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In this work, we introduce a hybrid method that combines Long Short-Term Memory 

(LSTM) neural networks with Taylor Series Expansion (TSE) to solve high-dimensional 

Fredholm Integral Equations of the second kind (SFIEs). Specifically, we focus on systems 

with up to 10000 dimensions, which are common in fields like fluid dynamics, 

electromagnetics, and quantum mechanics. Traditional methods for solving these 

equations, such as discretization, collocation, and iterative solvers, face significant 

challenges in high-dimensional spaces due to their computational cost and slow 

convergence. LSTM networks approximate the solution functions, and Taylor Series 

Expansion refines the approximation, ensuring higher accuracy and computational 

efficiency. Numerical experiments demonstrate that the hybrid method significantly 

outperforms traditional approaches in both accuracy and stability. This method provides a 

promising approach to solving complex high-dimensional integral equations efficiently in 

scientific and engineering applications. 
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1. INTRODUCTION

Fredholm Integral Equations (FIEs) of the second kind are 

fundamental in a wide range of scientific disciplines, including 

fluid dynamics, electromagnetics, and quantum mechanics, 

where they describe systems involving unknown functions 

embedded within integrals. These equations are essential for 

modeling various physical phenomena, such as heat 

conduction, electromagnetic wave propagation, and wave 

scattering [1]. However, solving FIEs, particularly in high-

dimensional spaces, presents significant computational 

challenges due to the nonlinear nature of these equations. As 

the number of variables increases, obtaining accurate solutions 

becomes increasingly difficult with traditional numerical 

methods [2]. 

Traditional approaches for solving high-dimensional FIEs, 

such as discretization techniques (finite difference, finite 

element methods), collocation methods, and iterative 

solvers—encounter significant limitations as the problem 

dimensionality increases [3]. Discretization methods, although 

effective in lower-dimensional spaces, require a large number 

of grid points to approximate the solution, resulting in 

computationally expensive, large-scale matrices [4]. 

Collocation methods, which approximate the solution by 

evaluating integrals at specific points, suffer from exponential 

growth in the number of evaluation points as the number of 

dimensions increases [5]. Iterative approaches, such as the 

Nyström method, tend to converge slowly in high-dimensional 

spaces, requiring many iterations and prolonged 

computational time [6]. These limitations underscore the need 

for more efficient techniques capable of addressing the 

complexities of large-scale FIEs. 

Recent advancements in machine learning, particularly the 

use of Long Short-Term Memory (LSTM) networks, have 

shown promising potential for solving high-dimensional 

integral equations. LSTMs, a specialized form of recurrent 

neural networks (RNNs), are adept at capturing complex, 

nonlinear relationships in high-dimensional data, making them 

suitable candidates for solving Fredholm Integral Equations 

[7]. However, despite their ability to handle high-dimensional 

functions, LSTMs often struggle with precision, particularly 

in scientific applications where high accuracy is required [8]. 

This challenge necessitates the development of new 

methodologies that combine the strengths of machine learning 

and traditional numerical techniques. 

To overcome the limitations of LSTM networks, we 

propose a hybrid method that combines the power of LSTM 

networks with the precision of Taylor Series Expansion (TSE). 

The Taylor Series Expansion provides a reliable initial 

approximation of the solution, which is then iteratively refined 

by the LSTM network, improving both the accuracy and 

computational efficiency of the solution [9]. This hybrid 
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approach leverages the advantages of both techniques: LSTMs 

can handle high-dimensional data, while the Taylor series 

enhances the precision of the solution, leading to faster 

convergence and more accurate results. Preliminary 

experiments indicate that this hybrid approach significantly 

outperforms traditional methods in terms of accuracy and 

computational performance [10]. 

In addition to LSTM-based methods, Taylor Series 

Expansion (TSE) has been explored for solving FIEs. 

Huabsomboon et al. [11] explored Taylor-series expansion 

methods specifically for second-kind FIEs, showing their 

potential in solving these types of equations efficiently. 

Furthermore, Jiang and Xu [12] applied deep learning to solve 

oscillatory FIEs, presenting a deep learning-based approach 

for such problems. Zappala et al. [13] extended this by 

leveraging neural integral equations to learn integral operators, 

improving the capability of neural networks in solving 

complex integral equations. Moghaddam et al. [14] introduced 

an advanced physics-informed neural network with residuals, 

improving the accuracy of solutions for complex integral 

equations. Additionally, Lu et al. [15] proposed a neural 

network algorithm using sine-cosine basis functions and 

extreme learning machines for approximating solutions to 

various classes of Fredholm and Volterra integral equations. 

Kumar and Ravi Kanth [16] explored the use of tension splines 

in the computational study of time-dependent singularly 

perturbed parabolic partial differential equations, which share 

similarities with FIEs in terms of their complexity and solution 

methods. Saha Ray and Sahu [17] proposed numerical 

methods for solving second-kind Fredholm Integral 

Equations, contributing significantly to the body of work on 

these equations. Sabzevari [18] reviewed several numerical 

solution techniques for nonlinear Volterra-Fredholm integral 

equations, highlighting hybrid methods to improve solution 

accuracy and efficiency. Lastly, Afiatdoust et al. [19] 

introduced a hybrid-based numerical method for solving 

systems of mixed Volterra-Fredholm Integral Equations, 

offering a new approach to solving complex integral 

equations. Micula and Milovanović [20] also provided an in-

depth study on iterative processes and integral equations of the 

second kind, highlighting the mathematical foundations and 

methods for solving these types of equations efficiently.  

This paper introduces the hybrid LSTM-Taylor Series 

Expansion approach for solving high-dimensional FIEs. The 

structure of the paper is as follows: Section 2 provides an 

overview of traditional methods for solving FIEs. Section 3 

details the proposed hybrid method, including its 

mathematical foundations and implementation. Section 4 

presents numerical experiments comparing the performance of 

the hybrid method with traditional approaches. Finally, 

Section 5 concludes the paper, discussing the advantages, 

limitations, and potential future directions of this hybrid 

approach. 
 

 

2. METHODOLOGY 

 

2.1 Problem formulation 

 

Consider the system of Fredholm Integral Equations of the 

second kind: 

 

𝑓𝑖(𝑥) = 𝑔𝑖(𝑥) + 𝜆∑

𝑛

𝑗=1

∫
𝑏

𝑎

𝐾𝑖𝑗(𝑥, 𝑦)𝑓𝑗(𝑦)𝑑𝑦,   𝑖 = 1,2, … , 𝑛 

where, fi(x) are the unknown functions, gi(x) are known 

functions, Kij(x, y) is the kernel function, λ is a constant 

(scaling factor), and 𝑥, 𝑦 ∈ [𝑎, 𝑏] are the variables. 

The goal is to find the functions fi(x) that satisfy the above 

system of equations. 

 

2.2 Taylor Series Expansion (TSE) approach 

 

Taylor Series Expansion approach for solving a linear 

system of Fredholm integral equations of the second kind as a 

numerical method. This method reduces the system of integral 

equations to a linear system of ordinary differential equations. 

After including boundary conditions, this system reduces to a 

system of equations that can be solved easily by any usual 

methods. That study is an extension of the work presented in 

paper [21]. 

Consider the LSFIE2 defined by: 

 

(

𝑦1(𝑥)

𝑦2(𝑥)
⋮
𝑦𝑛(𝑥)

) = (

𝑓1(𝑥)

𝑓2(𝑥)
⋮
𝑓𝑛(𝑥)

)

+𝜆∫
1

0

(

 
 

𝑘1,1(𝑥, 𝑡) 𝑘1,2(𝑥, 𝑡) ⋯ 𝑘1,𝑛(𝑥, 𝑡)

𝑘2,1(𝑥, 𝑡) 𝑘2,2(𝑥, 𝑡) ⋯ 𝑘2,𝑛(𝑥, 𝑡)

⋮ ⋮ ⋮
𝑘𝑛,1(𝑥, 𝑡) 𝑘𝑛,2(𝑥, 𝑡) ⋯ 𝑘𝑛,𝑛(𝑥, 𝑡))

 
 
(

𝑦1(𝑡)

𝑦2(𝑡)
⋮
𝑦𝑛(𝑡)

)

 

 

Or 

 

𝑦𝑖(𝑥) = 𝑓𝑖(𝑥) + 𝜆∑
𝑛
𝑗=1 ∫

1

0
𝑘𝑖,𝑗(𝑥, 𝑡)𝑦𝑗(𝑡)𝑑𝑡  (1) 

 

where, i=1, 2, …, n and 0≤x≤1. 

A Taylor Series Expansion can be made for the solution of 

yj(t) in Eq. (1): 

 

𝑦𝑗(𝑡) = 𝑦𝑗(𝑥) + 𝑦𝑗
′(𝑥)(𝑡 − 𝑥) + ⋯+

1

𝑚!
𝑦𝑗
(𝑚)(𝑡 −

𝑥)𝑚 + 𝐸(𝑡)  
(2) 

 

where, E(t) is the error between yj(t) and its Taylor Series 

Expansion in Eq. (2), we use the first 𝑚 term of Eq. (2): 

 

𝑦𝑖(𝑥) = 𝑓𝑖(𝑥) + 𝜆∑
𝑛
𝑗=1 ∫

1

0
𝑘𝑖,𝑗(𝑥, 𝑡)∑

𝑚
𝑟=0

1

𝑟!
(𝑡 −

𝑥)𝑟𝑦𝑗
(𝑟)(𝑥)𝑑𝑡 + 𝜆 ∫

1

0
∑𝑛𝑗=1 𝑘𝑖,𝑗(𝑥, 𝑡)𝐸(𝑡)𝑑𝑡  

(3) 

 

We neglect the term containing E(t) that is 

𝜆 ∫
1

0
∑𝑛𝑗=1 𝑘𝑖,𝑗(𝑥, 𝑡)𝐸(𝑡)𝑑𝑡, then substituting Eq. (2) into Eq. 

(1), we get: 

 

(

𝑦1(𝑥)

𝑦2(𝑥)
⋮
𝑦𝑛(𝑥)

) ≃ (

𝑓1(𝑥)

𝑓2(𝑥)
⋮
𝑓𝑛(𝑥)

)

+𝜆∑

𝑚

𝑟=0

1

𝑟!
∫
1

0

(𝑡 − 𝑥)𝑟

(

 
 

𝑘1,1(𝑥, 𝑡) ⋯ 𝑘1,𝑛(𝑥, 𝑡)

𝑘2,1(𝑥, 𝑡) ⋯ 𝑘2,𝑛(𝑥, 𝑡)

⋮ ⋮
𝑘𝑛,1(𝑥, 𝑡) ⋯ 𝑘𝑛,𝑛(𝑥, 𝑡))

 
 

(

 
 
𝑦1
(𝑟)(𝑥)

𝑦2
(𝑟)(𝑥)

⋮

𝑦𝑛
(𝑟)(𝑥))

 
 
𝑑𝑡

 

(4) 

 

𝑦𝑖(𝑥) ≃ 𝑓𝑖(𝑥) 

+𝜆∑𝑛𝑗=1 ∑
𝑚
𝑟=0

1

𝑟!
𝑦𝑗
(𝑟)(𝑥) ∫

1

0
𝑘𝑖,𝑗(𝑥, 𝑡)(𝑡 − 𝑥)

𝑟𝑑𝑡  
(5) 

 

then, 
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𝑦𝑖(𝑥) − 𝜆 ∑
𝑛
𝑗=1 ∑

𝑚
𝑟=0

1

𝑟!
𝑦𝑗
(𝑟)(𝑥) [∫

1

0
𝑘𝑖,𝑗(𝑥, 𝑡)(𝑡 −

𝑥)𝑟𝑑𝑡] ≃ 𝑓𝑖(𝑥)  
(6) 

 

Eq. (6) becomes a linear system of (ODE) ordinary 

differential equations that we have to solve. For solving the 

linear system of (ODE) in Eq. (6), we need an appropriate 

number of boundary conditions. In order to construct boundary 

conditions, we first differentiate 𝑠 terms both sides of Eq. (1) 

with respect to x, that is: 

 

𝑦𝑖
(𝑠)(𝑥) = 𝑓𝑖

(𝑠)(𝑥) + 𝜆 ∑𝑛𝑗=1 ∫
1

0
𝑘𝑖,𝑗
(𝑠)(𝑥, 𝑡)𝑦𝑗

(𝑠)(𝑥)𝑑𝑡  

𝑖 = 1,2, … , 𝑛 
(7) 

 

where, 𝑘𝑖,𝑗
(𝑠)(𝑥, 𝑡) =

𝜕𝑘𝑖,𝑗
(𝑠)(𝑥,𝑡)

𝜕𝑥(𝑠)
, s=1, 2, …, m. 

Applying the mean value theorem for integral in Eq. (7), 

yields: 

 

𝑓𝑖
(𝑠)(𝑥) ≃ 𝑦𝑖

(𝑠)(𝑥) − 𝜆 [∑𝑛𝑗=1 ∫
1

0
𝑘𝑖,𝑗(𝑥, 𝑡)𝑑𝑡] 𝑦𝑗(𝑥)  (8) 

 

Now, the combination of Eq. (6) and Eq. (8) leads to: AY=F. 

The previous system (AY=F), is a linear system of algebraic 

equations (for more details see Appendix), this system can be 

solved analytically or numerically.  

 

2.2.1 Numerical example for solving LSFIE’2 using TSE 

Consider the following linear system of Fredholm Integral 

Equations of the second kind with the exact solutions (y1(x), 

y2(x)) = (x, x2). 

 

{
 
 

 
 𝑦1(𝑥) =

11

6
𝑥 −

11

15
− ∫

1

0

(𝑥 + 𝑡)𝑦1(𝑡)𝑑𝑡 − ∫
1

0

(𝑥 + 2𝑡2)𝑦2(𝑡)𝑑𝑡

𝑦2(𝑥) =
5

4
𝑥2 +

1

4
𝑥 −∫

1

0

𝑥𝑡2𝑦1(𝑡)𝑑𝑡 − ∫
1

0

𝑥2𝑡𝑦2(𝑡)𝑑𝑡

, 

 

Applying TSE to previous system, we get the following 

system: 

 

(

 
 
 
 
 
 
𝑥 +

3

2

1

3
− 𝑥2 𝑥 +

2

3
𝑥 +

2

3

1
3

2
− 𝑥 1 1

𝑥

3

𝑥

4
−
𝑥2

3
1 +

𝑥2

2
1 +

𝑥2

2
1

3

1

4
−
𝑥

3
𝑥 𝑥 )

 
 
 
 
 
 

(

 
 

𝑦𝑖(𝑥)

𝑦𝑖
′(𝑥)
⋮

𝑦𝑖
(𝑠)(𝑥)

)

 
 
=

(

 
 
 
 
 

11

6
𝑥 +

11

15
11

6
5

4
𝑥2 +

1

4
𝑥

5

2
𝑥 +

1

4 )

 
 
 
 
 

 

𝐴𝑌 = 𝐹 

 

This ordinary differential equations are solved 

approximately using the Gauss algorithm. A comparison of the 

approximate and exact solutions for y1(x) and y2(x), derived 

from Taylor Series Expansion (TSE), is shown in Table 1 and 

Figure 1 illustrates the approximation versus the exact solution 

for SFIE’2 using TSE. 

In traditional methods such as Taylor Series Expansion 

(TSE) for solving Fredholm Integral Equations of the second 

kind (FIE2), various limitations become evident, especially 

when dealing with high-dimensional or complex systems. 

These limitations are primarily related to issues such as 

computational complexity, slow convergence, and instability, 

which can hinder the effectiveness of TSE in these contexts. A 

detailed overview of these challenges is provided in Table 2, 

which summarizes the key drawbacks associated with 

traditional TSE approach. 

 

 
 

Figure 1. Approximation solutions vs exact solution of LSFIE’2 using TSE 
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Table 1. Approximate solutions of y1(x) and y2(x) vs exact solutions using TSE 

 

𝑥 Solution y1(x)  Solution y2(x) 

 Exact Approximate  Errorapp   Exact Approximate  Errorapp 

0 0.0000 0.5500 0.5500   0.0000 0.0000 0.0000 

0.1 0.1000 0.5867 0.4867   0.0100 0.0486 0.0386 

0.2 0.2000 0.6233 0.4233   0.0400 0.1085 0.0685 

0.3 0.3000 0.6600 0.3600   0.0900 0.1796 0.0896 

0.4 0.4000 0.6967 0.2967   0.1600 0.2621 0.1021 

0.5 0.5000 0.7333 0.2333   0.2500 0.3558 0.1058 

0.6 0.6000 0.7700 0.1700   0.3600 0.4608 0.1008 

0.7 0.7000 0.8067 0.1067   0.4900 0.5771 0.0871 

0.8 0.8000 0.8433 0.0433   0.6400 0.7047 0.0647 

0.9 0.9000 0.8800 0.0200   0.8100 0.8436 0.0336 

1 1.0000 0.9167 0.0833   1.0000 0.9937 0.0063 

 

Table 2. Limitations of traditional methods (TSE) for solving a system of Fredholm Integral Equations of the second kind 

(FIE’2) 

 

Limitation Description Example in Numerical Solution 

Computational Complexity 

As the number of unknown functions increases, 

the system becomes larger, resulting in higher 

computational costs. 

The inclusion of higher-order Taylor series terms 

significantly increases the computational burden, as seen in 

the growing size of the system in the numerical example. 

Accuracy-Efficiency Trade-off 

 Increasing the number of Taylor series terms 

improves the accuracy but also raises the 

computational effort. 

 The error reduces with more terms, but the required 

computational time also grows, as illustrated by the 

increasing error for larger 𝑥 in the numerical results. 

Error Propagation 

Higher-order Taylor expansions introduce error 

accumulation, which can reduce the reliability of 

the solution. 

The error increases as higher-order terms are added, 

particularly visible in the growing discrepancy between 

exact and approximate solutions for both 𝑦1(𝑥) and 𝑦2(𝑥). 

Limited for Nonlinear Systems 

TSE is less effective for nonlinear Fredholm 

Integral Equations, which often require more 

specialized techniques. 

Nonlinear kernels or functions in the Fredholm equation 

would necessitate more complex methods, which TSE may 

not handle efficiently. 

Inefficiency in Large-Scale 

Problems 

TSE becomes inefficient as the system size and 

complexity increase, especially in high-

dimensional problems. 

As the number of unknown functions increases in the 

numerical example, TSE becomes computationally 

impractical for large-scale problems. 

 
 

3. SOLVING HIGH-DIMENSIONAL SFIES’2 USING 

LONG SHORT-TERM MEMORY (LSTM) APPROACH 

 

3.1 Formulate the problem 

 

High-dimensional system of Fredholm Integral Equations 

of the second kind is given by:  

 

𝑓𝑖(𝑥𝑗) = 𝑔𝑖(𝑥𝑗) + 𝜆 ∑
𝑁
𝑘=1 ∫

𝑏

𝑎
𝐾𝑖𝑗(𝑥𝑗 , 𝑦𝑘)𝑓𝑗(𝑦𝑘) 𝑑𝑦,    𝑖 =

1,2, … , 𝑛  

 

here, gi(xj): Known function; Kij(xj, yk): Known kernel; fj(yk): 

Unknown function to be solved.  

 

3.2 Discretization 

 

The integral equation is first discretized using numerical 

quadrature methods (e.g., Gaussian quadrature): 

 

𝑓𝑖(𝐱) ≈ 𝑔𝑖(𝐱) + 𝜆∑𝑗 𝐾𝑖(𝐱, 𝐲𝑗) ⋅ 𝐮(𝐲𝑗)Δ𝑦𝑗 .  

 

where: 

• 𝒙 : Points where the function 𝑓𝑖(𝐱)  is evaluated, 

typically in the domain of the problem. 

• 𝑓𝑖(𝐱) : The value of the unknown function at the 

discretized points 𝐱. 

• 𝑔𝑖(𝐱) : Known function (or boundary condition) 

evaluated at the points 𝐱. 

• 𝜆: Constant, possibly scaling the integral term (e.g., 

related to physical properties such as resistance or 

conductivity). 

• 𝐾𝑖(𝐱, 𝐲𝑗): Kernel function describing the interaction 

between 𝐱 and 𝐲𝑗. 

• 𝐲𝑗 : Discretized integration points, chosen by the 

quadrature rule (e.g., Gaussian quadrature). 

• 𝐮(𝐲𝑗): Unknown solution at the discretized points 𝐲𝑗. 

• Δ𝑦𝑗: Spacing between quadrature points or the step 

size in the discretization process. 

 

3.3 Training data 

 

To train the LSTM network, synthetic training data is 

generated by sampling the points x and y from the domain. The 

process is as follows: 
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• Known Analytical Functions: We select known analytical 

test cases for fi(x), such as polynomials, exponentials, or 

trigonometric functions. These known functions are chosen 

because their exact forms allow comparison with the LSTM 

model outputs. 

• Integral Equation Evaluation: For each of these test 

functions, we solve the Fredholm Integral Equation using 

numerical methods (such as Gaussian quadrature) to evaluate 

the integrals. The resulting fi(xj) values form the training data. 

• Discretization: We discretize the domain [a, b] into a set 

of points, solving the equation over these points and pairing 

the resulting fi(xj) values with their corresponding input points 

x and y. 

• Noise and Perturbations: To simulate real-world scenarios, 

random noise is added to the training data to prevent over-

fitting and improve the generalization capability of the model. 

 

 

• LSTM Training: The generated pairs (x, fi(x)) are used to 

train the LSTM model, which learns the mapping between x 

and fi(x).  

 

3.4 LSTM network architecture 

 

The LSTM model is designed to approximate u(y): 

• Input Layer: Accepts a vectorized form of x, y, and Ki(x, 

y). Each input feature is normalized to ensure consistent 

scaling for effective learning.  

• Embedding Layer: For higher-dimensional input data, an 

optional embedding layer can reduce dimensionality while 

preserving essential information.  

• Recurrent Layers: Multiple LSTM layers are stacked to 

model the complex dependencies in the integral equation.  

• Dropout Regularization: Dropout layers prevent 

overfitting by randomly deactivating a fraction of neurons 

during training.  

• Fully Connected Layers: A dense neural network maps 

the output of the recurrent layers to the target u(y).  

• Output Layer: Outputs the predicted u(y), which can be 

a scalar or vector.  

• Activation Functions: ReLU or tanh are used for 

nonlinearity; linear activation is applied in the output layer.  

The architecture of the LSTM model is illustrated in Figure 

2, which provides a detailed visualization of the network's 

structure. 

 

 
 

Figure 2. LSTM model architecture 
 

3.5 Loss function 

 

The loss function is defined based on the residual of the 

integral equation:  

Loss = ∑𝑖 ‖𝑓𝑖(𝐱) − 𝑔𝑖(𝐱) − 𝜆∑𝑗 𝐾𝑖(𝐱, 𝐲𝑗) ⋅ 𝑢(𝐲𝑗)Δ𝑦𝑗‖
2
.  

 

3.6 Testing and validation 

 

Evaluate the trained LSTM on test data and compare its 

predictions for u(y) against analytical or numerical solutions. 

 

Algorithm 1: Solving High-Dimensional SFIEs ‘2 using 

LSTM. 

Initialize Parameters: Set the number of iterations N. 

Define g0(x)=g(x). 

n=0 to N-1 

Step 1: Compute an approximation: 

 

𝑓𝑛(𝑥) = 𝑔𝑛(𝑥) + 𝜆∫
𝐷

𝐾(𝑥, 𝑧)𝑓𝑛(𝑧) 𝑑𝑧 

 

Step 2: Train the LSTM to solve the FIE and approximate 

fn(x): 

 

𝑓𝑛(𝑥) = LSTM(𝑥;𝐖, 𝐁𝑛) 
 

Step 3: Update gn+1(x) for the next iteration: 

 

𝑔𝑛+1(𝑥) = 𝑔(𝑥) + 𝜆∫
𝐷

𝐾(𝑥, 𝑧)(𝑔(𝑓𝑛(𝑧)) − 𝑓𝑛(𝑧)) 𝑑𝑧 

 

Step 4: Increment n: n←n+1 

Output: The final approximation f(x) for the Fredholm 

Integral Equation. 

 

 

4. SOLVING HIGH-DIMENSIONAL SFIES’2 USING 

HYBRID LSTM-TSE APPROACH 

 

4.1 Formulate the problem 

 

High-dimensional Fredholm Integral Equations of the 

Second Kind are given by:  

 

𝑓𝑖(𝑥𝑗) = 𝑔𝑖(𝑥𝑗) + 𝜆∑

𝑁

𝑘=1

∫
𝑏

𝑎

𝐾𝑖𝑗(𝑥𝑗 , 𝑦𝑘)𝑓𝑗(𝑦𝑘)𝑑𝑦, 

𝑖 = 1,2, … , 𝑛 

 

where, fi(xj) are the unknown functions we need to solve for; 

gi(xj) are known functions; Kij(xj, yk) are the kernel functions; 

λ is a constant.  

 

4.2 Taylor Series Expansion approximation 

 

In order to approximate the solution of the Fredholm 

Integral Equation using a hybrid LSTM and Taylor series 

Expansion, we utilize a Taylor Series Expansion around a 

known point, say x0, for the unknown functions fj: 

 

𝑓𝑗(𝑦𝑘) ≈ 𝑓𝑗(𝑥0) +
𝑑𝑓𝑗

𝑑𝑥
(𝑥0)(𝑦𝑘 − 𝑥0) +

1

2

𝑑2𝑓𝑗

𝑑𝑥2
(𝑥0)(𝑦𝑘

− 𝑥0)
2 +⋯ 

 

This approach enables us to approximate the integrals more 

effectively and reduce computational complexity. 
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4.3 Discretization 

 

The integral in the Fredholm equation is discretized using a 

numerical quadrature method such as Gaussian quadrature. 

However, we also incorporate Taylor Series Expansions for 

each term in the integral to achieve more accurate solutions. 

The discretized equation becomes: 

 

𝑓𝑖(𝐱) ≈ 𝑔𝑖(𝐱) + 𝜆∑

𝑗

𝐾𝑖(𝐱, 𝐲𝑗) [𝑓𝑗(𝑥0) +
𝑑𝑓𝑗

𝑑𝑥
(𝑥0)(𝑦𝑗 − 𝑥0)

+ ⋯ ]Δ𝑦𝑗 

 

4.4 Training data 

 

The synthetic training data for the Hybrid LSTM-TSE 

approach is generated by: 

• Known Analytical Functions: Similar to the LSTM 

approach, we use known analytical test functions for fi(x), such 

as polynomials, exponentials to generate synthetic data. 

• Integral Equation Evaluation: For each test function, the 

Fredholm Integral Equation is solved numerically by applying 

quadrature methods and generating data points. 

• Taylor Series Expansion: As in the LSTM approach, 

Taylor Series Expansions are used to generate an initial 

approximation of the unknown functions. These 

approximations help improve the LSTM’s performance. 

• Discretization: The domain is discretized, and the equation 

is solved over these points to generate input-output pairs for 

the LSTM model. 

• Noise and Perturbations: Noise is introduced into the 

training data to simulate real-world uncertainties and improve 

the robustness of the model. 

• LSTM Training: The LSTM model is trained on these 

synthetic data pairs (x, fi(x)) and incorporates Taylor series 

terms to iteratively refine the solution. 

 

4.5 Hybrid LSTM-TSE model 

 

The model is trained as follows:  

 

𝑓𝑗(𝑦𝑘) ≈ LSTM(𝑦𝑘;𝐖, 𝐁𝑗) +

TaylorSeriesExpansionTerms(𝑦𝑘)  
 

where, the LSTM model predicts the unknown function fj(yk), 

and the Taylor Series Expansion accounts for the variations in 

the values of fj at different points. 

 

4.6 Loss function 

 

The loss function is defined as the residual error between 

the actual solution and the predicted solution, incorporating 

the Taylor series approximation. For each equation i, we 

minimize:  

 

Loss = ∑𝑖 ‖𝑓𝑖(𝐱) − 𝑔𝑖(𝐱) − 𝜆∑𝑗 𝐾𝑖(𝐱, 𝐲𝑗)[𝑢(𝐲𝑗) +

TaylorExpansionTerms]Δ𝑦𝑗‖
2
  

 

4.7 Testing and validation 

 

Evaluate the trained Hybrid on test data and compare its 

predictions for u(y) against analytical or numerical solutions. 

 

Algorithm 2: Solving High-Dimensional SFIEs’2 using 

LSTM-TSE. 

Initialize Parameters: Set the number of iterations N. 

Define initial guess f0(x)=g(x) for the unknown function. 

Define the Taylor Series Expansion terms for each fj(yk): 

 

𝑓𝑗(𝑦𝑘) ≈ 𝑓𝑗(𝑥0) +
𝑑𝑓𝑗

𝑑𝑥
(𝑥0)(𝑦𝑘 − 𝑥0) +

1

2

𝑑2𝑓𝑗

𝑑𝑥2
(𝑥0)(𝑦𝑘

− 𝑥0)
2 +⋯ 

 

Define the known kernel Kij(xj, yk) and function gi(xj). 

Define the regularization parameter λ. 

n=0 to N'-1 

Step 1: Compute an approximation of fn(x): 

 

𝑓𝑛(𝑥) = 𝑔𝑛(𝑥) + 𝜆∑

𝑗

𝐾(𝑥, 𝑦𝑗)𝑓𝑛(𝑦𝑗) Δ𝑦𝑗 

 

Apply Taylor expansion to approximate the unknown 

function fn(yj) at each point yj: 

 

𝑓𝑛(𝑦𝑗) ≈ LSTM(𝑦𝑗;𝐖, 𝐁𝑛)

+ TaylorSeriesExpansionTerms 
 

Step 2: Update the known function g(n+1)(x): 

 

𝑔𝑛+1(𝑥) = 𝑔(𝑥) + 𝜆∑𝑗 𝐾(𝑥, 𝑦𝑗)[LSTM(𝑓𝑛(𝑦𝑗)) −

𝑓𝑛(𝑦𝑗)]Δ𝑦𝑗   

 

Step 3: Train the LSTM model to approximate fn(x) using 

the residual error: 

 

Loss𝑛 = ∑𝑖 ‖𝑓𝑖(𝐱) − 𝑔𝑖(𝐱) − 𝜆∑𝑗 𝐾𝑖(𝐱, 𝐲𝑗)[𝑢(𝐲𝑗) +

TaylorExpansionTerms]Δ𝑦𝑗‖
2
  

 

Step 4: Update LSTM weights W, Bn using gradient descent 

based on the computed loss: 

 

𝐖,𝐁𝑛 ← 𝐖− 𝛼∇𝐖Loss𝑛,    𝐁𝑛 ← 𝐁𝑛 − 𝛼∇𝐁𝑛Loss𝑛 

 

Step 5: Increment 𝑛 for the next iteration: n←n+1 

Output: The final approximation f(x) for the Fredholm 

Integral Equation. 

 

 

5. RESULTS AND DISCUSSION 

 

In this section, we present the outcomes obtained from 

applying the LSTM approach and the Hybrid LSTM-TSE 

approach to solve High-dimensional SFIEs’2 and analyze their 

performance in comparison to each other. 

 

5.1 LSTM approach  

 

The LSTM approach involves training a Long Short-Term 

Memory (LSTM) model to predict the unknown function u(y) 

given the kernel function K(x, y) and known functions fi(x). 

The model learns the relationship between these inputs 

through a training process, and once trained, the LSTM 

approximates the solution of the High-Dimensional SFIEs’2. 

After training the LSTM-TSE model (Algorithm 1), we first 

compare its predictions with the analytical or numerical 

reference solution. The plot of the true solution alongside the 
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predicted solution in Figure 3 is a key indicator of how well 

the model generalizes to unseen data.  

 

 
 

Figure 3. The solutions of high-dimensional SFIEs’2 using 

LSTM 

 

The loss function curve, shown in Figure 4, is a crucial 

indicator of the model's training process and its ability to 

minimize errors. The curve shows the decrease in error as the 

model iterates over the training data. 

 

 
 

Figure 4. The loss function computed by Algorithm 1 

 

5.2 Hybrid LSTM-TSE approach 

 

In the Hybrid LSTM-Taylor Series Expansion Approach, an 

initial guess for the unknown function u(y) is provided by a 

Taylor Series Expansion. This initial guess is then refined by 

the LSTM model, which uses the kernel K(x, y) and known 

functions fi(x) to iteratively improve the solution. 

After training the Hybrid LSTM-TSE approach (Algorithm 

2), we compare its predictions with the known analytical or 

numerical solutions to assess its accuracy, as shown in Figure 

5. The following observations were made. 

 

 
 

Figure 5. The solutions of high-dimensional SFIEs’2 

using hybrid LSTM-TSE approach 

 

The behavior of the loss function during training is an 

important indicator of the model’s learning process and its 

ability to reduce errors, as shown in Figure 6. 

 

 
 

Figure 6. The loss function computed by the Hybrid LSTM-

TSE approach 

 

Table 3. Comparison of the LSTM approach with hybrid LSTM-TSE approach 

 

Criteria LSTM Approach Hybrid LSTM-TSE Approach 

Accuracy 
High, but depends on data quality and training 

time 
Generally higher due to better initial guess 

Computational Efficiency 
Computationally expensive, especially in high 

dimensions 
Faster convergence due to Taylor series starting point 

Convergence Rate 
Slower, especially for complex or high-

dimensional problems 
Faster convergence due to informed initial guess 

Applicability to High-Dimensional 

Problems 
Struggles due to curse of dimensionality 

More efficient due to the Taylor expansion providing a 

good starting guess 

Interpretability Low, as LSTM is a black-box model Higher, due to the analytical Taylor expansion 
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5.3 Comparison criteria 

 

The table above (Table 3) summarizes the key differences 

between the two approaches. The Hybrid LSTM-Taylor Series 

Expansion Approach generally provides better accuracy, 

faster convergence, and greater efficiency, especially for high-

dimensional problems. This is because the Taylor Series 

Expansion gives more detailed information of starting points 

for the LSTM, reducing the need for large amounts of training 

data and computational resources. On the other hand, the 

LSTM approach is more reliant on the quality and quantity of 

training data and may face challenges in high-dimensional 

spaces due to the curse of dimensionality. 

 

 

6. CONCLUSIONS 
 

The Hybrid LSTM-Taylor Series Expansion (TSE) 

Approach represents a significant advancement in solving 

high-dimensional Fredholm Integral Equations (FIEs). By 

combining the adaptive learning capabilities of Long Short-

Term Memory (LSTM) networks with the precision of Taylor 

Series expansion, the method enhances both convergence 

speed and accuracy, addressing the computational challenges 

posed by traditional numerical techniques. This synergy 

between machine learning and analytical methods offers an 

efficient solution for complex integral equations, ensuring 

both computational feasibility and mathematical rigor. 

However, despite its advantages, the approach has inherent 

limitations. Computational cost remains a key concern, 

particularly during the training phase of the LSTM model. The 

resources required for training, such as memory and 

processing power, increase significantly for high-dimensional 

problems, which may hinder the scalability of the method in 

some cases. Additionally, while the method is more efficient 

than traditional solvers in handling high-dimensional 

problems, it still faces dimensional constraints. As the 

dimensionality of the problem increases, the number of 

training data points required grows exponentially, which can 

lead to longer training times and higher computational 

demands. Furthermore, the effectiveness of the model is 

dependent on the availability of reliable synthetic training data, 

which may not always be feasible for all problem domains. 

In conclusion, the Hybrid LSTM-TSE Approach is a 

powerful and promising tool for solving Fredholm Integral 

Equations more accurately and efficiently. While 

computational and dimensional challenges remain, the 

approach provides a strong framework for tackling high-

dimensional problems, with continued advances in machine 

learning and computational power likely to further enhance its 

applicability. 
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APPENDIX 

 

Solving SFIEs’2 Using Taylor Series Expansion (TSE) 

Approach 

 

Taylor series expansion approach for solving a linear 

system of Fredholm integral equations of the second kind as a 

numerical method. This method reduces the system of integral 

equations to a linear system of ordinary differential equations. 

After including boundary conditions, this system reduces to a 

system of equations that can be solved easily by any usual 

methods. That study is an extension of the work presented in 

paper [21]. 

Consider the LSFIE2 defined by: 

 

(

𝑦1(𝑥)

𝑦2(𝑥)
⋮
𝑦𝑛(𝑥)

) = (

𝑓1(𝑥)

𝑓2(𝑥)
⋮
𝑓𝑛(𝑥)

)

+𝜆∫
1

0

(

 
 

𝑘1,1(𝑥, 𝑡) 𝑘1,2(𝑥, 𝑡) ⋯ 𝑘1,𝑛(𝑥, 𝑡)

𝑘2,1(𝑥, 𝑡) 𝑘2,2(𝑥, 𝑡) ⋯ 𝑘2,𝑛(𝑥, 𝑡)

⋮ ⋮ ⋮
𝑘𝑛,1(𝑥, 𝑡) 𝑘𝑛,2(𝑥, 𝑡) ⋯ 𝑘𝑛,𝑛(𝑥, 𝑡))

 
 
(

𝑦1(𝑡)

𝑦2(𝑡)
⋮
𝑦𝑛(𝑡)

)

 

 

𝑦𝑖(𝑥) = 𝑓𝑖(𝑥) + 𝜆∑
𝑛
𝑗=1 ∫

1

0
𝑘𝑖,𝑗(𝑥, 𝑡)𝑦𝑗(𝑡)𝑑𝑡  (A1) 

 

where, i=1, 2, …, n and 0≤x≤1. 

A Taylor series expansion can be made for the solution of 

yj(t) in Eq. (A1): 
 

𝑦𝑗(𝑡) = 𝑦𝑗(𝑥) + 𝑦𝑗
′(𝑥)(𝑡 − 𝑥) + ⋯+

1

𝑚!
𝑦𝑗
(𝑚)(𝑡 −

𝑥)𝑚 + 𝐸(𝑡)  
(A2) 

 

where, E(t) is the error between yj(t) and its Taylor series 

expansion in Eq. (A2), we use the first 𝑚 term of Eq. (A2): 

 

(

𝑦1(𝑥)

𝑦2(𝑥)
⋮
𝑦𝑛(𝑥)

) = (

𝑓1(𝑥)

𝑓2(𝑥)
⋮
𝑓𝑛(𝑥)

)

+𝜆∫
1

0

(

 
 

𝑘1,1(𝑥, 𝑡) ⋯ 𝑘1,𝑛(𝑥, 𝑡)

𝑘2,1(𝑥, 𝑡) ⋯ 𝑘2,𝑛(𝑥, 𝑡)

⋮ ⋮
𝑘𝑛,1(𝑥, 𝑡) ⋯ 𝑘𝑛,𝑛(𝑥, 𝑡))

 
 

(

 
 
 
 
𝑦1(𝑥) + ⋯+

1

𝑚!
𝑦1
(𝑚)(𝑡 − 𝑥)𝑚 + 𝐸(𝑡)

𝑦2(𝑥) +⋯+
1

𝑚!
𝑦2
(𝑚)(𝑡 − 𝑥)𝑚 + 𝐸(𝑡)

⋮

𝑦𝑛(𝑥) +⋯+
1

𝑚!
𝑦𝑛
(𝑚)(𝑡 − 𝑥)𝑚 + 𝐸(𝑡))

 
 
 
 

𝑑𝑡

 

 

𝑦𝑖(𝑥) = 𝑓𝑖(𝑥) + 𝜆∑
𝑛
𝑗=1 ∫

1

0
𝑘𝑖,𝑗(𝑥, 𝑡)∑

𝑚
𝑟=0

1

𝑟!
(𝑡 −

𝑥)𝑟𝑦𝑗
(𝑟)(𝑥)𝑑𝑡 + 𝜆 ∫

1

0
∑𝑛𝑗=1 𝑘𝑖,𝑗(𝑥, 𝑡)𝐸(𝑡)𝑑𝑡  

(A3) 

 

We neglect the term containing E(t) that is 

𝜆 ∫
1

0
∑𝑛𝑗=1 𝑘𝑖,𝑗(𝑥, 𝑡)𝐸(𝑡)𝑑𝑡, then substituting Eq. (A2) into Eq. 

(A1), we get: 

 

(

𝑦1(𝑥)

𝑦2(𝑥)
⋮
𝑦𝑛(𝑥)

) ≃ (

𝑓1(𝑥)

𝑓2(𝑥)
⋮
𝑓𝑛(𝑥)

) 

+𝜆 ∫
1

0

(

 
 

𝑘1,1(𝑥, 𝑡) ⋯ 𝑘1,𝑛(𝑥, 𝑡)

𝑘2,1(𝑥, 𝑡) ⋯ 𝑘2,𝑛(𝑥, 𝑡)

⋮ ⋮
𝑘𝑛,1(𝑥, 𝑡) ⋯ 𝑘𝑛,𝑛(𝑥, 𝑡))

 
 

(

  
 

∑𝑚𝑟=0
1

𝑟!
(𝑡 − 𝑥)𝑟𝑦1

(𝑟)(𝑥)

∑𝑚𝑟=0
1

𝑟!
(𝑡 − 𝑥)𝑟𝑦2

(𝑟)(𝑥)

⋮

∑𝑚𝑟=0
1

𝑟!
(𝑡 − 𝑥)𝑟𝑦𝑛

(𝑟)(𝑥))

  
 

  

 

(

𝑦1(𝑥)

𝑦2(𝑥)
⋮
𝑦𝑛(𝑥)

) ≃ (

𝑓1(𝑥)

𝑓2(𝑥)
⋮
𝑓𝑛(𝑥)

)

+𝜆∑

𝑚

𝑟=0

1

𝑟!
∫
1

0

(𝑡 − 𝑥)𝑟

(

 
 

𝑘1,1(𝑥, 𝑡) ⋯ 𝑘1,𝑛(𝑥, 𝑡)

𝑘2,1(𝑥, 𝑡) ⋯ 𝑘2,𝑛(𝑥, 𝑡)

⋮ ⋮
𝑘𝑛,1(𝑥, 𝑡) ⋯ 𝑘𝑛,𝑛(𝑥, 𝑡))

 
 

(

 
 
𝑦1
(𝑟)(𝑥)

𝑦2
(𝑟)(𝑥)

⋮

𝑦𝑛
(𝑟)(𝑥))

 
 
𝑑𝑡

 

(A4) 

 

𝑦𝑖(𝑥) ≃ 𝑓𝑖(𝑥) + 𝜆∑
𝑛
𝑗=1 ∫

1

0
𝑘𝑖,𝑗(𝑥, 𝑡)∑

𝑚
𝑟=0

1

𝑟!
(𝑡 −

𝑥)𝑟𝑦𝑗
(𝑟)(𝑥)𝑑𝑡  

 

𝑦𝑖(𝑥) ≃ 𝑓𝑖(𝑥) +

𝜆∑𝑛𝑗=1 ∑
𝑚
𝑟=0

1

𝑟!
𝑦𝑗
(𝑟)(𝑥) ∫

1

0
𝑘𝑖,𝑗(𝑥, 𝑡)(𝑡 − 𝑥)

𝑟𝑑𝑡  
(A5) 

 

𝑦𝑖(𝑥) − 𝜆 ∑
𝑛
𝑗=1 ∑

𝑚
𝑟=0

1

𝑟!
𝑦𝑗
(𝑟)(𝑥) [∫

1

0
𝑘𝑖,𝑗(𝑥, 𝑡)(𝑡 −

𝑥)𝑟𝑑𝑡] ≃ 𝑓𝑖(𝑥)  
(A6) 

 

Eq. (A6) becomes a linear system of (ODE) ordinary 

differential equations that we have to solve. For solving the 

linear system of (ODE) Eq. (6), we need an appropriate 

number of boundary conditions. In order to construct boundary 

conditions, we first differentiate 𝑠 terms both sides of (1) with 

respect to x, that is: 

 

𝑦𝑖
(𝑠)(𝑥) = 𝑓𝑖

(𝑠)(𝑥) + 𝜆∑

𝑛

𝑗=1

∫
1

0

𝑘𝑖,𝑗
(𝑠)(𝑥, 𝑡)𝑦𝑗

(𝑠)(𝑥)𝑑𝑡 (A7) 
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 𝑖 = 1,2, … , 𝑛  

 

where, 𝑘𝑖,𝑗
(𝑠)(𝑥, 𝑡) =

𝜕𝑘𝑖,𝑗
(𝑠)(𝑥,𝑡)

𝜕𝑥(𝑠)
, s=1, 2, …, m. 

Applying the mean value theorem for integral in Eq. (A7), 

yields: 

 

𝑓𝑖
(𝑠)(𝑥) ≃ 𝑦𝑖

(𝑠)(𝑥) − 𝜆 [∑𝑛𝑗=1 ∫
1

0
𝑘𝑖,𝑗(𝑥, 𝑡)𝑑𝑡] 𝑦𝑗(𝑥)  (A8) 

 

Now Eq. (A6) combined with Eq. (A8) becomes: AY=F. 

where, 

 
𝐴 = 

(

 
 
 
 
 
1 − 𝜆∫

1

0

𝑘𝑖,1(𝑥, 𝑡)𝑑𝑡 −𝜆∫
1

0

𝑘𝑖,2(𝑥, 𝑡)(𝑡 − 𝑥)𝑑𝑡 ⋯ −𝜆
1

𝑚!
∫
1

0

𝑘𝑖,𝑛(𝑥, 𝑡)(𝑡 − 𝑥)
𝑚𝑑𝑡

−𝜆∫
1

0

𝑘𝑖,1
′ (𝑥, 𝑡)𝑑𝑡 1 − 𝜆∫

1

0

𝑘𝑖,2
′ (𝑥, 𝑡)(𝑡 − 𝑥)𝑑𝑡 ⋯ −𝜆

1

𝑚!
∫
1

0

𝑘𝑖,𝑛
′ (𝑥, 𝑡)(𝑡 − 𝑥)𝑚𝑑𝑡

⋮ ⋮ ⋮

−𝜆∫
1

0

𝑘𝑖,1
(𝑠)(𝑥, 𝑡)𝑑𝑡 −𝜆∫

1

0

𝑘𝑖,2
(𝑠)(𝑥, 𝑡)(𝑡 − 𝑥)𝑑𝑡 ⋯ 1 − 𝜆

1

𝑚!
∫
1

0

𝑘𝑖,𝑛
(𝑠)(𝑥, 𝑡)(𝑡 − 𝑥)𝑚𝑑𝑡

)

 
 
 
 
 

, 

 

𝑌 =

(

 

𝑦𝑖(𝑥)

𝑦𝑖
′(𝑥)
⋮

𝑦𝑖
(𝑠)(𝑥))

 , 𝐹 =

(

 

𝑓𝑖(𝑥)

𝑓𝑖
′(𝑥)
⋮

𝑓𝑖
(𝑠)(𝑥))

 . 

 

The previous system (AY=F), is a linear system of algebraic 

equations that can be solved analytically or numerically. 
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