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In the digital age, where secure image transmission is essential, we present an improved 

image encryption scheme based on large scalable Hill matrices defined over the Z/256Z 

ring. The encryption matrix is constructed by multiplying two triangular matrices 

generated from chaotic maps, providing a high degree of randomness and unpredictability. 

Each block incorporates arbitrary square submatrices, enhancing the structural complexity 

of the encryption. Experiments conducted on a diverse set of images validate the 

robustness of our approach: the correlation between the clear and encrypted images is 

close to zero, the entropy reaches 7.99 bits per pixel, and the performance achieves an 

NPCR of 99.64%, a UACI of 33.45%, and an avalanche effect of 50.33%. These results 

significantly outperform those of traditional variants of the Hill cipher, highlighting the 

effectiveness of the combination of evolving matrices and chaotic sequences for reliable 

and efficient image encryption. 
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1. INTRODUCTION

The concern of securely sharing information over a 

computer network securely is delicate, requiring the use of 

robust security systems in order to transfer data securely, and 

cryptography. The studies [1-4] is among the solutions, which 

plays a major role in this situation. The main objective of 

digital image encryption is to convert an original image into 

an encrypted, unintelligible and secure version protecting it 

from unauthorized access. Chaos [5-8] plays an important role 

in modern cryptography, especially in the field of image 

encryption. Chaotic systems are particularly appreciated for 

their sensitivity to initial conditions and their complex and 

unpredictable behavior, crucial characteristics for 

strengthening the security of encryption algorithms. Several 

researches are based on chaos which allows to improve certain 

classical techniques, such as Hill, Vigenère [9-13], Feistel [14-

16]. The Hill cipher [17-20] is a mathematical concept used in 

cryptography and provides an important solution for securely 

transferring data. It is based on the use of matrices to encrypt 

messages. A square matrix is used as the key to encrypt blocks 

of plaintext by converting them into numerical vectors. The 

encryption is performed by multiplying these vectors by the 

key matrix. To decrypt, the inverse of this matrix is used. 

Much research has focused on improving the Hill number 

by incorporating chaotic systems. Gietaneh and Akele [21]. 

proposed a secure algorithm to encrypt Tele-Birr information 

using an improved version of the Hill cipher with a symmetric 

key. The algorithm encrypts all Tele-Birr information using 

two keys, k1 and k2, in the form of a character matrix, thereby 

generating a unique key for one-time encryption. Using this 

symmetric key cryptography technique, all Tele-Birr 

information can be transformed into unreadable messages 

using a combination of 131 additional characters and symbols. 

The character set used in this improved cipher comprises 141 

characters, which makes the ciphertext extremely difficult to 

decipher for potential attackers, due to the exponential 

increase in the key space. Billore and Patel [22] proposed an 

extended generalized Fibonacci matrix, related to the extended 

generalized Fibonacci sequences, and established some 

properties in addition to classical matrix algebra. They also 

introduced a modified public-key cryptography using these 

matrices as keys in the Hill cipher in an affine transformation, 

as well as a key agreement protocol for encryption and 

decryption, based on the combination of terms of the extended 

generalized Fibonacci sequences under prime modulo. Naim 

and Pacha [18] proposed a new image encryption algorithm 

combining the advanced Hill cipher and a 6D hyperchaotic 

system. The method uses the prime number 257 as a modulo, 

replacing zero pixels with pixels of value 256. The image is 

first divided into four equal parts, and then each part into 

blocks of four pixels. Four variables of the hyperchaotic 

system are used to permute the blocks, while the remaining 

two variables generate the Hill matrices. Finally, each block is 

encrypted with the Hill cipher to obtain the final encrypted 

image. Mfungo et al. [20] proposed a cryptosystem in which 

the encryption process begins by shifting each row of the state 

matrix to the left. The modified matrix is then encrypted using 

the Hill cipher. Next, the top value of each column—

regardless of whether it is even or odd—is used to perform an 
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XOR operation with all other elements in the same column 

(excluding the top value). The intermediate image is then 

diffused using a sigmoid logistic map, followed by a 

Kronecker XOR product operation applied between pixels to 

enhance security. Finally, an additional diffusion stage is 

performed using other keys derived from the sigmoid logistic 

map, producing the final encrypted image. Zheng et al. [23] 

proposed a new cryptosystem by introducing a two-

dimensional chaotic map, called iterative Gaussian sinusoidal 

map (2D-IGSCM), which provides better ergodicity and 

higher unpredictability. Then, to overcome the limitations of 

Hill encryption, they presented an improved version of the 

three-dimensional Hill encryption model (3D-HC). This 

model uses a dynamic column vector generated from chaotic 

sequences derived from 2D-IGSCM to enhance the encryption 

efficiency. Finally, by combining the 2D-IGSCM and 3D-HC 

models, they proposed a new image encryption method. 

In the current context where securing digital images has 

become crucial, classical encryption methods such as the Hill 

cipher have significant limitations, including the small size of 

key matrices, insufficient diffusion, and vulnerability to 

differential and statistical attacks. These constraints limit the 

robustness and flexibility of encryption systems, particularly 

for processing high-resolution or high-detail images. 

In this work, we suggest employing a large invertible 

matrix, derived from the block multiplication of two triangular 

matrices generated from chaotic systems. This innovative 

construction significantly expands the key space and improves 

diffusion, while retaining the invertibility property essential 

for decryption. Thus, our approach overcomes the weaknesses 

of classical Hill cipher variants by offering a more robust, 

scalable system suited to modern digital image security 

requirements. 

This work begins in Section 1 by introducing the security 

challenges in image transfer, along with existing solutions, and 

related work. Section 2 covers the theoretical background, 

while Section 3 details our proposed approach. Section 4 

presents and compares the results with prior studies. Finally, 

we conclude the paper. 

 

 

2. THEORETICAL FOUNDATIONS 

 

2.1 The hill cipher 

 

2.1.1 Classical hill cipher 

The Hill cipher was published by Lester S. Hill in 1929. It 

is a polygraphic cipher [24, 25], that is, the letters are not 

(de)ciphered one after the other, but in packets, that is, the 

letters are grouped two by two. To encode a message using this 

method, the letters of the message are first grouped two by 

two, then each letter is replaced by a number, as shown in the 

following Table 1. 

 

 

Table 1. Letter values in the Caesar cipher 

 
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 

 

Example: 

We code the message « J ADORE LES MATHS ». 

We break it down into: JA-DO-RE-LE-SM-AT-HS then we 

replace with: (9;0) -(3;14) -(17;4) -(11;4) -(18;12) -(0;19) -

(7;18). Then each pair of numbers (x;y) from the previous list 

is transformed into a new pair (x’;y’) of integers between 0 

and 25, using a matrix: 

A =(
a b
c d

) via the relationship A(x
y
)   (x′

y′
) [26]. which 

means that: 

{
ax + by = x′[26]

cx + dy = y′[26]
 Matrix A is called the encryption key. 

Finally, these two numbers x’ and y’ are transformed into 

letters using the correspondence table. The recipient therefore 

receives the coded message, and from the pairs of numbers 

(x’;y’), and he finds the pairs (x;y) in order to find the message 

in plain text. 

The classic Hill symmetric encryption algorithm, applied to 

data encryption, has several drawbacks. In particular its 

vulnerability to plain text attacks. and the linearity problem 

that can be exploited by attacks to simplify the search for the 

key. In addition, the small size (22) of the matrix facilitates 

brute force attacks. 

In order to overcome the limitations of classic Hill 

encryption, various improvements have been made, including: 

 

2.1.2 Proposed improvement 

Several improvements have been made, offering significant 

advances to the classical Hill cipher. However, despite these 

advances, the matrices used remain relatively small, which 

exposes the system to brute-force attacks. In this paper, we 

propose a new improvement allowing the use of scalable-size 

matrices, thus enhancing the robustness of our cryptographic 

system. Consider the following two matrices M1 and M2: 

 

M1 = (
I A1 O
O I B1
O O I

) et M2 = (
I O O
A2 I O
O B2 I

) 

 

With: 

A1, A2, B1 and B2 are any square matrices of the same size. 

I and O denote respectively the identity matrix and the null 

matrix, all of the same dimension as the matrices A1, A2, B1, 

and B2. 

The Hill matrix proposed in this improvement is of the 

form: 

 

H= M1  M2 

 

H = (

I + A1A2 A1 O
A2 I + B1B2 B1
O B2 I

) 

 

The matrix proposed in this approach is characterized by a 

scalable size, such as: 

If A1, A2, B1 and B2 are size 22 then our Hill matrix H is 

size 66. 

If A1, A2, B1 and B2 are of size 33 then our Hill matrix H 

is of size 99. 

In general, 

If A1, A2, B1 and B2 are of size RR then the Hill matrix 

H is of size 3R3R. 

1112



 

To decrypt the encrypted data, we need the inverse matrix 

of H. This allows us to recover the original message. 

Let's calculate the inverse of H. 

We have H−1= M2
−1 M1

−1. 

With: 

 

M1
−1= (

I −A1 A1B1
O I −B1
O O I

) and M2
−1 = (

I 0 O
−A2 I O
B2A2 −B2 I

) 

 

Let us show that M1
−1et M2

−1 are respectively the inverse of 

the matrices M1et M2. 

 

M1 M1
−1 = (

I A1 O
O I B1
O O I

)  (
I −A1 A1B1
O I −B1
O O I

) 

= (
I 0 0
O I 0
O O I

) 

 

And: 

 

M2M2
−1 =

(
I O O
A2 I O
O B2 I

)   (
I 0 O

−A2 I O
B2A2 −B2 I

)= (
I 0 0
O I 0
O O I

) 

 

So: 

 

H−1= (
I 0 O

−A2 I O
B2A2 −B2 I

) (
I −A1 A1B1
O I −B1
O O I

) 

 

Application Example: 

In this example, we propose to use matrices A1, A2, B1 and 

B2 of size 2×2 not necessarily invertible. The construction 

matrices of M1 and M2 are of dimension 6×6. 

 

Let: A1= (
1 2
3 4

) , A2= (
2 1
2 4

)  and B1= (
2 2
3 1

) , B2= 

(
6 2
3 1

) 

 

M1 = (
I A1 O
O I B1
O O I

) = 

(

  
 

1 0 1 2 0 0
0 1 3 4 0 0
0 0 1 0 2 2
0 0 0 1 3 1
O 0 0 0 1 0
O O 0 0 0 1)

  
 

 

 

And: 

 

M2 = (
I O O
A2 I O
O B2 I

) =

(

  
 

1 0 0 0 0 0
0 1 0 0 0 0
2 1 1 0 0 0
2 4 0 1 0 0
0 0 6 2 1 0
0 0 3 1 0 1)

  
 

 

 

So: 

 

H = M1  M2 = 

(

  
 

7 9 1 2 0 0
14 20 3 4 0 0
2 1 19 6 2 2
2 4 21 8 3 1
0 0 6 2 1 0
0 0 3 1 0 1)

  
 

 

The inverse matrix of M1 is: 

 

M1
−1= (

I −A1 A1B1
O I −B1
O O I

) = 

(

  
 

1 0 −1 −2 8 4
0 1 −3 −4 18 10
0 0 1 0 −2 −2
0 0 0 1 −3 −1
0 0 0 0 1 0
0 0 0 0 0 1 )

  
 

 

mod 256 = 

(

 
 
 

1 0 255 254 8 4
0 1 253 252 18 10
0 0 1 0 254 254
0 0 0 1 253 255
0 0 0 0 1 0
0 0 0 0 0 1 )

 
 
 

 

 

The inverse matrix of M2 is: 

 

M2
−1= (

I 0 O
−A2 I O
B2A2 −B2 I

) = 

(

  
 

1 0 0 0 0 0
0 1 0 0 0 0
−2 −1 1 0 0 0
−2 −4 0 1 0 0
16 14 −6 −2 1 0
8 7 −3 −1 0 1)

  
 

 

mod 256 = 

(

  
 

1 0 0 0 0 0
0 1 0 0 0 0
254 255 1 0 0 0
254 252 0 1 0 0
16 14 250 254 1 0
8 7 253 255 0 1)

  
 

 

 

Then the inverse matrix is: 

 

H-1 = (M2
−1 M1

−1)mod 256  

=

(

 
 
 

1 0 255 254 8 4
0 1 253 252 18 10
254 255 6 8 220 236
254 252 14 21 165 207
16 14 192 166 143 218
8 7 224 211 199 110)

 
 
 

 

 

To increase the complexity of our approach, we can choose 

the elementary matrices (A1 , A2 , B1  et B2) of a fairly large 

size. 

 

2.2 Chaotic maps 

 

2.2.1 The logistics map 

The logistic map [26] is mathematically expressed by a 

quadratic recurrence relation governed by Eq. (1): 

 

x0 ∈ 0,5; 1 [μ1 ∈ [3,57; 4]] 
xn+1 = μ1xn(1 − xn) 

(1) 

 

With μ1[∈ [3.57, 4] is the interval where the control 

parameter guarantees chaotic behavior. 

 

Bifurcation diagram 

The bifurcation diagram [27] shows the evolution of the xn+1 

iterations of the logistic sequence (on the y-axis) as a function 

of the value of the control parameter μ1 (on the x-axis). Figure 

1 represents this bifurcation diagram, where we observe that 

the chaotic behavior manifests itself when the parameter 

μ1≥3.57. The ideal values of μ1 are around 4, because in this 

range, the amplitude of xn covers the entire range between 0 

and 1. 
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Figure 1. Logistic map bifurcation diagram 

 

Lyapunov exponent 

The Russian mathematician Alexander Markus-Lyapunov 

(1857-1918) developed a measure called the Lyapunov 

exponent [28], which allows to evaluate the rate of divergence 

between two chaotic trajectories with very close initial 

conditions. This exponent is expressed by the following 

equations. 

We have:  
 

f(xi) = μ1xi(1 − xi) 
f′(xi) = μ1(1 − 2xi) 

λ (μ1, x0) = lim
n→∞

1

n
∑ln|μ1(1 − 2xi)|

n

i=0

 

 

So: 

The Lyapunov exponent diagram of the logistic map is 

given in the following Figure 2. 

 

 
 

Figure 2. Lyapunov exponent of the logistic map 

 

2.2.2 PWLCM card 

The Piecewise Linear Chaotic Map (PWLCM) [29] is 

another example of a piecewise linear chaotic map, described 

by the following equation: 

 

yn=F(yn−1, μ2) = {

 yn−1

μ2
, 0 ≤ yn−1  ≤  μ2

yn−1− μ2

0.5− μ2
, μ2  ≤  yn−1 ≤  0.5

F (1 − yn−1, μ2), elsewhere

 (2) 

 

λ = lim
n→∞

1

n
∑ln|f′(x)|

n

i=0

 (3) 

Bifurcation diagram 

The bifurcation diagram of the PWLCM map illustrates 

how the values of the iteration yn+1 evolve as a function of a 

control parameter. This diagram allows visualizing the 

dynamic regimes of the map, showing how the system changes 

from stable to chaotic behavior as the parameter varies. Figure 

3 illustrates the bifurcation diagram of the PWLCM map. 

 

 
 

Figure 3. The bifurcation diagram of the PWLCM map 

 

Lyapunov exponent 

The Lyapunov exponent diagram of the PWLCM map is 

given in the following Figure 4: 

 

 
 

Figure 4. Lyapunov exponent of the PWLCM map 

 

2.2.3 The sine map 

The sine map [30] is another chaotic dynamical system, 

often used for its interesting properties in cryptography and 

chaotic simulation applications. It is based on a trigonometric 

function; the sine function is represented by the following 

expression: 

 

xn+1 = sin(axn) 
 

xn: represents the state of the system at iteration n. 

a: a control parameter that determines the chaotic behavior 

of the system. It is often chosen between 0 and 2 to observe 

chaotic behavior.sin is the trigonometric sine function. 

 

 

3. PROPOSED METHOD 

 

In this work, we present a new cryptographic system based 

on an improved version of the Hill cipher. This method uses a 
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large Hill matrix, reinforced by the integration of chaotic 

principles. Our study is organized around the following axes: 

Axis 1: Preparation and adaptation of the vector 

representing the original image (NM) 

Axis 2: Choice of the Hill matrix H 

Axis 3: Confusion phase 

Axis 4: Diffusion phase 

Axis 5: Decryption process 

 

3.1 Preparation and adaptation of the vector representing 

the original image of size (NM) 

 

3.1.1 Construction of two pseudo-random tables K and T 

From the sequences x and y, generated respectively by the 

logistic map and the PWLCM map, we construct two chaotic 

tables K and T of dimensions (3NM,4), whose coefficients 

belong to the ring Z/256Z. These tables are used in the fusion 

and diffusion steps of the encryption process. In addition, we 

also generate a binary control table B, of dimensions (3NM,2), 

according to the Algorithm 1 presented below: 

 
Algorithm 1. Generation of chaotic vectors 

//Generation of table K and T of size (3NM,4) 

𝐹𝑜𝑟 𝑖 = 0 𝑡𝑜 3𝑁𝑀-1 

𝐹𝑜𝑟 𝑗 = 0 𝑡𝑜 4 

𝐾(𝑖, 𝑗) = (𝑖𝑛𝑡)(𝑚𝑎𝑥(𝑥(𝑖), 𝑦(𝑖))  ∗ 108))%256  

T(𝑖, 𝑗) = (𝑖𝑛𝑡)(𝑚𝑎𝑥(2𝑥(𝑖), 3𝑦(𝑖))  ∗ 108))%256 

 

// Generation of the control table B of size (3NM, 2) 

𝐹𝑜𝑟 𝑖 = 0 𝑡𝑜 3𝑁𝑀-1 

If x(i) ≥ y(i) then  

B(i; 1) = 0  

else B(i; 1) = 1:  

end if 

If x(i) > y(2*i) then  

B(i; 2) = 0 

Else 

B(i; 2) = 1 

end if 

 

 
 

Figure 5. Vectorizatio 

 

3.1.2 Vectorization 

To reduce the correlation between adjacent pixels and 

increase the entropy, the original image is obscured by 

transforming it into a vector V of size 1 × 3 NM, as shown in 

the following Figure 5. 

The vector V is obtained by applying the following 

Algorithm 2. 

 
Algorithm 2. Switching to vector (V) 

For i = 0 to NM-1 

If B(i,1) = 0 Then 

V(3i) = Vb(i) ⊕ Inf(K(i,3); K(3i,2) ) 

V(3i +1) = Vr(i) ⊕ Sup(K(i+2,4); K(3i,1) ) 

V(3i + 2) = Vg(i) ⊕ Sup (K(2i+3); K(2i,3) ) 

Else 

V(3i) = Vg(i) ⊕ Inf(K(3i;3); K(2i,1) ) 

V(3i + 1) = Vb(i) ⊕ Sup(K(2i,2); K(2i,3) ) 

V(3i + 2) = Vr(i) ⊕ Sup (K(i,1); K(2i,2) ) 

End if 

Next i 
 

We can consider this first step as a lightweight encryption, 

safe from any statistical attack. However, a second round 

needs to be introduced to ensure that the system is protected 

against differential attacks. 

 

3.1.3 Partitioning the vector v into blocks of size (1 × 3R) 

The choice of 3R is explained by the fact that the Hill matrix 

that will be used during encryption is of dimension 3R. This 

size allows a combination to be made with the vector U, of 

dimension (1×3RS), and the Hill matrix, of dimension 

(3R×3R), in order to perform the encryption. 

The vector V is subdivided into two subvectors: 

-A vector U of dimension (13RS) 

-A vector W of size (1L). 

With: 

L = (3NM % 3R) 

S = Int (3NM/3R) 

S is the number of blocks of size 3R and L is the size of the 

vector W to be amputated. This situation is illustrated in the 

following Figure 6. 

 

 
 

Figure 6. Image adaptation 
 

3.2 Choosing the encryption matrix 
 

In this approach, we propose using a Hill matrix H of size 

9×9. To construct this matrix, we choose the matrices A1, B1, 

A2, and B2, each of size 3×3. And vector V representing the 

original image is divided into two subvectors: 

-U of size (1×9S) 

-The vector to be amputated W of size (1×L). 

Let us choose the elements of the matrices A1, B1, A2, and 

B2 from the pseudo-random arrays K and T. Using the 

following expressions for 0≤i≤2 and 0≤j≤2: 

 

aij = T( ∑(K(h, 2)%300, K(i, 3))

N

h=0

%5) 

aaij = K( ∑(T(h, 2)%300, K(i, 3))

N

h=0

%5) 

bij = T( ∑(K(h, 3)%300, T(i, 1))

N

h=0

%5) 

bbij = K( ∑(T(h, 4)%300, K(i, 2))

N

h=0

%5) 
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With aij, aaij, bij and bbij representing respectively the 

elements of matrices A1, A2, B1, and B2. 

Then the Hill matrix is expressed in the following form: 

 

H = M1  M2= (
I A1 O
O I B1
O O I

)  (
I O O
A2 I O
O B2 I

) 

 

3.3 Confusion phase 
 

3.3.1 Initialization vector 

Our encryption process initiates with a diffusion phase 

employing a (1×9) initialization vector P derived from the 

original image. This vector, generated through Algorithm 3, 

serves as the foundational cryptographic primitive for the 

subsequent diffusion operations. 

 
Algorithm 3. Construction of the initialization vector 

𝑷[𝟎] =0 

𝑭𝒐𝒓 𝒊 = 𝟏 𝒕𝒐 𝟑𝑁𝑀 

𝑷[𝟎] = 𝑷[𝟎]⊕ 𝑼[𝒊] 
𝑵𝒆𝒙𝒕 𝒊 
𝑷[𝟏] = 𝑷[𝟎]⊕ 𝑼[𝟏] 
𝑷[𝟐] = 𝑷[𝟏]⊕ 𝑼[𝟐] 
𝑷[𝟑] = 𝑷[𝟐]⊕ 𝑼[𝟑] 
𝑷[𝟒] = 𝑷[𝟑]⊕ 𝑼[𝟒] 
𝑷[𝟓] = 𝑷[𝟒]⊕ 𝑼[𝟓] 
𝑷[𝟔] = 𝑷[𝟓]⊕ 𝑼[𝟔] 
𝑷[𝟕] = 𝑷[𝟔]⊕ 𝑼[𝟕] 
𝑷[𝟖] = 𝑷[𝟕]⊕ 𝑼[𝟖] 

 

3.3.2 Modification of the first U0 block 

P is employed to transform the pixel values of the first 

image block by means of the following operations: 
 

U[0]=U[0]⊕P[0] 
U[1]=U[1]⊕P[1] 
U[2]=U[2]⊕P[2] 
U[3]=U[3]⊕P[3] 
U[4]=U[4]⊕P[4] 
U[5]=U[5]⊕P[5] 
U[6]=U[6]⊕P[6] 
U[7]=U[7]⊕P[7] 
U[8]=U[8]⊕P[8] 

 

3.3.3 Generation of a pseudo-random translation vector Vc 

To avoid the linearity problem during encryption, we create 

a pseudo-random vector Vc using the following Algorithm 4: 
 

Algorithm 4. Construction of translation vector 

For i = 0 to NM-1 

If B(i,2) = 0 Then 

Vc(i) = K(i;2) ⊕ K(i,3) 

Else 

Vc(i) = T(i;2) ⊕ T(i,3)  

End If 

Next i 

 

Each block Ui of size (19) is subdivided into three sub-

blocks of size (13). as shown in Figure 7. 

 

Ui= (

X0
X1
X2

) the i block of the original image. 

Ci =(

Y0

Y1

Y2

) the i block of the encrypted image. 

Vc(i) represents block i of Vc, composed of 9 elements. 

With X0, X1, X2, Y0, Y1 et Y2 are sub-blocks of size 3 each. 

 

 
 

Figure 7. Subdivision of each block i into three sub-blocks of 

size 3 

 

Then:  

 

Ci = (HUi) ⊕ Vc(i) = (M1(M2Ui))⊕Vc(i) 

= (M1  ((
I O O

A2 I O

O B2 I

)  (

X0

X1

X2

)  )) ⊕Vc(i)  

= (M1  (

X0

A2X
0
+ X1

B2X
1
+ X2

)) ⊕Vc(i) 

 

So: 

 

(

Y0

Y1

Y2

)=((
I A1 O

O I B1

O O I

)   (

X0

A2X
0
+ X1

B2X
1
+ X2

) )⊕

(

 
 
 
 
 
 
 

Vc[9i]

Vc[9i+1]

Vc[9i+2]

Vc[9i+3]

Vc[9i+4]

Vc[9i+5]

Vc[9i+6]

Vc[9i+7]

Vc[9i+8])

 
 
 
 
 
 
 

 

= (

X0+A1A2X0+A1X1

A2X
0
+X1+B1B2X1+B1X2

B2X
1
+ X2

)⊕

(

 
 
 
 
 
 
 

Vc[9i]

Vc[9i+1]

Vc[9i+2]

Vc[9i+3]

Vc[9i+4]

Vc[9i+5]

Vc[9i+6]

Vc[9i+7]

Vc[9i+8])

 
 
 
 
 
 
 

 

 

3.4 Diffusion phase 

 
Algorithm 5. Diffusion process 

For i = 0 … S-1 

(

 
 
 
 
 
 
 

U[9(i + 1)]

U[9(i + 1) + 1]

U[9(i + 1) + 2]

U[9(i + 1) + 3]

U[9(i + 1) + 4]

U[9(i + 1) + 5]

U[9(i + 1) + 6]

U[9(i + 1) + 7]

U[9(i + 1) + 8])

 
 
 
 
 
 
 

=  

(

 
 
 
 
 
 
 

U[9(i + 1)]

U[9(i + 1) + 1]

U[9(i + 1) + 2]

U[9(i + 1) + 3]

U[9(i + 1) + 4]

U[9(i + 1) + 5]

U[9(i + 1) + 6]

U[9(i + 1) + 7]

U[9(i + 1) + 8])

 
 
 
 
 
 
 



(

 
 
 
 
 
 
 

Y[9i]

Y[9i + 1]

Y[9i + 2]

Y[9i + 3]

Y[9i + 4]

Y[9i + 5]

Y[9i + 6]

Y[9i + 7]

Y[9i + 8])

 
 
 
 
 
 
 

 

 

By adopting the CBC (Cipher Block Chaining) mode, the 
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diffusion phase in the encryption process significantly 

improves security. Each plaintext block is combined with the 

previous ciphertext block using an XOR operation. This step 

can be described and implemented using the following 

Algorithm 5. 

Diffusion creates a dependency between blocks, making the 

cipher more resistant to differential attacks. Figure 8 illustrates 

the different steps in the U(19S) vector encryption process. 

 

 
 

Figure 8. Encryption process 

 

3.5 Encryption process of W(1×L) 
 

The amputated vector is encrypted using the XOR operator, 

using the following Algorithm 6: 

 
Algorithm 6. Encryption of the amputated vector 

For i=0 to L-1: 

Z (i)= W( i )  K( N +i ) 

End For 

 

The encrypted image is represented as a vector Yc 

(1×3NM), formed by the concatenation of Y and Z based on 

Algorithm 7. 

 
Algorithm 7. Construction of the encrypted image vector 

For i=0 to 3RS-1 

Yc[i]=Y[i] 

Next i 

For i= 0 to l-1 

Yc[i+3RS]=Z[i] 

Next i 
 

Figure 9 illustrates the vector Yc and the corresponding 

encrypted image, obtained by the concatenation of the vectors 

Y(1×9S) and Z(1×L), representing respectively the encryption 

of the vectors U(1×9S) and W(1×9S).  

 

 
 

Figure 9. Construction of the encrypted image 

3.6 Decryption process 

 

Decryption takes place in the following steps: 

-Load the encrypted image 

-Transform the image into a row vector of dimensions 

1×3NM 

-Generating the Chaotic sequences.- 

Find the inverse of H, noted as H⁻¹ 

Let us calculate H-1 the inverse matrix of the matrix H. 

H=M1  M2 So H−1= M2
−1 M1

−1 

We find: 

 

H-1 = (
I 0 O

-A2 I O

B2A2 -B2 I

) (
I -A1 A1B1

O I -B1

O O I

)  

= (

I -A1 A1B1

-A2 A2A1+I -A2A1B1-B1

B2A2 -B2A2A1-B2 B2A2A1B1+B2B1+I

) mod 256 

 

 

4. RESULTS AND DISCUSSION 

 

To validate the effectiveness of our cryptosystem, a series 

of tests were conducted on a collection of 50 standard images 

with varying resolutions, and the results were consistently 

positive. 

 

4.1 Visual test 

 

We present in Figure 10 the results for four iconic images 

used in image cryptography. Visually, the encrypted images 

differ completely from the original images and do not reveal 

any information or Similarity. 

 

4.2 Key space 

 

The key space should be as large as possible, ideally larger 

than 2100. In our approach, two initial conditions x0 and y0, as 

well as two parameters μ1 and μ2, are encoded on 32 bits, 

providing a total key space of 2128, much larger than 2100. 

 

Number of possible matrices 

Matrices A1 and B1, each 3×3 in size, contain 9 elements 

that can take values between 0 and 255. Therefore: 

The number of possible combinations for the elements of 

matrix A1 is: 2569 = (28)9 = 272. 

Similarly, the number of possible combinations for matrix 

B1 is also: 272. 

Thus, the total number of combinations for matrix M1 

formed from A1 and B1 is: 272  272 = 2144. 

Similarly, matrix M2, constructed from matrices A2 and 

B2, also admits :2144 possible combinations. 

Consequently, the number of possible matrices for matrix H 

results from the two matrices M1 and M2: 2144  2144 = 2288. 

Consequently, the total number of possible configurations 

for matrix H, resulting from the combination of the two 

matrices M1 and M2, is: 2144  2144= 2288. 

Note: 

If we use a matrix of size (12×12), the total number of 

possible matrices is equal to 2384. 

This demonstrates the robustness of the method against 

brute force attacks, making any attempt at exhaustive 

exploration practically impossible. 
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Figure 10. Visual test 
 

 

 
 

Figure 11. Key sensitivity 

 

4.3 Key sensitivity 
 

Our encryption system leverages two widely-recognized 

chaotic maps, selected for their cryptographic suitability and 

extreme sensitivity to initial conditions. As demonstrated in 

Figure 11, this characteristic guarantees the robust key 

responsiveness central to our security approach. 

 

4.4 Correlation analysis 

 

To thwart statistical attacks, the encryption system must 

eliminate the inherent pixel correlation present in 

uncompressed images [31]. Our method achieves this by 

reducing adjacent-pixel correlation to statistically 

insignificant levels, quantified by: 

 

corrx y =
cov(x,y)

√D(x) x D(y)
 

 

Table 2 presents the values of the correlation coefficients in 

the three directions horizontal, vertical, and diagonal for 

several images encrypted using our proposed algorithm. 

The experimental results demonstrate that all evaluated 

image metrics converged to values approaching zero, 

statistically confirming the algorithm's resistance to known 

statistical cryptanalysis techniques. 

 

Table 2. Correlation coefficients 

 
Image V H D 

 

R -0.0001 0.0012 -0.0013 

G 0.0003 -0.0022 -0.0004 

B -0.0013 -0.0036 -0.0016 

 

R 0.0017 -0.0018 0.0032 

G 0.0003 0.0010 -0.0021 

B 0.0013 -0.0012 0.0008 

 

R -0.0004 0.0014 -0.0012 

G 0.0002 -0.0032 -0.0003 

B -0.0023 -0.0046 -0.0017 

 

R 0.0024 0.0026 -0.0012 

G -0.0008 -0.0021 0.0008 

B 0.0009 -0.0004 0.0001 

 

R 0.0002 -0.0017 0.0003 

G 0.0014 0.0019 -0.0009 

B 0.0005 0.0007 0.0015 

 

 
 

Figure 12. Histograms of encrypted images 

 

4.5 Histogram analysis 

 

As a fundamental analytical tool, the histogram visualizes 

pixel value distribution, enabling quantitative assessment of 

image contrast, brightness, and information content. A good 

encryption algorithm should scatter the values randomly or 

pseudo-randomly. The following Figure 12 shows the 

histograms of the encrypted images. 

We observe that the encrypted images display a uniform 

histogram, ensuring a balanced distribution of pixel gray 

levels. 

This result highlights the robustness of our approach against 

attacks based on histogram analysis. 

 

4.6 Entropy analysis 

 

As defined in Eq. (4), entropy [32] measures the level of 

random information contained within the ciphertext 

 

H(m) = −∑ p(m
i

255
i=0 ) log

2
 (p(m

i
)) (4) 
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with p(mi) is the probability of occurrence of the symbol of 

class mi in the encrypted data. The following Table 3 

illustrates the entropy of the original image as well as that of 

the encrypted image. 

 

Table 3. Entropy analysis 

 
Image Original Image Encrypted Image 

House 7.2718 7.9992 

Peppers 7.2978 7.9993 

Lena 7.2718 7.9994 

Baboun 7.6444 7.9993 

Airplane 6.5768 7.9992 

Boat 7.1913 7.9993 

Splash 7.2428 7.9993 

Cameraman 6.9046 7.9991 

 

4.7 NPCR and UACI 

 

To rigorously evaluate encryption quality, we employ two 

established metrics [33] NPCR measures the percentage of 

differing pixels between original and encrypted images, while 

UACI quantifies the average intensity variation. These are 

computed as: 

 

NPCR = ( 
1

NM
 ∑ D(i,j)NM

i,j=1  ) * 100 

with : D(i,j) = {
1if C1 (I,j)≠C2 (I,j)

0 if C1 (I,j)=C2 (I,j)
 

(5) 

 

UACI = ( 
1

NM
 ∑

ABS((C1 (i,j)-C2 (i,j))

255

NM
i,j=1  ) * 100 (6) 

 

Table 4. NPCR, UACI 

 
Images NPCR (%) UACI (%) 

House 99.64 33.45 

Baboun 99.62 33.51 

Lena 99.68 33.48 

Peppers 99.65 33.47 

Airplane 99.63 33.46 

Boat 99.62 33.43 

Splash 99.63 33.44 

Cameraman 99.62 33.47 

 

C1 and C2 represent two encrypted images derived from 

original images that differ by only a slight modification. Table 

4 presents the values obtained using our method. 

Our experimental results demonstrate NPCR and UACI 

values surpassing the critical thresholds of 99.6% and 33.4% 

respectively, confirming the algorithm's robust resistance 

against differential cryptanalysis attacks. 

 

4.8 Avalanche effect 

 

Following cryptographic best practices [34], we evaluate 

the avalanche characteristic using the standardized metric AE, 

where optimal encryption demands that single-bit input 

changes affect approximately 50% of output bits. The precise 

calculation is: 

 

AE= 
Number of changed bits

Total number of bits in encrypted image
 (7) 

 

The following Table 5 shows the different results. 

 

Table 5. Avalanche analysis 

 
Images Avalanche Effect (%) 

House 50.33 

Baboun 50.02 

Lena 52.41 

Peppers 50.12 

Airplane 49.63 

Boat 50.03 

 

All observed values exceed 50%. Therefore, our system is 

resistant to any known attack. 

 
4.9 Comparison 

 

Table 6 presents a comprehensive performance comparison 

between our method and existing techniques. 

The results obtained demonstrate the robustness and 

effectiveness of our approach. However, some limitations 

remain, particularly for real-time use. Indeed, encryption 

based on large invertible pseudo-random matrices requires 

significant computing resources, which slows down 

processing. It is therefore difficult to achieve the speed 

required for encrypting live videos or images. We plan to 

optimize this system in our future work. 
 

 

Table 6. Comparison with other approaches 

 
Parameter Image Our Approach Ref. [35] Ref. [36] Ref. [16] 

Entropy 

House 7.9992 7.9988 --- --- 

Baboun 7.9993 --- 7.9987 7.9993 

Lena 7.9994 7.9996 7.9991 7.9993 

NPCR 

House 99.64 99.61 --- --- 

Baboun 99.62 --- 99.63 99.61 

Lena 99.68 99.74 99.57 99.61 

UACI 

House 33.45 33.65 --- --- 

Baboun 33.51 --- 33.17 33,46 

Lena 33.48 33.52 33.35 33,46 

Vertical Correlation 

House 0.0005 --- --- --- 

Baboun 0.0008 --- -0.0002 -0009 

Lena -0.0008 --- -0.0040 0.00045 

 

 

5. CONCLUSION 

 

In this article, we employed a large invertible square matrix, 

which is derived from the multiplication of two block 

triangular matrices—one upper and one lower. After 

vectorizing and adapting the original image, we implemented 

1119



 

confusion and diffusion mechanisms to initiate the encryption 

process. The results of various tests conducted on standard 

images using a 9×9 Hill matrix demonstrate the robustness of 

our approach, showing strong resistance to known attacks. 

 

 

REFERENCES  

 

[1] Dartois, P., Leroux, A., Robert, D., Wesolowski, B. 

(2024). SQISignHD: New dimensions in cryptography. 

In Annual International Conference on the Theory and 

Applications of Cryptographic Techniques, pp. 3-32. 

https://doi.org/10.1007/978-3-031-58716-0_1 

[2] Thabit, F., Can, O., Aljahdali, A.O., Al-Gaphari, G.H., 

Alkhzaimi, H.A. (2023). Cryptography algorithms for 

enhancing IoT security. Internet of Things, 22: 100759. 

https://doi.org/0.1016/j.iot.2023.100759 

[3] Kaur, M., AlZubi, A.A., Walia, T.S., Yadav, V., Kumar, 

N., Singh, D., Lee, H.N. (2023). EGCrypto: A low-

complexity elliptic galois cryptography model for secure 

data transmission in IoT. IEEE Access, 11: 90739-90748. 

https://doi.org/10.1109/ACCESS.2023.3305271 

[4] Döttling, N., Kolonelos, D., Lai, R.W., Lin, C., 

Malavolta, G., Rahimi, A. (2023). Efficient laconic 

cryptography from learning with errors. In Annual 

International Conference on the Theory and Applications 

of Cryptographic Techniques, pp. 417-446. 

https://doi.org/10.1007/978-3-031-30620-4_14 

[5] JarJar, A. (2022). Vigenere and genetic cross-over acting 

at the restricted ASCII code level for color image 

encryption. Medical & Biological Engineering & 

Computing, 60(7): 2077-2093. 

https://doi.org/10.1007/s11517-022-02566-4 

[6] Iqbal, N., Hussain, I., Khan, M.A., Abbas, S., Yousaf, S. 

(2023). An efficient image cipher based on the 1D 

scrambled image and 2D logistic chaotic map. 

Multimedia Tools and Applications, 82(26): 40345-

40373. https://doi.org/10.1007/s11042-023-15037-1 

[7] Alawida, M. (2023). A novel chaos-based permutation 

for image encryption. Journal of King Saud University-

Computer and Information Sciences, 35(6): 101595. 

https://doi.org/10.1016/j.jksuci.2023.101595 

[8] Qobbi, Y., Abid, A., Jarjar, M., El Kaddouhi, S., Jarjar, 

A., Benazzi, A. (2023). Adaptation of a genetic operator 

and a dynamic S-box for chaotic encryption of medical 

and color images. Scientific African, 19: e01551. 

https://doi.org/10.1016/j.sciaf.2023.e01551 

[9] Kattass, M., Rrghout, H., Jarjar, M., Jarjar, A., Gmira, F., 

Benazzi, A. (2024). Chaotic image encryption using an 

improved vigenère cipher and a crossover operator. In 

Computing, Internet of Things and Data Analytics. 

ICCIDA 2023, pp. 181-191. https://doi.org/10.1007/978-

3-031-53717-2_17 

[10] Erondu, U.I., Asani, E.O., Arowolo, M.O., Tyagi, A.K., 

Adebayo, N. (2023). An encryption and decryption 

model for data security using vigenere with advanced 

encryption standard. IGI Global, 141-159. 

https://doi.org/10.4018/978-1-6684-5741-2.ch009 

[11] Putra, N.B., Andika, B.C., Purba, A.D., Ridwan, M. 

(2023). Implementasi Sandi Vigenere Cipher dalam 

Mengenkripsikan Pesan. JOCITIS-Journal Science 

Infomatica and Robotics, 1(1): 42-50. 

[12] El Bourakkadi, H., Chemlal, A., Tabti, H., Kattass, M., 

Jarjar, A., Benazzi, A. (2024). Improved Vigenere 

approach incorporating pseudorandom affine functions 

for encrypting color images. International Journal of 

Electrical and Computer Engineering (IJECE), 14(3): 

2684. 

[13] Chemlal, A., Tabti, H., El Bourakkadi, H., Rrghout, H., 

Jarjar, A., Benazzi, A. (2024). DNA-level action 

accompanied by Vigenere using strong pseudo random 

S-box for color image encryption. Multimedia Tools and 

Applications, 1-32. https://doi.org/10.1007/s11042-024-

19774-9 

[14] Tabti, H., Abid, A., Jarjar, M., Jarjar, A., Najah, S., 

Zenkouar, K. (2024). A Feistel Network Followed by a 

Bitwise Crossover for Image Encryption. In International 

Conference on Digital Technologies and Applications, 

288-297. https://doi.org/10.1007/978-3-031-68650-4_28 

[15] San Jose, C.C.G., Lazaro Jr, S.G. (2020). NHAF-512: 

New hash algorithm applying feistel cipher structure. 

International Journal, 8(8). 

https://doi.org/10.30534/ijeter/2020/89882020 

[16] Abid, A., Jarjar, M., Kattass, M., Rrghout, H., Jarjar, A., 

Benazzi, A. (2024). Genetic algorithm using feistel and 

genetic operator acting at the bit level for images 

encryption. International Journal of Safety & Security 

Engineering, 14(1). 

https://doi.org/10.18280/ijsse.140102 

[17] Rrghout, H., Kattass, M., Benazzi, N., Jarjar, M., Jarjar, 

A., Benazzi, A. (2024). Image encryption using hill 

cipher under a chaotic vector's control. In International 

Conference on Digital Technologies and Applications, 

298-309. https://doi.org/10.1007/978-3-031-68650-4_29 

[18] Naim, M., Pacha, A.A. (2023). A novel image encryption 

algorithm based on advanced hill cipher and 6D 

hyperchaotic system. International Journal of Network 

Security, 25(5): 829-840. 

https://doi.org/10.6633/IJNS.202309 25(5).13) 

[19] Lone, M.A., Qureshi, S. (2023). Encryption scheme for 

RGB images using chaos and affine hill cipher technique. 

Nonlinear Dynamics, 111(6): 5919-5939. 

https://doi.org/10.1007/s11071-022-07995-2 

[20] Mfungo, D.E., Fu, X., Wang, X., Xian, Y. (2023). 

Enhancing image encryption with the Kronecker xor 

product, the Hill Cipher, and the Sigmoid Logistic Map. 

Applied Sciences, 13(6): 4034. 

https://doi.org/10.3390/app13064034 

[21] Gietaneh, M.D., Akele, T.B. (2023). Enhancing the Hill 

cipher algorithm and employing a one time pad key 

generation technique. Abyssinia Journal of Engineering 

and Computing, 3(1): 1-10. 

https://doi.org/10.20372/ajec.2023.v3.i1.808 

[22] Billore, V., Patel, N. (2023). Cryptography utilizing the 

affine-hill cipher and extended generalized fibonacci 

matrices. Electronic Journal of Mathematical Analysis 

and Applications, 11(2): 1-12. 

[23] Zheng, Y., Huang, Q., Cai, S., Xiong, X., Huang, L. 

(2025). Image encryption based on novel Hill Cipher 

variant and 2D-IGSCM hyper-chaotic map. Nonlinear 

Dynamics, 113(3): 2811-2829. 

https://doi.org/10.1007/s11071-024-10324-4 

[24] Haryono, W. (2020). Comparison encryption of how to 

work caesar cipher, hill cipher, Blowfish and Twofish. 

Data Science: Journal of Computing and Applied 

Informatics, 4(2): 100-110. 

https://doi.org/10.32734/jocai.v4.i2-4004 

[25] Chilakala, H.S., Preeti, N. (2022). Advanced hill cipher 

1120



 

hybrid cryptography model. In 2022 IEEE North 

Karnataka Subsection Flagship International Conference 

(NKCon), Vijaypur, India, pp. 1-5. 

https://doi.org/10.1109/NKCon56289.2022.10126741 

[26] Wang, Y., Liu, S., Khan, A. (2023). On fractional 

coupled logistic maps: Chaos analysis and fractal control. 

Nonlinear Dynamics, 111(6): 5889-5904. 

https://doi.org/10.1007/s11071-022-08141-8 

[27] Nandi, S. (2024). Bifurcation and chaotic behavior of 

two parameter family of generalized logistic maps. Adv. 

Fixed Point Theory, 14: Article-ID 20. 

https://scik.org/index.php/afpt/article/view/8562. 

[28] He, D., Parthasarathy, R., Li, H., Geng, Z. (2023). A fast 

image encryption algorithm based on logistic mapping 

and hyperchaotic Lorenz system for clear text 

correlation. IEEE Access, 11: 91441-91453. 

https://doi.org/10.1109/ACCESS.2023.3305637 

[29] Daoui, A., Mao, H., Yamni, M., Li, Q., Alfarraj, O., Abd 

El-Latif, A.A. (2023). Novel integer shmaliy transform 

and new multiparametric piecewise linear chaotic map 

for joint lossless compression and encryption of medical 

images in IoMTs. Mathematics, 11(16): 3619. 

https://doi.org/10.3390/math11163619 

[30] Demir, F.B., Tuncer, T., Kocamaz, A.F. (2020). A 

chaotic optimization method based on logistic-sine map 

for numerical function optimization. Neural Computing 

and Applications, 32: 14227-14239. 

https://doi.org/10.1007/s00521-020-04815-9 

[31] Kumar, S., Sharma, D. (2024). A chaotic based image 

encryption scheme using elliptic curve cryptography and 

genetic algorithm. Artificial Intelligence Review, 57(4): 

87. https://doi.org/10.1007/s10462-024-10719-0 

[32] Erkan, U., Toktas, A., Lai, Q. (2023). 2D hyperchaotic 

system based on Schaffer function for image encryption. 

Expert Systems with Applications, 213: 119076. 

https://doi.org/10.1016/j.eswa.2022.119076 

[33] Sheikh, A., Singh, K.U., Jain, A., Chauhan, J., Singh, T., 

Raja, L. (2024). Lightweight symmetric key encryption 

to improve the efficiency and safety of the IoT. In 2024 

IEEE International Conference on Contemporary 

Computing and Communications (InC4), Bangalore, 

India, pp. 1-5. 

https://doi.org/10.1109/InC460750.2024.10649289 

[34] Mohammad Shah, I.N., Ismail, E.S., Samat, F., Nek Abd 

Rahman, N. (2023). Modified generalized feistel 

network block cipher for the Internet of Things. 

Symmetry, 15(4): 900. 

https://doi.org/10.3390/sym15040900 

[35] Hraoui, S., Gmira, F., Abbou, M.F., Oulidi, A.J., Jarjar, 

A. (2019). A new cryptosystem of color image using a 

dynamic-chaos hill cipher algorithm. Procedia computer 

science, 148, 399-408. 

https://doi.org/10.1016/j.procs.2019.01.048 

[36] Ghazvini, M., Mirzadi, M., Parvar, N. (2020). A 

modified method for image encryption based on chaotic 

map and genetic algorithm. Multimedia Tools and 

Applications, 79(37): 26927-26950. 

https://doi.org/10.1007/s11042-020-09058-3

 

1121




