

journals, perhaps pointing toward relatively less but steady 

numbers of well-developed, refereed studies. 

 

 
 

Figure 4. Breakdown of studies by publication outlet type 

 

 
 

Figure 5. Technological approaches for speed bump 

detection 

 

Technological Approaches for Speed Bump Detection: The 

approaches have been classified under vision-based, sensor-

based, AI/Machine Learning, and hybrid. Vision-based 

approaches employ image processing to identify an anomaly, 

while sensor-based approaches employ accelerometers, 

gyroscopes, and pressure sensors. AI/Machine Learning 

approaches offer greater prediction accuracy, while hybrid 

models employ combinations of approaches for performance. 

A graphical representation of the number of studies employing 

each approach has been shown in Figure 5, showing growing 

preference toward AI-based approaches. And Table 5, shows 

various technological approaches used in speed bump 

detection. 

Performance Measures of Detection Models: The 

effectiveness of speed bump detection by various approaches 

has been shown through accuracy, precision, recall, and F1-

score values by various studies, as indicated by Table 6, the 

performance by approaches varies, while AI/Machine 

Learning approaches provide the highest accuracy, by 

Dewangan and Sahu [18]. (98.54 percent) and Lozano-Aguilar 

et al. [8] (99.2 percent). The studies reveal that hybrid 

approaches as well as approaches based on sensors also 

provide consistent performance, making them suitable for 

real-time deployments. 

The performance metrics across different studies exhibit 
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notable variability, with accuracy ranging from 80.9% (Joon 

et al.) to 99.2% (Lozano-Aguilar et al. [8]). To quantify this 

dispersion, we computed the mean accuracy (μₐ) across all 

seven studies as: 

 

μₐ=(89.2+99.2+80.9+88.9+91.3+98.54+89.0)/7≈91.0% 

 

Table 5. Technological approaches 

 
 Technology  Description 

 Vision-based  
Uses cameras and image processing for road 

anomaly detection. 

 Sensor-based  
Employs accelerometers, gyroscopes, proximity 

sensors, or pressure sensors for anomaly detection. 

 
AI/Machine 

Learning 
 Applies AI for predictive and real-time analysis. 

 Hybrid  
Combines vision, sensors, and AI for robust 

detection. 

 

Table 6. Performance metrics of different studies 

 

 Authors  Accuracy (%) 
Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

 Wang et al. [3]  89.2 88.6 89.0 88.8 

 
Lozano-Aguilar et al. 

[8] 
 99.2 99.1 99.0 99.0 

 Joon et al. [13]  80.9 81.5 80.3 80.8 

 
Shah and Deshmukh 

[14] 
 88.9 89.1 87.7 88.4 

 Zheng et al. [17]  91.3 92.0 90.5 91.2 

 Dewangan et al. [18]  98.54 99.05 97.89 98.46 

 Carlos et al. [20]  89.0 89.5 88.3 88.9 

 

 
 

Figure 6. Conceptual trends in detection of speed bumps 

 

Similarly, the standard deviation (σₐ) of accuracy is 

approximately 5.77, indicating moderate variation in model 

performance across studies. F1-Scores, which provide a 

balanced view of precision and recall, follow a similar trend, 

with values ranging from 80.8% to 99.0%, and a mean of 

approximately 90.37%. The consistently high precision and 

recall metrics in studies by Lozano-Aguilar et al. [8] and 

Dewangan et al. underscore their models’ robustness and 

reliability, suggesting optimized detection capabilities. In 

contrast, Joon et al.'s lower metrics point to either data 

imbalance or suboptimal model tuning. Overall, this statistical 

assessment highlights the significance of methodological 

differences and model enhancements in achieving high-

performance outcomes, positioning the present work in line 

with top-performing benchmarks while identifying areas for 

further improvement. 

Conceptual Trends in Detection of Speed Bumps: Detection 

models and sensors are found the most, indicating the need for 

intelligent detection strategies. Also found very frequently are 

data processing strategies, validation criteria, and application 

areas in autonomous vehicles. Their frequency indicates the 

interdisciplinary nature that the field has, leveraging concepts 

from computer vision, IoT, and vehicular technology. Figure 

6, enumerates concepts that are found most frequently across 

studies detecting speed bumps. 

Adaptability within the field still dominates, as accuracy 

relies significantly upon environmental concerns. 

Generalization over the data set also comes out as crucial, as 

there are hardly any region-specific data sets, creating an 

impediment toward practical use. Lastly, cost-effective 

scaling, as well as compatibility with other intelligent 

transportation systems (ITS), must also be researched toward 

advancing universal application. 

 

 
 

Figure 7. Challenges and research gaps based on reviewed 

literature 

 

Table 7. Challenges and research gaps 

 
 Challenges  Details 

 
Real-time 

adaptability 
 

Performance drops in varying environmental 

conditions, limiting effectiveness under dynamic 

conditions. 

 
Dataset 

generalizability 
 
Limited dataset diversity and region-specific 

datasets reduce real-world applicability. 

 
Cost-efficient 

scalability 
 

Balancing low-cost sensors with high accuracy 

remains a challenge, especially in developing 

regions. 

 
Integration with 

ITS 
 

Few studies explore integration with existing 

intelligent transportation systems (ITS) and 

adaptive networks. 

 

Table 8. Applications and real-world impact 

 
 Application Area  Societal Benefit 

 Road Safety  Reduced accidents and safer roads. 

 Anomaly Detection  
Improved municipal road maintenance 

efficiency. 

 Adaptive Braking  
Enhanced vehicle safety through predictive 

systems. 

 
Autonomous 

Vehicles 
 Reliable navigation over challenging terrain. 

 

Challenges and Research Gaps: Adaptability within the 

field still dominates, as accuracy relies significantly upon 

environmental concerns. Generalization over the data set also 

comes out as crucial, as there are hardly any region-specific 

data sets, creating an impediment toward practical use. The bar 

plot in the Figure 7 shows, Detection Model Principles are the 

most cited, followed closely by Prototype Development and 
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Performance Metrics. These trends signal a focus on model 

accuracy, deployability, and numerate results. On the other 

hand, not as much research is performed in Challenges and 

Limitations, and Future Research Areas, with System 

Architecture being the most neglected aspect. This highly 

imbalanced distribution points to a significant research gap-

many studies focus on optimizing the detection technique, 

validating the performance, but less effort is paid to address 

the larger architectural or deployment issues necessary to 

realistically integrate it in practice. Moreover, the modest level 

of future work and limitation articulation indicate there is a 

lack of staring inward discourse and roadmap. Closing such 

gaps could improve the maturity, reproducibility, and 

scalability of research in this domain.  

Lastly, cost-effective scaling, as well as compatibility with 

other intelligent transportation systems (ITS), must also be 

researched toward advancing universal application. Table 7, 

shows issues prioritized by covered studies. 

Societal Benefits and Use-Cases: The societal implications 

of speed bump detection technologies are shown in Table 8, 

These are comprised mostly of road safety, increased 

municipal maintenance, predictive adaptive braking, and 

accurate routing for self-driving vehicles. 

 

 
 

Figure 8. Research area trends reflecting use-case orientation 

in literature 

 

Figure 8, also categorizes papers by these applications, 

indicating the relevance of speed bump detection in modern-

day infrastructure. Insights obtained from the research field 

distribution and the societal benefit table show that the 

attention is on practical safety-related applications in the 

reviewed literature. Interest has shifted towards Speed Bump 

Detection and Road Condition Monitoring; the latter category 

reflects the change and need to improve road safety and city 

resource utility. These domains are certainly applicable to 

social oriented goals such as avoiding accidents, predictive 

maintenance, and better vehicle response systems. However, 

topics such as Autonomous Vehicle Systems, Driver 

Assistance, and Feature Selection/Optimization are 

underrepresented which could indicate opportunities to 

investigate unexplored regions in proactive automation and 

system-level intelligence. While the reviewed works 

contribute significantly to reactive safety and localized 

interventions, the lower focus on adaptive or fully autonomous 

systems highlights an opportunity to broaden research toward 

scalable, predictive, and end-to-end intelligent transport 

solutions. This observation underscores the need for balanced 

advancement across both foundational technologies and real-

world implementations to maximize societal impact. 

Research Trends and Study Types: Empirical studies, 

including practical application, as well as experimental tests, 

are the majority, showing the emphasis on practical 

application. Although there are fewer non-empirical studies, 

these offer helpful theories, complementing the creation of the 

underlying foundation of speed bump detecting technologies. 

The results indicate notable advancement in speed bump 

detecting methods, whereby AI, together with hybrid 

approaches, are gaining prominence. Progress has indeed 

occurred, but there continue to be issues relating to 

generalization across data, together with adaptability, 

necessitating further research. The application of these 

innovations in real-world scenarios indicates increased 

contributions toward road safety, as well as toward 

autonomous driving systems. Figure 9, shows comparative 

distribution over time of non-empirical vs. empirical studies. 

 

 
 

Figure 9. Empirical vs. non-empirical papers over the years 

 

3.4 Key Techniques for speed bump detection in smart 

transportation system 

 

The deployment of effective speed bump detection systems 

depends on the convergence of various sensing technologies, 

machine learning models, and embedded platforms that enable 

real-time environmental understanding, as given in Figure 10. 

As urban mobility evolves toward automation, the ability to 

detect, interpret, and respond to road-level anomalies such as 

speed bumps is essential for ensuring vehicle safety, passenger 

comfort, and infrastructure intelligence. This section outlines 

the principal technologies and methodologies that underpin 

modern speed bump detection systems and highlights how 

each contributes uniquely to the broader ecosystem of 

intelligent transportation. 

 

 
 

Figure 10. Classification of speed bump detection techniques 
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Inertial Sensing and IMU-Based Detection: One of the 

earliest and most commonly used approaches for speed bump 

detection involves the use of Inertial Measurement Units 

(IMUs), which typically consist of accelerometers, 

gyroscopes, and sometimes magnetometers. These sensors 

measure the acceleration and angular velocity of a vehicle 

along multiple axes, providing a continuous stream of motion 

data. 

When a vehicle traverses a speed bump, it experiences a 

distinct pattern of vertical displacement, which generates 

specific signatures in the accelerometer's z-axis output, as 

shown in Figure 11. By analyzing features such as peak 

amplitude, standard deviation, jerk, energy, and root mean 

square (RMS) values, these patterns can be isolated and used 

as indicators of a speed bump event. 

Key advantages of IMU-based systems include: 

• Independence from lighting and visibility 

conditions. 

• Low cost and ease of integration into 

smartphones or vehicle ECUs. 

• Compatibility with offline and on-device 

processing. 

Despite these benefits, inertial sensing suffers from noise 

sensitivity, vehicle dependency, and difficulty distinguishing 

between similar anomalies like potholes or speed breakers of 

irregular shapes. These limitations are often mitigated through 

feature selection, sensor fusion, or the application of classical 

machine learning classifiers such as Support Vector Machines 

(SVM), Decision Trees, or K-Nearest Neighbors (KNN). 

 

 

 
 

Figure 11. Sample IMU data signature while crossing a speed bump 

 

Vision-Based Techniques and Deep Learning Models: 

Visual perception systems remain a cornerstone of 

autonomous navigation and anomaly detection. In the context 

of speed bump detection, camera-based systems analyze the 

road surface in front of the vehicle to identify characteristic 

shapes, colors, shadows, or textures that suggest the presence 

of a speed bump. 

Earlier methods employed edge detection, morphological 

operations, and contour extraction to isolate features from 

grayscale or RGB images. These techniques, however, were 

highly sensitive to lighting changes, occlusion, and 

inconsistent markings, often resulting in reduced accuracy 

under real-world conditions. 

The introduction of Convolutional Neural Networks 

(CNNs) and deep learning architectures significantly 

improved system performance. Modern models such as YOLO 

(You Only Look Once), SSD (Single Shot MultiBox 

Detector), and Faster R-CNN are capable of real-time object 

detection with high precision and recall. These models are 

trained on annotated datasets and can generalize across 

varying visual contexts, provided sufficient diversity in 

training data flow chart shown as Figure 12. 

Features of vision-based models include: 

• Hierarchical feature extraction from raw image 

data 

• Real-time detection and localization 

• Integration with ADAS and navigation systems 

Challenges remain in the form of dataset scarcity, especially 

in regions like India where speed bumps are often unpainted, 

irregular, or partially obstructed. Additionally, computational 

demands may limit the applicability of these models on 

resource-constrained platforms unless optimized through 

model compression techniques. 

LiDAR and 3D Surface Profiling: A steady rate of increased 

study over time, peaking both in contributions over the years 

2021 and 2022, indicates the greater relevance of 

computerized road processes. Figure 3 indicates the annual 

distribution of papers on studies of speed bumps over the 

period 2017-2023. Light Detection and Ranging (LiDAR) 

provides high-resolution, three-dimensional mapping of the 

environment by emitting laser pulses and measuring their 

return time. In speed bump detection, LiDAR generates dense 

point clouds that represent road surface elevations with fine 

granularity, enabling the precise identification of elevation 

changes characteristic of speed bumps. 

LiDAR-based detection is particularly beneficial in 

scenarios where: 

• Visual cues are unreliable (e.g., nighttime, fog, 

occlusion) 

• High-resolution terrain profiling is required 

• Detection is part of a larger SLAM or 

autonomous mapping framework 

The primary drawback is the cost and computational 

overhead associated with LiDAR systems. These technologies 

are currently limited to research platforms, high-end AVs, or 

smart infrastructure projects due to the expense and power 

requirements. Nevertheless, as LiDAR miniaturization and 

cost reduction continue, its role in surface anomaly detection 

is expected to grow. 

Sensor Fusion for Multi-Modal Detection: A steady rate of 

increased study over time, peaking both in contributions over 

the years 2021 and 2022, indicates the greater relevance of 
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computerized road processes. Figure 3 indicates the annual 

distribution of papers on studies of speed bumps over the 

period 2017-2023. The limitations of individual sensing 

modalities have led to the rise of sensor fusion-based detection 

frameworks, which combine inputs from multiple sources—

typically vision systems, inertial sensors, and GPS data. 

Sensor fusion improves the reliability of detection and reduces 

false positives by correlating physical and visual signals. 

Flowchart shown in Figure 13. 

A common architecture involves: 

• Pre-processing sensor data streams for noise 

reduction 

• Temporal synchronization of vision and IMU 

data 

• Use of fusion algorithms (e.g., Kalman filters, 

Bayesian inference, attention mechanisms) 

• Decision layers using ensemble machine 

learning models or neural networks 

 

 
 

Figure 12. Vision-based detection pipeline 

 

 
 

Figure 13. Sensor fusion architecture 

 

 
 

Figure 14. Embedded systems and edge ai architecture 

 

 
 

Figure 15. Prototype deployment setup on embedded system 

 

By leveraging the complementary strengths of different 

sensors, fusion-based systems enhance contextual awareness 

and adaptability to varying road conditions. For instance, an 

IMU can confirm the presence of a bump detected visually, or 

vice versa, improving classification confidence. These 

systems are increasingly deployed in real-time environments 

and offer a scalable path to deployment in heterogeneous 

fleets, where hardware configurations may vary between 

vehicles. 

Embedded Systems and Edge AI Platforms: The 

deployment of speed bump detection in real-world vehicles 

demands low-latency, resource-efficient processing, which is 

made possible through edge computing platforms. Devices 

such as Raspberry Pi 4, NVIDIA Jetson Nano, and Google 

Coral Dev Board are widely used to host machine learning 

models and sensor integration frameworks directly on 

vehicles. Flowchart shown in Figure 14. 

These platforms support: 

• On-device inference without needing cloud 

connectivity 

• Use of TensorRT, ONNX Runtime, or PyTorch 

Mobile for efficient model deployment 

• Real-time alerts, control signals, or logging 

based on detected anomalies 

To meet real-time requirements, models are often 

compressed using quantization, pruning, or knowledge 

distillation techniques. The rise of TinyML further enables the 

execution of optimized neural networks on microcontrollers, 

opening doors for ultra-low-cost detection systems. Sample 

prototype shown in Figure 15. 

Collaborative Mapping and Crowdsourced Detection: An 

emerging frontier in speed bump detection is the use of 

collaborative mapping, where data from multiple vehicles is 

aggregated to create and update road condition databases. This 

approach parallels crowdsourced mapping in navigation 

platforms and has the potential to scale rapidly, especially in 

regions where manual infrastructure updates are infrequent. 

• V2X (Vehicle-to-Everything) communication for 

real-time data sharing 

• Edge-cloud synchronization for anomaly 

aggregation and analysis 

• Decentralized datasets that adapt based on user 

feedback and continuous sensor inputs, enabling 

self-learning detection models 
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4. CONCLUSION AND FUTURE SCOPE 

 

4.1 Research agenda 

 

Speed bumps serve an important role in controlling car 

speeds and highway safety. With new transportation 

infrastructure and emerging autonomous technology, correct 

speed bump detection is becoming increasingly important. In 

this work, a variety of techniques for speed bump detection, 

including computer vision, sensors, and artificial intelligence, 

have been examined, analyzed, and compared in terms of 

performance and complexity. 

Despite significant progress in this area, several challenges 

remain. One of the biggest issues is real-world adaptability. 

Many detection models perform well under controlled 

conditions but struggle when faced with different lighting, 

weather, and road textures. Future research should focus on 

developing detection systems that can operate reliably across 

diverse environments. 

Another challenge is diversity in datasets. Most studies use 

datasets collected in a specific region, and therefore, it is 

challenging to use such models in a worldwide scenario. 

Broadening datasets to cover a variety of geographical 

locations, types of road, and types of speed bumps will 

enhance accuracy in detection. 

Cost and scalability cannot be disregarded, either. High-

tech, sensor-based methodologies can function beautifully, but 

rolling them out at a widespread level, and even in developing 

nations, is not yet an option. Investigators will have to go in 

search of low-cost and scalable platforms for detection, 

balancing cost and performance, with access for all in mind. 

To continue enhancing speed bump detection, future work 

will have to explore: 

• Improved AI models with fewer processing 

requirements but high accuracy. 

• Combining several such technologies such as GPS, 

accelerometers, and computer vision in one system 

for a robust detection system Developing smart 

highway infrastructure, through which 

automobiles can speak with highways for added 

efficiency and security. 

• Expanding public datasets for model training with 

a greater diversity of types of roads and improving 

overall performance. 

• Improving vehicle response features, such as 

adaptive braking and suspension levels, for a 

smoother ride. 

 

4.2 Conclusion 

 

The study reviewed several speed bump detection methods 

and their implementation in modern transport systems. While 

vision-based, sensor-based, and AI-driven models have 

improved the detection, real-time responsiveness, dataset 

problems, and costs remain significant obstacles to widespread 

implementation. 

Our findings demonstrate that hybrid approaches—that 

combine computer vision, sensors, and artificial intelligence—

are most promising for speed bump detection with high 

accuracy. However, to enable the implementation of such 

solutions in real-world settings more effectively, there is a 

need for continued research and development. Future research 

should try to enhance detection accuracy, enlarge datasets, and 

integrate detection models into intelligent transportation 

systems. 

Moving forward, researchers and engineers must work 

together to develop practical, scalable, and economically 

feasible solutions to enhance road safety. The intersection of 

real-time vehicle response systems, IoT, and AI will form a 

key part of defining future speed bump detection. As 

development takes form, smarter roads, safer cars, and 

optimized transportation networks will become a godsend for 

drivers, urban planners, and walkers alike. 
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