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This paper introduces an enhanced encryption scheme for color images, combining 

improved Vigenère and Hill cipher techniques. Our approach leverages two carefully 

selected chaotic maps, exploiting their extreme sensitivity to initial conditions for 

cryptographic security. The encryption process begins with RGB channel separation and 

vector conversion, followed by initial confusion operations generating a partially 

encrypted image vector. This vector is then divided into 3-pixel subblocks for subsequent 

processing. Each block undergoes multi-stage encryption controlled by a binary vector, 

employing three expanded substitution tables with optimized confusion-diffusion 

functions. These functions operate sequentially across pixels with chaining mechanisms 

between adjacent pixels. The modified Hill cipher then processes each block using an 

invertible matrix combined with dynamic translation vectors, effectively addressing the 

linearity limitations of traditional Hill cipher implementations. To enhance security, we 

implement an inter-block diffusion mechanism that dynamically links each block's final 

encrypted pixel with the next block's initial pixel through a specialized diffusion function. 

This design significantly strengthens avalanche effects while providing robust resistance 

against differential attacks. Tests on a diverse set of randomly chosen color images yielded 

statistical (histogram, correlation, entropy) and differential (UACI, NPCR) metrics 

meeting international standards, confirming our cryptosystem's robustness against known 

attacks. 
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1. INTRODUCTION

With the rapid advancement of hardware and software 

technologies, ensuring the secure transmission of confidential 

data has become a critical challenge. One of the most effective 

methods is cryptography, which transforms clear data into 

unreadable data. Encryption is a method that makes text or 

images unintelligible except to authorized persons. Satellite or 

medical image data containing sensitive, secret, and 

confidential information must be encrypted before being 

securely transferred, even through public channels [1-3]. With 

advances in mathematics, cryptography quickly became an 

independent science in the field of security. The emergence of 

several techniques such as Hill [4, 5], Vigenère [6-8] and 

others has been widely observed. 

The authors [1, 8] improved the conventional Vigenère 

method by constructing new large S-boxes with the 

implementation of new substitution and diffusion functions 

using several pseudo-random vectors. El Bourakkadi et al. [9] 

proposed an enhancement of the classical Vigenère method by 

incorporating dynamic affine functions for the construction of 

the substitution function. Furthermore, the authors of article 

[10] presented the use of the improved Vigenere technique

combined with genetic crossover adapted for image

encryption. The study [4] proposed a method for color image

encryption based on the use of chaos and an improvement of

the classical Hill method. The principle of this method 

involves replacing the linear transformation with an affine 

transformation ensured by an invertible matrix of order (3×3) 

with a particular form and a fixed translation vector, which 

allows overcoming the problem of linearity in the classical 

system. However, by changing the variable, this 

transformation becomes linear. Moreover, to overcome the 

problem related to the encryption key size, many image 

encryption approaches have improved classical systems for 

better adaptation to encrypting large volumes of data with high 

redundancy and high correlation by relying on chaos theory [3, 

5, 11-16].  

The rapid development of chaos theory and the 

straightforward use of chaotic maps within a cryptosystem 

encourage researchers to explore the integration of multiple 

chaotic maps into an encryption algorithm. This aims to 

maximize the size of the secret key, thereby protecting the 

system against brute-force attacks. Additionally, adhering to 

Shannon's principles [16], a good cryptosystem must 

incorporate confusion, diffusion, and, in the worst case, 

permutation. 

The conventional Vigenère technique uses a static and 

public substitution table of size 26×26, which exposes it to 

statistical and frequency attacks. Moreover, in the absence of 

any encryption mode of operation, this method remains 

vulnerable to differential attacks. Furthermore, the classical 
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Hill technique employs a static encryption matrix that is easy 

to invert and of small size. This linear technique exposes 

weaknesses against statistical and brute-force attacks. 

Additionally, the lack of chaining mechanisms leaves it open 

to differential analysis. 

Most existing works implement Hill cipher and Vigenère 

cipher independently with a single chaining mechanism. Our 

approach couples both enhanced techniques (Hill and 

Vigenère) via dual-stage chaining to amplify the avalanche 

effect and strengthen resistance against differential 

cryptanalysis. 

The key contributions of our approach: 

Improvement of the classical Vigenère technique and 

first diffusion: 

•Generation of large pseudo-random substitution tables.

•Application of the most frequently employed chaotic maps

in the field of cryptography. 

•New substitution functions executed under the control of

several binary decision vectors. 

•Implementation of an initial chaining (first diffusion)

within a block. 

Improved affine Hill transformation: 

•Application of an improved affine transformation on the

obtained block. 

•Use of a full 3×3 encryption matrix.

•Construction of the matrix from the product of:

-A matrix with a particular form.

-An invertible lower triangular matrix.

•A dynamic translation vector is employed to address the

issue of linearity. 

Second diffusion: 

Application of diffusion between the last pixel of the 

encrypted block and the first pixel of the following block. 

The rest of the document is structured into the following 

sections: The first section describes the proposed method, 

explaining the development of pseudo-random vectors and the 

construction of substitution tables necessary for the 

implementation of the improved Vigenère technique 

accompanied by that of Hill. The second section analyzes the 

results obtained from testing multiple images using our new 

approach, followed by a comparison with other similar works 

and discussions. Finally, the third section summarizes the 

results and proposes research perspectives. 

2. PROPOSED METHOD

Our method, grounded in chaos theory, begins with the 

selection of two chaotic maps. Second, a generation of several 

pseudo-random vectors for the implementation of confusion 

and diffusion functions [9, 10, 15, 17-19]. Finally, an 

encryption and decryption process will be implemented, 

followed by a simulation and comparison study.  

2.1 Theoretical foundations 

2.1.1 Choice of chaotic maps 

All encryption parameters in our method are derived from 

two widely used chaotic maps in cryptography. They are 

chosen by their extreme sensitivity to initial conditions and 

their ease of configuration. These chaotic maps used are: 

The logistics map (LMn). The logistic map defines a 

sequence through the iterative application of a nonlinear 

second-order polynomial function [20]. This sequence 

presents a chaotic aspect under the conditions of Eq. (1). 

{
𝐿𝑀0 ∈ [0.5, 1] 𝜇 ∈ [3.57, 4]

𝐿𝑀𝑛+1 = 𝜇𝐿𝑀𝑛(1 − 𝐿𝑀𝑛) 
(1) 

The PWLCM map (PMn). The PWLCM is defined by a 

first-degree stepwise polynomial [21]. This sequence exhibits 

chaotic behavior under the conditions of Eq. (2). 

𝑃𝑀𝑛 =

{

𝑃𝑀𝑛 ∈ [0,1]𝑒𝑡 𝑝 ∈ [0,0.5]
𝑃𝑀𝑛−1

𝑝
 𝑖𝑓 0 ≤ 𝑃𝑀𝑛−1 < 𝑝

𝑃𝑀𝑛−1−𝑝

0.5−𝑝
 𝑖𝑓 𝑝 ≤ 𝑃𝑀𝑛−1 < 0.5 

𝑓(1 − 𝑃𝑀𝑛−1, 𝑝)     𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

(2) 

2.1.2 Generation of pseudo-random vectors (sub-keys) 

The two chaotic maps are used to generate three pseudo-

random vectors (C1), (C2), and (C3) with coefficients in 

(ℤ/256ℤ) for the confusion process, and two vectors (B1) and 

(B2) in (ℤ/2ℤ) for event control. These vectors constitute the 

sub-keys of our algorithm. 

Construction of sub-keys. The pseudo-random vectors (C1), 

(C2), and (C3) with coefficients in the ring (ℤ/256ℤ) are 

considered as sub-keys by our system. These vectors are 

generated by Algorithm 1. Our encryption system relies on the 

dynamic generation of two binary control vectors (denoted as 

(B₁) and (B₂)). These vectors are synthesized via Algorithm 2. 

Algorithm 1. Generation of pseudo-random vector 

Input: Chaotic sequences lm and pm 

Output: Chaotic vectors C1, C2 and C3 

Begin 

// Confusion vectors 

for k ←  1 to 3nm  

    // E(x) means the integer part of x    

C1( i) ←  [E(sup(lm(k), pm(k)).1011 )  mod 251]+4

C2( i) ←  [E(((𝑙𝑚(k) + 2 ∗ 𝑝𝑚(k))/3). 1011)  mod 252] +
3 

C3( k) ←   [E(|𝑙𝑚(𝑘) − 𝑝𝑚(𝑘)|. 1010 ) mod 253] + 2
endFor 
End 

Algorithm 2. Generation of two pseudo-random binary vectors, 

denoted as B1 and B2 

//Construction of binary vectors 

Input: Chaotic sequences lm and pm 

Output: Control vectors: B1 and B2 

Begin 

for i ← k to 3nm 
if 𝑝𝑙(k) > 𝑝𝑚(k)  then      
  B1(k) ← 0 

 else   B1(k) ← 1  
endIf 
if 𝑙𝑚(k) > 0.5      then 
       B2(k) ← 0   
else    B2(k) ← 1  
endIf 
endFor 
End 

2.1.3 Generation of S-boxes 

Our algorithm uses three new large substitution tables 

(SB1), (SB2), and (SB3). These tables, each of dimension 

(256×256), with coefficients in the ring ( ℤ/256ℤ ), are 

constructed by three different procedures. 

1st S-BOX (SB1). The substitution matrix SB1 is 
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constructed through the following steps: 

Step 1: Its first row, denoted P1, is derived by sorting the 

initial 256 values of vector C1 in ascending order. 

Step 2: Each row k (where k ≥ 1) is constructed by 

cyclically shifting the previous row (k−1) by C₁(k) or C₂(k) 

positions, determined by the binary selector B₂(k). This 

dynamic S-box structure is generated via Algorithm 3. 

Algorithm 3. Construction of the first S-box (SB1) 

Input: Chaotic vectors: C1 and C2 

 Control vector: B2 

     Permutation Vector: P1 

Output:  Substitution Matrix: SB1 of size (256,256) 

Begin 

for k ←  1  to  256  // First line 
   SB1(1, k)  ←  P1(k) 
endFor 
 for k ←  2  to  256  // Next lines 
  for l ←  1  to  256 

 if B2(k) = 0 then  
  SB1(k, l)  ←  SB1(k − 1,mod(l + C1(k),256)) 
  else  

  SB1(k, l) ←  SB1(k − 1,mod(l + C2(k), 256)) 

 endIf 
  endFor 
  endFor 
End 

An example of the construction of the S-box (SB1) is 

illustrated in Tables 1 and 2. 

Table 1. Example of permutation construction 

Rank 1 2 3 4 5 6 7 8 

The first eight values of (C1) 5 8 7 5 6 4 2 4 

Ascending sort 5 8 7 4 6 3 1 2 

Permutation 𝑃1 = (
1 2 3 4 5 6 7 8
5 8 7 4 6 3 1 2

) 

Table 2. Example of SB1 construction 

SB1 1 2 3 4 5 6 7 8 C1 C2 B2 

1 5 8 7 4 6 3 1 2 4 5 0 

2 7 4 6 3 1 2 5 8 5 2 1 

3 2 5 8 7 4 6 3 1 3 5 1 

4 6 3 1 2 5 8 7 4 5 2 0 

5 7 4 6 3 1 2 5 8 6 2 0 

6 1 2 5 8 7 4 6 3 2 4 1 

7 8 7 4 6 3 1 2 5 3 1 0 

8 3 1 2 5 8 7 4 6 1 4 1 

2nd S-BOX (SB2). The construction of the substitution 

matrix (SB2) is determined by the steps below: 

Step 1: The generation of two permutations P1 and P2 of 

size 1×256 using Algorithms 4 and 5, denoted P1[C2, 256, 

256] and P2[C3, 256, 256] [8].

Step 2: The first two rows are initialized by P1 and P2,

respectively. 

Step 3: Each row i (for k>2) of the substitution box SB2 is 

computed as the composition, in the functional sense, of row 

(k−1) with row (k−2), or of row (k−2) with row (k−1), based 

on the corresponding bit in the control vector B1. The 

complete procedure is described in Algorithm 6. 

Table 3 shows an example of SB2 generation over the ring 

ℤ/8ℤ controlled by B1. 

Algorithm 4. P1 [C2, 256, 256] 

Input: Chaotic vector: C2 

Output: Permutation Vector P1 

Begin 

 c ← 0 

for 𝑘 ← 1 to 256 

  for 𝑙 ← 1 to 256 

  if C2(𝑙) = 𝑘  then 
P1(𝑘) ← c 

 c + + 

  endIf 
  endFor 

endFor 
End 

Algorithm 5. P2 [C3, 256, 256] 

Input:  Chaotic vector: C3  

Output:  Permutation Vector P2 

Begin 

c ← 0 
for k ← 1 to 256 

  for l ← 1 to 256 

 if C3(𝑙) = k    then  
P2(𝑙) ← c 

c + + 
  endIf 

  endFor 
endFor 
End 

Algorithm 6. Construction of the substitution table (SB2) 

Input: Control vector: B1 

 Permutation Vectors P1 and P2 

Output:  Substitution Matrix SB2 of size (256,256) 

Begin 

for k ←  1  to  256                //The first 2 lines 

SB2(1, k) ←  P1(k) 
SB2(2, i) ←  P2(i) 

endFor 
for ik ←  3  to  256                    //the other lines 

for l ←  1  to  256 
if  B1(k) = 0  then     
      SB2(k, l)  ←  SB2(k − 1, SB2(k − 2, l)) 
else      

       SB2(k, l) ←  SB2(k − 2, SB2(k − 1, l)) 

endIf 
endFor 
endFor 
End 

Table 3. Example of SB2 construction 

SB2 1 2 3 4 5 6 7 8 B1 

P1 1 5 8 7 4 6 3 1 2 1 

P2 2 3 2 5 8 1 7 4 6 0 

P3 = P1oP2 3 7 8 6 2 5 1 4 3 0 

P4 = P2oP3 4 4 6 7 2 1 3 8 5 0 

P5 = P4oP3 5 5 1 7 3 4 2 6 8 1 

P6 = P4oP5 6 8 4 7 2 5 3 1 6 0 

P7 = P6oP5 7 8 4 7 2 5 3 1 6 1 

P8 = P7oP6 8 5 8 1 7 2 4 3 6 1 

3rd S-BOX. The construction of the new substitution matrix 

(SB3) is carried out according to the following procedure: 

•The first row, referred to as permutation P1, is derived by

performing a broad ascending sort of the first 256 values from 

the chaotic sequence lm; 

•The second row, permutation P2, results from a strict

1141



ascending sort of the first 256 values extracted from the 

chaotic sequence pl; 

The third row, permutation P3, is obtained through a broad 

ascending sort of the initial 256 values of the pseudo-random 

vector C1; 

•Each subsequent row k (for k > 3) is computed as the

functional composition of rows (k−2) and (k−1), or rows (k−1) 

and (k−3), depending on the corresponding value in the control 

vector B2. 

This construction is given by Algorithm 7. 

Algorithm 7. Construction of the substitution table (SB3) 

Input: Control vector B2 

     Permutation Vectors P1, P2 and P3 

Output:  Substitution Matrix SB3 of size (256,256) 

Begin 

//3 first lines 

for k ←  1  to  256  
SB3(1, k)  ←  P1(k) 
SB3(2, k)  ←  P2(k) 
 SB3(3, k)  ←  P3(k) 
endFor 

//Next lines 

for k ←  4  to  256  
     for 𝑙 ←  1  to  256 
if  B2(𝑘) = 0  then     

SB3(𝑘, 𝑙) ←  SB3(k − 2, SB3(k − 1, 𝑙)) 

      else 

SB3(𝑘, 𝑙) ←  SB3(k − 1, SB3(k − 3, 𝑙)) 

  endIf 
endFor 
endFor 
End 

Table 4 shows an example of SB3 generation over the ring 

ℤ/8ℤ controlled by B2. 

Table 4. Example of SB3 construction 

𝐒𝐁𝟑 1 2 3 4 5 6 7 8 B2 

P1 1 5 8 7 4 6 3 1 2 1 

P2 2 3 2 5 8 1 7 4 6 0 

P3 3 6 4 2 5 3 1 8 7 1 

P4 = P2oP3 4 7 8 2 1 5 3 6 4 0 

P5 = P3oP4 5 8 7 4 6 3 2 1 5 0 

P6 = P5oP3 6 2 6 7 3 4 8 5 1 1 

P7 = P6oP4 7 5 1 6 2 4 7 8 3 1 

P8 = P6oP7 8 4 2 8 6 3 5 1 7 0 

2.1.4 Substitution function (Fv) 

This substitution function is a significant improvement over 

the classical Vigenere function and is analytically given by the 

expression in Eq. (3): Let Y(k) be the transformed pixel X(k) 

by the function Fv using the three tables (SB1), (SB2) and 

(SB3). 

2.1.5 Diffusion function (Dv) 

To deal with any differential attack, we apply a diffusion 

function defined by Eq. (4): 

Y(k) = Fv(X(k)) =

{

SB1(

C1(k),

SB2(
C2(k);

SB3(C3(k); X(k))
)
)

ifB2(k)

SB2(

C3(k),

SB1(
C2(k);

SB3(C1(k); X(k))
)
)

elsewhere

(3) 

Dv(Y(k) = SB3(C1(k); Y(k))⨁X(k + 1) (4) 

2.1.6 Construction of the Hill matrix (HM) 

A matrix M is invertible in (ℤ/256ℤ) if and only if det(M) 

is odd. The secret Hill encryption matrix (HM) is constructed 

as the product of two matrices, A and B, of the same 

dimension, each defined by the following specific structures: 

A = (
1 𝑎1 𝑎3
𝑎2 1 + 𝑎1𝑎2 𝑎4
0 0 2𝑎5 + 1

) 

B = (
𝑏1 0 0
𝑏2 𝑏3 0
𝑏4 𝑏5 𝑏6

) 

HM = A ∗ B 

𝑑𝑒𝑡(𝐻𝑀) =  𝑑𝑒𝑡(𝐴) ∗  𝑑𝑒𝑡 (𝐵) =   (2𝑎5 + 1) ∗   𝑏1 ∗
𝑏3 ∗ 𝑏6, Since (2a5 + 1), b1, b3, and b6 are all odd, HM is an 

invertible matrix in (ℤ/256ℤ). 

The inverse matrix (𝐻𝑀)−1  is given by the following

expression: (𝐻𝑀)−1 = 𝐵−1 × 𝐴−1. To overcome the problem

of linearity in the classical transformation, a translation has 

been implemented using the XOR operation between vector 

C3 and matrix HM. For brute force attacks, the number of 

possibilities is: 

•Number of possible choices for matrix HM: (28)5 ∗
(28)6 = 288

•Number of possible choices for vector C3: (28)3𝑛𝑚

•The total number of possibilities for HM⊕ C3 is: 288 ∗
(28)3𝑛𝑚 = 288+24𝑛𝑚 >> 2100

2.2 Hybrid image encryption algorithm design 

2.2.1 Encryption process 

The encryption process is based on the following steps: 

Step 1: Pseudo-random vectorization 

After loading the original image of size (N×M) and 

extracting the three-color channels R, G, and B (1×NM) into 

three vectors (Vr), (Vg), and (Vb) respectively, we proceed 

with controlled concatenation of these three vectors by the 

binary vector B1, while adding confusion with pseudo-random 

vectors (C1), (C2), and (C3) as shown in Figure 1. 

Figure 1. Diagram of original image preparation 
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Mathematically, this phase is described in Algorithm 8. 

The first step is light encryption, where the encrypted image 

is protected from static and frequency attacks. To overcome 

the problem of differential attacks, a second round of 

encryption is considered. 

Step 2: Initialization Vector (Iv) 

The initialization value serves exclusively to modify the 

initial pixel and to trigger the encryption process. This value, 

which is appended to the lightly encrypted image, is computed 

according to Algorithm 9. 

Algorithm 8. Algorithm for original image vectorization 

Input: Original image channels Vr, Vg and Vb of size (1, nm) 

 Control vector: B1 

     Chaotic Vectors: C1, C2 and C3 

Output:  Vector image X of size (1,3nm) 

Begin 

𝑓𝑜𝑟 𝑙 ←  1  𝑡𝑜  𝑛𝑚 
𝑖𝑓 𝐵1(𝑙) = 0 𝑡ℎ𝑒𝑛 
𝑋(3𝑙 − 2) ←  𝑉𝑟(𝑙)⨁ 𝐶1(𝑙) 
𝑋(3𝑙 − 1) ←  𝑉𝑔(𝑙)⨁𝐶2(𝑙) 
𝑋(3𝑙) ←  𝑉𝑏(𝑙)⨁ 𝐶3(𝑙) 
𝑒𝑙𝑠𝑒 
𝑋(3𝑙 − 2) ←  𝑉𝑟(𝑙)⨁ 𝐶2(𝑙) 
𝑋(3𝑙 − 1) ←  𝑉𝑔(𝑙)⨁𝐶3(𝑙) 
𝑋(3𝑙) ←  𝑉𝑏(𝑙)⨁ 𝐶1(𝑙) 
𝑒𝑛𝑑𝐼𝑓 

endFor 
End 

Algorithm 9. Calculation of the initialization value 

Input: Vector image X of size (1, 3nm) 

     Chaotic Vectors C2 and C3, Control vector B2 

Output: integer Iv 

Begin 

𝐼𝑣 ← 0 

𝑓𝑜𝑟 𝑘 ←  2 𝑡𝑜 3𝑛𝑚 

𝑖𝑓 𝐵2(𝑘) = 0    𝑡ℎ𝑒𝑛 

 𝐼𝑣 ←   𝐼𝑣⨁𝑋(𝑘)⨁𝐶2(𝑘)  
𝑒𝑙𝑠𝑒  

 𝐼𝑣 ← 𝐼𝑣⨁𝑋(𝑘)⨁𝐶3(𝑘)   
𝑒𝑛𝑑𝐼𝑓   
endFor 
end 

Step 3: Encryption diagram 

After generating a lightly encrypted image vector, it is 

subdivided into 3-pixel sub-blocks. Each sub-block undergoes 

enhanced confusion and diffusion operations, guided by a 

binary control vector and three large substitution tables. These 

operations are applied sequentially to each pixel, with each 

step dynamically linked to the next pixel to ensure nonlinear 

propagation of changes; the first component of this process is 

illustrated in Figure 2 (First block) and Algorithm 10. After 

encrypting each sub-block, the Hill method is applied using an 

invertible matrix combined with dynamic translation vectors. 

This hybrid approach overcomes the linearity limitations 

inherent in classical Hill transformations, thereby introducing 

adaptability and increased resistance to linear cryptanalysis; 

the first component of this process is illustrated in Figure 3 

(First block). A diffusion function dynamically links the last 

pixel of an encrypted sub-block to the first pixel of the next 

sub-block. This inter-block dependency ensures that even 

minor changes in the input propagate nonlinearly throughout 

the entire encrypted image. The overall encryption process is 

illustrated in Figure 4. 

Figure 2. The first component of the enhanced Vigenère encryption mechanism 

Figure 3. The first component of the enhanced Hill encryption mechanism 
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Figure 4. The complete encryption process 

Algorithm 10. The enhanced Vigenère phase of the encryption 

process 

//First pixel encryption 

Input: Substitution matrices of size (256, 256) SB1, SB2, and SB3 

 Chaotic vectors: C1, C2 and C3 

 Vector image X of size (1,3nm), Control vector B2 

     Initialization value Iv 

Output: Encrypted matrix image: Y of size (1,3nm) 

Begin 

β ← X(1)⨁Iv 

if B2(1) = 0 then    

  Y(0) ←  SB1(C1(1), SB2(C2(1);  SB3(C3(1); β)))     

// 𝑓1(𝛽) 
else 

  Y(1) ←  SB2(C3(1), SB1(C2(1);  SB3(C1(1); β)))  // 

𝑓2(𝛽)       endIf 
//Encryption of the next pixels 

for k ←  2 to 3nm  

α ← X(k)⨁Y(k − 1) 
if B2(k) = 0    then     

 Y(k) ←   SB1(C1(k), SB2(C2(k);  SB3(C3(k); α))) 

else  Y(k) ←   SB2(C3(k), SB1(C2(k);  SB3(C1(k); α)))    

endIf 
endFor 
End 

The algorithm describes a cryptographic scheme for 

encrypting an image using a combination of substitution 

matrices, chaotic vectors, and control vectors. 

2.2.2 Decryption process 

Our cryptosystem is a symmetric encryption scheme, which 

necessitates initiating the decryption process from the final 

block and applying, at each step, the inverse functions of those 

used during encryption. The encrypted image is first converted 

into a one-dimensional vector and segmented into blocks of 

three pixels. The decryption procedure then proceeds as 

follows: 

Inverse of the Hill transformation. For each h∈⟦1, nm⟧, we 

have: 

(

𝑍(3h)

𝑍(3h + 1)

𝑍(3h + 2)
) = 𝐻𝑀(

𝑌(3h)

𝑌(3h + 1)

𝑌(3h + 2)
)⊕

(

𝐶3(3h)

𝐶3(3h + 1)

𝐶3(3h + 2)
) 

(5) 

Then: 

(

𝑌(3h)

𝑌(3h + 1)

𝑌(3h + 2)
) =  (𝐻𝑀)−1((

𝑍(3h)

𝑍(3h + 1)

𝑍(3h + 2)
)⊕

(

𝐶3(3h)

𝐶3(3h + 1)

𝐶3(3h + 2)
)) 

(6) 

It is necessary to calculate (𝐻𝑀)−1 in the ring ℤ/256ℤ. The

inverse of matrix A is determined by solving the following 

system of equations: 

(

1 𝑎1 𝑎3
𝑎2 1 + 𝑎1𝑎2 𝑎4
0 0 2𝑎5 + 1

)(
𝑥
𝑦
𝑧
) = (

𝑥′

𝑦′

𝑧′
) 

𝐴−1 =

(
(1 + 𝑎1𝑎2) −𝑎1 −[𝑎3𝛼(1 + 𝑎1𝑎2) − 𝑎1 − 𝑎4𝛼]𝑧

′

𝑎2 1 −(𝑎4𝛼 − 𝑎2𝑎3𝛼)𝑧
′

0 0 𝛼

) 

(𝑚𝑜𝑑 256) 

where, α being the inverse of (2𝑎5 + 1) in ℤ/256ℤ.

We follow the same process to determine the inverse of 

matrix B. We solve the following system of equations: 

{

𝑏1𝑥 = 𝑥
′

𝑏2𝑥 + 𝑏3𝑦 = 𝑦′

𝑏4𝑥 + 𝑏5𝑦 + 𝑏6𝑧 = 𝑧
′
       𝑡ℎ𝑒𝑛

 𝐵−1 = (

𝛽 0 0
−𝛽𝑏2𝛾 𝛾 0

𝛽𝑏2𝛾𝑏5𝛿 − 𝛽𝑏4𝛿 −𝛾𝑏5𝛿 𝛿 
) (𝑚𝑜𝑑 256) 

where, β, γ and δ being the inverses of b1, b3, and b6 in 

ℤ/256ℤ. 
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The inverse of the Vigenere transformation. The 

substitution matrix for this transformation is constructed using 

Algorithm 11.  

Algorithm 11. Calculation of the inverse of the Vigenère 

transformation 

Input: 256 × 256 S-boxes: SB1, SB2, and SB3 

Output: 256 × 256 inverse S-boxes: D1, D2 and D3 

Begin 

𝑓𝑜𝑟 𝑘 ← 1 𝑡𝑜 256 

𝑓𝑜𝑟 𝑙 ← 1 𝑡𝑜 256 

𝐷1(𝑘, 𝑆1(𝑘, 𝑙)) ← 𝑙 

 𝐷2(𝑘, 𝑆2(𝑘, 𝑙)) ← 𝑙 

𝐷3(𝑘, 𝑆3(𝑘, 𝑙)) ← 𝑙 

𝑁𝑒𝑥𝑡 𝑗, 𝑖 
End  

Construction of the inverse confusion function. According 

to the classic Vigenere technique we have: 

𝐼𝑓 𝑧 = 𝑉(𝑐𝑙(𝑘), 𝑋(𝑘))  𝑡ℎ𝑒𝑛  𝑋(𝑘) =  𝑊(𝑐𝑙(𝑘), 𝑧) 

where, W is the matrix of the inverse transformation of 

Vigenere. 

we have: 

𝑌(𝑘) = 𝐹𝑣(𝑋(𝑘) = 

𝑆1(𝐶1(𝑘), 𝑆2 (𝐶2(𝑘);  𝑆3(𝐶3(𝑘); 𝑋(𝑘))) 

𝑖𝑓 𝐵2(𝑘) = 0

𝑆2 (𝐶3(𝑘), 𝑆1 (𝐶2(𝑘);  𝑆3(𝐶1(𝑘); 𝑋(𝑘)))) 

 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒
𝑖𝑓 𝐵2(𝑘) = 0 𝑡ℎ𝑒𝑛 ∶  
(𝐹𝑣(𝑌(𝑘))−1 = 𝑋(𝑘) =

𝐷3 (𝐶3(𝑘);  𝐷2 (𝐶2(𝑘);𝐷1(𝐶1(𝑘);  𝑌(𝑘)))) 

𝑒𝑙𝑠𝑒    
(𝐹𝑣(𝑌(𝑘))−1 = 𝑋(𝑘) =

𝐷3 (𝐶1(𝑘);  𝐷1 (𝐶2(𝑘);  𝐷2( 𝐶3(𝑘);  𝑌(𝑘)))) 

(7) 

𝑒𝑛𝑑𝐼𝑓 

3. RESULTS AND DISCUSSION

This section presents a robustness evaluation of our 

cryptographic scheme based on multiple metrics such as key 

space, histogram analysis, entropy, correlation coefficients, 

NPCR, UACI, AE, MSE, and NPSR. Before the decryption 

process can commence, the secret key must be securely 

delivered to the intended recipient via a secure channel. 

3.1 Working environment 

All the simulations mentioned in this study were carried out 

on a personal computer. Table 5 summarizes the hardware 

environment, software, and the source of the color images used 

in our experiments.  

3.2 Key sensitivity analysis 

The proposed system incorporates two chaotic maps 

frequently employed in cryptographic applications. Their 

inherent sensitivity to initial conditions and control parameters 

ensures that any minor change in the secret key produces a 

decrypted image distinct from the original, as shown in Figure 

5. 

Table 5. Simulation specifications 

Specifications 

Processor 
Intel® Core™ i7-6600U CPU @ 2.60 

GHz (up to 2.80 GHz) 

RAM 16GB 

Operating system Windows 10 professional – 64 bits 

Programming language Python 3.12 

Image source 

The USC-SIPI Image Database and NIH 

Clinical Center Releases Dataset of 

32,000 CT Images [22, 23] 

Figure 5. Key sensitivity analysis 

Table 6. Visual analysis of histograms for original and encrypted images 

Image Original Image Encrypted Image 

(Img1O) (256×256) 

(Img2O) (512×512) 
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(Img3O) (1024×1024) 

Table 7. Correlation coefficients of original and encrypted images 

Image CH CV CD Image CH CV CD Image CH CV CD 

Img1O 

0.9420 0.9471 0.8980 

Img2O 

0.9617 0.977 0.9628 

Img3O 

0.9979 0.9985 0.9985 

Img1C 

-0.0018 0.0007 0.0024

Img2C 

-0.0015 -0.0006 0.0005

Img3C 

0.000 -0.0009 -0.0006 

3.3 Statistical attack analysis 

The study of simulations of a cryptosystem is a crucial step 

in proving its robustness. Therefore, several analyses will be 

performed on encrypted and clear images randomly selected 

from a database. To address this issue, we focus on the study 

of histogram attacks, correlation attacks, and entropy attacks 

[24-26]. 

3.3.1 Histogram analysis 

To be protected from any statistical attack, each image 

encrypted by our cryptosystem must exhibit a uniformly 

distributed histogram. Table 6 illustrates the histograms of the 

encrypted images and the reference original images. 

It is observed that the histograms of the encrypted images 

are uniformly distributed. Consequently, our algorithm does 

not reveal any information about the pixel distribution in the 

original images. This ensures protection against any statistical 

attack. 

3.3.2 Correlation analysis 

A good cryptosystem must eliminate any correlation 

between neighboring pixels and reduce the high redundancy 

of the original image. Therefore, any correlation close to zero 

eliminates linear correlation between adjacent pixels. Let a and 

b be two image vectors of the same size N. The correlation 

between a and b is given by Eq. (8). 

Corr𝑎𝑏 =
Cov(𝑎, b)

√V(𝑎) × V(𝑏)

where, Cov(𝑎, 𝑏) =
1

N
∑(𝑎i − E(𝑎))(𝑏i − E(𝑏))

i=N

i=1

E(𝑎) =
1

N
∑𝑎i 

i=N

i=1

 V(𝑎) =
1

N
∑(𝑎i − E(𝑎))

2
i=N

i=1

(8) 

where, E(𝑎), V(𝑎), E(b), and V(b) respectively represent the 

expected value and variance of vectors a and b. 

Table 7 shows the correlation of two adjacent pixels 

vertically (CV), horizontally (CH), and diagonally (CD) in the 

original and encrypted images. It is observed that the 

correlation of pixels in the original images is very close to 1 in 

all directions, whereas these coefficients are closer to zero in 

the case of encrypted images. This means that attackers cannot 

obtain any information from the encrypted image using this 

method. 

3.3.3 Entropy analysis 

According to Shannon's information theory, the entropy of 

each image channel (R, G, or B) is calculated using Eq. (9). In 

our information source, the number of possible states is 

256=28. Therefore, the theoretical entropy is close to the 

maximum value of 8. Table 8 provides the entropy values of 

images encrypted by our new technique [24, 27]. 

E = −∑ pr((xi)) log2(pr(xi))
255
i=0  (9) 

with pr(xi): Probability of occurrence of pixel value xi (where 

xi∈[0,255]). 

Table 8. Entropy values of the encrypted images 

Image Img1C Img2C Img3C 

Entropy 7.9973 7.9992 7.9998 

The entropy of any image encrypted by our approach is 

close to 8. Consequently, the proposed approach is immune to 

any entropy attack. 

3.4 Differential attack analysis 

Table 9. The values of NPCR, UACI, and AE for the 

encrypted images 

Image Img1C Img2C Img3C 

NPCR 100.0 100.0 100.0 

UACI 33.61 33.60 33.59 

AE 50.26 50.22 50.20 

An adversary may introduce a slight modification to the 

original image in order to evaluate the impact of such a 

perturbation on the corresponding encrypted image. A robust 

encryption system must exhibit high sensitivity to these 

changes. In modern cryptography, the Number of Pixels 
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Change Rate (NPCR), the Unified Average Changing 

Intensity (UACI), and the Avalanche Effect (AE) are key 

metrics used to assess resistance against differential attacks 

[18, 27, 28]. The NPCR is determined by Eq. (10). The related 

results are depicted in Table 9.  

NPCR = (
1

3nm
∑ δ(i, j)

3nm

i,j=1

) ∗ 100% (10) 

where, 

δ(i, j) = {
1 if CO1(i, j) ≠ CM2(i, j)

0 if CO1(i, j) = CM2(i, j)

CO1: Is the encrypted image of the original image by our 

method  

CM2: Is the encrypted image of the slightly modified 

original image by our method  

The UACI is determined by Eq. (11): 

UACI = (
1

3nm
∑

|CO1(i, j) − CM2(i, j)|

255

3nm

i,j=1

) . 100% (11) 

The AE is determined by Eq. (12): 

AE = (
Number of modified bits

Total number of bits
) ∗ 100% (12) 

The computed values of AE, UACI, and NPCR surpass the 

commonly accepted thresholds—50% for AE, 33.40% for 

UACI, and 99.60% for NPCR. These results highlight the 

strong sensitivity of our method to even minimal changes in 

the input image: A difference of just one bit between two 

images leads to entirely distinct decrypted outputs. This 

confirms that the proposed technique is effective in defending 

against differential attacks.  

3.5 Analysis of encryption time and algorithmic complexity 

The encryption time of a cryptosystem is a critical 

parameter that can impact its operational efficiency. The 

encryption time measured for images of varying sizes, 

obtained through the proposed approach, is presented in Table 

10. These values were calculated using the hardware and

software configuration outlined in Table 1. We note that the

encryption time depends on the size of the original image. The

complexity or cost of an algorithm corresponds to the number

of fundamental (basic) operations it performs on an image of

size (n×m). Therefore, our new technique has a complexity

equivalent to O(nm).

Table 10. Encryption time in seconds 

Image From Img1O to img1C (256×256) From Img2O to img2C (512×512) From Img3O to img3C (1024×1024) 

Encryption time 0.104 0.141 0.186 

Table 11. PSNR and MSE values 

Image Img1 (256×256) Img2(512×512) Img3(1024×1024) 

PSNR 
Original to Encrypted 3.8274 dB 3.3082 dB 2.9462 dB 

Decrypted to original ∞ ∞ ∞ 

MSE 
Original to Encrypted 26936 30357 32995 

Decrypted to original 0 0 0 

Table 12. Comparison of our method with others 

Parameters Correlation H Entropy NPCR UACI PSNR 

Image Img1C Img2C Img1C Img2C Img1C Img2C Img1C Img2C Img1C Img2C 

proposed -0.0018 -0.0015 7.9973 7.9992 100% 100.0% 33.61% 33.60% 3.8274 3.3082 

Ref. [9] -0.00273 - - - 99.68% 99.67% 33.49% 33.48% 7,0312 - 

Ref. [13] 0.0004 -0.0048 7.9993 7.9973 99.6098% 99.6108% 33.4536% 33.5173 - - 

Ref. [30] 0.00311 - 7.7043 - 100% - 50.2011% - 7.7268 - 

3.6 Cryptographic robustness via MSE and PSNR 

To evaluate cryptographic robustness, a rigorous 

comparison is conducted between the decrypted image and the 

original, including:  

-Qualitative analysis (visual inspection): The two images

exhibit a perfect visual identity, with no observable differences 

to the naked eye.  

-Quantitative similarity metrics (MSE, PSNR) validating

global fidelity. 

The Mean Square Error (MSE) measures the difference 

between two images of size 1*(3*N×M) [29]. It is defined by 

Eq. (13). The Peak Signal-to-Noise Ratio (PSNR) quantifies 

the ratio of the maximum signal power to the noise power [29]. 

It is defined by Eq. (14). 

MSE =
1

3nm
∑(IO(i) − IED(i))

2
3𝑛𝑚

i=1

(13) 

𝑃𝑆𝑁𝑅 = 20 𝑙𝑜𝑔10 (
255

√𝑀𝑆𝐸
) (14) 

With: 

IO(i): Original vector (unencrypted). 

IED(i): Encrypted/decrypted vector. 

Table 11 presents the PSNR (dB) and MSE values 

calculated for the reference images tested by our algorithm. 
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The values obtained by our algorithm meet the standards. 

3.7 Comparison 

In this section, we compare the horizontal correlation, 

entropy, NPCR, UACI, and PSNR values calculated for the 

Img1C and Img2C images using our algorithm, as illustrated 

in Table 12. The obtained results exceed established standards, 

confirming that our encryption method outperforms those 

proposed in references [9, 13, 30]. This evidence further 

confirms that our system is resistant to all known attacks, 

particularly differential ones. 

4. CONCLUSION

The three substitution tables constructed from the most 

widely used chaotic maps in cryptography, along with the 

implementation of new enhanced substitution functions, have 

yielded highly satisfactory results. Similarly, applying the new 

encryption mode to introduce diffusion processes has provided 

strong protection against differential attacks in the new 

system. Comparisons made between our system and other 

similar algorithms may encourage further improvements. 

Concurrently, the encryption time encourages researchers to 

implement our system in new algorithms for encrypting large 

data and video sequences. 

Instead of working with the conventional ring ℤ/256ℤ 

imposed by classical encryption systems, we choose to 

construct a field with 256 elements, on which a new system 

for encrypting color images will be developed, leveraging the 

specific properties of this structure. 
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