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The advances in digital communication and network systems mandate the vital role of 

efficient network intrusion detection in identifying cyber threats. The inability to 

differentiate a potentially threatening action from a normal one becomes more complex 

due to the massive and highly diverse amount of network traffic. Intending to improve 

detection in multi-class anomaly detection tasks, this paper introduces a novel enhanced 

Multi Class Semi-Supervised Variational Autoencoder (MCSS-VAE) complemented 

with class-specific detectors derived by the Negative Selection Algorithm (NSA) and 

further optimized by the Clonal Selection Algorithm (CSA). The scoring mechanism 

consists of reconstruction loss, Kullback-Leibler (KL), with two other loss function to 

manage the multi class loss of attack, the divergence loss, and anomaly detection loss, 

which have been proven to improve anomaly detection performance. Tests were carried 

out on the NSL-KDD dataset. Results showed 99.43% accuracy with recall always higher 

than the baseline model, especially in semi-supervised settings that work with limited 

labeled data. The model significantly enhances the labeled and unlabeled detection 

accuracy, while reducing the false positives and false negatives. The developed model can 

be scaled up for real-world intrusion detection systems. 
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1. INTRODUCTION

System have emerged as significant challenge that 

organizations face today [1]. Compromises in modern 

networks are threatened by calculated assaults such as denial 

of service (DoS) attack, intrusion, and data leakage [2]. This 

can lead to a disruption of service, loss of data and ultimately 

lead to a monetary loss. Thus, identification of these attacks 

and measures against them are of prime importance for the 

protection of network systems. Conventional measures used in 

networks include firewalls and IDS that chiefly use signature 

and rule that define suspicious activities [3]. Despite these 

methods’ efficiency against recognizable threats, they fail to 

identify new or different types of attacks, known as zero-day 

attacks [4]. Also, there is a massive and highly diverse amount 

of network traffic, which creates conditions for producing a 

highly heterogeneous data space, often resulting in an inability 

to differentiate the genuine activity from potentially 

threatening actions [5]. This complexity proves the usefulness 

of the new recent techniques comprising of adaptive 

mechanism for responding to new kinds of attacks and the 

ability of detecting anomalies.  

Introduction of anomaly detection in network traffic 

rEq.uires many approaches due to several factors; First, the 

data of network traffic is always skewed, when normal traffic 

comprises the large majority of the dataset while the attacks 

are sparse [6]. This lack of balance hinders standard machine 

learning model from being able to learn significant patterns 

regarding anomaly detection. Second, most of the anomaly 

detection systems center on the binary of normal and 

anomalous behavior, and the fact that network attacks come in 

multiple forms is not taken into account [7]. Nevertheless, it is 

significant to identify different kinds of attacks to improve 

measures that are taken during an incident. Also, one of the 

main challenges of anomaly detection is the unavailability of 

labeled data. The process of labeling network traffic especially 

in the detection of new or upcoming threats is quite tedious 

bearing in mind the strains of actually analyzing and dissecting 

the traffic itself [8]. Therefore, a significant number of datasets 

have a high volume of data that have not been labeled, and, 

therefore, cannot be effectively processed with fully 

supervised learning model [9, 10]. This has resulted in more 

attention being paid to semi-supervised learning schemes in 

which a model is trained using a combination of labeled and 

unlabeled data; whereby the abundance of unlabeled data can 

be used to enhance the detection of tumor tissues [11].  

There are many limitations in the above solution like class 

imbalance, multi-class problem, and the labeled data is a 

scarce commodity [12]. Previous approaches for computing 

anomaly detection have been focus on binary anomaly 

detection but do not distinguish between various types of 

attacks (e.g., Dos, probe, U2R, R2L) (have good 

generalization when the context rEq.uires multi-class 

classification in order to distinguish between the different 
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types of attacks in incidents. Moreover, the situation with the 

normal and anomalous traffic is not balanced, which only 

aggravates the question [13, 14].  

In this context, this paper introduces anomaly detection 

framework to address these challenges that combining semi-

supervised Variational Autoencoders (VAE) with class-

specific detectors derived from the NSA and optimized by the 

CSA. Our work employs the VAE ability to map data into a 

latent space and estimate the probability density function of 

the network traffic while using class-specific detectors to 

enhance attack type detection and differentiation.  The 

effectiveness of our approach is tested on the NSL-KDD 

dataset, through extensive experiments, it is demonstrated that 

the proposed model in this work significantly outperforms 

existing methods in both anomaly detection and multi-class 

classification, with limited labeled data. Section 2 provides a 

related work review of related anomaly detection using 

machine learning techniques. Section 3 talk about the methods 

used, section 4 display the proposed semi-supervised VAE 

model in detail, including its architecture and training 

procedure. Section 5 the experimental setup and results is 

presented, Section 6 introduce the discussion to the work. And 

finally, Section 7 contains the outlines directions, conclusion 

and future research. 

 

 

2. RELATED WORK 

 

Many machine learning models have been applied in 

anomaly-based [13]. Initial studies in this area, started some 

20 years back [15]. Feature engineering was a crucial 

component of these methodologies, and different techniques 

were proposed for achieving top 10 ranked features from NSL-

KDD dataset through information gain [16]. In addition, 

multivariate correlation analysis supported by dissimilarity 

measures was applied to enhance accuracy [17, 18]. It is 

widely accepted that no single model can effectively address 

all types of problems. Even if multiple models perform well 

for a particular issue, identifying the optimal model for 

varying data distributions or statistical mixtures remains 

challenging [19].  

Ensemble techniques, which aggregate the predictive of 

several models to improve the predictive ability, have 

therefore been investigated in the context of NIDS [20, 21]. 

Recent progress in deep learning has driven efforts to develop 

NIDS that do not rely on manual feature engineering. 

Techniques, such as spectral clustering combined with deep 

neural networks, were applied to NIDS for sensor networks 

[22]. Additionally, recurrent neural networks (RNNs) [23], 

including those based on LSTM [24], were proposed, 

alongside applications of convolutional neural networks 

(CNNs) [25]. Some approaches integrate LSTM and CNN to 

capture spatiotemporal patterns as feature extraction [26], 

while others utilize Generative Adversarial Networks (GANs) 

to derive statistical features [27]. Attention mechanisms were 

employed to enhance feature learning by emphasizing key 

inputs in sEq.uential network flow data within bidirectional 

LSTM models [28]. Autoencoders (AEs) are particularly 

suitable for anomaly-based NIDS due to their ability to detect 

deviations from previously learned normal states based on 

reconstruction errors exceeding a certain threshold [29]. To 

address challenges, such as noise reduction [30], a robust AE 

was introduced [31]. In addition, a max correntropy AE was 

suggested to deliver outlier and noise-induced representations 

[32], where reconstruction errors of AE were utilized to train 

classifiers. A stacked AE has also been suggested to conduct 

feature learning from n-gram hypertext transmission protocol 

log data [33]. Other authors have suggested NIDS 

architectures consisting of AEs and deep belief networks for 

feature learning, followed by the use of classifiers. These 

include NIDS based on asymmetric AEs [26], stacked AEs 

[34], and sparse AEs [35]. Stochastic denoising AEs [36] were 

applied to various NIDS [37], while stacked contractive AEs 

[38, 39] were utilized in other systems. Additionally, deep 

belief networks were employed [40], incorporating classifiers 

in a second stage that utilize shallow learning algorithms such 

as random forests [41], SVMs [35, 42] and Softmax classifiers 

[35]. Self-taught learning-based NIDS were also suggested 

[43].  

Whereas several studies have employed machine learning 

techniques in NIDS, none of them have taken into 

consideration the problem of restricted labeled training 

samples. A straightforward problem while training models 

with limited data is overfitting. One-shot and few-shot 

learning, in so far as human beings can learn from a few 

examples, have been demonstrated to be outstanding when it 

comes to model training on insufficient data and high-level 

performance in image classification [44]. These techniques 

have also been recently extended to network security, namely 

malware detection [45, 46], wherein image data is utilized for 

malware mapping [47]. One-shot learning employing Siamese 

networks has also recently been extended for NIDS [48] to 

learn pair similarities and not class-specific features. 

Challenges still exist, for instance, ensuring there are good 

training pairs which are well-balanced for every class 

combination when constructing the training set. 

Semi-supervised learning is also a significant solution to 

overfitting due to the few labeled training examples. 

Variational Autoencoder-based models (VAE) were 

investigated for that reason [49]. An autoencoder-enhanced 

one-class SVM, a hybrid model, which was trained only on 

normal class instances was also proposed. In addition, semi-

supervised deep learning models using stacked sparse 

autoencoders (SSAE) [48], as well as their extension into 

federated learning (FL) [49], were developed. These 

approaches merge unsupervised feature extraction with 

supervised classification algorithms, utilizing both labeled and 

unlabeled data to improve performance.  

Despite significant advancements, the field of anomaly 

detection-based network intrusion detection, particularly in 

multi-class scenarios, continues to face considerable 

challenges [50]. Existing machine learning methods struggle 

with the complexity of diverse network behaviors, especially 

when confronted with highly imbalanced datasets. These 

imbalances often lead to biased models that prioritize normal 

traffic, overlooking minority classes and failing to accurately 

detect diverse attack types. Moreover, many models fail to 

properly employ the latent space, which serves for maximizing 

the data reconstruction and the classification of anomalies with 

regard to multiple categories [51, 52]. This limits a clear and 

distinct categorization of different types of attacks, which 

complicates the interpretation and precision of the models.  

The last important issue is a fact that network data are often 

characterized by the high dimensionality. The detection 

accuracy of machine learning models is inclined to decline as 

the number of features rises. Therefore, it becomes critical to 

devise sound feature reduction approaches [53]. If these 

challenges are not handled, then their impact will affect the 
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enhancement of multi-class anomaly detection in NID 

systems. To address these challenges, a novel hybrid 

framework is proposed, that integrates a semi-supervised 

learning with class-specific detectors optimized through the 

bio-inspired algorithms NSA and CSA to enhance detection 

accuracy, reduce false positives and false negative, and 

improve generalization with limited labeled data. By using 

variational autoencoders for unsupervised feature learning and 

a hybrid scoring mechanism (reconstruction loss, KL 

divergence, divergence loss, and anomaly detection loss), the 

aim of this model is to robustly differentiate between normal 

and diverse cyber threats in large-scale network traffic. The 

proposed approach is validated on the NSL-KDD dataset, with 

a focus on scalability and adaptability to real-word intrusion 

detection systems. 

 

 

3. METHODS 

 

With the rapid increase in complexity and sophistication of 

cyber-attacks, traditional IDS systems become somewhat 

irrelevant in the domain of cybersecurity. One of the critical 

methods becomes anomaly detection; it utilizes machine 

learning and statistics to detect deviations from normal 

behavior that may indicate possible attacks. 

 

3.1 Variational autoencoders 

 

VAE are a strong family of deep generative models that 

occupy the middle ground between graphical probabilistic 

models and plain vanilla autoencoders. While vanilla 

autoencoders mostly try to learn compact data compressions 

and reconstructions, VAEs specifically try to learn the 

probability distribution of the input data. It does so by 

marrying the architectural advantages of neural networks with 

those of variational inference, enabling VAEs not only to 

reconstruct inputs but to sample novel, reasonable data points 

that are distributionally close to the training set. This unique 

skill is the product of their design, which puts a disciplined and 

ongoing latent space, and therefore they are highly well-suited 

for application in other tasks than just simple dimensionality 

reduction, such as data generation, data imputation, and, 

significantly for our interest, anomaly detection [54]. 

 

 
 

Figure 1. Variational autoencoder architecture 

 

The architecture of a VAE, as presented as in Figure 1, is 

largely based on the optimal choice of its parts and their related 

parameters. The architecture is essentially motivated by 

achieving an excellent balance between compressing and 

reconstructing the data effectively [49]. 

The VAE adds a probabilistic twist to the traditional 

autoencoder as follows Eq. (1): 

 

𝑧 = 𝜇 + 𝜎 ⊙ 𝜖 (1) 

where, µ and σ latent distribution mean and standard deviation, 

respectively; 𝜖 is a realization of a random noise vector, 0 and 

I are the mean and identity matrix, respectively. 

The encoder maps the input data x to the parameters of the 

latent distribution (μ and σ). It's usually made of a few fully 

connected layers with non-linear activation functions (for 

example, ReLU). The encoder reduces the dimensionality of 

input data bit by bit until it becomes squeezed into lower-

dimensional latent space.  

The decoder has the symmetric structure with the encoder 

but works in reverse. The input to it is a latent variable z as 

input and reconstructs the original input data 𝑥̂. The decoder 

has multilayers with increasing dimensionality step by step till 

it outputs the same dimensions as the input data. The last layer 

takes an appropriate activation function (for example, sigmoid 

for binary data) to ensure that the reconstructed data 𝑥̂  is 

within the proper range. 

The VAE is trained by optimizing two key objectives: 

a) Reconstruction Loss: 

This is a measure of how good the decoder is at 

reconstructing the input data from the latent representation. It 

trains the model to learn to produce good reconstructions. 

In case of binary data, reconstruction loss is typically 

calculated with binary cross-entropy (BCE) Eq. (2): 

 

ℒrec = −∑  

𝑛

𝑖=1

[𝑥𝑖 log(𝑥̂𝑖) + (1 − 𝑥𝑖)log⁡(1 − 𝑥̂𝑖)] (2) 

 

For continuous data, MSE is commonly used Eq. (3): 

 

ℒrec = ‖𝑥 − 𝑥̂‖2 (3) 

 

b) KL Divergence Loss: 

This regularizes the latent space by encouraging the learned 

distribution q(z|x) to match a prior distribution p(z), usually a 

standard normal distribution N (0, I). The KL divergence loss 

is calculated as Eq. (4): 

 

KL⁡Divergence⁡Loss = −
1

2
∑  

𝑑

𝑖=1

(1 + log⁡(𝜎𝑖
2) − 𝜇𝑖

2 − 𝜎𝑖
2) (4) 

 

where, d is the dimensionality of the latent space. 

The total loss for the VAE is a sum of the reconstruction 

loss and the KL divergence loss Eq. (5): 

 

VAE Loss=Reconstruction Loss + KL Divergence 

Loss 
(5) 

 

The VAE architecture combines the strengths of 

autoencoders and probabilistic modeling. 

 

3.2 Negative selection algorithm (NSA) 

 

Is inspiration-based computational model. works on 

producing binary strings that are usable to the matching of 

foreign strings but never arrive at matching up to self-strings 

[18]. If the binary string produced is compatible with a self-

string, then the alignment is rejected in a never-ending process 

that simulates how the antibodies of the adaptive system 

interact with only harmful antigens and how T lymphocytes 

produced recognize only foreign cells [53]. NSA generates a 

set of detectors that are designed to match anomalous patterns 

while avoiding normal data. as in Algorithm (1) ,This makes 
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NSA a powerful tool for identifying outliers in complex 

datasets. However, the effectiveness of NSA depends heavily 

on the quality and diversity of the detectors, which still can be 

optimized using evolutionary algorithms. Algorithm steps 

would thus include training phase with self-data and detection 

phase. 

 

 

3.3 Clonal selection algorithm (CSA) 

 

CSA follows the lead of the immune system's. it chooses the 

detectors that perform best, copies them, and has them mutate 

so that they can better detect anomalies. The algorithm of 

clonal selection follows the lead of the biological immune 

response that is responsible for the stimulation of proliferation 

of the antibodies to detect a certain antigen. When the B 

lymphocytes become activated to be antibody-specific, they 

are cloned and the antibodies then undergo heavy genetic 

mutation so that they can be compatible with the antigen. 

Similarly, in the algorithm, it finds the best-fit binary strings 

and clones them to mutate so that the mutated strings are more 

compatible [55]. It is used as an adjunct algorithm to the NSA, 

as in Algorithm (2). 

 
CSA General Algorithm (2) 

1. Initialization: 

• Generate rando population A 

2. Affinity Evaluation: 

• Calculate affinity for each antibody. 

3. Cloning: 

• Select the best k antibodies according to affinity 

• Proportional cloning of selected antibody 

4. Mutation: 

• Mutate cloned antibodies, so that mutation rate is inversely 

proportional to its affinity. 

5. Selection: 

• Replace worst affinity antibodies from A with random new 

candidates. 

6. Repeat the process until convergence or a predefined number 

of generations reached. 

 

 

4. PROPOSAL OF MULTI-CLASS ANOMALY 

DETECTION USING SEMI-SUPERVISED 

 

Based on the challenges outlined in the former section, this 

paper proposes a new paradigm for multi-class anomaly 

detection in NID. Using a VAE as an unsupervised encoder, 

we add a method utilizing the NSA and Clonal Selection 

Algorithm (CSA) in a semi-supervised learning setup. The 

proposed method, referred to as Multi-Class Semi-Supervised 

Variational Autoencoder (MCSS-VAE), is a novel approach 

that aims for higher efficiency. The NSL-KDD dataset is used 

as a benchmark for network intrusion detection. The dataset 

originally contains five different classes.  

 

 
 

Figure 2. The proposed approach 

 

Our approach makes an attempt to improve the above 

abnormality detection and we show how NSA and CSA can 

help improve the modeling of normal behavior and keep 

improving the identification of different subtypes of 

anomalies. Meanwhile, MCSS-VAE tries to learn the low-

dimensional space with semi-supervised learning setting. The 

Multi-Class Anomaly Detection methodology employs a VAE 

improved with class-specific detectors trained with the aid of 

NSA and optimized utilizing the CSA, Algorithm 1 represent 

the pseudocode for MCSS-VAE model. This methodology 

will be used to solve real problems in multi-class anomaly 

detection for a semi-supervised setting in which only a subset 

of the data samples is labeled. 

This proposed approach integrates reconstruction-based 

anomaly detection with class-specific latent space modeling to 

provide robust and accurate detection across multiple network 

traffic classes. Figure 2 shows the structure of the proposed 

approach. 

 

4.1 One-class anomaly detection VAE (M1) 

 

One-Class Anomaly Detection VAE (M1) is learned with a 

small-sized normal network traffic dataset and can recognize 

anomalies as reconstruction mistakes. It consists of two main 

parts: 
a) Encoder: Encoder maps input x to a latent space 

representation z and produces outputs for mean μ(x) and log 

variance log(σ2(x)), themselves Gaussian modeled. The 

reparameterization trick Eq. (6) samples the latent variable z 

as in Eq. (6): 

 

𝑧 = 𝜇(𝑥) + 𝜎(𝑥) ⊙ 𝜖, ⁡𝜖 ∼ 𝑁(0, 𝐼) (6) 

NSA General Algorithm (1) 

1. Initialization: 

• Define the self set S 

• Specify matching rule (e.g., Hamming distance threshold θ) 

2. Detector Generation: 

• Randomly generate candidate detectors 

• Remove detectors which match any s ∈ S 

• Retain only valid detectors D 

3. Anomaly Detection: 

• For a test sample xx check if matches any detector d ∈ D 

• If matched then classify x as anomaly. 
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where, ⊙ represents element-wise multiplication, and 𝜖 is a 

noise vector. 

b) Decoder: recentralize the input x from the latent variable 

z, learning to model the data distribution by minimizing the 

reconstruction error Eq. (7): 
 

𝑥̂ = 𝑔(𝑧) (7) 

 

where, the decoder network is g(⋅). The reconstruction loss 

(ℒrec) and Kullback-Leibler (ℒKL) divergence are optimized as 

loss function combining the Eq. (8): 
 

𝐿 = 𝔼𝑞(𝑧|𝑥)[𝐿rec(𝑥, 𝑥̂) + 𝛼𝐿KL(𝑞(𝑧|𝑥) ∥ 𝑝(𝑧))] (8) 

 

4.2 Class-specific detector generation 

 

Our model introduces class-specific detectors, which 

enhance anomaly detection in multi-class scenarios. Each 

class has a set of detectors, positioned in the latent space to 

represent the typical distribution of normal data for that class. 

These detectors are generated and refined through NSA and 

CSA. For each class c, a set of detectors Dc={d1, d2…, dm} 

is generated Eq. (9). These detectors are sampled from a 

distribution centered around the mean of the latent 

representations for class c: 
 

𝑑𝑗 ∼ 𝑁(𝜇𝑐, Σ𝑐), ⁡𝑗 = 1,2, … ,𝑚 (9) 

 

where, μc is the mean of the latent representations for class c, 

and Σc is the covariance matrix. Detectors are refined through 

NSA, which eliminates detectors close to anomalies, and CSA, 

which adjusts detectors to align with the normal data 

distribution Eq. (10): 
 

𝑑𝑗
′ = 𝑑𝑗 − 𝜂∇𝑑𝑗𝐿refine(𝑑𝑗) (10) 

 

4.3 Hybrid anomaly detection mechanism 

 

We further improve detection accuracy with a hybrid 

anomaly detection mechanism, combining reconstruction 

errors and latent space distances to class-specific detectors: 

a) Reconstruction Error: The reconstruction error, 

calculated using binary cross-entropy, where the difference 

between the input and its reconstruction was measured as in 

Eq. (11): 
 

𝐸rec(𝑥) = −∑  

𝑛

𝑖=1

[𝑥𝑖log⁡(𝑥̂𝑖) + (1 − 𝑥𝑖)log⁡(1 − 𝑥̂𝑖)] (11) 

 

b) Latent Space Distance: This is the minimum distance 

between the latent representation z of the input and the nearest 

detector for the predicted class Eq. (12): 

 

𝐷latent(𝑥) = min
𝑗
 ‖𝑧 − 𝑑𝑗‖ (12) 

 

The final anomaly score combines these two components 

Eq. (13): 

 

Anomaly Score(𝑥) = 𝛾𝐸rec(𝑥) + (1 − 𝛾)𝐷latent(𝑥) (13) 

 

4.4 multi-class anomaly detection with semi-supervised 

VAE (M2) 

 

The VAE forms the core of our proposed approach. It is a 

generative model designed to learn the underlying distribution 

of the data while simultaneously performing classification in a 

semi-supervised setting. By incorporating labeled and 

unlabeled data, the VAE learns a rich latent space that is both 

informative for reconstruction and useful for classification, 

making it a powerful tool for anomaly detection in complex 

multi-class scenarios. The structure of this model is similar to 

model M1 with a classification model with semi-supervised 

setting, as shown in Figure 2. This model consists of three 

primary components: the encoder, the decoder, and the 

classifier. The classifier is a neural network that predicts the 

class label y for the input x. It takes the input x and outputs a 

probability distribution over the class labels Eq. (14): 

 

𝐲pred = ℎ(𝐱) (14) 

 

where, h(⋅) is the classifier network and ypred is the predicted 

class distribution. In the final stage, the M2 is re-trained in a 

semi-supervised setting using data from all classes. The class-

specific detectors generated in Stage 2 are integrated into the 

training process to improve anomaly detection performance. 

The labeled and unlabeled data were combined, including both 

normal and different classes of attack traffic. Labeled data are 

used for classification, while both labeled and unlabeled data 

are used for reconstruction and latent space learning. M2 is 

initialized with the encoder, decoder, and a classifier. The 

previously trained encoder and decoder weights were fine-

tuned, while the classifier is trained from scratch. M2 was 

trained using a hybrid loss function that includes: 

a) Reconstruction Loss: The reconstruction loss is what 

gives the decoder the ability to reconstruct input data from the 

latent representation. For binary data, the reconstruction loss 

is usually the binary cross-entropy between the reconstruction 

x̂ and input x. Eq. (15): 

 

ℒrec = −∑  

𝑛

𝑖=1

[x𝑖log⁡(x̂𝑖) + (1 − x𝑖)log⁡(1 − x̂𝑖)] (15) 

 

where, n is the number of features in x. 

b) KL Divergence Loss: The KL divergence regularizes the 

latent space by encouraging the posterior distribution q(z|x) to 

be close to a prior distribution p(z), usually a standard normal 

distribution. The KL divergence is defined as Eq. (16): 

 

ℒKL =
1

2
∑  

𝑑

𝑗=1

(1 + log⁡(𝜎𝑗
2) − 𝜇𝑗

2 − 𝜎𝑗
2) (16) 

 

where, d is dimensionality of latent space, μj and 𝜎𝑗
2are mean 

and variance of the j-th latent dimension. 

c) Classification Loss: The classification loss guides the 

learning of the classifier by minimizing the discrepancy 

between the true labels y and the predicted labels ypred. For 

multi-class classification, this is typically the categorical 

cross-entropy Eq. (17): 

 

ℒcls = −∑  

𝐾

𝑘=1

𝑦𝑘log⁡(𝑦pred,𝑘) (17) 

 

where, K=classes number, yk=class k true label, and ypred,k 

=class k predicted probability. 

c) Anomaly Detection Loss: Incorporates the distance to 
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class-specific detectors in the latent space Eq. (18): 

 

ℒanomaly = 𝛾 ⋅ ℰrec(𝐱) + (1 − 𝛾) ⋅ 𝒟latent(𝐱), (18) 

 

d) The Final Loss Function: The overall loss function during 

this phase is a hybrid of unsupervised and supervised 

components Eq. (19): 

 

ℒMulti-classSemi = 𝔼𝑞(𝐳|𝐱)[ℒrec + 𝛼ℒKL + 𝛽ℒcls

+ 𝛾ℒanomaly], 
(19) 

 

where, ℒcls  is the classification loss, ensuring the correct 

prediction of class labels for labeled data; ℒanomaly  is the 

anomaly detection loss, which penalizes data points that 

deviate from the class-specific detectors in the latent space; β 

and γ are weighting parameters. 

 

4.5 Training procedure 

 

The training consists of two stages. In the first stage, the 

model (M1) is trained in an unsupervised manner using only 

normal traffic data. The objective is to obtain how a concise 

latent representation can capture the normal traffic pattern. 

The first part of the network called the encoder, transforms the 

input into the so-called latent space, and the second part, the 

decoder, reconstructs the same input from the latent space 

representation. As mentioned, after the training of the model, 

the encoder produces the representation of all available data in 

the latent space from which class-specific detectors are 

derived. In the second stage, M2 is trained with the labeled and 

the unlabeled data set with the help of class specific detectors 

refined through NSA and CSA. The detectors assist in 

improving the model's performance of detecting anomalies 

between classes. The labeled data are used for the 

classification tasks, the labeled and unlabeled data for the 

learning latent space representations. M2 is pre-trained using 

the weights of the encoder and decoder parts of M1 as the 

starting point for the weights update. The classification head 

is trained from scratch. In training, since a hybrid loss function 

is used, M2 is trained to be able to reconstruct data and classify 

anomalies into their appropriate classes. They are trained in 

mini-batches and the parameter are updated through the Adam 

optimizer with 0.001 learning rate. Use of early stopping as a 

means of preventing overfitting, or else training would be 

stopped when there was no improvement of the validation loss 

over the past 10 epochs, as in Algorithm (3). 

 
Algorithm 3: Multi-Class Semi-Supervised Variational 

Autoencoder for Anomaly Detection (MCSS-VAE) 

Input: Network traffic data (labeled and unlabeled), NSL-KDD 

dataset. 

Output: Anomaly detection predictions and multi-class 

classification. 

• For data preprocessing 

• Clean missing values, and standardize features. 

• Normalize the data to a fixed range (e.g., [0, 1]). 

• Split the dataset into training (80%) and testing (20%) 

sets. 

• Construct input matrices 

• For each class, construct a matrix where rows represent 

samples and columns represent features. 

• Include both normal and anomalous samples for labeled 

data. 

• Initialize MCSS-VAE model 

• Initialize the encoder, decoder, and classifier networks 

with random weights. 

• Set hyperparameters: latent space dimension, learning 

rate, batch size, and loss weights (α, β, γ). 

• For unsupervised training of VAE (M1) 

a) Train VAE on normal data 

• Train the VAE (encoder and decoder) using only normal 

traffic data. 

• Optimize the loss function: 

𝐿M1 = 𝔼𝑞(𝑧|𝑥)[𝐿rec(𝑥, 𝑥̂) + 𝛼𝐿KL(𝑞(𝑧|𝑥) ∥ 𝑝(𝑧))] 

Where: 

 𝐿rec: Reconstruction loss (e.g., binary cross-entropy). 

𝐿KL : KL divergence between the latent distribution and 

a standard normal prior. 

b) Generate Latent Representations 

• Use the trained encoder to map all data (normal and 

anomalous) into the latent space. 

• Obtain latent vectors z for each sample. 

c) Generate Class-Specific Detectors 

• For each class c, generate a set of detectors 𝐷𝑐 =
{𝑑1, 𝑑2, … , 𝑑𝑚}⁡in the latent space: 

𝑑𝑗 ∼ 𝑁(𝜇𝑐 , Σ𝑐), ⁡𝑗 = 1,2,… ,𝑚 

where 𝜇𝑐 ⁡and⁡⁡⁡Σ𝑐⁡are the mean and covariance of latent 

vectors for class  

• Refine detectors using NSA and CSA. 

• Semi-Supervised Training of MCSS-VAE (M2) 

• Train MCSS-VAE with Labeled and Unlabeled Data 

• Train the full MCSS-VAE model (encoder, decoder, and 

classifier) using both labeled and unlabeled data. 

• Optimize the hybrid loss function: 

ℒM2 = 𝔼𝑞(𝐳|𝐱)[ℒrec(𝑥, 𝑥̂) + 𝛼ℒKL(𝑞(𝑧|𝑥)

∥ 𝑝(𝑧)) + 𝛽ℒcls(𝛾, 𝛾̂) + 𝛾ℒanomaly(𝑥)] 

Where: 

ℒrec  : Classification loss (e.g., categorical cross-

entropy). 

ℒanomaly  : Anomaly detection loss combining 

reconstruction error and latent space distance: 

ℒanomaly = 𝛾 ⋅ ℰrec(𝑥) + (1 − 𝛾) ⋅ 𝒟latent(𝑥), 

ℰrec(𝑥): Reconstruction error.  

𝒟latent(𝑥): Minimum distance between z and the nearest 

class-specific detector. 

• Fine-tune classifier 

• Fine-tune the classifier using labeled data to improve 

multi-class classification accuracy. 

• Detect Anomalies 

• For each test sample, compute the anomaly score: 

Anomaly⁡Score(𝑥) = 𝛾 ⋅ ℰrec(𝑥) + (1 − 𝛾) ⋅ 𝒟latent(𝑥), 

• Classify samples as normal or anomalous based on a 

predefined threshold. 

• Evaluate Model Performance 

• Test the model by measures metrics. 

 

 

5. EXPERIMENTAL RESULTS 

 

This section contributes a critical assessment of the 

proposed MCSS-VAE, aimed at network intrusion detection. 

Here, the roles of class-specific detectors and the hybrid 

abnormality scoring system will be discussed. This paper 

sought to use experiments which were done in the simulator 

using the NSL-KDD data set, which is considered to be among 

the best for experiments in the network intrusion detection 

systems [56]. 
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5.1 Dataset 

 

The experiments are run on the commonly used NSL-KDD 

dataset that contains five various classes: a normal traffic class 

and four attack types that are DoS, U2R, R2L, and Probe. To 

study the performance of the above suggested MCSS-VAE 

model under various situations. We tested for different 

percentages of labeled data of 20 %, 40%, 60%, 80% and 

100%. Before the model training process, the dataset was 

normalized where the features were scaled using the Min-Max 

scaler in order to range from 0 and 1. No further data pre-

processing was done in order to reduce class imbalance 

because the distribution of the samples was maintained as is. 

Such decision enables better assessment of how the model 

performs when learning from imbalanced data; a problem 

typical in NID tasks (“Network Security, Information 

Security, Cyber Security,” n.d.). 

 

5.1.1 Data preprocessing 

In this section, we describe our proposed model: MSS-SAE 

based on multi-class Semi-Supervised of Sparse Autoencoder 

anomaly detection  

a) Data Preprocessing  

In this part we delve into preprocessing steps that are crucial 

for enhancing the performance and stability of the AE model 

when dealing with the NSL-KDD datasets, including (Split the 

Dataset, feature Encoding, One-Hot Encoding, Handling Test 

Set Differences, Column Reordering, and Final Encoding for 

Test Set) 

b) Split the Dataset: 

Is the process of splitting the data into training and validation 

sets. As 70% and 30% for training and validation. The training 

set will be used to train the model, and the validation set will 

test its performance. 

c) Feature Encoding: 

Convert categorical features into numerical representations. 

For example, imagine if the 'protocol_type' feature has 

categories like 'tcp', 'udp', and 'icmp'. We show these as 

numerical values (e.g., 0, 1, 2). 

d) One-Hot Encoding: 

Apply one-hot encoding to categorical features. Like for the 

‘service’ feature, we create separate binary columns for each 

service type (‘http’, ‘ftp’, etc.). A connection with ‘http’ 

service will have ‘1’ in the ‘http’ column and ‘0’ in others. 

e) Handling Test Set Differences: 

Ensure consistency between training and validation sets. If 

the test set has new services not seen in the training set, handle 

them appropriately (e.g., map them to a common category or 

create a column). 

f) Final Encoding for Test Set: 

Apply the same one-hot encoding to the test set, to 

consistency ensures fair evaluation of the model performance. 

Such as when evaluating the model on unseen data (test set), 

use the same encoding scheme as in training and validation. 

 

5.2 Experimental setup 

 

The experiments were conducted using Python and 

TensorFlow on the Google Colab platform, utilizing an 

NVIDIA Tesla T4 GPU to accelerate training and inference. 

Both the One-Class VAE (M1) and the Semi-Supervised VAE 

(M2) share a common architecture for the encoder and 

decoder, with the primary distinction being the inclusion of a 

classification head in M2, enabling it to handle multi-class 

classification in a semi-supervised framework.  

The encoder for both models processed a 122-dimensional 

input feature vector, compressing it into a 15-dimensional 

latent space. This encoder consisted of three dense layers with 

ReLU activations, where the first layer contained 256 units, 

followed by layers with 128 and 64 units, respectively. With 

two output layers mean and log variance. z was then sampled 

using the reparameterization trick. The decoder mirrored the 

encoder’s structure, reconstructing the 15-dimensional latent 

vector z back into the original 122-dimensional input space. 

64, 128, and 256 units dense layers was employed, 

respectively, each activated using ReLU. The output layer 

utilized a sigmoid activation function to generate the final 

reconstruction of the input feature vector.  

The Semi-Supervised VAE (M2) incorporated an additional 

classification model designed to leverage both labeled and 

unlabeled data. This classifier enabled the model’s multi-class 

classification capabilities within the semi-supervised 

framework. The classifier was composed of three hidden 

layers with ReLU activations, containing 256, 128, and 64 

units, respectively.  

A Softmax output layer with five units was used to classify 

the input data into the following categories: Normal, DoS, 

U2R, R2L, and Probe. Both models used Adam optimizer and 

0.001 for learning rate. Training was performed for a 

maximum of 100 epochs, and early stopping was used in case 

of no validation loss improvement over the past 10 epochs. 

The batch size was held constant at 128 for all experiments. 

To retain the best-performing model, model checkpointing 

was used, keeping the version with the minimum validation 

loss.  

To evaluate our proposed MCSS-VAE, in semi-supervised 

scenarios, different ratios of labeled data (10%, 20%, and 30% 

up to 100%) were employed. The rest of the data were 

regarded as unlabeled ones, meaning both labeled and 

unlabeled data were used for training. This setup was useful to 

perform a final integration and analyze the model’s potential 

and capability to generalize in cases wherein the availability 

of labeled data is limited. The purpose of these experiments 

was to assess the performance of developed multi-class 

anomaly detection model as well as to investigate how the 

proposed model could be feasibly implemented in large scale 

practical applications. Accuracy, precision, recall, F1 

measure, FPR and FNR were used to assess the performance 

of model. These metrics gave a complete evaluation of the 

level that the model can accurately diagnose the anomalies and 

the type of network traffic that is associated with the 

anomalies. Particular attention was paid to assessing the model 

in terms of how it fares when using (as an input) the class-

specific detectors and the hybrid scoring scheme 

 

5.3 Results 

 

In this section, the experimental results of our proposed 

MCSS-VAE for multi-class anomaly detection are presented.  

In Figure 3 the numerical latent space of the Semi-

Supervised VAE shows that the normal class is tightly 

clustered, which indicated that the model has learned and 

represented normal network behavior. Each type of anomaly 

occupies distinct regions within the latent space, showing the 

model’s ability in accurate identification and separation of 

different attack types. This would indeed make such class-

specific detectors ensure that refinement in the latent space by 

anomalies will have clearer distinctions from the normal 
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traffic. In such a way, a strong detection mechanism ensures 

that even small overlaps between normal and anomalous 

clusters do not affect the overall performance between various 

classes of attacks like Probe, U2L, and U2r. 

 

 
 

Figure 3. Latent space visualization with 5 class anomaly 

detection 

 

The loss curves for training and validation are shows that 

models with class-specific detectors have a constant decrease 

without overfitting as in Figure 4 thus, there is good 

generalization over unseen data. On the other hand, in models 

without detectors, after 45 epochs, the training loss keeps on 

decreasing but the validation loss increases, indicating 

overfitting. 

 

 
(a) With class-specific detectors 

 
(b) Without class-specific detectors 

 

Figure 4. Training vs. validation MSE loss 

5.3.1 Statistical validation for model 

The accuracy of the model achieves 99.43%, the importance 

of statistical rates is acknowledged to ensure the reliability of 

these results. To describe this, a comprehensive statistical 

analysis represents in Figure 5 by plotting distribution of 

anomaly scores for all classes (normal vs. attack types). That 

represent the separation between normal and attack types. 

 

 
 

Figure 5. Anomaly score across all classes 

 

In addition to the Figure 6 represented the reconstruction 

error for normal data distribution and derived on optimal 

anomaly threshold Eq.ual to 0.0323. this ensures robustness 

against random sampling variability. 

 

 
 

Figure 6. Reconstruction error with anomaly threshold 

 

In Figure 7 the confusion matrix for train and test set is 

highlighted per-class with minimal difference between attack 

types. 

In Figure 8 the AUC use to score and distinguish between 

attack types in the test set with greater than 0.99 for class 0,1, 

and 4 and lower performance for class 3 (AUC=0.636). The 

model was able to correctly discriminate between the majority 

high-risk classes (Classes 0 [normal], 1 [DoS], and 4 [Probe]) 

with AUC scores above 0.99, demonstrating perfect scoring 

efficiency. The NSL-KDD dataset and its behavioral patterns 

likely contributed to this result, such as the Probe class for 

port-scanning signatures boosted by NSA/CSA controllers. 

However, Class 3 (U2R or R2L attacks) struggles with 

significantly lower AUC scores of 0.636 ± 0.082, 95% CI. The 
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challenge of detecting low, stealthy attacks like these that 

mimic normal traffic and severely imbalanced class 

representations rests somewhere beneath 0.1% is their 

downfall. This gap further demonstrates overclass score 

distributions alongside Class 3 and normal traffic in Figure 8 

portending latent ambiguous space. Although bootstrapping 

confirms classism ranging around 0.999 ± 0.001, this results 

wider confidence intervals of Class 3 claiming data paucity 

uncertainty. Further work can look into solving this issue 

through domain specific heuristics, or hierarchical 

frameworks to better identify defining rare class attacks. 

Table 1 represents the results of performance without class-

specific detectors and Table 2 represents the results of 

performance with class-specific detectors and hybrid scoring. 

 

  
(a) Train data confusion matrix (b) Test data confusion matrix 

 

Figure 7. Train and test confusion matrix 

 

 
 

Figure 8. Attack types test set 

 

Table 1. Performance without class-specific detectors and hybrid scoring 

 
Label Rate Accuracy Precision Recall F1 Score FPR FNR 

0.1 0.9887 0.9756 0.8222 0.8579 0.0037 0.1778 

0.2 0.9906 0.9094 0.8854 0.8964 0.0029 0.1146 

0.3 0.9912 0.8830 0.8481 0.8604 0.0026 0.1519 

0.4 0.9921 0.9112 0.8695 0.8859 0.0024 0.1305 

0.5 0.9926 0.9218 0.9124 0.9170 0.0024 0.0876 

0.6 0.9927 0.9354 0.8762 0.9007 0.0024 0.1238 

0.7 0.9935 0.9257 0.8767 0.8980 0.0022 0.1233 

0.8 0.9936 0.9366 0.8944 0.9121 0.0020 0.1056 

0.9 0.9939 0.9263 0.8941 0.9082 0.0019 0.1059 

1.0 0.9936 0.9285 0.9064 0.9163 0.0020 0.0936 
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Table 2. Performance with class-specific detectors and hybrid scoring 

 

Label Rate Accuracy Precision Recall F1 Score FPR FNR 

0.1 0.9862 0.8454 0.8957 0.8677 0.0037 0.1043 

0.2 0.9898 0.8707 0.9209 0.8934 0.0027 0.0791 

0.3 0.9912 0.9022 0.9205 0.9108 0.0025 0.0795 

0.4 0.9921 0.9062 0.9115 0.9087 0.0025 0.0885 

0.5 0.9927 0.9081 0.9153 0.9116 0.0023 0.0847 

0.6 0.9933 0.9108 0.9056 0.9081 0.0021 0.0944 

0.7 0.9936 0.9263 0.9087 0.9163 0.0019 0.0913 

0.8 0.9935 0.9264 0.9080 0.9160 0.0020 0.0920 

0.9 0.9937 0.9336 0.8962 0.9114 0.0019 0.1038 

1.0 0.9943 0.9540 0.9066 0.9265 0.0018 0.0934 

Label Rate was from 0.1 to 1.0 with increments of 0.1. 

"Accuracy" is the proportion of the number of true results (true 

positives and true negatives) to the number of total cases tested 

Eq. (20) [40]: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒⁡𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
  

(20) 

 

Precision is computed as Eq. (21) [41]: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
  (21) 

 

For Recall as Eq. (22): 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
  (22) 

 

F1 Measure is as Eq. (23) [35]: 

 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙⁡

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
  (23) 

 

Lastly, there is both the FPR and the FNR; FPR depicts the 

ratio of the false positive cases over all potential positive 

samples for each individual classifier using Eq. (24). The FNR 

is the proportion of assumed positive instances that were 

falsely beaten as negative Eq. (25) [44]. 

 

𝐹𝑃𝑅 =
𝐹𝑃⁡

(𝐹𝑃+𝑇𝑁)
  (24) 

 

𝐹𝑁𝑅 =
𝐹𝑁⁡

(𝑇𝑃+𝐹𝑁)
  (25) 

 

Results when class-specific detectors have not been used 

show performance metrics at different label rates. At label rate 

0.1, the model exhibited the following performance metrics: 

accuracy 0.9887, precision 0.9756, recall 0.8222, and F1 score 

of 0.8579. The false positive rate (FPR) and the false negative 

rate (FNR) are also measured at 0.0037 and 0.1778 

respectively. These values change as the label rate increases to 

1.0, the accuracy increases slightly to 0.9936, precision 

increases to 0.9285, recall increases to 0.9064, and F1 score 

changes to 0.9163. Label rates of 1.0 show both measures of 

FPR and FNR at 0.0020 and 0.0936 respectively.  

The incorporation of detectors specific to the respective 

classes considerably raises the efficacy of the model Table 2. 

With a 0.1 label rate, the model score rises to 0.9862 while its 

precision lowers to 0.8454. The model recall is set at 0.8957 

while the F1 score is raised to 0.8677. FPR and FNR comes at 

0.0037 and 0.1043 respectively. At a label rate of 1.0, the 

graph depicts that the model is able to reach a peak score of 

0.9943 at label rate precision of 0.9540, recall of 0.9066, and 

F1 score of 0.9265. It is denoted that both FPR and FNRs are 

still lowered within the model. After a model label rate of 1.0, 

the FNR level is then elevated to 0.0934. 

In Figure 9 depicts enhanced performance using the model 

depicts enhanced performance on the basis of precision, recall, 

and F1-Score than the model without using it. The precision 

for label 1.0 is improved (0.9411 vs. 0.9340), the recall is 

improved (0.9063 vs. 0.8835), and the F1-Score is improved 

(0.9215 vs. 0.9038). This demonstrates that the inclusion of 

the detector autoencoder enhances the model's accuracy and 

reliability in classification tasks. 
 

 
 

Figure 9. Key performance metric of Semi-Supervised 

Variational Autoencoder (VAE) model with and without 

class-specific detectors and hybrid scoring 

 

 

6. DISCUSSION 

 

First, a discussion for the results of each table is presented 

in the former Results section individually, next we do some 

comparative analysis between it. The system’s monitoring of 

emerging attack trends (such as zero-day threats) is still 

dormant. This challenge stems from the fact that the NSL-

KDD dataset predominantly uses known attack signatures. 

While our model attempts to semi-supervise VAE by using 
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unlabeled data to construct normal traffic patterns, it suffers 

from using specific detectors designed for class labels, 

typically bounded by the scope of set attack types like DoS 

and Probe. 

6.1 Performance without class-specific detectors 

 

Considering Table 1, it can be seen that with the rise in the 

label rate, the proposed model achieves a steadily enhanced 

accuracy up to the maximum label rate of 100%, with the 

accuracy achieved being 99.36%. Overall, precision is present 

at an appreciable level for all label rates, although higher label 

rates tend to yield a lower score; this is most probable because 

at low rates, such as 0.1, the model is able to capture many 

actual positives. Nevertheless, the recall of this model at this 

low label rate decreases to only 82.22%, which suggests that 

our model does not have a high capability of identifying a large 

number of true anomalies in case the number of labelled data 

is small. FPR and FNR both decrease more with an increase in 

label rate, nevertheless, the FNR improvement is considerably 

more significant: when exposed to more significant labeled 

data amounts, the model demonstrates better capacity to 

isolate true anomalies. 

 

6.2 Impact of class-specific detectors and hybrid scoring 

mechanism 

 

Table 2 outlines the results of experiment based on the 

Semi-Supervised VAE model trained with the class-specific 

detectors as well as the proposed hybrid scoring system. On 

full labeling and with no detectors involved the model has an 

accuracy of 99.43% outperforming the earlier tested version. 

The precision gradually escalates as the label rate and becomes 

more precise at a 100% label rate of 95.40%. The results reveal 

that recall is always higher than the baseline model, showing 

that the class-specific detectors hold true anomalies even if 

there is a lack of labelled data. Further, FPR and FNR statistics 

are reduced over all labelled rates compared to the baseline 

model, which points to the fact that the hybrid scoring 

mechanism has the potential of improving the overall 

detection accuracy. 

 

6.3 Comparative analysis 

 

The combination of class-specific detectors and hybrid 

scoring mechanism improves the benchmark evaluation for all 

label rates in terms of precision and recall. This enhancement 

validates our hypothesis of the confinement of the detectors to 

the individual class features thus handling false alarms and 

improving the detection of true anomalies. Semi-Supervised 

VAE’s numerical latent space is depicted in Figure 3. The 

results obtained clearly indicate clustering of normal and 

anomalous traffic patterns and clear separation of different 

attacks. This separation indicates that the model was able to 

segment different classes of network behavior quite well.  The 

Normal class forms a tight, well-defined cluster, while each 

attack type occupies its own distinct region in the latent space. 

The class-specific detectors contributed to this well-structured 

separation by refining the latent space, ensuring that anomalies 

were more easily distinguished from normal traffic. Although 

there is a slight overlap between the Normal and DoS clusters, 

the overall clarity of separation between attack types, such as 

Probe, U2L, and U2R reflects the model’s robustness in 

anomaly detection. 

These validation and training loss curves further reflect the 

performance of the given method. In models trained with 

class-specific detectors, both training and validation losses 

showed a consistent decline, with no indications of overfitting, 

as shown in Figure 4 (a). The losses converged after 65 epochs, 

and the early stopping mechanism ensured that the model was 

not overtrained. In contrast, the model trained without 

detectors showed signs of overfitting, particularly after 45 

epochs, where training loss continued to decrease, while 

validation loss rose, as shown in Figure 4 (b). This divergence 

highlights the importance of class-specific detectors and 

hybrid scoring in ensuring of performance in predicting  

unseen data. 

The model having detectors trained for all classes 

demonstrate a less variability at lower label rates of 0.1-0.3 

demonstrating the independence of the functionality from the 

labeled data. This makes the approach particularly suitable for 

the semi-supervised scenarios, where quantity of the labelled 

data is low. In addition, FPR and FNR are lower in case of 

class-specific detectors for all label rates, with a higher benefit 

at higher label rates as in Figure 5. These results show the 

optimality of employing hybrid scoring mechanism to assert 

the continual improvement of the approach’s anomaly 

detection by minimizing misclassifications.  

The model incorporating the detector autoencoder’s 

performance is significantly better than the one not using it as 

shown in Figure 5. The model in question always achieves 

higher scores in precision, recall, and F1-Score, which 

suggests that there may be less false positive results and more 

true positive results. With label 1.0 affixed, the precision is 

0.9411, and recall is at 0.9063, which is an improvement from 

0.9340 and 0.8835 when the detector is not used. Furthermore, 

the detector autoencoder provides better F1-Scores and 

preserves the accuracy of the classifier, which indicates more 

balanced performance across different labels. To sum up, the 

model with such robustness does outperform the rest, which is 

now and no doubt much better for the task in question. 

In Table 1 and Table 2 Precision and recall results show 

promising enhancements where class-specific detectors are 

applied as the findings of this study demonstrate. At lower 

label rates, where other methods generally fail to recognize 

anomalies, our approach yielded fairly high recall. This 

implies that the detectors incorporated the features of each 

class, and the model was able to flag true anomalous examples 

without much supervision [47]. The hybrid scoring 

mechanism also helped to further decrease the values of) FPR 

as well as FNR thus improving the accuracy in normal traffic 

detection and elimination of hypothetical alarms.  

As seen from the results, our model has a high accuracy and 

stability when the label rate reduces to as low as 10% and this 

makes it suitable in cases where it is extremely expensive or 

time-consuming to label data. In that sense, by the efficient use 

of unlabeled data, the Semi-Supervised VAE with class-

specific detectors proves the efficacy of an approach that is 

more scalable and less dependent on labeled data than fully-

supervised models that rEq.uire large samples of labeled data 

to reach comparable performance levels [48]. 

The enhancement of anomaly detection performance has 

meaningful consEq.uences for present network security 

systems, especially for the areas where new sorts of cyber 

threats regularly encountered. Conventional IDS methods 

which use predominantly rule-based or supervised approaches 

lack the ability to detect emerging threats since their operation 

depends on labeled data. One way that our proposed model 

helps in overcoming this limitation is by using a semi-
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supervised learning method that can effectively learn and 

adapt to new data, it is an effective method for real-time 

network monitoring [49]. Even the high recall we get with so 

little labeled data indicates that this model may be handy in 

real-world scenarios where labeling the network traffic is not 

possible immediately. Reducing on heavy labeled datasets, the 

model enables organizations to detect and respond to cyber 

threats faster and more effectively.  

The class-specific detectors used in the proposed model are 

highly resilient to different types of attacks and aim at being 

applicable to various network conditions [51]. However, the 

outcomes of this study bear some limitations. First, the 

proposed framework was tested on the NSL-KDD dataset 

which is one of the most frEq.uently used datasets in the 

literature of network intrusion detection. Despite the account 

of many attack types in this dataset, it might not sufficiently 

reflect the nature of the actual network traffic. Slight 

developmental differences of the model and comparison of its 

performance with more diverse and dynamic data have not 

been elaborated yet which is crucial for analyzing the model 

performance in conditions of changing threats [52]. 

Furthermore, the fact that the DoS and normal traffic clusters 

are partially merged in the latent space diagram also reveals a 

disadvantage of the approach - it may be problematic to 

distinguish between individual attack types. While the model 

have good accuracy in overall model, it could be seen a lot of 

overlap between the classes, which means that there may still 

be some fine tuning needed on the part of the machine learning 

algorithms in order to deliver increased levels of 

differentiation between different forms of attack, particularly 

where they overlap in the way that DoS does with DDoS [55].  

One potential path of development is making the hybrid 

scoring mechanism gather further contextual data from the 

patterns in network traffic. Temporality or utilizing sEq.uence-

based models including LSTMs could enable the model to 

analyze how the pattern dynamics in the network occur over 

time hence enhance its ability to identify long-term traffic 

patterns as anomalous. Last, yet importantly, there are efforts 

to minimize the computational cost of the algorithm but 

without much loss of efficiency in terms of implementation. 

Further research focusing on variants of the model which 

would allow for processing, in real-time, networks that contain 

intruding elements, with low resource consumption would be 

an interesting follow-up. 

 

 

7. CONCLUSIONS 

 

In this paper, the proposed multi-class anomaly detection 

using semi-supervised VAE (MCSS-VAE) presents a 

remarkably significant advance in the attempt to solve the 

challenges of multi-class anomaly detection faced by network 

intrusion systems. This research tries to solve the multi-class 

anomaly detection challenge within network intrusion 

detection systems featuring imbalanced classes, low labels, 

and high precision rEq.uirements for distinguishing attacks. 

Our main contribution is the merging of bio-inspired 

algorithms and semi-supervised deep learning, which offers 

new insight into tackling cyber security problems while also 

expanding the field's theoretical boundaries and practical 

implications. Our approach achieves increased efficiency and 

accuracy in the network by utilizing a variational autoencoder 

as an unsupervised encoder and introducing class-specific 

detectors with a hybrid scoring mechanism. This approach will 

leverage both NSA and CSA to fine-tune the class-specific 

latent spaces for robust and accurate anomaly detection. The 

MCSS-VAE is hence capable of bringing improvement in 

precision, recall, and overall detection performance; hence, it 

shows great promise in real-world multi-class anomaly 

detection tasks. These results validate the effectiveness of our 

method and show potential to achieve improved anomaly 

detection compared with previous semi-supervised models. 

Although experiments were conducted on the NSL-KDD 

dataset, further research is needed to analyze its effectiveness 

on other similar traffic and in real-time scenarios. The 

proposed model can be applied to large-scale networks while 

ensuring further enhanced efficiency and is therefore the 

potential answer to many contemporary network security 

mechanisms. 
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