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IoT devices are used increasingly in many fields. The Routing Protocol for Low Power 
and Lossy Networks (RPL) is a protocol designed for IoT networks. RPL is vulnerable to 
many routing-based attacks that threaten the confidentiality, the integrity and the 
availability of IoT devices. However, due to the specific behavior and characteristics and 
IoT systems’ constrained nature in terms of power, processing, memory and network 
capabilities, the traditional intrusion detection solutions remain ineffective in the IoT 
environment. Thus, an efficient mechanism for RPL attacks detection and prediction is 
needed. This paper proposes a framework for RPL intrusion detection based on Machine 
learning. Our model detects four RPL routing attacks which are: Hello Flood, Increased 
version, Decreased rank and blackhole attacks. We developed a new IoT specialized 
dataset based on the simulation of the four real RPL attacks. We extracted the most 
significant features, and we used preprocessing and data balancing to improve our 
proposed Intrusion Detection System’s performance. We evaluated our system and we 
compared it to some other existing works, and the results show that the accuracy, the F1-
score, the precision and the recall rates of our proposed model are promising. 
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1. INTRODUCTION

1.1 Background 

The Internet of Things (IoT) represents a network of 
connected devices that exchange data and communicate via 
the internet. IoT’s use is growing because it improves the life’s 
quality by automating tasks efficiently and with less energy. 
To connect IoT devices and make them part of the internet, the 
Internet Engineering Task Force (IETF) developed the 
Routing Protocol for Low Power and Lossy Networks (RPL) 
to perform routing for the Low Power and Lossy Networks. 
RPL is vulnerable to several attacks disrupting the IoT 
network’s operation. Indeed, due to IoT devices’ constrained 
nature, and to the use of a non-restricted wireless transmission 
channel, they are exposed to several attacks, especially routing 
based ones [1]. Many studies [2-5] analyzed RPL attacks and 
their effect on the performance of the network. Hence, it is 
crucial to monitor and analyze intrusion behaviors for IoT 
systems in order to take precautions and minimize losses. Due 
to its special characteristics, standard and conventional 
security solutions are not applicable in the IoT environment. 
In the literature, some security solutions for RPL intrusion 
detection were proposed [6-10]. However, most of these 
solutions are not suitable for resource constraint networks, 
especially since a large amount of data resulting from attacks 
should be processed by the Intrusion Detection System (IDS). 

In this context, machine learning is an efficient method that 
can deal with a large amount of sensing data for intrusion 
detection. Indeed, it can be used in the analysis and monitoring 

of the IoT systems by finding patterns that allow to identify 
the malicious traffic. Machine learning uses different learning 
algorithms to improve the intrusion detection rate. 
Furthermore, machine learning is effective in the IoT 
environment because machine learning algorithms respect the 
limited resources and processing capabilities of IoT devices 
[1]. The are some studies that propose an IDS for RPL based 
on machine learning [11-15], but they mostly focus on the 
detection of particular attack types. Furthermore, there are no 
publicly available datasets to be used for designing a machine 
learning intrusion detection mechanism for RPL. Thus, a novel 
dataset is needed to train a machine learning intrusion 
detection framework for RPL attacks. 

1.2 Objectives and methodology 

In this paper, we propose a novel centralized RPL Intrusion 
Detection System based on machine learning. Our model 
focuses on the detection of four major RPL routing attacks and 
uses the binary and the multiclass classification. We create a 
novel dataset based on the simulation of these attacks using 
Cooja simulator. We evaluated the performance of our IDS 
and we compared it to some other existing works. The main 
contributions are the following: 

•To develop a novel dataset based on four RPL attack
behaviors and selected IoT features. 

•To Design a machine learning based IDS using machine
learning algorithms, and to train the proposed model using the 
developed dataset. 

•To maximize the detection rate of our IDS by using
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preprocessing and data balancing. 
The remaining of this paper is structured as follows: Section 

2 provides an overview of the literature. Section 3 presents the 
related works. Section 4 describes the developed dataset and 
explains the approach followed in the simulation of the RPL 
attacks and in the selection and the conception of the features. 
Section 5 presents the evaluation of our model and presents its 
detection rates, and compares our framework with some other 
existent works. Section 6 puts forward a discussion of the 
results. Section 7 is the conclusion of this paper. 

2. IDS & RPL ATTACKS

2.1 Intrusion Detection Systems 

An Intrusion Detection System (IDS) analyzes and monitors 
activity and traffic in a network or a device to detect attacks. 
When an IDS detects a malicious activity, it warns about the 
attack. IDSs are subject to false negatives by not raising an 
alarm when an attack is present, and false positives by raising 
an alarm when attacks are absent [6]. IDS can be classified 
according to three main criteria: “detection technique”, 
“detection source”, and “detection architecture”. 

Regarding the “detection techniques” criteria, there are 
mainly four IDS types: anomaly-based, signature-based, 
specification-based and hybrid-based [16]. Signature based 
IDS compares the activities in a device or in a network against 
a predefined attack pattern or signature from a database [16]. 
This mode cannot detect new attacks unless the database 
contains their signatures. Anomaly based IDS defines the 
normal behavior of a device or a network and raises an alarm 
when the current situation deviates from the baseline. 
Specification based IDS detects deviation from the normal 
behavior that requires expert manual assistance to define its 
specification such as protocol specification [17]. For example, 
the system raises an alarm if a node does not follow the 
protocol’s specifications. Hybrid based IDS combines the 
other detection strategies. 

According to the source of detection criteria, IDS can be a 
“Network-based IDS”, a “Host-based IDS”, or a “Hybrid 
IDS”. The Network-based IDS (NIDS) monitors the flow of 
the network traffic and analyses it based on the detection 
method. The Host-based IDS (HIDS) monitors the traffic 
transmitted and received by the host machine, and analyses the 
internal events that occurs within the host machine to identify 
malicious activities [17]. The Hybrid IDS in terms of source 
detection combines the security mechanisms of both NIDS and 
HIDS to analyze network events and node-based information. 

The architecture of IDS can be centralized or decentralized 
(distributed). In Centralized IDS, a central unit performs the 
monitoring of the network traffic and the analysis of the 
collected packets, and the other nodes monitor, capture, store 
and transfer data to the central unit which aggregates and 
analyses the received data. Monitoring nodes may be deployed 
to listen passively to the network communications and collect 
and send data to the root node for analysis. In decentralized 
IDS, distributed nodes collect and transport packets and are 
also responsible for data aggregation and decision making. 
Monitoring nodes may be included in the network, and sniffers 
can be placed to collect data from the neighboring nodes and 
send it to the monitoring nodes. Afterwards, these ones can 
aggregate data and forward it to the root node for further 
analysis [17]. 

2.2 Machine learning in Intrusion Detection Systems 

Machine learning (ML) is a branch of Artificial Intelligence 
(AI) that aims to make intelligent decisions and automatically 
recognize complex patterns [18]. Machine learning can be 
used for intrusion detection by learning malicious patterns 
from the network traffic. In supervised classification, an ML 
model comprises training and testing. A dataset of labeled 
normal and malicious network packets is used during training 
to extract patterns and adjust parameters. The test is then 
carried out to measure the performance of unseen traffic 
classification on unlabeled packets [19]. The most common 
methodologies used in IoT applications fall into this category, 
such as Naive Bayes (NB) and Support Vector Machine 
(SVM) [20]. SVM technique uses nonlinear mapping to 
transform data into a higher dimensional space, and aims to 
find a decision frontier by searching for the best hyperplane 
that optimally separates classes. SVMs are characterized by a 
high accuracy but a slow learning time [18]. NB technique 
uses Bayes' rule for classification, where the distribution of 
feature classes is independently modelized. It demonstrates 
time efficiency, but it operates under the “native” supposition 
that each pair of input features is independent. This algorithm 
has been used in many IoT security solutions [19]. Tree-based 
machine learning (ML) models have a tree structure made up 
of nodes and branches. Nodes are created using features to 
divide the learning instances, building a tree. End nodes 
represent classes and branches represent test results [18]. The 
model traverses the tree via different branches from the root 
node to predict the classification of an instance [20]. Random 
Forest (RF) is a tree-based machine learning (ML) model used 
in IoT intrusion detection with good results. It consists of a set 
of multiple decision trees built by randomly selecting data 
points [20]. Unsupervised learning is in general equivalent to 
clustering, where the learning classes are not labeled. 
Clustering is therefore used to identify classes [18]. Semi-
supervised learning uses both unlabeled and labeled instances 
for learning, where classes are learned using labeled instances, 
and classes boundaries are corrected using unlabeled instances 
[18]. However, detection accuracy is not as good as that of 
supervised learning [21].  

Deep Learning (DL) is a subset of ML that takes inspiration 
from the biological neural system where data signals are 
transmitted by a network of interconnected nodes, and is 
capable of detecting complex data patterns [19]. Deep learning 
techniques are used to address the other ML techniques’ 
limitations and to offer high classification accuracy. Several 
deep learning algorithms, like Convolutional Neural Networks 
(CNNs), Recurrent Neural Networks (RNNs) and Long-term 
Memories (LSTMs), can be used in Intrusion Detection 
Systems [21]. Multilayer Perceptron (MLP) is a variant of 
neural networks founded on supervised learning, where the 
information flows unidirectionally without loops [22]. It has 
three layers: an input layer collecting the input features that 
should be processed, an output layer performing classification, 
and a single or multiple hidden layers working as the 
computational unit of the MLP [22]. It is used in solutions for 
attack detection. Convolution Neural Network (CNN) extends 
the multilayer perceptron architecture by incorporating an 
input layer, an output layer and many connected hidden layers 
which are down-sampled, non-linear and made by convolution 
[20]. 
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2.3 RPL protocol 

Low Power and Lossy networks comprise constrained 
devices characterized by restricted memory, energy capacity, 
and processing capabilities. RPL operates as a Distance Vector 
routing protocol tailored to the requirements of Low Power 
and Lossy networks. The IETF Routing Over Low power and 
Lossy network (ROLL) task force standardized RPL in 2012, 
and it was specified and described in Request for Comment 
(RFC) 6550 [23]. RPL combines tree and mesh topologies to 
interconnect the IoT devices building a Destination-Oriented 
Directed Acyclic Graph (DODAG). The DODAG is a directed 
and acyclic graph oriented towards a sink (root or gateway) 
node that allows access to Internet and orchestrates the tree 
construction. The DODAG includes a sequence of parent 
nodes that link the root node to the other nodes [23]. A network 
can contain many DODAGs that form an RPL instance [24]. 
Figure 1 describes the main RPL components and structure. 

RPL has three forms of communication: multipoint-to-point 
(MP2P) which supports the transfer of messages from multiple 
nodes to a central server, point-to-multipoint (P2MP) where 
messages are transferred from a central node to multiple 
nodes, and point-to-point (P2P) which is characterized by the 
communication between individual nodes [17]. The rank 
refers to the node’s position in the DODAG, it depends on the 
Objective Function (OF) and on the distance between the node 
and the root [23]. The objective function determines the rank 
of nodes respecting the routing metrics, and it considers 
optimization objectives and routing constraints [24]. Two 
recognized objective functions are: Objective Function zero 
(OF0) and Minimum Rank with Hysteresis Objective Function 
(MRHOF), they consider respectively the minimum hop count 
and the Expected Transmission Count (ETX) as a default 
routing metric [25]. RPL protocol relies on ICMP-v6 based 
control messages to maintain the communication routes and 
the DODAG structure. The structure of RPL control message 
is described in Figure 2 [26]. 

The ICMPv6 header consists of the type, the code, and the 
checksum fields. A base message and other options constitute 
the message’s body. For RPL, the type field is assigned the 
value 155 defining the ICMPv6 control message’s type. The 
Code field specifies the kind of RPL control message [18]. 
There are four different RPL control messages labeled: 
DODAG Information Solicitation (DIS), DODAG 

Information Object (DIO), Destination Advertisement Object 
(DAO), and Destination Advertisement Object 
Acknowledgment (DAO-ACK). 

DIO is a downward control message that the root node uses 
to maintain the DODAG structure and to initiate a DODAG 
[27]. The other nodes use DIO messages for the discovery of 
RPL instances, for the selection of a preferred parent and for 
the maintenance of the rank information [23]. DIO is mapped 
to 0x01. Figure 3 shows the DIO base object fields. 

RPL instance ID, an 8-bit data, defines the RPL instance ID 
of the DODAG. Version number is the version number of the 
DODAG, which is initialized by the root node, and changed 
when the network information is updated and the DODAG is 
reconstructed. The rank (16-bit) is a field indicating the DIO 
message sender’ rank. DTSN (8-bit) is a flag utilized to keep 
downward paths open. G flag indicates if the application’s 
intent is satisfied by the current DODAG. The mode of 
operation of the RPL instance is indicated by the (MOP) field. 
The Prf field, 3-bit in size, varies between 0x00 (default) and 
0x07 (high priority), it identifies the precedence of DODAG 
root over other DODAG roots. The DODAGID is an IPv6 
address of 128-bit that identifies uniquely the DODAG. 
Furthermore, the DIO base object can include an options field 
[18]. DIO messages are transmitted following a time set 
managed by the trickle algorithm, so that the frequency of the 
control messages’ transmission is maximized [18]. 

DIS: When a node is not receiving any DIO messages, it 
sends a DIS message to look for the presence of any DODAGs 
and to ask for neighborhood information [28, 29]. DIS is 
mapped to the code 0x00. DIS control message contains flags 
and other fields for potential use [18]. 

DAO is mapped to 0x02, it is an upward control message 
propagated along the DODAG to advertise reverse routes 
information and to announce destination information [27, 29]. 
DAO base object fields are presented in Figure 4. 

RPLInstanceID (8-bit) identifies the RPL instance ID. K 
flag designates that DAO-ACK is expected to be sent by the 
recipient. The ’D’ flag defines the presence of the DODAGID 
field. DAOSequence is a counter incremented for every DAO 
message from the node. DODAG root defines DODAGID, 
which is a 28 bits field that serves as a unique identifier of the 
DODAG. The ‘*’ signifies that the DODAGID field is not 
always present in the DAO base object. 

Figure 1. RPL Components and structure 
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Figure 2. RPL control message [26] 

Figure 3. DIO base object [26] 

Figure 4. DAO base object [26] 

DAO-ACK serves as a reply to a DAO in order to indicate 
the rejection or the acceptance of the DODAG’s connecting 
call [30]. 

Figure 5 describes the exchange of RPL control messages. 

Figure 5. RPL control messages’ exchange 

2.4 RPL attacks 

RPL attacks can target the exhaustion of network resources, 

modify the network topology, or attack the network traffic by 
eavesdropping or misappropriation [31]. In this paper, we 
focus on 4 known RPL attacks. 

2.4.1 Hello Flood attack 
Hello Flood attack attempts to raise the network traffic so 

as to make the network’s resources unavailable. Many DIS 
messages are sent by the malicious node to several nodes in 
the network by reducing the time interval between two 
sequential DIS messages, which raises the network traffic. 
When neighbor nodes’ trickle timers are reset, they respond 
with DIO messages, which causes an additional increase in the 
traffic and a significant waste of energy [30, 32]. 

2.4.2 Increased version attack 
In a DODAG, every DIO packet is associated with a version 

number set by the root node and changed exclusively during 
the DODAG’s reconstruction, which is known as a global 
repair. In this process, the root node sends to the children a 
DIO message incorporating an increased version number 
value. Upon its receival, the child nodes reset their trickle 
timer and update their preferred parent, links and routing state 
[24]. The same process is applied in the increased version 
attack, in which the malicious node increments the DIO 
control packet’s version number, then forwards it to the 
neighbors. When the malicious DIO message containing a 
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falsified version number reaches the root, it resets its trickle 
timer and resends a new DIO. Normal nodes use the received 
DIO to update their new parent [33]. As a result, the DODAG 
is reconstructed. This repeated DODAG reconstruction leads 
to a rise in the network traffic [30, 32]. 

2.4.3 Decreased rank attack 
In a DODAG, a rank is assigned to every node. The rank 

values decrease along the path toward the root, and a child 
node chooses as its parent a node that holds the lowest rank. 
The malicious node forges a DIO packet, decreases its rank 
value and forwards it to the neighbor nodes. Thus, the 
malicious node becomes their selected preferred parent, which 
causes a traffic misappropriation [34] and a graph structure’s 
imbalance [18]. 

2.4.4 Blackhole attack 
It aims to drop the messages received by the child nodes in 

order to create an internal DoS. The malicious node advertises 
a better malicious rank with DIO packets in order to attracts 
the neighboring nodes, then it drops all the received 
information acting as a hole that absorbs everything [17]. This 
attack can make the other nodes on the downward path isolated 
from the network if carried out in the appropriate position, 
when for example the attacker has many children nodes [35]. 

3. RELATED WORKS

Foley et al. [36] developed a dataset integrating IoT’s
network and power features in order to detect multi-vector IoT 
attacks of Rank and Blackhole, Rank and Version, Decreased 
Path Metric, and Rank and Sybil against the objective 
functions MRHOF and OF0. However, the instances of the 
dataset represent the nodes' status instead of the packets’ 
exchange. In this context, the process and the effort of the 
dataset's creation in terms of the number of the simulations 
performed weren't provided. Moreover, the proposed dataset 
is small sized since it contains 418 instances, and Hello Flood 
attack isn't considered by the detection system. The suggested 
intrusion detection model is based on machine learning. The 
experiments show that preprocessing, normalization, feature 
selection, sampling and dataset balancing impact the 
performance of the IDS. The best detection’s performance was 
obtained with the classifier ensemble voting technique, 
employing RF and MLP models, with an accuracy of 87.08%. 
However, the values of precision, F1-score and recall were not 
explicitly stated. 

Momand et al. [1] proposed an RPL based Intrusion 
Detection System named MLRP, that aims to detect version 
number, rank, and DoS attacks. However, Hello Flood and 
blackhole attacks are not considered by the proposed detection 
system. A dataset is created through simulation, but the 
features were not provided. Principal Component Analysis 
(PCA) is employed for features reduction and preprocessing, 
which reduces the energy consumption improves the routing 
efficiency. Nevertheless, the dataset balancing is not 
performed before the model’s training and testing. To train the 
dataset, SVM classifier is used. The accuracy, the F1-score, 
the precision and the recall values were not specified precisely 
but within a range, with an accuracy between the range of 0.90 
to 0.92 and a recall between the range of 0.96 to 0.98. The 
MLRP performance and efficiency is evaluated, it has a PDR 
value of 76.8%, it generates 1474 control packets and it 

utilizes 8.76 joules. 
Osman et al. [37] present a machine learning model that 

aims to trigger decreased rank attacks. IRAD dataset is used 
and tested in multi and binary detection scenarios. However, 
Hello Flood and blackhole attacks are not in the scope of the 
proposed IDS. Data preprocessing is performed, then features 
are extracted using random forest classifier. 9 network features 
are selected, but they don’t include the nodes’ rank or version 
information to recognize the decreased rank attack. An 
artificial neural network model is utilized for the intrusion 
detection. According to the experiments’ results, the precision, 
the accuracy, the detection probabilities, the false-positive 
rate, the false-negative rate, and the area under the ROC curve 
(AUC) scores are respectively 97.03%, 97.01%, 97.01%, 
4.6%, 1.6% and 98%. 

Ghaleb et al. [38] proposed a machine learning model to 
detect Decreased Rank attack, and investigate the impact of 
the attacker’s position on the detection. A dataset is created by 
simulating three distinct scenarios where the attacker’s 
position relative to the DODOAG root changes. The details 
concerning the number of nodes used to generate the dataset 
and the simulation time are not provided. The proposed dataset 
is based on 7 network features, but it does not consider the 
nodes' rank to detect the decreased Rank attack. The findings 
show that the attack’s detection is more accurate when the 
attacker is three hops away from the network root, with an 
accuracy of 0.98. However, the performance of the ML models 
is not good when the attacker is placed at most within two hops 
of the DODAG root. F1-score values were not specified. 

Sawafi et al. [27] proposed a hybrid deep learning based 
IDS that merges the supervised DANN and the semi-
supervised DAE in order to classify the known and the novel 
RPL malicious behaviors. A dataset named IoTR-DS was 
generated through the simulation of the Rank attack, the DIS 
attack, and the Wormhole attack. However, blackhole and 
increased version attacks are not considered in the proposed 
model. The proposed IDS is evaluated, and the experiments 
achieved a mean accuracy of 98% for pretrained multi-class 
attacks (known traffic), and a mean accuracy of 95% for two 
attack patterns when unknown attacks are predicted. 

Our proposed dataset is based on 4 RPL known attacks: 
Hello Flood, Blackhole, Increased Version and Decreased 
Rank, it is composed of network features related to the 
exchanged traffic, and it adds other specific features that were 
not included in the other datasets. Our model is explained in 
details in the following section. 

4. PROPOSED MODEL AND DATASET

There are limited datasets used for intrusion detection such
as DARPA, UNSW-NB15, NSL-KDD, and KDD99, and they 
are not dedicated to the IoT environment. Our proposed 
dataset relies on IoT features, and it is focused on RPL attacks. 
We created our dataset by simulating real RPL attacks using 
Cooja simulator. 

4.1 Proposed model 

4.1.1 Proposed framework 
Our proposed model is presented in Figure 6, it is a 

centralized and anomaly-based IDS where data is routed to the 
root node for attacks detection. Because public IoT attack 
datasets are not available, data was generated by performing 
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real equivalent RPL attacks simulations using the open source 
Cooja simulator. 

4.1.2 RPL attacks scenarios 
In order to simulate the RPL attacks scenarios, we used 

Cooja simulator. It is a Java-based network simulator designed 
to simulate sensor networks. Using Cooja, programs can be 
loaded and unloaded to simulated sensors, which allows the 
developers to test their code. It allows to write sensor nodes 
code in the C language [39]. Used with Contiki operating 
system, Cooja is a flexible cross-layer simulator that enables 
to simulate nodes with various software and hardware levels 
[40], and it interacts with the operating system, the application, 
and the machine code layers [41]. We used Cooja simulator to 
simulate the following four well known RPL security attacks: 
Hello Flooding attack, Decreased Rank attack, Blackhole 

attack and Increased version attack. For each attack, we 
simulated the malicious scenario and the normal scenario for 
the used network topology. In the normal scenarios, the 
DODAG is composed of eleven normal nodes and one root 
node (ID:1). In the malicious one, the DODAG contains and 
one root node (ID:1), one malicious node (ID:12) and ten 
normal nodes. Table 1 presents the simulation parameters. 

In the literature, different time intervals were chosen to 
conduct the simulations. Indeed, some studies have chosen 
5min [1, 42], others 20 minutes [11, 16], and others 1hour or 
more [43, 44]. In our case, following the nodes’ number used 
in the simulation, we have chosen a simulation time of 10 min 
because we realized that it was sufficient to create the 
DODAGs and to restabilize the network following attacks that 
can slow down the construction of the DODAGs. Each 
scenario was simulated in 10 minutes for data collection. 

Figure 6. The architecture of the proposed RPL intrusion detection framework 

Figure 7. Comparison of DODAG graphs: normal scenario (left) and blackhole attack (right) [45] 

Figure 8. Comparison of average power consumption: Normal scenario (left) and Hello Flood attack (right) [45] 
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Raw packet capture (PCAP) files are generated and 
transformed into Comma Separated Values (CSV) files which 
are fed into the feature extraction module. Thereafter, a binary 
and a multiclassification datasets are created and consolidated. 
Moreover, datasets for each scenario are created by merging 
the normal and malicious data for each attack. Afterwards, 
preprocessing and data balancing are applied to improve our 
system’s performance. Finally, the datasets are supplied to the 
machine learning algorithms to perform the system’s training 
and testing, which allows the creation of IoT intrusion 
detection models.  

4.1.2 RPL Attacks scenarios 
In order to simulate the RPL attacks scenarios, we used 

Cooja simulator. It is a Java-based network simulator designed 
to simulate sensor networks. Using Cooja, programs can be 
loaded and unloaded to simulated sensors, which allows the 
developers to test their code. It allows to write sensor nodes 
code in the C language [39]. Used with Contiki operating 
system, Cooja is a flexible cross-layer simulator that enables 
to simulate nodes with various software and hardware levels 
[40], and it interacts with the operating system, the application, 
and the machine code layers [41]. We used Cooja simulator to 
simulate the following four well known RPL security attacks: 
Hello Flooding attack, Decreased Rank attack, Blackhole 
attack and Increased version attack. For each attack, we 
simulated the malicious scenario and the normal scenario for 
the used network topology. In the normal scenarios, the 
DODAG is composed of eleven normal nodes and one root 
node (ID:1). In the malicious one, the DODAG contains and 
one root node (ID:1), one malicious node (ID:12) and ten 
normal nodes. Table 1 presents the simulation parameters. 

Table 1. RPL attacks simulation parameters 

Parameter Value 
Radio Medium Unit Disk Graph Medium: distance loss 

Number of nodes 12 
Sink node 1 

Routing protocol RPL 
МАС protocol CSMA + ContikiMAC 
Network size 50 х 100 meters 

Mote type Sky Mote 
Simulation time 600 s 

Seed type Random Seed 
Positioning Random Positioning 

In the literature, different time intervals were chosen to 

conduct the simulations. Indeed, some studies have chosen 
5min [1, 42], others 20 minutes [11, 16], and others 1hour or 
more [43, 44]. In our case, following the nodes’ number used 
in the simulation, we have chosen a simulation time of 10 min 
because we realized that it was sufficient to create the 
DODAGs and to restabilize the network following attacks that 
can slow down the construction of the DODAGs. Each 
scenario was simulated in 10 minutes for data collection. 

We generated the PCAP files, the DODAG graphs, and the 
power tracking for each simulation. After analyzing the 
DODAG graphs, we found that they are different in the normal 
and malicious scenarios, particularly in the blackhole attack 
DODAG which doesn’t display some nodes in the malicious 
scenario as illustrated in Figure 7 [45]. 

Furthermore, power consumption tracking is also different 
in the malicious scenario, particularly in Hello Flood attack, as 
illustrated in Figure 8. Hence, power tracking information and 
DODAG graphs can be considered as indicators to trigger RPL 
attacks. 

In the following section, we will explain our approach to 
develop a new dataset for machine learning RPL intrusion 
detection. 

4.2 Dataset generation 

In this section, we explain the approach followed to create 
our dataset based on the simulation of RPL attacks, and we 
describe the proposed dataset’s features. 

4.2.1 Traffic capture 
For each scenario, we captured the network traffic of the 

IoT network as a PCAP file using the “radio messages” tool of 
Cooja simulator. We analyzed all the PCAP files using 
“Wireshark”. Every file contains information of the exchanged 
packets in the network. A sample of the initial raw dataset is 
presented in Table 2. However, we needed to add more 
significant features for the intrusion detection of RPL attacks. 
For this reason, we used “tshark” tool to extract more 
information from the initial raw dataset. Afterwards, we 
converted the extracted information to the “.csv” format. In 
this context, we added 2 features related to the rank and the 
version of the nodes, which play an important role in the 
detection of the increased version and decreased rank attacks. 
Furthermore, we replaced the “Info” feature with the “ICMPv6 
code” feature which equals 0 for DIS packets, 1 for DIO 
packets and 2 for DAO packets. Thus, a sample of our 
personalized raw dataset is described in Table 3. 

Table 2. A sample of the initial raw dataset 

No. Time Source Destination Protocol Length Info 
212 2.846 fe80::212:7402:2:202 ff02::1a ICMPv6 97 RPL Control (DODAG Information Object) 
213 2.848 fe80::212:7402:2:202 ff02::1a ICMPv6 97 RPL Control (DODAG Information Object) 
214 2.869 fe80::212:740c:c:c0c fe80::212:7401:1:101 ICMPv6 76 RPL Control (Destination Advertisement Object) 

Table 3. A sample of our personalized raw dataset 

No. Time Source Destination Protocol Length Code Rank Version 
339 4.144 fe80::212:7403:3:303 ff02::1a wpan:6lowpan:ipv6:icmpv6 97 1 768 240 
340 4.164 fe80::212:7403:3:303 ff02::1a wpan:6lowpan:ipv6:icmpv6 97 1 768 240 
341 4.181 fe80::212:7407:7:707 ff02::1a wpan:6lowpan:ipv6:icmpv6 97 1 512 240 

4.2.2 New features generation 
In order to extract more significant features from the 

obtained “csv” files, we developed a python script using 

Pandas and Numpy. Moreover, using this script, we divided 
each simulation into a window time of 1000ms. Thus, the 
output displayed the captured packets in each second grouped 
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by source and destination. In this stage, we extracted the 
following features: Packet Count, Total Packet Duration, Total 
Packet Length, DIS count, DAO count, DIO count, UDP 
count, Min version, Max version, Min Rank and Max Rank for 
each exchange. All the features are explained in the Table 4. 
“Total Packet Duration” and “Total Packet Length” provide 
information about the transmission of packets in a time 
window. DIO, DAO and DIS and UDP counts reflect the 
networks stability and can change due to an intrusion. “Min 
version”, “Max version” are indicators of the DODAG repair 
mechanism that happens due to the increased version attack as 
previously explained. Min and Max Rank can trigger a 
decreased Rank attack since the attacker node falsely 
advertises its rank value, that the children nodes rely on to 
calculate their ranks. 

Table 4. The proposed dataset’s features and description [45] 

No. Feature Name Description 

1 Source Source mote (unique number for each 
mote). 

2 Destination Destination (unique number, same as 
source). 

3 Packet Count The packet count in a time window. 

4 Total Packet 
Duration 

Total packets transmission’s duration 
in a time window. 

5 Total Packet 
Length 

All packet lengths’ sum in a time 
window. 

6 DIO Message 
Count 

DIO messages count in a time 
window. 

7 DIS Message 
Count 

DIS messages count in a time 
window. 

8 DAO Message 
Count 

DAO messages count in a time 
window. 

9 UDP Message 
Count 

UDP messages count in a time 
window. 

10 MaxRank Maximum Rank value in a time 
window. 

11 MinRank Minimum Rank value in a time 
window. 

12 MaxVersion Maximum version number value in a 
time window. 

13 MinVersion Minimum version number value in a 
time window. 

14 Label 

0 if normal, 1 if malicious (binary 
model) 

N, IV, BH, DR, HF (multi classes 
model) 

The pseudocode of the features extraction algorithm is 
presented in Algorithm 1. 

Algorithm 1. Extraction of significant features from the raw 
dataset 
function 

array  RawDataset.csv 
Array Sorted                       Sorting by time 
Feature conversion 

Feature Extraction: 
Window Size  1000ms 
Calculate Feature values within window size 
Label the dataset 
End of the Feature Extraction  

End the function 

For the binary classification model, we added the feature 
“Label” which equals 1 in the malicious scenarios and 0 in the 

normal ones. Indeed, we considered the traffic that includes 
malicious node as malicious since malicious nodes activity 
affect all the network [41]. For multiclassification model, the 
“Label” feature can have 5 different values which are: “N” for 
the normal traffic, “IV” for the increased version attack, “BH” 
for the blackhole attack, “DR” for the decreased rank attack or 
“HF” for the Hello Flood attack. 

4.2.3 Dataset description 
Our dataset contains 16814 samples as shown in Table 5, 

and it consists of 14 features as described in Table 4. 

Table 5. The number of records in the proposed dataset [45] 

Normal/Attack Category Records Number 

Attack 

Hello Flooding 5183 
Black Hole 461 

Version Number 3264 
Decreased Rank 6424 

Normal 

Hello Flooding 286 
Black Hole 375 

Version Number 446 
Decreased Rank 375 

4.3 Preprocessing 

We converted the sources and destinations IPV6 addresses 
to the corresponding nodes IDs. For example: 

fe80::212:740c:c:c0c --> 12 

When the destination address is ff02::1a, it means that 
broadcast packets are sent by the source node. We choose to 
convert this value to 99. 

ff02::1a --> 99 

4.3.1 The missing values 
Our dataset contained some missing values related to the 

rank and version information, which were missing in DAO and 
DIS packets. To remediate to this issue, we developed a 
python script to fill in the missing values with the immediate 
previous values of the previous exchange of the same source. 
For the missing values of the first lines where there are no 
previous exchanges of the same sources, we choose to replace 
them by the next values. This script gives as an output the csv 
files with no missing data. The missing values replacement 
algorithm’s pseudocode is provided in Algorithm 2. 

For the following steps, we used “weka” tool for the 
preprocessing and the classification of our dataset. In this 
perspective, we modified the csv files and put them in the 
“.arff” file structure so that they could be imported in Weka. 

Algorithm 2. Filling the missing values 
function 
 array  Dataset.csv 
Missing values replacement: 

For every src: 
Filter dataset by src 
Replace missing values with the last values 
Replace the remaining missing values with the next 
values 

End For 
 End of Missing values replacement 
End the function 
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(a) Before dataset balancing

(b) After dataset balancing

Figure 9. The binary classification dataset before and after 
balancing 

(a) Before dataset balancing

(b) After dataset balancing

Figure 10. The multi-class classification dataset before and 
after balancing 

4.3.2 Dataset balancing 
In our dataset, the classes are not distributed proportionally 

since there are 15328 attack samples and 1478 normal 
samples. Dataset balancing improves the effectiveness of the 
model. Indeed, the learning algorithms have generally a 
reduced sensitivity to detecting minority class [36]. Thus, a 
model trained with an imbalanced dataset will be biased. Class 
imbalance can be addressed by undersampling the majority 
class or by oversampling the minority class. Undersampling 
can cause the removal of significant records if a minority class 
is very small, which reduces the volume of data allocated for 
training, testing, and for cross-validation. Oversampling large 
datasets introduces the possibility to degrade the performance 
and can cause overfitting if data are not randomized [36]. 

In this study, we performed minority classes’ oversampling 

utilizing the synthetic minority oversampling technique 
(SMOTE). Figures 9 and 10 show respectively the binary 
classification and the multi-class classification datasets before 
and after balancing. 

5. RESULTS AND CLASSIFICATION

5.1 Parameters 

A system predicts a True Positive (TP) if it accurately 
detects an attack which is present, a True Negative (TN) 
prediction is when there is no attack and the system identifies 
correctly its absence. A False Positive (FP) takes place when 
a normal data is predicted as an attack, and a False Negative 
(FN) is when an attack data is falsely identified as normal. 

We carried out an evaluation of our model’s performance 
using different metrics which are: accuracy, recall, precision 
and F1 score.  

Accuracy = (TP+TN)/(TP+TN+FP+FN) 

Recall = TP/(TP + FN) 

Precision = (TP)/(TP+FP) 

F1 = 2∗(precision∗recall)/(precision+recall) 

The performance evaluation parameters are derived from 
the confusion matrix presented in Table 6. 

Table 6. The confusion matrix 

Predicted Positive Predicted Negative 
Real Positive True Positive False Negative 
Real Negative False Positive True Negative 

5.2 Performance evaluation 

We used and tested four classification algorithms: Random 
Forest, SVM, Naive Bayes, and Multilayer Perceptron. We 
used 10 folds cross-validation to evaluate the proposed dataset. 
The model was trained and tested for binary and multi 
classification. 

5.2.1 Binary classification 
In the binary classification, we trained firstly the model with 

2 classes: the benign class (0) and the malicious class (1). The 
benign class contains the network traffic from all the benign 
scenarios, and the malicious class contains the network traffic 
from the 4 malicious scenarios related to the RPL attacks. We 
used 10 folds cross-validation to evaluate this model using 
different algorithms for the classification. Table 7 presents the 
evaluation results of the binary classification obtained using 
different algorithms. The optimal accuracy was attained 
through the use of Random Forest algorithm, with a value of 
98.25%. The precision, recall and F1-score results are 
summarized in Table 8. 

Table 9 shows the confusion matrix for the binary 
classification with Random Forest algorithm. 

In order to examine the influence of the Max and Min Rank 
and Version features, we compared our model when trained 
with and without these features. The evaluation outcomes are 
shown in Table 10. 
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Table 7. Evaluation of the binary classification IDS’s performance with various algorithms 
 

Classifier Benign Malicious Accuracy Precision Recall F1-Score Precision Recall F1-Score 
Random Forest 0.969 0.997 0.983 0.997 0.968 0.982 98.2516% 

Naïve Baies 0.876 0.985 0.927 0.983 0.861 0.918 92.2984% 
SVM 0.974 0.658 0.785 0.742 0.982 0.845 81.9872% 
MP 0.935 0.986 0.960 0.985 0.958 0.958 95.8736% 

 
Table 8. The binary classification performance using 

Random Forest algorithm 
  

Class Precision Recall F1-Score 
0 0.969 0.997 0.983 
1 0.997 0.968 0.982 

Avg. 0.983 0.983 0.983 
 
Table 9. The binary classification’s confusion matrix using 

Random Forest algorithm  
 

 Predicted Positive Predicted Negative 
Real Positive 15277 51 
Real Negative 485 14843 

 
Table 10. Performance of the binary classification IDS with 

and without Rank and Version features 
 

 Accuracy Precision Recall F1-Score 
With 

Rank & 
Version 
Features 

98.25% 0.983 0.983 0.983 

Without 
Rank & 
Version 
Features 

96.663% 0.967 0.967 0.967 

 
Table 11. Performance of IV, BH, DR & HF binary 

classification IDS with and without Rank and Version 
features 

 

 Accuracy Precision 
(Avg.) 

Recall 
(Avg.) 

F1-
Score 
(Avg.) 

IV with 
R & V 98.6515% 0.987 0.987 0.987 

IV 
without 
R & V 

93.9626% 0.940 0.940 0.940 

BH with 
R & V 73.4783% 0.736 0.735 0.734 

BH 
without 
R & V 

62.5% 0.626 0.625 0.624 

DR with 
R & V 99.6886% 0.997 0.997 0.997 

DR 
without 
R & V 

98.0305% 0.980 0.980 0.980 

HF with 
R & V 99.3246% 0.993 0.993 0.993 

HF 
without 
R & V 

99.1509% 0.992 0.992 0.992 

 
Thus, the results show that the use of the Rank and the 

version features improves the detection’s rates of the binary 
global dataset. 

Afterwards, we trained the model with smaller datasets 
corresponding to each individual RPL attack separately, where 
the benign and malicious classes correspond to the traffic 
generated through the simulation of the benign and the 
malicious scenarios respectively of each attack. We used 10 
folds cross-validation for the evaluation. We evaluated each 
dataset using Random Forest algorithm. Afterwards, we 
evaluated each attack dataset without the rank and the version 
features. The results are presented in the Table 11, they show 
that the use of the Rank & the Version features improves the 
detection rate of each attack using each attack’s dataset. 
 
5.2.2 Multiclass classification 

We evaluated the dataset in case of multiclassification using 
different algorithms. We used 10 folds cross validation for the 
evaluation. The results are provided in Table 12. The detailed 
results using Random Forest algorithm are reported in Table 
13. 
 

Table 12. Evaluation of the multiclass classification IDS’s 
performance with various algorithms 

 
Classifier Accuracy Precision Recall F1-

Score 
Random 
Forest 96.0704% 0.961 0.961 0.961 

Naïve 
Baies 65.418% 0.724 0.654 0.631 

SVM 53.8315% 0.800 0.538 0.554 
MP 81.4324% 0.825 0.814 0.818 

 
Table 13. Performance of the IDS with multi-class 

classification using Random Forest algorithm  
 

Class Precision Recall F1-Score 
N 0.896 0.939 0.917 
IV 0.992 0.983 0.988 
BH 0.936 0.923 0.929 
DR 0.992 0.986 0.989 
HF 0.990 0.973 0.981 

Avg. 0.961 0.961 0.961 
 
5.3 Comparison with other works 
 

We compared our work with the studies discussed in the 
related works to evaluate its performance. The findings are 
presented in Table 14. 

The findings indicate that our proposed binary classification 
model using Random Forest algorithm is better in terms of the 
performance evaluation metrics, with an accuracy of 
98.2516%, a precision of 0.983, an F1-score of 0.983 and a 
recall of 0.983. Several factors may impact the systems’ 
detection performance such as the dataset employed to train 
the IDS, and the algorithm used for the detection. Foley et al. 
[36] used a dataset based on network and power features, but 
it is small sized since it contains 418 instances, which explains 
the proposed system’s performance. In the work proposed by 
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Momand et al. [1], the dataset balancing was not performed 
before training and testing, which decreased the detection 
effectiveness of the proposed system. Furthermore, the 
features of the datasets used to train the systems proposed by 
Foley et al. [36], Osman et al. [37], and Ghaleb et al. [38] do 

not include information about the nodes' rank or version to 
detect the Decreased Rank attack. Following our results 
presented previously, the use of the rank and version features 
contributed in the improvement of our proposed model’s 
detection performance.  

 
Table 14. Comparison of the proposed IDS (binary) with other works 

 
Ref. Accuracy Precision F1-Score Recall 

Foley et al. [36] 87.08% - - - 
Momand et al. [1] 90% to 92% 0.96 to 0.98 0.96 to 0.98 0.96 to 0.98 
Osman et al. [37] 97.01% 0.9714 0.9536 0.9788 
Ghaleb et al. [38] 98% 0.981 - 0.981 

Al Sawafi et al. [27] 98% 0.92 0.92 0.92 
Our work (binary) 98.2516% 0.983 0.983 0.983 

 
 
6. DISCUSSION 

 
In this paper, we propose an RPL Intrusion Detection 

System based on machine learning. We examine the ability of 
the proposed features to detect four RPL attacks: increased 
version, blackhole, decreased rank, and Hello Flood. Our 
proposed model performs binary and multiclassification on 
these attacks. We used Random Forest classification algorithm 
because it gives better detection rates in comparison to other 
tested algorithms. We used 10 folds cross-validation to 
evaluate the proposed dataset. The routing attacks are 
successfully detected by our proposed IDS. We compared the 
proposed model with other existing works. Our proposed 
binary model has an accuracy of 98.2516 %, a precision of 
0.983, an F1-score of 0.983 and a recall of 0.983, which 
outperforms the other works presented in the related works 
regarding of the performance evaluation metrics. 

We examined the effect of the rank and version features in 
the improvement of the detection rates of our model. We 
evaluated the detection rates of the binary classification model 
when trained with and without the rank and the version 
features. Furthermore, we trained the model with smaller 
datasets corresponding to each individual RPL attack 
separately, and we evaluated the detection’s performance of 
each attack dataset without the rank and the version features. 
The results show that the use of the Rank and the version 
features improves the detection’s rates of the binary 
classification model using the binary global dataset, as well as 
the detection rate of each attack using each attack’s dataset. 
 
 
7. CONCLUSION 

 
In this study, we proposed a machine learning based 

Intrusion Detection System for RPL protocol. To train our 
model, we created a dataset based on four real RPL attacks 
simulated using Cooja, and we performed the preprocessing 
and the dataset balancing to improve the performance of our 
proposed Intrusion Detection System. Our model detects 
successfully four known RPL attacks: Hello Flood, Increased 
version, Decreased rank and blackhole attacks. The proposed 
model performs binary and multiclassification of the RPL 
attacks based on Random Forest algorithm. We evaluated the 
detection parameters of our model and compared it with some 
other recent works. The results show that it has an accuracy of 
98.25%, a precision of 0.98, an F1-score of 0.98 and a recall 
of 0.98, which outperforms the other works presented in the 
related works in terms of the performance evaluation metrics. 

Moreover, we compared the performance of our model when 
trained with and without the rank and the version features, and 
we concluded that their use improves the detection’s rates of 
the binary classification model using the binary global dataset, 
as well as the detection rate of each attack using each attack’s 
dataset. 

The main issue that we encountered was the lack of datasets 
for RPL attacks with a good data quality, so we developed a 
dataset based on real RPL attacks scenarios using Cooja 
simulator in order to train our IDS. 

As a future work, we plan to simulate and collect other RPL 
attacks types and include them in our model. We plan also to 
perform the attacks simulation with a bigger number of nodes 
and more diverse scenarios with multiple attacker nodes and 
combined attacks. We plan to increase the performance and 
the accuracy of our model by using ensemble classification 
and deep learning models, and to attempt to add more features 
to our model to enable it to detect more RPL attacks.  
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