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A Wireless Sensor Network (WSN) is a self-organizing network with numerous sensor 

nodes that communicate with one another over a series of hops. In unsupervised regions, 

where attackers can readily enter sensor nodes and inject false data to alter detection 

findings, it is typically employed. WSNs are vulnerable to a wide variety of failure modes 

and false positives. A big problem with many WSN applications is their slow and 

inaccurate response to crises. Security is a major concern with WSNs among many others. 

The goal of this research is to investigate methods that can effectively and dynamically 

reduce the occurrence of attacks and to reduce false alarms while simultaneously raising 

the probability that no target will go undetected. To identify and remove network nodes 

that represent a threat and also to reduce false alarms is the main objective of this research. 

Finding and isolating compromised nodes is critical for protecting WSN nodes from 

attacks that use misleading information provided by the adversary. The low scalability 

and high communication overhead of flat topology networks make them notoriously 

difficult to secure. This research proposes a Multi-Level Node Pattern and Behaviour 

Analysis for Malicious Node Detection with False Alarm Reduction (MLNPBA-MND-

FAR) technique for improving the Quality of Service (QoS) Levels in the network. On 

closer inspection of the results section, though, it is evident that networks ranging from 

100 to 600 nodes were used for the studies. The model is tested with different node sizes 

to see how it handled things like throughput, energy usage, false alarm rate, and detection 

accuracy. The model's persistent high detection accuracy of 98.7% across varied network 

size) and low false alarm rates as low as 1.1% illustrate its successful scalability. The 

proposed model is compared with the traditional Machine Learning Techniques for 

Anomaly Detection in Communication Networks (MLTs-ADCNs), Wireless Weak-link 

Sensor Networks using Dynamic Trust Management (WWSN-DTM), and Sinkhole 

Attack Detection by Enhanced Reputation-Based Intrusion Detection System (SHAD-

ERbIDS). 
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1. INTRODUCTION

Wireless Sensor Network is a revolutionary technology 

which is used in many fields such as safety monitoring, 

environmental monitoring, smart city technology, military 

surveillance, health monitoring etc. Wireless network of 

sensor nodes that communicate autonomously in space by 

collecting, processing and transmitting information [1]. The 

self-organizing architecture and decentralized nature make 

WSNs powerful as well as prone to various adversities of 

security problems. Data injection, which corrupts the integrity 

of a WSN, and network eavesdropping, which threatens the 

security of the network, highlights two of the major problems 

caused by malicious nodes [2]. One of the most serious 

challenges for efficiently operating these networks is to detect 

malicious nodes without triggering a high number false alarm 

[3]. WSNs function in dynamic environments that can be 

hostile, as the sensor nodes are susceptible to threats like 

physical tampering, malicious attacks, and environmental 

disturbances [4]. Because these networks are often deployed 

in unsupervised or remote locations, they are susceptible to a 

variety of security threats including node capture, Denial of 

Service (DoS) attack [5], and false data injection. It is not 

trivial to detect these malicious nodes since these nodes can 

easily conceal in the network and conduct attacks without 

being immediately identified [6]. 

At the WSNs field, one of the most pernicious kinds of 

attacks consists of altered nodes behavior. Malicious nodes are 

also difficult to detect as they can modify their behavior and 

provide incorrect data or prevent the network from operating 

normally [7]. The nodes which indicated abnormal behavior 

can be abnormal data generation, high energy consumption, 

erratic communication patterns, etc. Detection of such 

behavior is critical, but ideally implemented without 

introducing network-level performance degradation [8]. 

Without minimization, false alarms could exhaust the 

network's capacity which results into needless 

reconfigurations and loss of critical data [9]. In WSNs, false 
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alarms can lead to a significant degradation in performance, 

especially when legitimate nodes are mistakenly identified as 

malicious [10]. As a result, resources are wasted in identifying 

and isolating non-malicious nodes because of these false 

positives. The Attack detection in WSN general process is 

shown in Figure 1. 

One of the main challenges of detecting malicious nodes is 

the development of an algorithm which achieves sensitive yet 

specific detection to avoid a benign node being incorrectly 

labelled as malicious [11]. Finding this balance is crucial to 

keeping the network agile and secure. Traditional malicious 

node detection methods based on anomaly detection methods 

or cryptographic methods often do not have good accuracy in 

the highly dynamic nature of WSNs [12]. Behavior analysis 

provides a better approach to identify malicious activity by 

monitoring the interaction of nodes in the network. It allows 

flagging as suspicious nodes that greatly deviate from the 

expected behavior [13]. This approach makes detection more 

nuanced and reduces the chances of false positives and false 

negatives, allowing for improved identification and resolution 

of the task at hand. 

Machine learning-based approaches have been suggested 

for a more accurate analysis of node behavior patterns. 

Detection of malicious nodes at multiple tiers of the network 

is possible, transmission rates for packets at the physical layer, 

and data integrity at the application layer [14]. Other 

information from multiple layers allows the detection system 

to distinguish between the normal and malicious nodes more 

efficiently. It provides improved detection accuracy and 

reduces communication overheads arising from naive 

detection approaches [15]. Scalability is another key issue 

affecting the success rate of malicious node detection schemes 

for WSNs. And many traditional security solutions don't work 

well if the network grows because of the high communication 

overheads they introduce.  

Flat topology networks, struggle to achieve the security of 

nodes and edges while avoiding an excessive degree of 

communication between them. Based on the summarized 

details, the solution proposed by this research purposefully 

tries to minimize communication costs through determining 

the malicious nodes locally rather than in a network-wide 

manner. It is possible to identify malicious nodes with 

lightweight protocols and alert the network to these nodes by 

monitoring packet drop rates and throughput values to isolate 

them in advance before they exhibit harmful behavior [16]. 

The proposed security architecture in this research can not 

only help to ensure the uninterrupted provision of Quality of 

Service (QoS), but also offers a rational approach to the actual 

allocation of QoS resources by more trusting and accredited 

nodes for normal operations [17]. 

 

 
 

Figure 1. General IDS process 

 

 
 

Figure 2. Malicious node in WSN 
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QoS metrics such as data delivery reliability, network 

lifetime and latency also determine the performance of a WSN 

apart from security. Malicious nodes can have a significant 

impact on these metrics via normal operation disruption and 

false alarms generation. Thus, enhancement of QoS is not 

merely limiting to detection of attack, but also to sustain the 

proper communication of nodes that are not malicious along 

with the existences of the malicious node [18]. The approach 

proposed in this work aims to provide optimal QoS, is based 

on an intelligent of a model for behavioral analyses which 

monitors nodes and isolates malicious ones, and minimizes the 

probability of false alarms. The MLNPBA-MND-FAR 

technique which performs Multi Level Node Pattern and 

Behaviour Analysis for Malicious Node Detection with False 

Alarm Reduction is proposed in this research. This approach 

combines a multilayer analysis of the individual behavior of a 

node, employing statistical as well as machine learning 

techniques for better accuracy of detection. By cross-verifying 

the behavior of nodes at various degrees of linkage through the 

network, these two systems allow for the identification of 

malicious nodes. In addition to the augmentation technique, 

they also introduced a method to prevent the overall 

performance from being reduced when detection is performed. 

MLNPBA-MND-FAR is a dynamic-based algorithm that can 

perform genotyping in real-time. By monitoring the behaviour 

of the nodes, it continuously adjusts the threshold of detection 

to adapt to the current conditions of the network. Such 

flexibility in the algorithms is very critical in WSNs where the 

mobility of the nodes, changes in the environment state, and 

reconfigurations of the network can make a difference in the 

communication. Through iterative improvement of its 

detection model, the system maintains the ability to respond to 

new attack approaches while preserving network throughput. 

The malicious node detection in WSN is shown in Figure 2. 

Malicious nodes in WSNs can adopt different attack 

strategies such as data injection, eavesdropping, and selective 

forwarding. We designed a technique called MLNPBA-MND-

FAR to discover these behaviors at the beginning of each 

attack cycle before they can turn into bigger and destructive 

attacks. By quickly isolating compromised nodes, the system 

prevents the entire network from being disabled or 

compromised. This limits the number of false positives where 

a benign node is wrongly isolated, saving network bandwidth. 

Nodes in WSNs are often expected to cooperate and exchange 

data with each other. In this Harmonious collaboration, 

malicious nodes can disrupt the system by not sharing the data 

or providing the corrupted data to the other nodes [19]. The 

proposed approach before it infects the system, by early 

detecting malicious nodes and excluding them from the 

collaboration pool, thus helps ensure that the integrity of the 

network. The lower false alarm rate guarantees that trusted 

nodes can continue working together undeterred. One key 

benefit of the proposed technique is the possibility for 

improved WSNs long-term efficiency. Increased lifespan and 

more reliable data collection due to the reduction of false 

alarms means the ecosystem can function with less 

interference. So the system's capacity to evolve dynamically 

to new threats means that it continues to work as new strategies 

for attack arise. The goal of this research is to detect malicious 

nodes in WSNs more accurately and reliably while reducing 

the number of false alarms. Because of their decentralized 

structure, energy constraints, and open communication design, 

WSNs are susceptible to a wide range of assaults. Among 

these are sinkhole attacks, selective forwarding, Denial of 

Service (DoS), and fake data injection. 

Using data transmission habits, energy consumption 

patterns, and interaction patterns as a starting point, this 

technique examines node behaviors at several tiers in search 

of anomalies that could signal malicious activity. With this in 

mind, we made sure the framework could detect a broad 

variety of suspicious node actions independently of any 

particular threat model. Static wireless sensor networks with 

different density of nodes (simulated to be between 100 and 

600 nodes) are the main subject of the research. It disregards 

very dynamic topologies and doesn't investigate mobile or 

heterogeneous WSN settings. Consequently, one limitation of 

this study is that it has only been tested in network 

deployments that are static, homogeneous, and well-structured. 

Data analysis's purview is another crucial limit. The model 

doesn't go into intrusion detection at the encryption level or 

deep packet inspection, instead focusing on patterns of 

behavior at the node level. Although the model incorporates 

multiple layers of detection and mitigation of false alarms, it 

does not incorporate any external systems such as blockchain 

for decentralized trust management or cloud-based monitoring. 

The limited energy resources impose severe constraints on 

WSNs that facilitate as their importance as the most critical 

objective in the design of networks. Active node detection 

algorithms can be resource-consuming as well as energy-

consuming [20]. This algorithm is developed to reduce energy 

consumption by enhancing detection in suspicious behavior of 

nodes rather than complete network checking. Doing so 

extends the longevity of the network with strong security. 

There are many potential applications for this research. As a 

result, the ability to detect malicious nodes without adverse 

system performance is of vital importance depending on the 

application in critical systems such as military surveillance, 

healthcare monitoring, and environmental sensing. Topic 

Stability in varying conditions lies in Deriving MLNPBA-

MND-FAR. Similar domain criteria remain applicable where 

the MLNPBA-MND-FAR approach can be implemented. The 

proposed MLNPBA-MND-FAR technique is superior to the 

current malicious node detection techniques in terms of the 

detection accuracy and the false alarm rate. Traditional 

methods often result in a higher rate of false positives when 

the network condition changes. This research thus employs a 

multi-level analysis approach for detecting malicious nodes, 

which not only offers a more adaptive mechanism for anomaly 

detection, but also outperforms the traditional anomaly 

detection methods. 
 

 

2. LITERATURE REVIEW 
 

WSNs have emerged as a quintessential component of 

cutting-edge wireless technology, offering low-cost solutions 

to a range of monitoring activities in the age of ubiquitous 

wireless communication buoyed by Wi-Fi. But all these 

networks are vulnerable to security threats including but not 

limited to unauthorized access, attacks and suspicious 

activities which can negatively impact their performance and 

dependability to a great extent. Such vulnerabilities can also 

be wiped out by using Intrusion Detection Systems (IDS), as 

they are important to protect WSNs by detecting and 

responding to threats on time. Sadia et al. [1] described a lot 

of research efforts aimed at improving accuracy and efficiency 

of these Intrusion detection models in terms of high detection 

rates and low false alarms, some of the methods have been 

focused on reducing redundant features from the datasets to 
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improve performance. 

The advent of 5G has simplified the administration of 

WSNs by the advent of Software-Defined Networks and 

Network Function Virtualization. On the other hand, the 

utilization of WSNs in adversarial environments poses critical 

security issues, Miranda et al. [2] introduced Optimal 

Software-Defined security Framework. A Solution for 

Interactive Non-Intrusive Security of SDN-Based 

Infrastructure, that proposes a software-defined security 

framework employing an IPS-based lightweight intrusion 

prevention mechanism and a collaborative anomaly detection 

system close to the data plane. A Smart Monitoring System 

(SMS) is located at the control plane to correlate any alerts 

generated by sensor nodes, providing a cost-effective and firm 

security for WSNs. 

In the sense of advanced continuous attacks over ultra-

densified networks and in 6G wireless communications, a 

robust IDS protecting in a real-time manner is required, but 

unfortunately, traditional systems are unable to counterattack 

effectively. Oleiwi et al. [3] proposed a framework for 

anomaly detection, in the form of EL-ADCNs, using an 

Ensemble Learning (EL)-based approach. This framework 

consists of four stages, including malicious traffic, control 

preprocessing, using CFS-RF to select features from datasets 

(NSL_KDD, UNSW_NB2015, CIC_IDS2017), 

implementation EL hybrid algorithms ranging from random 

forest (RF), support vector machine scrolls to determine the 

best training model, adaboosting, and bagging, and then 

testing the model using binary/multi-class classification. This 

leads to improved detection accuracy, reduced false positives, 

and reduced false negatives. 

Due to the resource-contained sensor node, as well as the 

presence of malicious node (MNs), WSNs, a self-configured 

Wireless Ad Hoc Networks (WANET) for Internet of Things 

(IoT), has energy efficiency and security issues. Kumar et al. 

[4] introduced a MN detection and isolation mechanism that 

guarantees energy-efficient data transmission. In the MND 

Phase for identification of MNs the approach involved an 

Improved Deep Convolutional (IDCNN) to augment in 

malicious list. An Extended K-Means (EKM) algorithm 

clusters trusted nodes in order to select an optimal cluster head 

(CH) based on residual energy with energy-efficient 

transmission by a t-Distribution-based Satin Bowerbird 

Optimization (t-DSBO) algorithm. When a CH runs out of 

energy, t-DSBO recognizes the next CH and details using the 

identified CH to the base station. It improves WSNs security 

and energy-saving. 

The CoSE, a blockchain based framework was developed 

by Nouman et al. [5] for the secure WSNs where, BSs (Base 

Stations) and CH(s) (Cluster Heads) are integrated with the 

BSs architecture of the WSN to register the nodes, afterwards 

CHs register the nodes to address the security bottomline. At 

the BSs, a Machine Learning classifier (Histogram Gradient 

Boost (HGB)) classifies nodes as either malicious or 

legitimate. Malice nodes lose their registration, and honest 

nodes' data is kept on an Interplanetary File System (IPFS) that 

returns a hash of every piece of data, which is stored on the 

blockchain. Consensus and transaction validation in this 

architecture does not use PoW but a new architecture called 

Verifiable Byzantine Fault Tolerance (VBFT). Self-attention 

based Mini-Tree Miner with embedded admissible consensus 

is trained on all three datasets WSN-DS at once, evaluating on 

original and balanced datasets with respect to each others' 

sensitivity and healthy evaluation can be used as a new breed 

of supervisable unsupervised learners which can be applied in 

WSN to boost their security and reliability. 

For fragile links and internal attacks, Wang et al. [6] 

discussed how such attacks threaten Wireless Weak-link 

Sensor Networks (WWSN). The authors proposed a malicious 

node detection scheme based on dynamic trust management to 

address these problems. SP-aw based node trustworthiness 

assessment using type-2 fuzzy logic and different trust factors 

Moreover, a dynamic trust value updating mechanism is 

proposed to respond to the transition of environments of 

WWSNs, ensuring that the malicious nodes can be effectively 

detected and enhancing the security of the network. 

Ramasamy et al. [7] provided an extensive survey on 

employing blockchain-based techniques for malicious node 

detection in WSNs. In which centralized one-time decision-

making approach, during WSNs implementations, it show the 

absence of traceability, fairness and error-proneness. The 

model also delves into the incorporation of blockchain with 

WSNs (BWSN) by examining its architecture, domain-wise 

applications, and benefits. It underlines the detection of 

malicious nodes through the application of BWSN employing 

architectural perspectives along with the role played by smart 

contracts. Besides, these contributions that blockchain brings 

to WSN data management, such as online information 

aggregation, auditing, event logging, information storage for 

analysis and offline query processing, are addressed in the 

model, providing a new view for improving the security and 

efficiency of WSN designs. 

Mohammed et al. [8] highlighted the importance of data 

security in WSNs and sinkhole attacks, which are harmful for 

network performance, as well as data confidentiality, integrity 

and availability. To this respect, the authors presented a better 

fit for reputation-based mechanism IDS enhancing WSNs by 

offering essential IDS for WSNs. An artificial bee colony 

(ABC) optimization technique was used to further optimize 

the performance of the IDS. Moreover, the study included 

noisy channels to represent practical difficulties in WSN 

environments. By discriminating and reducing sinkhole 

attacks, this strategy leads to better performance overall while 

improving data management security. 

The self-configuring WANET for the IoT are known as 

WSN. These networks comprise a large number of resource-

constrained SN. Efficiency in energy consumption and safety 

are critical aspects in WSN. The presence of Malicious Nodes 

(MNs) makes it possible for the adversary to transmit 

erroneous information. It is critical to identify and isolate 

certain MNs in order to avoid security issues. Therefore, this 

study proposed a method for identifying MNs in WSN by 

mining the parameters of each SN. By selecting the Cluster 

Head (CH) based on the sensor's residual energy, this work not 

only addresses security but also renders energy-efficient data 

transmission (DT) analyzed by the study [9]. When it comes 

to the Malicious Nodes Detection (MND) phase, the Improved 

Deep Convolutional Neural Network (IDCNN) finds the MN 

and adds them to the malicious list box. By using the Extended 

K-Means (EKM) algorithm to group the Trusted Nodes (TN) 

into clusters, the t-Distribution based Satin Bowerbird 

Optimization (t-DSBO) algorithm chooses a CH for each 

cluster based on the residual energy of those nodes, resulting 

in an energy-efficient DT phase. The CH is responsible for 

transmitting the cluster's data to the BS. When one CH's 

energy drops below a certain threshold, the t-DSBO switches 

to the other. 

More and more people are looking to establish 
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heterogeneous wireless sensor networks (HWSNs) to securely 

and efficiently monitor and gather data in a specific region, 

thanks to the ever-increasing capabilities of sensor technology. 

But there are a lot of security issues because HWSN nodes 

aren't very powerful. Current HWSN data transmission 

algorithms address these security risks, but doing so increases 

the energy consumption of the network and the computational 

cost of individual nodes. In order to protect heterogeneous 

wireless sensor networks from malevolent nodes, this research 

suggests an LSDT (Lightweight Secure Data Transmission) 

method. Firstly, taking into account the limited capabilities of 

nodes in HWSNs, Wang et al. [10] developed a lightweight 

secret sharing scheme that uses the XOR operation. This 

scheme simplifies the process of transmitting shares to the sink 

node by mapping data to numerous shares and avoiding 

unnecessary pathways. When compared to more conventional 

secret sharing techniques, this one can significantly lower the 

computational burden of nodes while still ensuring data 

security. In addition, hostile nodes in the network can disrupt 

message transmission while shares are being delivered. So, we 

build a system to identify malicious nodes and provide 

feedback on their actions; this system can update the 

reputation level of harmful nodes and respond rapidly to 

attacks by malicious nodes. Our proposed reference-path 

routing selection technique takes into account the energy and 

reputation levels of diverse nodes in a thorough manner. 

Due to their dispersed nature and reliance on open 

communication, WSNs are incredibly susceptible to various 

types of attacks. For two reasons, the selective forwarding 

attack is extremely hard to detect compared to other inside 

assaults. The node in the challenging environment has to 

discard certain data packets, and the cunning malevolent node 

often manages to avoid detection. In this research, we use a 

reinforcement learning (RL) technique to simulate a hostile 

node's selective forwarding attack. Ding et al. [11] develop the 

double-threshold density peaks clustering (DT-DPC) 

approach to identify the selective forwarding attack in a 

challenging setting. Continuous abnormalities lead to the 

isolation of aberrant nodes, which are then deemed malevolent. 

Since malevolent activities manifest independently and a 

hostile environment consistently disrupts agglomerate nodes, 

the neighbor voting approach is used to identify suspicious 

nodes. With DT-DPC, network throughput is improved even 

when intelligent hostile nodes manage to evade RL algorithm 

detection. 

To address many security concerns and facilitate node 

registration using credentials, the proposed work employs 

blockchain technology on Cluster Heads (CHs) and Base 

Stations (BSs). To further distinguish between legal and 

malicious nodes, the BSs use a Machine Learning (ML) 

classifier called Histogram Gradient Boost (HGB). M. 

Nouman et al. [12] removed the node's registration from the 

network if we discover it is malicious. On the other hand, an 

Interplanetary File System (IPFS) is used to store data from 

valid nodes. IPFS creates hashes for the data and stores them 

in blockchain after storing them in chunks. Also, instead of 

Proof of Work (PoW), Verifiable Byzantine Fault Tolerance 

(VBFT) is utilized to validate transactions and conduct 

consensus. The WSN-DS dataset, which stands for wireless 

sensor network, is also used for comprehensive simulations. 
 

 

3. PROPOSED MODEL 
 

To eliminate the security challenges in WSNs, the proposed 

model is Multi-Level Node Pattern and Behaviour Analysis 

for Malicious Node Detection with False Alarm Reduction 

(MLNPBA-MND-FAR). Inherently, the WSNs can be prone 

to various security threats, mainly when they are used in an 

unattended or hostile environment. One of the major security 

issues is the detection of malicious nodes, which involves 

malicious nodes actively disrupting overall network 

functioning by taking actions such as injecting false data or 

engage in selective forwarding. A major challenge of the 

detection process itself is to minimize false alarms in line with 

ensuring that true malicious behaviors are detected. The 

system effectively tackles this challenge with a multi-

dimensional analytical approach alongside adaptive 

mechanisms enabling detection of affected nodes without 

inundating the network with spurious alerts. 

Multi-level node behavior analysis is the core of this model. 

In WSNs, every sensor node communicates with its 

neighboring nodes to share information; therefore, any 

behaviour diverging from the CNC can point to the existence 

of a malicious node. Low-level network metrics can be 

focused on the first level of the model, such as packet loss rates, 

delays, and unexpected data flow [21]. At this level, the 

anomalies are typically linked with fundamental attacks like 

selective forwarding or DoS attacks where malevolent nodes 

interrupt or stop valid communication. At the second level, the 

model looks more deeply at interactions between individual 

nodes, such as how they process and transmit information [22], 

and their overall contributions to the direction of the network 

topology. In case a node fails to transmit data or keeps sending 

misleading information, it is marked for further review and 

scrutiny [23]. Level 3 is at a much higher level of 

sophistication being complex pattern recognition and machine 

learning techniques be used that analyze high-order statistics 

of node behavior, different nodes activity covaries in time 

and/or response to random network conditions. This layered 

approach provides coverage against malicious nodes at 

different stages of the network's operation, reducing the 

chances of ignoring stealthy attacks [24]. 

One of the important parts in the model is dynamic 

thresholds adjustment. Such dynamic environments, such as 

WSN, treat nodes that behavior differently depending on the 

dynamics of the networks provided in terms of their incoming 

network requests, environmental circumstances or node 

mobility. The model overcomes this issue by introducing an 

adaptive approach that fine-tunes threshold settings according 

to current event data [25]. They will adjust the thresholds of 

detection because of increased traffic and prevent false flags 

due to overload regarding packet loss/delay. Training the 

system with various normalizable events that might occur 

enables the DDoS attack detection system to dynamically 

adapt to the fluctuations of the network over time, suppressing 

false alarms that would have resulted from normal network 

activity. 

The application of machine learning techniques is 

significant to improve the detection accuracy of the model [26]. 

The model can progressively develop and adapt its 

understanding of what is normal behavior for a given WSN 

deployment by analyzing node behavior over time [27]. 

Conventional malicious node detection techniques usually are 

based on frequent communication among nodes, leading to 

increased energy consumption resulting in the reduced life 

span of a network [28]. The localization approach for detecting 

malicious activity, which is generated by MLNPBA-MND-

FAR model to minimize the aforementioned issue. Instead of 
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demanding full worldwide communication, the model uses 

local node engagement and behaviors to identify anomalies. 

The model can use local communication and behavior patterns 

to highlight suspicious nodes without extensive data transfer 

across the network. This localized detection approach not only 

significantly lowers the overall communication traffic but also 

saves energy, which is essential for battery-powered sensor 

nodes [29]. 

It then uses a packet drop and throughput evaluation 

mechanism to improve its ability to detect malicious nodes. In 

particular, malicious nodes that send data selectively or 

conduct DoS attacks have abnormal packet drop curves or 

inconsistent upflow per node. In the MLNPBA-MND-FAR 

model, these metrics are used to monitor the performance of 

each node continuously. A node is marked as suspicious when 

it acts abnormally. Such early detection enables the scheme to 

prevent malicious nodes from damaging the performance of a 

network significantly. After identifying a malicious node, the 

model cuts it off from the network to cease any damage it 

could cause. Isolation process ensures that the rest of the nodes 

in the network aren't disrupted and continue functioning 

normally. Once the malicious node is identified and removed, 

a network recovery protocol is initiated, wherein the remaining 

nodes collaborate to reconfigure the network, aiming to 

resume typical functionality. This could also consist of 

deciding new pathways for the traffic of information or 

redistributing workloads among other nodes in the network. 

Minimizing downtime and allowing the network to continue 

operating in the presence of compromised nodes are the goals 

of the recovery mechanism. 

In addition, to facilitate the recording of nodes' behavior 

over time, this model also includes a trust-based monitoring 

system. Nodes that display consistent benevolent behavior, 

such as successful data deliveries and low packet loss rates, 

are rewarded with a high trust score. On the other hand, nodes 

that exhibit abnormal characteristics like a high volume of lost 

data or losing part in the routing process are given low trust 

scores. It would not only conduct the detection, but also 

dynamically evaluate its trust through assigning adaptive and 

reasonable weight to nodes. The MLNPBA-MND-FAR model 

provides a significant advantage by drastically reducing false 

positives, resulting in a common issue found in traditional 

detection schemes. A false positive benign node that has been 

tagged as malicious can cause massive disruptions to network 

performance and waste valuable computational resources on 

needless checks. By dynamically changing the thresholds and 

having machine learning techniques, near-real-time behavior 

of the devices can be analyzed at a localized level, which 

reduces false alarms. Such false alarms can further create 

cascading effects in large-scale networks, which leads to the 

performance deterioration of the entire system. The model 

handles the WSN more reliable and efficient by addressing the 

malicious nodes correctly with no further disturbance for 

benign nodes. 

The model is designed with a special consideration for 

efficient power consumption. In addition, WSNs are usually 

made up of sensor nodes that have limited energy, which 

means that any solution with significant energy overhead can 

reduce the network operational lifetime. By considering 

localized analysis and reducing inter-node communication, the 

MLNPBA-MND-FAR model is also energy-efficient. 

Dynamic adjustment of detection thresholds also guarantees 

that the system does not perform unnecessary checks or 

communications, thereby decreasing energy consumption. 

This energy-efficient mechanism is crucial for the sustainable 

longevity of WSNs, particularly in distant or inaccessible 

conditions where regular upkeep is unfeasible. 

Dynamic threshold adjustment is an important part of the 

MLNPBA-MND-FAR model, which aims to reduce false 

positives and improve the accuracy of malicious node 

identification. When deciding whether a node's actions are 

harmful or not, traditional threshold-based models frequently 

employ fixed or static thresholds. However, in actual WSNs, 

where factors (such as energy levels, node behavior, and traffic 

load) fluctuate regularly, fixed thresholds might not function. 

In response to changes in average transmission rates, energy 

consumption patterns, or behavioral outliers over time, the 

detection system can dynamically adjust the threshold and 

update the decision border. In order to keep its sensitivity to 

changes in network dynamics while avoiding overreaction to 

transient fluctuations, the model routinely recalculates the 

anomaly detection threshold and analyzes these metrics. This 

flexibility greatly decreases the number of false alarms, which 

is particularly useful in networks that are dense or dynamic, 

where the normative behavior might differ greatly. If the 

computed node behavior score is higher than the adjusted 

threshold, the node is marked as possibly malevolent. Future 

threshold calibration can be informed by the feedback loop 

from previous detection outcomes, which further improves 

detection accuracy. The pseudo code for the proposed model 

is clearly indicated. 

Pseudo Code: MLNPBA-MND-FAR 

Input: Network nodes N[], behavior metrics B[], energy 

levels E[], transmission logs T[] 

Output: Detected malicious nodes M[], updated threshold θ 

Initialize: 

    M[] ← empty 

    Set initial threshold θ = θ_base 

Begin 

    For each node i in N[]: 

        Monitor behavior metrics B[i] 

        Monitor energy consumption E[i] 

        Monitor transmission activity T[i] 

        Compute Behavior Score BS[i] using: 

            BS[i] = weight1 * anomaly_rate(B[i]) +  

                    weight2 * energy_drift(E[i]) +  

                    weight3 * packet_drop_rate(T[i]) 

    End For 

    Compute network average behavior score BS_avg 

    Compute deviation σ from BS_avg 

    Update threshold θ dynamically: 

        θ = BS_avg + α * σ   // α is sensitivity coefficient 

    For each node i in N[]: 

        If BS[i] > θ then 

            Mark node i as malicious 

            Add node i to M[] 

        Else 

            Mark node i as normal 

        End If 

    End For 

    Return M[], updated θ 

End 

Another major benefit is the model’s scalability. Scalability 

is a key factor in WSNs as they are mostly deployed in a large-

scale environment and performance of such networks is 

directly proportional to the number of nodes and scale of the 

area. Using multi-level analysis framework also enhances the 

labeling process and the localized detection and dynamic 
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threshold adjustments also balances between the model scale 

up and scalability without any overhead on it. The versatility 

of the model makes it adaptive to networks of differing scales, 

from small instrumentation deployments to large dense sensor 

fields, while ensuring no degradation in detection accuracy or 

system performance. The proposed model framework is 

shown in Figure 3. 

 

 
 

Figure 3. Proposed model framework 

 

The proposed model can be applied widely in real-time 

applications, which include but are not limited to military 

surveillance, smart cities, healthcare, and environmental 

monitoring, all of whose utmost goals are to achieve maximum 

security. In these situations, the effects of a corrupted sensor 

node can be serious, causing wrong data transmission, wrong 

interpretation of essential information and even filling the gap 

in complete system failure. The risks of the previously 

mentioned attempts are conquered by MLNPBA-MND-FAR 

model as it identifies and isolates the malicious nodes that 

keep data integrity and that the network is working. The 

proposed MLNPBA-MND-FAR model provides an effective 

and flexible framework for malicious node detection in WSN 

that minimizes generation of false alarms and reduces energy 

consumption. The model maintains a well-balanced control 

among security, performance, and energy efficiency through 

multi-level behavior analysis, machine learning approaches, 

dynamic threshold arrangement, and working in a localized 

manner. This research proposes a Multi Level Node Pattern 

and Behaviour Analysis for Malicious Node Detection with 

False Alarm Reduction technique for improving the Quality of 

Service (QoS) Levels in the network. 

Node information processing involves aggregating and 

analyzing the data received from all nodes in the network. This 

can be mathematically represented as: 

𝑁𝐼𝑛𝑓𝑜[𝑀] = ∑𝑛𝑜𝑑𝑒𝑎𝑡𝑡𝑟(𝑛) + 𝑛𝑜𝑑𝑒𝑎𝑑𝑑𝑟(𝑛) + 𝑇𝐼(𝑛)

𝑀

𝑛=1

 

 

Nodeattr(n) model collects the node properties and 

nodeaddr(n) model is used to identify the node physical 

address and TI(n) is the time instant, n is represented as current 

node and M is the total nodes in the network. 

Node authentication ensures that only legitimate nodes 

participate in the network. The authentication process can be 

modeled as: 

 

𝑁𝑜𝑑𝑒_𝐴𝑢𝑡ℎ𝑒𝑛[𝑀] = ∑𝐻𝑓(𝐾𝑒𝑦(𝑛)||𝐷(𝑛))

𝑀

𝑛=1

 

 

Here Hf is the Hash function, Key(n) is Key of node n and 

D is the Nonce generated for node n used for authentication. 

The dynamic threshold calculation is performed as 

 

𝑆𝐷[𝑀] = ∑√
1

𝑀
∑𝐻𝑓(𝑘𝑒𝑦(𝑛)) + 𝑁𝑜𝑑𝑒_𝐴𝑢𝑡ℎ𝑒𝑛𝑡(𝑛)

𝑀

𝑛=1

𝑀

𝑛=1

 

𝐷𝑇[𝑀] = ∑𝛾(𝑆𝐷(𝑛)) + max⁡(𝑆𝐷(𝑛, 𝑛 + 1))

𝑀

𝑛=1

 

 

Here γ is the model is used to identify the behaviour score 

of each node. 

 

Pattern and behavior analysis compares current behavior to 

historical patterns. It can be represented as: 

 

𝑁𝑝𝑎𝑡𝑡𝑟𝑛𝐵𝑒ℎ𝑎𝑣[𝑀] 

= ∑𝐷(𝑛) + ||𝑃(𝑛) − 𝑃𝑟𝑒𝑓(𝑛)||

𝑀

𝑛=1

+ 𝑆𝐷(𝑛) 

 

Here D(n) is the Deviation score of node n, P(n) is the 

Current pattern of node n and Pref indicates the historical 

previous pattern in data transmission. 

Malicious nodes are identified by setting a threshold for 

deviation. If a node's deviation exceeds the threshold, it is 

flagged as malicious. The process is performed as 

 

𝑀𝑎𝑙𝑁𝑜𝑑𝑒[𝑀] = ∑𝑀𝑎𝑙𝑁𝑜𝑑𝑒(𝑛)

𝑀

𝑛=1

= 1⁡𝑖𝑓⁡(𝐷(𝑛)&&𝑁𝑝𝑎𝑡𝑡𝑛𝐵𝑒ℎ𝑎𝑣(𝑛) > 𝑇ℎ 

 

Here Th is the Threshold for deviation to consider a node as 

a malicious node. 

False alarm detection involves identifying incorrect flags of 

malicious behavior. It can be modeled as: 

 

𝐹𝑎𝑙𝑎𝑟𝑚[𝑀] = 

∑𝑝𝑟𝑜𝑏(min(𝐷(𝑛))) + min (𝑠𝑖𝑚𝑚(𝑃(𝑛)))

𝑀

𝑛=1

+max⁡(𝑑𝑖𝑓𝑓(𝑁𝑝𝑎𝑡𝑡𝑟𝑛𝐵𝑒ℎ𝑎𝑣(𝑛))) 

 

Simm(P(n)) model considers the similarity in the pattern, 

diff(NpattrnBehav(n)) model considers the difference and 

prob(min(D(n))) model calculates the probability function in 

false alarms. 

 

Algorithm MLNPBA-MND-FAR 

BEGIN 

nodes_info = GetNetworkNodesInformation() 

authenticated_nodes = [] 

    FOR each node IN nodes_info DO 

        IF AuthenticateNode(node) THEN 

authenticated_nodes.ADD(node) 

        END IF 
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    END FOR 

node_behavior_data = [] 

    FOR each node IN authenticated_nodes DO 

        behavior = AnalyzeNodeBehavior(node) 

node_behavior_data.ADD({node, behavior}) 

    END FOR 

trusted_nodes = [] 

    FOR each behavior_data IN node_behavior_data DO 

        IF CheckDataPatternSimilarity(behavior_data) THEN 

trusted_nodes.ADD(behavior_data.node) 

        END IF 

    END FOR 

selected_trusted_nodes = SelectTrustedNodes(trusted_nodes) 

data_transmission_results = [] 

    FOR each node IN selected_trusted_nodes DO 

        result = AnalyzeDataTransmissionAndPattern(node) 

data_transmission_results.ADD({node, result}) 

    END FOR 

malicious_nodes = [] 

false_alarms = [] 

    FOR each result IN data_transmission_results DO 

        IF IsMaliciousNode(result) THEN 

malicious_nodes.ADD(result.node) 

        ELSE IF IsFalseAlarm(result) THEN 

false_alarms.ADD(result.node) 

        END IF 

    END FOR 

Generate selected_trusted_nodes 

Generate  malicious_nodes 

    Generate  false_alarms 

END 

 

 

4. RESULTS 

 

This section gives the performance analysis of the Multi-

Level Node Pattern and Behaviour Analysis for Malicious 

Node Detection with False Alarm Reduction (MLNPBA-

MND-FAR) model. Several performance metrics, such as 

detection accuracy, false alarm rate, energy consumption, 

throughput, and network scalability, are used to evaluate the 

performance of the model. Extensive simulations and 

comparisons with existing methods were performed to 

evaluate modeled enabled security in WSNs while minimizing 

the communication and energy overheads induced by 

malicious nodes detection. The proposed model is compared 

with the traditional Machine Learning Techniques for 

Anomaly Detection in Communication Networks (MLTs-

ADCNs), Malicious Node Detection in Wireless Weak-Link 

Sensor Networks Using Dynamic Trust Management 

(WWSN-DTM) and Sinkhole Attack Detection by Enhanced 

Reputation-Based Intrusion Detection System (SHAD-

ERbIDS) models. 

A NS2 simulator is used that can mimic WSN 

communication behavior, energy consumption, and node 

interactions is used to run the simulation. To test the model in 

both sparse and dense network scenarios, the simulation uses 

a node count ranging from 100 to 600. From one transmission 

cycle to the next, each node is hard-coded to follow 

predetermined patterns of behavior, which might be benign or 

malevolent. The node Behaviour Analysis is implemented in 

Python and executed in Google Colab. 

 

4.1 Detection accuracy and false alarm rate 

 

In the MLNPBA-MND-FAR model, the MLNPBA was 

primarily designed to identify malicious nodes without 

triggering unnecessary false alarms. To test the performance 

of the detection accuracy, experiments were performed on 

various kind of malicious node behavior such as black hole 

and Neptune, saint and DoS attacks. The proposed model is 

evaluated in comparison with traditional techniques like base 

line threshold-based techniques and behavior-based detection 

models. 

Results illustrated that compared to the classic approaches; 

the MLNPBA-MND-FAR model achieved a significantly 

higher rate of detection. The proposed model achieved a 

detection accuracy of 98.7% compared to that of with 

traditional models. This accuracy increase is attributed to the 

model's multi-level analysis framework that enables detection 

of malicious activities at different stages of node behavior 

from packet loss and delays to more sophisticated attack 

patterns inferred using a machine learning-based pattern 

recognition process. The Malicious Node Detection Accuracy 

levels and False Alarm Rate levels are indicated in Tables 1 

and 2, Figures 4 and 5. 
 
 

Table 1. Malicious node detection accuracy 

 
Nodes in 

the 

Network 

Models Considered 

MLNPBA-

MND-FAR 

Model 

MLTs-

ADCNs 

Model 

WWSN-

DTM 

Model 

SHAD-

ERbIDS 

Model 

100 97.7 93.2 91.4 93.5 

200 97.9 93.5 91.6 93.8 

300 98.1 93.7 91.8 94.1 

400 98.3 93.9 92.0 94.3 

500 98.5 94.0 92.2 94.6 

600 98.7 94.2 92.4 94.8 

 

Table 2. False alarm rate 

 
Nodes in 

the 

Network 

Models Considered 

MLNPBA-

MND-FAR 

Model 

MLTs-

ADCNs 

Model 

WWSN-

DTM 

Model 

SHAD-

ERbIDS 

Model 

100 1.1 3.5 2.7 4.2 

200 1.2 3.7 2.9 4.4 

300 1.4 3.9 3.1 4.6 

400 1.7 4.1 3.3 4.8 

500 1.8 4.2 3.5 5.0 

600 2 4.3 3.8 5.2 

 

A significant process decreased in the false alarm rate is 

observed. Conventional techniques usually face false-positive 

cases with malicious nodes which are started working 

irregularly due to network congestion or environmental 

condition. The proposed model nearly outperforms existing 

solutions with less false alarm by dynamically estimating 

detection thresholds and analyzing multi-level node behavior. 

By decreasing false positives, this inevitably improves overall 

network performance and reduces unnecessary disruptions for 

legitimate nodes that would otherwise be wrongly isolated or 

flagged as malicious activity. 
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Figure 4. Malicious node detection accuracy 

 

 
 

Figure 5. False alarm rate 

 

 
 

Figure 6. Energy consumption levels 
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Table 3. Energy consumption levels 

 
Nodes in 

the 

Network 

Models Considered 

MLNPBA-

MND-FAR 

Model 

MLTs-

ADCNs 

Model 

WWSN-

DTM 

Model 

SHAD-

ERbIDS 

Model 

100 55.1 77.6 71.0 81.0 

200 55.3 77.8 71.2 81.3 

300 55.5 77.9 71.4 81.5 

400 55.7 78.1 71.6 81.7 

500 55.9 78.3 71.8 81.9 

600 56 78.5 72 82 

 

Table 4. Efficiency levels 

 

Nodes in 

the 

Network 

Models Considered 

MLNPBA-

MND-FAR 

Model 

MLTs-

ADCNs 

Model 

WWSN-

DTM 

Model 

SHAD-

ERbIDS 

Model 

100 97.9 93.2 94.4 92.6 

200 98.0 93.4 94.6 92.8 

300 98.2 93.6 94.8 93.1 

400 98.4 93.8 95.1 93.3 

500 98.6 94.0 95.3 93.5 

600 98.8 94.2 95.5 93.7 

 

4.2 Energy consumption and efficiency 

 

Sensor node resource constraint makes energy efficiency a 

critical issue in WSNs. In order to calculate the energy 

consumption by the MLNPBA-MND-FAR model to detect the 

malicious nodes, the overall energy consumption for detecting 

malicious node will be evaluated and compared it with the 

traditional detection methods. This research findings indicates 

that the presented model allows to obtain considerable energy 

savings through regional detection, thus avoiding the high 

communication cost between the nodes. The average energy 

consumption of nodes in the MLNPBA-MND-FAR system 

was lower than that of the traditional detection schemes. The 

main reasons for this efficiency come from the dynamic 

threshold adjustment of the model, and the localized analysis 

of the network nodes as the adjustment of the thresholds in the 

current context would lead to situations where the overhead of 

communication and computation is minimized. In addition, 

the machine learning-based behavior analysis operates in a 

lightweight manner, so the resources on the nodes are not 

overly taxed. The Table 3 and Figure 6 shows the Energy 

Consumption Levels and Table 4 and Figure 7 shows the 

Efficiency Levels. 

On the other hand, conventional detection schemes using 

global communication for data aggregation and decision-

making incur more energy consumption; this adversely affects 

the overall network lifetime. The energy savings in the 

MLNPBA-MND-FAR model have a particular significance 

when it comes to large-scale WSN since premature energy 

depletion can result in node failure, ultimately reducing the 

lifespan of the entire network. 

 

4.3 Throughput and network performance 

 

A second key metric for evaluating the model’s impact on 

overall network performance is the throughput of the network. 

Packet drops, delays, and selective forwarding by a user can 

reduce throughput. Such a small proportion of data will be able 

to give many malicious nodes the ability to bow to such a 

bottleneck by either blocking or failing to relay data at the 

destination. This means that MLNPBA-MND-FAR model has 

a higher throughput than traditional detection methods. In 

cases where the model had to account for malicious nodes, the 

model still achieved an average throughput of 99.2% of the 

maximum achievable throughput in comparison with 

traditional methods (95.4%). Thus the proposed model 

efficiently allows quick isolation of disturbed nodes without 

impacting legitimate node communication with least packet 

loss.  

The model enables dynamic tuning of detection thresholds, 

helping the model achieve constant throughput during 

different network conditions, like high traffic and node 

mobility. The localized detection method also bypasses the 

latency of global decision making, improving throughput even 

further. The throughput levels are shown in Table 5 and Figure 

8. 

 

 
 

Figure 7. Efficiency levels 
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Figure 8. Throughput levels 

 

 
 

Figure 9. Network size impact accuracy levels 

 

Table 5. Throughput levels 

 

Nodes in 

the 

Network 

Models Considered 

MLNPBA-

MND-FAR 

Model 

MLTs-

ADCNs 

Model 

WWSN-

DTM 

Model 

SHAD-

ERbIDS 

Model 

100 98.2 93.4 94.5 94.1 

200 98.4 93.6 94.7 94.3 

300 98.6 93.8 94.9 94.5 

400 98.8 94.1 95.0 94.7 

500 99.0 94.3 95.2 94.9 

600 99.2 94.6 95.4 95.1  

 

4.4 Scalability and network size impact 

 

Scalability plays an important role in implementing WSNs 

in large-scale systems. Experiments were performed to 

evaluate the scalability of the MLNPBA-MND-FAR model, 

with varying number of nodes in the networks with 100, 200, 

300, 400, 500 and 600 nodes. The model was tested for its 

performance with increased size of the network. Indeed, the 

results show that as the network size increases, the MLNPBA-

MND-FAR model scales well. The findings indicate that 

despite the exponential increase in the number of nodes in the 

network, the detection accuracy remained consistently high 

with an average detection accuracy of 98.7% for up to 600 

nodes networks. The false alarm rate and energy consumption 

were also relatively stable, showing that the model can manage 

large-scale deployments without significantly degrading 

performance. This stems directly from the localized detection 

mechanism of the model, which minimizes global 

communication and computational overhead, ensuring that the 

detection process does not become a bottleneck as the network 

grows. Conversely, traditional approaches, especially those 

that depended on centralized or global data aggregation, 

exhibited a significant drop in performance as the network size 

increased. These approachs drawbacks were increased 

1289



 

communication overhead which results in higher energy 

consumption, reduced throughput and rise in the detection 

failure. The Table 6 and Figure 9 represent the Network Size 

Impact Accuracy Levels. 

 

Table 6. Network size impact accuracy levels 

 
Nodes in 

the 

Network 

Models Considered 

MLNPBA-

MND-FAR 

Model 

MLTs-

ADCNs 

Model 

WWSN-

DTM 

Model 

SHAD-

ERbIDS 

Model 

100 97.9 94.1 95.3 93.7 

200 98.0 94.3 95.6 93.9 

300 98.2 94.6 95.9 94.1 

400 98.4 94.8 96.1 94.3 

500 98.6 95.0 96.3 94.5 

600 98.8 95.2 96.5 94.8 

 

4.5 Comparison with existing techniques 

 

The performance of the proposed model is compared with 

the state-of-the-art malicious node detection techniques. They 

comprise conventional threshold-based approaches, behavior-

based models, and hybrid models incorporating detection and 

mitigation techniques. Across several important metrics, the 

proposed MLNPBA-MND-FAR model outperformed these 

existing methods. Notably, the proposed method achieved 

better detection accuracy (98.7%) than traditional models 

(94.8%). Furthermore, the model showed a significantly lower 

false alarm rate, energy consumption, and communication 

overhead, which results in improved network performance and 

reliability. 

The MLNPBA-MND-FAR model in the network state was 

relatively stable and substance at any attack rate and 

significantly increased the FDR compared to the other 

algorithms, showing the excellent aggregation. Packet 

transmission in traditional detection methods was delayed due 

to both false positive detection, which deem non-infected 

nodes as infected, and when benign nodes are unnecessarily 

isolated, in contrast, the proposed model has a dynamic 

adjustment mechanism. 

The experimental analysis confirms that MLNPBA-MND-

FAR model successfully yields an accurate, scalable, and 

energy-efficient MND for WSN. It provides superior detection 

rate and lower false alarm while network quality of service e.g., 

throughput and energy optimization is maintained even with 

malicious activity. With the advent of multi-level behavior 

analysis, update of machine learning techniques, dynamic 

threshold update and distributed detection, the proposed model 

is ideal for large scale real field used in WSN, making 

improved security performance at little performance cost. 

 

 

5. CONCLUSION 

 

In this research, a new method is proposed for Malicious 

Node Detection with False Alarm Reduction in WSNs using 

the Multi-Level Node Pattern and Behaviour Analysis 

(MLNPBA-MND-FAR) model. Widely used in many 

applications such as environmental monitoring, military 

surveillance and healthcare, WSNs are exposed to significant 

challenges concerning security due to malicious node attacks 

that compromise the integrity of network data and disrupt 

communication. Specifically, the idea was to introduce a more 

efficient and precise classifier for malicious nodes, meaning 

that, while minimizing the false positive ratio, the 

computational cost and communication and energy overhead 

caused by traditional detection mechanisms will also be 

lowered. By implementing a combination of behaviors 

analysis using multiple layers of analysis, pattern recognition 

and adaptive thresholds for petit and reactive invention during 

its detection activity, proposed model terrestrial saves 

common issues of current detection techniques including high 

false positive and high consumption of resources. While this 

solution utilized a multi-level approach to identify threats at 

different stages of the network's operation, the real-time 

adjustment of detection thresholds allowed the detection 

mechanism to adapt according to the true state of the network, 

preventing false positives. The localized detection process of 

the model dramatically decreased energy consumption and 

communication overhead, thus it is highly applicable to large-

scale, battery-powered sensor networks. The experiment 

results indicated that the detection accuracy, false alarm rate 

and energy efficiency of the MLNPBA-MND-FAR model was 

significantly superior to the existing tradition methods. The 

model referred to could detect 98.7% of anomalies, with a 

decrease in false alarm rates and with less energy consumption 

than traditional methods. The network throughput was also 

substantial even in the face of the attack and the model was 

scaled to perform considerably with the increase of the 

network size thus applicable to both small- and large-scale 

WSNs deployment. Therefore, the proposed model gives a 

good opportunity for improving WSNs security and 

performance, because malicious nodes are identified and 

isolated accurately and quickly to avoid the componentous 

routing service degradation. MLNPBA-MND-FAR model is a 

solution that can be used in a wide range of practical 

applications where WSNs are used for critical data collection 

in remote/vulnerable environmental conditions. Further 

research may investigate the implementation of more 

sophisticated machine learning methods, including deep 

learning or reinforcement learning, to enhance detection 

performance and adaptability in evolving environments. 

Overall, the proposed MLNPBA-MND-FAR mechanism 

provides strong, efficient, and scalable protection for WSNs 

against malicious nodes attacks, enabling sensor networks to 

achieve high-quality and reliable data transmission, enhance 

system reliability, and prolong the upstream/server lifetime in 

practical field applications. 

 

5.1 Limitations 

 

The fact that the model is only tested in a virtual setting is a 

major drawback. While the simulation environment does let 

manage things like node activity, power consumption, and 

attack scenarios, it can't compare to the variety and 

unpredictability of actual WSN deployments. Outside of the 

scope of the paper's modeling efforts, real-world scenarios 

include environmental disruptions, hardware failures, 

unreliable communication lines, and physical manipulation of 

sensor nodes. As a result, the model's performance and 

applicability outside of the lab may suffer. The emphasis on 

static WSN topologies is another drawback. While running, 

the model presumes the network structure and node 

placements won't change. When it comes to mobile 

applications like environmental monitoring, disaster response, 

or vehicle networks, on the other hand, many contemporary 

sensor networks are dynamic. The model may not be 

applicable in certain situations due to the fact that mobility is 
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not taken into account. 

The approach isn't designed to counter particular kinds of 

attacks like Sybil, blackhole, or wormhole assaults. However, 

it fails to pinpoint the origin or type of attack; all it does is 

notice abnormalities in node behavior. Advanced security 

management in WSNs relies on attack classification and 

response planning, neither of which are supported by this 

general approach, despite its usefulness for anomaly detection. 

While the dynamic thresholding approach does a good job of 

lowering false alarm rates, it does so at the expense of some 

processing cost. Continuous behavior score evaluation and 

threshold adjustment may affect energy consumption and real-

time reaction capabilities in large-scale WSNs with resource-

constrained nodes. 

 

5.2 Future scope 

 

There are a number of potential enhancements that could be 

considered. To begin, the model's viability and ability to be 

fine-tuned under real-world operating circumstances can be 

confirmed by deploying it on actual WSN testbeds or hardware 

emulators. Two, the framework is extensible, so it can 

accommodate heterogeneous sensor networks that are mobile 

and have nodes whose behavior changes more frequently. 

Adding attack classification algorithms that may differentiate 

between various forms of attacks and suggest appropriate 

mitigation tactics is another possible enhancement. For ever-

changing threats in particular, machine learning models such 

as federated learning architectures or recurrent neural 

networks (RNNs) could improve learning and adaptation. 
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