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Traffic congestion is a major issue faced by Batam, a city that continues to grow rapidly as 

an economic and logistics hub. This study adopts the Design Science Research 

Methodology (DSRM) to develop an intelligent navigation system based on artificial 

intelligence (AI) aimed at optimizing urban traffic management in Batam. The system 

integrates real-time traffic data, machine learning algorithms, and reinforcement learning 

to predict traffic flow and optimize route selection. Using the DSRM framework, the 

system was designed, implemented, and evaluated iteratively to ensure its effectiveness in 

addressing the city's unique traffic challenges. The results of the study indicate that the 

implementation of the AI-based navigation system successfully reduced the average travel 

time by 22.8%, distributed traffic loads more evenly, and improved travel efficiency. 

Furthermore, the system demonstrated a route prediction accuracy of 91.3%, higher than 

conventional GPS systems. Performance evaluation also showed high responsiveness, with 

an average latency of only 423 milliseconds. This study concludes that the AI-based 

navigation system, developed through the DSRM framework, can be an effective solution 

to address traffic congestion in rapidly developing cities like Batam and can be applied to 

other cities with similar characteristics. 
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1. INTRODUCTION

Rapid population growth and uncontrollable urbanization 

have become a global phenomenon that significantly impacts 

transportation management in urban areas. Many cities around 

the world, both metropolitan and medium-sized cities that are 

rapidly developing, are facing increasingly complex traffic 

congestion challenges [1-3]. This congestion not only causes 

discomfort for road users but also negatively affects various 

aspects of life, such as increased travel time, excessive fuel 

consumption, rising carbon emissions, and reduced economic 

productivity due to delays in the mobility of people and goods 

[4, 5]. In the global context, the World Health Organization 

(WHO) and the United Nations Human Settlements 

Programme (UN-Habitat) have highlighted that dense urban 

traffic contributes significantly to air pollution and a decline 

in the quality of life for citizens [6, 7]. Major cities around the 

world, such as Jakarta, Manila, Bangkok, and Mumbai, serve 

as real-life examples of how population pressure and the 

growth of motor vehicles can exceed the capacity of existing 

infrastructure, resulting in mobility stagnation. To address this, 

many countries have developed Intelligent Transportation 

Systems (ITS), which are technology and information-based 

transportation systems aimed at improving traffic efficiency 

and safety [8]. 

In Indonesia, traffic congestion issues are not only prevalent 

in large cities like Jakarta, Surabaya, and Bandung but are also 

increasingly being felt in medium-sized cities that are growing 

economically, one of which is Batam. Batam is a strategic area 

located directly at the border with Singapore and Malaysia and 

is part of a special economic zone promoted by the Indonesian 

government [9]. The growth of industry, trade, and tourism in 

Batam has led to a surge in population and vehicle numbers 

over the past few decades. According to data from the Central 

Statistics Agency (BPS) and the Batam City Transportation 

Department, the growth of motor vehicles in Batam has 

increased by more than 8% per year, mostly dominated by 

private vehicles such as motorcycles and cars [10, 11]. The 

increase in vehicle volume is not accompanied by an adequate 

increase in road capacity [12, 13]. Major roads in Batam, such 

as Jalan Sudirman, Jalan Yos Sudarso, and Jalan Ahmad Yani, 

often experience traffic congestion, especially during peak 

hours in the morning and evening [14, 15]. This phenomenon 

indicates an imbalance between the demand and the available 

transportation service capacity. Additionally, the uneven 

distribution of residential and industrial areas further 
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complicates traffic movement patterns in the city [16]. This 

congestion not only hampers public productivity but also 

increases the risk of traffic accidents and air pollution [17]. 

The Batam City Government’s efforts in managing traffic 

still largely rely on traditional approaches, such as static traffic 

light timing, the construction of alternative roads, and the 

implementation of road signs and markings to control road 

user behavior [18]. While these approaches are important and 

fundamental, they have proven to be insufficiently responsive 

in addressing the highly fluctuating traffic dynamics in the 

modern era. Limitations in real-time traffic monitoring 

systems and the suboptimal integration of traffic data from 

various sources make decision-making slow and less adaptive 

[19]. 

GPS-based navigation systems commonly used by drivers 

mostly rely on conventional route-finding algorithms that do 

not consider real-time traffic conditions [20]. As a result, road 

users are often directed to shorter routes that are heavily 

congested, thereby reducing the effectiveness of navigation 

[21]. This highlights the need for a transformation towards a 

more intelligent, adaptive, and data-driven system to support 

more efficient traffic management [22, 23]. 

Artificial Intelligence (AI) has become one of the key 

technologies in the development of Smart Cities, including in 

the field of transportation [24, 25]. With its ability to analyze 

large amounts of data, learn patterns, and make decisions 

automatically and adaptively, AI offers great potential to be 

applied in modern transportation systems. In the context of 

traffic, machine learning algorithms and reinforcement 

learning have been used for traffic flow prediction, signal 

timing optimization, and the selection of the fastest routes 

based on real-time data [26, 27]. The use of Design Science 

Research Methodology (DSRM) in this domain allows for a 

structured approach in the design, development, and 

evaluation of AI-based solutions. Through iterative cycles of 

artifact design and evaluation, DSRM ensures that the AI 

systems developed are not only effective but also relevant to 

the specific challenges of urban traffic management. By 

leveraging DSRM, this research aims to create an adaptive, 

data-driven navigation system that can optimize traffic 

management in Smart Cities like Batam. 

AI-based navigation systems offer advantages over 

conventional approaches as they can learn from previous 

traffic patterns and dynamically respond to changes in traffic 

conditions. For example, if an accident or obstruction occurs 

on a certain road, the system can immediately redirect drivers 

to alternative routes that are less congested. In various 

developed countries, these systems have been integrated with 

traffic sensors, CCTV cameras, and user application data to 

create a connected and adaptive transportation ecosystem [28, 

29]. Although the implementation of AI-based intelligent 

navigation systems has developed rapidly in large cities with 

advanced technological infrastructure, there remains a 

significant gap in the application of this technology in 

developing cities like Batam. Most existing studies and 

developments are designed for large cities with extensive data 

access, complex sensor networks, and high computational 

resources. In fact, medium-sized cities also face the same 

urgent needs to optimize traffic, albeit with limited 

infrastructure and data [30]. 

Batam, with its unique characteristics, requires a tailored 

approach and cannot simply adopt systems used in advanced 

cities [31-33]. This approach must consider differing road 

conditions, uneven vehicle distribution, and the limitations of 

integration between transportation information systems. Local 

innovation is crucial in designing navigation systems that can 

work effectively with limited resources while still leveraging 

the power of AI technology [34, 35]. 

 

 

2. LITERATURE REVIEW 

 

Urban traffic congestion is a complex issue that requires a 

multifaceted approach and the utilization of advanced 

technology [36]. This problem not only involves inefficient 

traffic management but also significant economic and social 

impacts, such as long travel times, air pollution, and increased 

fuel consumption. Various studies in the fields of 

transportation engineering, urban planning, and artificial 

intelligence (AI)-based systems have shown that traditional 

solutions are insufficient to address these challenges. 

Therefore, the integration of AI into traffic management 

systems emerges as a more efficient, adaptive, and responsive 

solution to the ever-changing dynamics of traffic [37]. 

 

2.1 The role of AI in traffic management 

 

Artificial Intelligence has leveraged machine learning (ML) 

and deep learning algorithms to analyze large-scale 

transportation data, recognize traffic patterns, and provide 

accurate predictions. Various approaches have been applied to 

manage and predict traffic flow more efficiently. One 

significant early study was conducted by Luo et al. [38], who 

used support vector machines (SVM) to model urban traffic 

flow predictions. The results of this model showed that SVM 

could be used to predict traffic flow with a reasonably good 

level of accuracy, although it was still limited to relatively 

simple data [39]. 

However, further advancements in AI applications for 

traffic have shifted towards deep learning techniques, 

particularly the use of recurrent neural networks (RNNs) and 

the Long Short-Term Memory (LSTM) variant for time-series-

based predictions. These techniques, developed by Shang et al. 

[40], are highly effective in handling temporal dependencies 

in traffic data, such as dynamically changing vehicle densities 

over time. The use of these techniques has become 

increasingly popular due to their ability to learn recurring 

patterns within the data, which is highly beneficial in the 

context of highly dynamic traffic conditions. 

In parallel, reinforcement learning (RL) algorithms have 

also been applied extensively to optimize traffic signal control 

and vehicle routing. RL is a type of machine learning where 

an agent learns to make decisions by interacting with its 

environment and receiving feedback in the form of rewards or 

penalties. One well-known application of RL in traffic 

management is its use in optimizing traffic light control. Shang 

et al. [40] developed a deep reinforcement learning (DRL) 

framework that adjusts traffic light timings based on real-time 

detected vehicle density. This approach dynamically adapts 

the signal phases to match traffic conditions, reducing 

congestion and improving the flow of traffic at key 

intersections. By continuously learning from traffic data, the 

RL algorithm can determine the most efficient signal timings, 

which leads to reduced waiting times at intersections and a 

smoother overall traffic flow. 

Furthermore, RL has been successfully implemented in 

vehicle routing. For instance, RL can be used to suggest 

optimal routes for drivers based on current traffic conditions, 

310



 

accidents, or road closures. The system continuously learns 

from the traffic dynamics, making real-time route 

recommendations that minimize travel time and reduce 

congestion. A popular approach involves the use of Q-learning, 

a reinforcement learning algorithm that helps optimize routes 

by evaluating the "quality" of each route option in a dynamic 

environment. 

The benefits of implementing RL in real-world traffic 

systems are substantial. It offers adaptability by allowing the 

system to continuously improve and adjust based on changing 

traffic conditions. It can provide more responsive and efficient 

traffic management compared to traditional, fixed systems like 

static traffic light timings or pre-defined route maps. However, 

there are several challenges in implementing RL in real-world 

settings. Computational resources and data quality can be 

limiting factors, as RL algorithms require significant 

computational power and large datasets to train effectively. 

Moreover, the complexity of the traffic environment—with 

numerous variables such as unpredictable driver behavior, 

weather conditions, and varying traffic patterns—can make 

the application of RL algorithms challenging. Despite these 

challenges, the potential for RL to transform urban traffic 

management is immense, offering a more adaptive and 

efficient system for congestion reduction. 

 

2.2 Navigation system and route optimization 

 

Traditional GPS-based navigation systems, although 

effective in providing alternative routes, are often hindered by 

their inability to adjust routes in real-time to the continuously 

changing traffic conditions. These systems rely on static maps 

and heuristic-based routing methods that cannot adapt well to 

sudden traffic congestion. Therefore, various modern 

intelligent navigation systems integrate real-time data and 

adaptive algorithms to provide more effective route 

suggestions [41]. 

One of the widely used techniques for route optimization is 

Dijkstra’s algorithm, which remains a reliable method for 

finding the shortest path. However, in the context of constantly 

changing traffic, this algorithm needs to be combined with 

heuristics that account for traffic congestion levels. Bernabei 

and Secchi [42] suggested that for real-time navigation, 

Dijkstra’s algorithm can be modified to incorporate traffic-

aware heuristics, allowing the system to respond to changes in 

traffic flow more quickly and accurately. 

Furthermore, in the study [43], a hybrid model was 

developed that combines historical data with real-time 

feedback to update route recommendations in response to 

fluctuations in road conditions. This model not only reduces 

travel time but also enhances the user experience. This concept 

has become increasingly important as navigation systems in 

most large cities already use real-time data to respond to traffic 

changes. However, medium-sized cities like Batam often lag 

behind in the application of this technology. 

 

2.3 Concept of smart cities and urban mobility 

 

The development of smart cities is a broader concept than 

just transportation technology. Smart cities focus on the use of 

information and communication technology (ICT) to improve 

the efficiency of urban services, one of which is the 

transportation system. Smart mobility is one of the main pillars 

of this concept, involving the use of analytics, the Internet of 

Things (IoT), and AI to enhance the efficiency, safety, and 

sustainability of urban transportation systems [44]. 

In recent years, several major cities worldwide have 

successfully implemented AI-based traffic systems as part of 

their smart city initiatives. Singapore, for example, has 

developed an AI-driven traffic management system that 

integrates real-time data from sensors and cameras with 

predictive analytics. This system optimizes traffic light 

timings, adjusts the flow of vehicles, and helps alleviate 

congestion. One notable example is the Smart Traffic 

Management System used in Singapore’s Central Business 

District (CBD), which has significantly reduced traffic delays 

and improved the flow of vehicles during peak hours. 

Moreover, it has been shown to reduce fuel consumption and 

air pollution by minimizing idling times at traffic signals [45]. 

Similarly, Barcelona has adopted a smart mobility approach 

where AI-based systems are integrated with urban 

infrastructure to monitor traffic flow, provide real-time 

information to drivers, and suggest the best routes to avoid 

congestion. The city uses AI-powered sensors to detect 

congestion patterns and adjust traffic light timings accordingly. 

These innovations have led to a 20% reduction in travel time 

in highly congested areas, and Barcelona’s smart city initiative 

has also resulted in a 15% decrease in carbon emissions by 

optimizing vehicle movement and reducing idle times [45]. 

Furthermore, these systems have enhanced safety by reducing 

the likelihood of traffic accidents through real-time alerts and 

adaptive signal adjustments. 

These examples demonstrate the power of AI in optimizing 

traffic flow, improving safety, and contributing to 

sustainability goals by reducing traffic congestion and 

lowering emissions. The integration of AI into urban 

transportation systems not only makes cities more efficient but 

also significantly improves the quality of life by providing 

smoother commutes, cleaner air, and safer roads. 

However, the implementation of these smart systems in 

developing cities, including those in Indonesia, faces distinct 

challenges. These include incomplete data availability, 

inadequate infrastructure, and limitations in collaboration 

among stakeholders. In Indonesia, particularly in Batam, the 

research and development of AI-based navigation systems for 

traffic management is still relatively limited, with most studies 

being focused on large cities or capital cities with more 

advanced infrastructure and resources. Therefore, the 

development of an intelligent navigation system tailored to 

local conditions, such as the one developed in this study, holds 

high strategic value. This system could help Batam and other 

medium-sized cities improve their traffic management and 

urban mobility, aligning them with the global trend toward 

smart cities [43, 46]. 

 

2.4 Research gaps 

 

Existing research has made significant contributions to the 

development of AI-based traffic prediction systems and route 

optimization. However, the majority of these studies focus on 

large cities with sufficient infrastructure and budgets. 

Meanwhile, medium-sized cities like Batam, which are 

experiencing rapid urbanization, often do not receive enough 

attention in similar research. The existing AI-based traffic 

management systems are not adaptive enough for cities with 

unique characteristics such as Batam, which has more limited 

infrastructure and data that is not always complete, as 

illustrated in Figure 1. 
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Moreover, although many AI-based navigation systems 

have been successfully implemented in large cities, there is 

still a lack of research developing systems that can integrate 

real-time traffic predictions with navigation interfaces that 

respond to changing traffic conditions. This study aims to fill 

this gap by designing an AI-based intelligent navigation 

system that provides solutions for traffic problems in Batam. 

This system not only utilizes machine learning for traffic 

prediction but also integrates real-time data to respond to 

continuously changing traffic conditions. 

 

 

3. METHODOLOGY 

 

This study adopts a hybrid methodology that combines 

Design Science Research Methodology (DSRM) and a case 

study approach to develop and evaluate an AI-based intelligent 

navigation system specifically designed for Alleviating Traffic 

Congestion in Batam City, Indonesia. DSRM provides a 

structured framework for the design and evaluation of artifacts, 

while the case study ensures contextual relevance and practical 

validation. The proposed system utilizes Graph Neural 

Networks (GNNs) algorithms for dynamic route optimization 

and is evaluated using real-world traffic datasets [47]. 

 

3.1 Research design 

 

This study uses an experimental quantitative method with 

an approach based on the design of intelligent systems using 

artificial intelligence (AI). The focus of the research is the 

development and evaluation of an AI-based navigation system 

to optimize traffic in urban areas, particularly in Batam City. 

 

Start

Formulation of Objectives and Hypotheses

Data Collectio

Data Preprocessing and Integration

AI Prediction Model Design

System Architecture Design

Implementation of Navigation System

Finish

Literature Review

Testing and Validation

Analysis and Interpretation of Results

Conclusion and Recommendations

 
 

Figure 1. Research methodology flow 

3.2 Data collection and processing 

 

Traffic data is collected from various sources, including 

historical data from the Batam City Transportation 

Department, traffic sensors, vehicle GPS data, and public APIs 

from digital mapping services (e.g., Google Maps or 

OpenStreetMap). The collected data includes information 

such as vehicle density, average speed, travel time, and traffic 

incidents. 

This data is then processed and cleaned (data preprocessing), 

including steps such as normalization, outlier removal, and 

transformation of time and location formats into a suitable 

format for training the AI-based predictive model. 

 

3.3 AI model development 

 

The artificial intelligence model used in this study consists 

of two main components: the traffic prediction model and the 

route optimization system. 

1. Traffic Prediction: To predict traffic density and 

travel time, a machine learning approach based on 

Recurrent Neural Networks (RNN), specifically the 

Long Short-Term Memory (LSTM) architecture, is 

used. LSTM is chosen for its ability to understand 

temporal dependencies in time series data, such as 

daily traffic fluctuations. 

2. Route Optimization (Reinforcement Learning (Q-

Learning)): To address the complexity of 

dynamically selecting optimal routes in urban traffic 

environments, this study implements a 

Reinforcement Learning (RL) approach, specifically 

the Q-Learning algorithm. This approach is selected 

for its ability to learn from continuous interactions 

with the environment and make adaptive decisions 

based on previous experiences. 

 

3.4 Design of the navigation system structure 

 

The design of the navigation system structure is the 

foundational element in building an integrated AI-based traffic 

prediction system. The diagram above illustrates the system 

architecture, which consists of several interconnected 

components that function synergistically. The process begins 

with the user interface (User Interface), either through a 

mobile app or web, which serves as the main point of 

interaction for users to access navigation services in Figure 2. 

 

 
 

Figure 2. Navigation model structure design 
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3.5 System implementation and testing 

 

The system is implemented as a prototype application based 

on web and/or mobile platforms. The system architecture 

consists of three main layers: 

1. Data Collection Layer: Accesses and updates traffic 

data in real-time. 

2. AI Processing Layer: Performs traffic predictions and 

calculates optimal routes. 

3. User Interface Layer: Displays route 

recommendations to end users (drivers or traffic 

operators). 

The development platform used includes Python for the AI 

backend and TensorFlow/Keras for machine learning model 

training, as well as Node.js or Flutter for user interface 

development. 

 

3.6 System evaluation 

 

The evaluation is conducted in two stages: 

1. Prediction Model Evaluation: The performance of the 

traffic prediction model is tested using metrics such as 

Mean Absolute Error (MAE), Root Mean Squared 

Error (RMSE), and the coefficient of determination 

(R¬≤). 

2. Navigation and Traffic Efficiency Evaluation: The 

effectiveness of the navigation system is measured 

through a limited field study on several congested 

routes in Batam City. The parameters evaluated include: 

Average travel time before and after using the system, 

Reduction in the amount of congestion, and User 

satisfaction with the route recommendations. 

 

 

4. DATA COLLECTION AND CALCULATION 

 

This section presents the results of data collection and 

processing obtained from primary and secondary data 

collected from the Batam City Transportation Department, as 

well as surveys and interviews with road users. The data 

provides a clearer picture of the causes of traffic congestion, 

patterns of congestion occurring at various locations, and the 

solutions that have been implemented to reduce congestion. 

 

4.1 Data collection 

 

1. Population in Batam 

 

 
 

Figure 3. Population in Batam 2019-2024 (sources BPS) 

The graph above depicts the population growth of Batam 

City from 2019 to 2024. The data demonstrates a consistent 

annual increase in the population, reflecting a stable upward 

trend in the city's demographic expansion. 

In 2019, the population of Batam was recorded at 1,107,551 

individuals. Figure 3 rose to 1,196,396 in 2020, indicating a 

notable increase. The upward trajectory continued in 

subsequent years, with the population reaching 1,207,082 in 

2021, 1,240,792 in 2022, and 1,260,785 in 2023. Projections 

suggest that by 2024, the population will reach 1,294,548, 

further emphasizing the sustained growth trend. 

This population increase can be attributed to various factors, 

including urbanization, migration, and the region's economic 

opportunities, which likely contribute to the attraction of new 

residents. The steady population growth presents both 

opportunities and challenges for the city, particularly in terms 

of the need for enhanced infrastructure and the provision of 

public services to accommodate the expanding population. 

 

2. Vihicles on Batam 

 

As of April 2025, the total number of motor vehicles in 

Batam, Riau Archipelago, has reached 1.09 million units. This 

data, sourced from the Electronic Registration and 

Identification (ERI) system of the Traffic Corps of the 

Indonesian National Police (Korlantas Polri), was published 

on April 16, 2025. Of these, motorcycles accounted for 

880,710 units. 

In addition to motorcycles, passenger cars were recorded at 

179,410 units, while cargo vehicles (freight trucks) totaled 

27,930 units. Furthermore, the data indicates that Batam has 

1,786 buses and 207 special vehicles, which include utility and 

specialized vehicles. 

When compared to other regions in the Riau Archipelago, 

Tanjung Pinang, the provincial capital, reported the second-

largest number of motor vehicles, with 205,150 units. In 

contrast, the Kabupaten of Kepulauan Anambas reported the 

lowest vehicle count, with only 4,383 units. 

The following table summarizes the distribution of motor 

vehicles in Batam as of April 16, 2025, based on the ERI 

Korlantas Polri data: 

 

Motorcycles: 880,710 units 

Passenger Cars: 179,410 units 

Cargo Vehicles: 27,930 units 

Buses: 1,786 units 

Special Vehicles: 207 units 

 

A. Historical Traffic Data 

 

Based on data obtained from the Batam City Transportation 

Department (January-December 2024), as well as results from 

surveys and interviews with road users, several congestion 

hotspots have been identified as key areas of concern in Batam 

City. 

Table 1 shows historical traffic data obtained from the 

Batam City Transportation Department, which includes major 

congestion points, peak hours, vehicle speeds, and the causes 

of congestion at several strategic locations. Based on this data, 

it can be observed that congestion primarily occurs during 

peak hours, namely in the morning and evening, coinciding 

with the times people commute to and from work. The 

recorded vehicle speeds at congestion points are generally low, 

averaging between 20 and 45 km/h, indicating that the limited 
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road capacity is unable to accommodate the increasing vehicle 

volume. 

Additionally, Figure 4 provides a deeper insight into the 

fluctuations in vehicle density at various major locations in 

Batam City over time. This graph shows peak congestion 

occurring between 17:00 and 18:00, especially at points like 

Batam Center and Sekupang, which are the areas with the 

highest vehicle density. This data reinforces the urgent need 

for more efficient traffic management solutions that can 

respond to traffic dynamics in real-time, such as those offered 

by AI-based intelligent navigation systems. 

Several areas in Batam, particularly in the city center and 

border regions, have roads that are not wide enough to 

accommodate the increasing number of vehicles. Additionally, 

the poor maintenance of roads, as well as road narrowing at 

certain points, also contribute to congestion. Inadequate road 

infrastructure plays a significant role in the traffic congestion 

that occurs. 

Based on Figure 5, it can be seen that at several locations 

such as Sekupang, the vehicle volume (90 vehicles/km) 

exceeds the available road capacity (81.82 vehicles/km), 

indicating significant congestion. In other locations, such as 

Batam Center and Piayu, the vehicle volume is close to the 

road capacity, suggesting that the road capacity is nearly 

surpassed by the existing traffic demand. This reinforces the 

need for more effective traffic management solutions to 

address the mismatch between road capacity and vehicle 

volume at various congestion points. 

 

Table 1. Historical traffic data at major congestion points in Batam City 

 
Congestion Point Peak Hours Vehicle Speed (km/h) Cause of Congestion 

Batam Center 
Morning and 

afternoon 
25-30 

Economic, government, and commercial center. Congestion around Simpang 

Kepri Mall, Simpang Cikitsu, and Batam Grand Mall. 

Tanjung Uncang 
Morning and 

afternoon 
30-35 

Port and industrial area with many goods and passenger vehicles. Traffic 

density at Simpang Batu Ampar and Simpang Tanjung Uncang. 

Jodoh 

Morning and 

afternoon, and 

weekends 

22-28 
Commercial and main shopping center, especially around Simpang Jodoh and 

shopping centers. Severe congestion on weekends. 

Piayu 
Morning and 

afternoon 
28-32 

Residential area connecting the city center. Lack of alternative routes worsens 

congestion. 

Sagulung 
Morning and 

afternoon 
30-34 

Market area and main road. High vehicle volume and lack of effective traffic 

management are the main causes. 

Sekupang 
Morning and 

afternoon 
20-25 

Connector for the international port and industrial area. Severe congestion 

around the port area and routes to industries. 

 
 

Figure 4. Vehicles in Batam 2025 April (sources data box) 

 

 
 

Figure 5. Vehicle volume chart based on time in Batam City 

 
 

Figure 6. Comparison chart of road capacity vs vehicle 

volume 

 

As shown in Figure 6, the comparison between road 

capacity and vehicle volume indicates a significant mismatch, 

especially in several urban zones of Batam. 

  

B. Real-Time Data 

 

Data is collected through the integration of GPS technology, 

IoT, and APIs from navigation platforms, as shown in Table 

2. 

 

C. Topographic and Road Network Data 

 

Traffic and Road Network Data in Batam City The 

topographic and road network data in Batam City was obtained 

through GIS-based map digitization (Geographic Information 

System), strengthened with direct field observations, as shown 

in Table 3. 
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Table 2. Real-time data for the intelligent navigation system 

in Batam City 

 
Component Description 

Real-Time Data 

Sources 

1. 200 units of online transportation vehicles 

(motorcycles and cars) with active GPS tracking. 

2. 12 public CCTV points equipped with IoT 

sensors (detecting vehicle density, direction, and 

estimated speed). 

3. API integration from Google Maps, Waze, and 

OpenStreetMap. 

Update 

Frequency 
Every 30 seconds for real-time data updates. 

Parameters 

Recorded 

1. Vehicle position coordinates (GPS). 

2. Actual vehicle speed. 

3. Travel time between junctions. 

4. Vehicle deceleration and stopping patterns 

Technology Used 

5. GPS Tracking. 

1. IoT Sensors (Internet of Things). 

2. API Integration from navigation platforms. 

System Output 
1. Real-Time Traffic Map (Real-Time Heat Map). 

2. Visualization of traffic changes every 15 minutes 

. 

Table 3. Topographic and road network data in Batam City 

 
Category Information 

Total Road Network Length ±113km 

Number of Nodes 
348 points (intersections & 

roundabouts) 

Road Type 
- One-way roads: 38% 

- Two-way roads: 62% 

Average Elevation 7-11 meters above sea level 

Road Slope 
Affects vehicle speed at specific 

points 

Areas with High Human 

Activity 

- 11 major schools 

- 5 hospitals 

- 3 major shopping centers 

- 2 passenger ferry ports 

 

D. User Behavior and Preference Data (Survey) 

 

As part of the effort to develop an AI-based intelligent 

navigation system for Batam City, a survey was conducted 

with 500 private vehicle users and online motorcycle taxi 

drivers. Data collection was carried out through two methods: 

online forms and direct interviews, in order to gain a more 

comprehensive understanding of navigation app usage 

patterns and user expectations for a more adaptive system. 

 

 
 

Figure 7. Survey result: Navigation app usage and perception 

in Batam City 

 

The survey respondents ranged in age from 17 to 55 years 

old, with a professional background primarily consisting of 

private-sector employees, students, and online motorcycle taxi 

drivers. The survey explored their experiences using digital 

navigation apps, their perceptions of system accuracy, and 

their willingness to switch to local AI-based technology if 

proven more efficient, as shown in Figure 7. 

 

4.2 Data calculation and analysis 

 

A. Traffic density analysis 

 

Traffic density analysis is conducted to identify major 

congestion points and measure their impact on travel 

efficiency in Batam City. Vehicle density data is collected 

from the Transportation Department, traffic sensors, and GPS, 

and is then calculated based on vehicle volume and road 

capacity. The results of this analysis provide an overview of 

the vehicle distribution on main roads and alternative routes 

during peak hours, which will be used to plan a more efficient 

intelligent navigation system. To measure traffic density, the 

following formula is used: 

 

K=Q/V 

 

where, 

 

K=Density 

Q=Flow rate (number of vehicles per hour) 

V=Average speed (km/hour) 

 

Table 4. Kepadatan lalu lintas pada pukul 07:00-08:00 

 
Location Volume (Q) Speed (V) Density (K) Density Level 

Batam Center 1200 25 48.00.00 Medium 

Tanjung Uncang 1000 30 33.33.00 Low 

Jodoh 1100 25 44.00.00 Medium 

Piayu 1000 30 33.33.00 Low 

Sagulung 950 32 29.69 Low 

Sekupang 1200 22 54.55.00 Medium 

 

Table 5. Traffic density between 07:00 and 08:00 

 
Location Volume (Q) Speed (V) Density (K) Density Level 

Batam Center 1500 25 60.00.00 High 

Tanjung Uncang 1300 30 43.33.00 Medium 

Jodoh 1400 25 56.00.00 Medium 

Piayu 1300 30 43.33.00 Medium 

Sagulung 1200 32 37.50.00 Low 

Sekupang 1500 22 68.18.00 High 

 

Table 6. Traffic density between 16:00 and 17:00 

 
Location Volume (Q) Speed (V) Density (K) Density Level 

Batam Center 1800 25 72.00.00 High 

Tanjung Uncang 1600 30 53.33.00 Medium 

Jodoh 1700 25 68.00.00 High 

Piayu 1600 30 53.33.00 Medium 

Sagulung 1500 32 46.88 Medium 

Sekupang 1800 22 81.82 Very High 

 

Table 7. Traffic density between 17:00 and 18:00 

 
Location Volume (Q) Speed (V) Density (K) Density Level 

Batam Center 2000 25 80.00.00 Very High 

Tanjung Uncang 1800 30 60.00.00 High 

Jodoh 1900 25 76.00.00 Very High 

Piayu 1800 30 60.00.00 High 

Sagulung 1700 32 53.13.00 Medium 

Sekupang 2000 22 90.91 Very High 
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Table 4, Table 5, Table 6, Table 7 present a summary of 

traffic density calculations at several key locations at different 

times. 

 

B. Speed and travel time analysis 

 

In this section, an analysis is conducted on vehicle speed 

and travel time at several major congestion points in Batam 

City during peak hours. Travel time is calculated using the 

following formula: 

 

T=S/V 

 

where, 

 

T=Travel time (in hours) 

V=Vehicle speed (in km/h) 

S=Distance traveled (in km) 

 

Table 8. Speed and travel time analysis between 07:00 and 

08:00 

 

Location 

Speed 

(V) 

(km/h) 

Density (K) 

(Vehicles/km) 

Distance 

(S) (km) 

Travel Time 

(T) (hours) 

Batam 

Center 
25 48.00.00 25 01.00 

Tanjung 

Uncang 
30 33.33.00 30 01.00 

Jodoh 25 44.00.00 25 01.00 

Piayu 30 33.33.00 30 01.00 

Sagulung 32 29.69 29.69 01.00 
Sekupang 22 54.55.00 54.55.00 01.00 

 

Table 9. Speed and travel time analysis between 08:00 and 

09:00 

 

Location 
Speed (V) 

(km/h) 

Density (K) 

(Vehicles/km) 

Distance 

(S) (km) 

Travel Time 

(T) (hours) 

Batam 

Center 
25 60.00.00 60 01.00 

Tanjung 

Uncang 
30 43.33.00 43.33.00 01.00 

Jodoh 25 56.00.00 56 01.00 

Piayu 30 43.33.00 43.33.00 01.00 

Sagulung 32 37.50.00 37.50.00 01.00 

Sekupang 22 68.18.00 68.18.00 01.00 

 

Table 10. Speed and travel time analysis between 16:00 and 

17:00 

 

Location 
Speed (V) 

(km/h) 

Density (K) 

(Vehicles/km) 

Distance 

(S) (km) 

Travel Time 

(T) (hours) 

Batam 

Center 
25 72.00.00 72 01.00 

Tanjung 

Uncang 
30 53.33.00 53.33.00 01.00 

Jodoh 25 68.00.00 68 01.00 

Piayu 30 53.33.00 53.33.00 01.00 

Sagulung 32 46.88 46.88 01.00 

Sekupang 22 81.82 81.82 01.00 

 

This analysis aims to provide an overview of how traffic 

conditions affect travel duration at various congestion points, 

both in the morning, afternoon, and evening. By examining the 

recorded vehicle speed and travel time, we can identify 

locations with high congestion and assess the impact on 

transportation efficiency in Batam. The travel time 

calculations at each congestion point will be displayed in 

Table 8, Table 9, Table 10, Table 11, which shows how vehicle 

density and speed affect travel duration during peak hours. 

 

Table 11. Speed and travel time analysis between 17:00 and 

18:00 

 

Location 
Speed (V) 

(km/h) 

Density (K) 

(Vehicles/km) 

Distance 

(S) (km) 

Travel Time 

(T) (hours) 

Batam 

Center 
25 80.00.00 80 01.00 

Tanjung 

Uncang 
30 60.00.00 60 01.00 

Jodoh 25 76.00.00 76 01.00 

Piayu 30 60.00.00 60 01.00 

Sagulung 32 53.13.00 53.13.00 01.00 

Sekupang 22 90.91 90.91 01.00 

 

C. Traffic prediction model using LSTM 

 

In analyzing the performance of the traffic prediction model 

based on Long Short-Term Memory (LSTM), we test the 

model's ability to predict two key parameters in traffic analysis: 

travel time and vehicle density. 

Figure 8 compares actual travel time with the predicted 

travel time forecasted by the LSTM model at several locations 

in Batam City. In this graph, the blue line represents the actual 

recorded travel time on the ground, while the red line 

illustrates the predicted travel time estimated by the system. In 

general, it can be seen that the prediction system shows fairly 

accurate results, with some small differences between actual 

and predicted times, particularly in Batam Center and Tanjung 

Uncang, where the differences are minimal. 

Locations such as Punggur and Nongsa show predicted 

travel times that closely align with actual times, while at other 

locations like Sekupang, there is a slightly larger difference. 

This indicates that, although the LSTM model is capable of 

providing relatively accurate predictions, several factors affect 

the accuracy of predictions, such as dynamic traffic conditions 

and other external factors. 

Figure 8 illustrates the importance of implementing an 

LSTM-based navigation system that can predict travel times 

in real-time, providing more accurate information for drivers 

to select optimal routes and reduce travel time. 

 

 
 

Figure 8. Travel time vs prediction graph 

 

In Figure 9, the blue line represents the actual traffic density 

recorded during the observation, while the red line illustrates 

the predicted traffic density estimated by the AI system. 

Overall, the system's prediction results tend to be quite 

accurate, with minimal differences between actual and 
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predicted density values, especially at locations such as Batam 

Center, Piayu, and Sekupang. 

 

 
 

Figure 9. Comparison graph of actual vs predicted density 

 

However, at some points like Punggur and Nongsa, there is 

a slight difference between the prediction and actual data, 

indicating that although the traffic density predictions are 

fairly good, external factors affecting traffic (such as accidents, 

weather, and sudden changes in vehicle volume) still influence 

the accuracy of the predictions. 

Figure 9 illustrates the importance of implementing an AI-

based navigation system that can predict traffic density in real-

time. This not only helps drivers choose more optimal routes 

but also provides better insights for infrastructure planning and 

traffic management in large cities like Batam. 

 

D. AI-Based intelligent navigation system simulation 

 

The simulation results show that the AI-based navigation 

system performs better compared to Google Maps. The 

average travel time with the AI system is faster, at 14.2 

minutes, compared to 18.4 minutes with Google Maps, 

resulting in a 22.8% reduction in average travel time. 

Additionally, the AI system is more adaptive in rerouting, with 

a rerouting frequency of 3.6 times compared to 1.2 times on 

Google Maps. The rerouting time is also faster, with the AI 

system requiring less than 5 seconds, while Google Maps takes 

about 14 seconds to reroute. In terms of user satisfaction, the 

AI system received a score of 4.5 (on a scale of 1-5), 

significantly higher than Google Maps, which received a score 

of 3.7. These results indicate that the AI-based navigation 

system is not only more efficient in terms of travel time but 

also more responsive and preferred by users, as shown in Table 

12. 

 

Table 12. Comparison of ai-based intelligent navigation 

system and google maps performance in Batam 

 
Criteria Google Maps AI System 

Average Travel Time (minutes) 18.04 14.02 

Adaptive Route Diversion 1.2 times 3.6 times 

Rerouting Time (seconds) 14 seconds <5 seconds 

User Satisfaction (scale 1–5) 03.07 04.05 

 

 

5. RESULT AND DISCUSSION 

 

The development and implementation of the AI-based 

Intelligent Navigation System for Batam City has yielded 

significant results, particularly in optimizing traffic flow, 

reducing congestion, and decreasing average travel time. 

These results were obtained from a series of simulations using 

the SUMO (Simulation of Urban Mobility) software, which 

was integrated with actual traffic data and machine learning 

models. Below is a detailed presentation of the research 

findings, supported by data visualizations and interpretations 

based on urban traffic dynamics. 

 

5.1 Travel time reduction 

 

One of the key performance indicators analyzed is the 

reduction in average travel time. The simulation results show 

that the AI-based navigation system successfully reduced the 

average travel time by 22.4% compared to the conventional 

GPS-based navigation system. This is made possible because 

the system is able to perform dynamic rerouting based on 

current traffic conditions, accident data, and road closures. 

Figure 10 presents a comparison of average travel times, 

measured in minutes, before and after the implementation of 

an AI-based intelligent navigation system at six major traffic 

congestion points in Batam City: Batam Center, Tanjung 

Uncang, Jodoh, Piayu, Sagulung, and Sekupang. The data 

were collected during peak hours and reflect actual travel 

conditions based on system simulations and field trials. 

The visualization results indicate a significant reduction in 

travel time across all observed locations following the 

implementation of the AI system. For instance, travel time in 

Batam Center decreased from 35 minutes to 27 minutes, while 

in Sekupang it dropped from 40 minutes to 30 minutes. This 

efficiency was achieved due to the AI system’s capability to 

analyze real-time traffic conditions and dynamically 

recommend optimal routes, thereby reducing delays and 

improving traffic flow. Overall, these findings demonstrate 

that the AI system can enhance traffic efficiency and shorten 

travel durations, particularly in areas with high congestion 

levels and dense vehicle volumes. as shown in Figure 10. 

 

 
 

Figure 10. Comparison of average travel time (minutes) 

before and after ai system implementation 

 

5.2 Traffic load distribution 

 

The simulation of the AI-based intelligent navigation 

system demonstrated a significant shift in traffic load 

distribution across the road network of Batam City. Without 

AI support, major roads such as Ahmad Yani Street and the 

Batam Center Ring Road frequently experienced heavy 

congestion, particularly during peak hours (07:00–09:00 and 

16:00-18:00). However, following the implementation of the 

intelligent navigation system, traffic volumes were 
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successfully redirected to alternative routes such as 

Laksamana Bintan Street and Raden Patah Street. 

This visualization illustrates changes in traffic volume 

distribution across three main areas: the city center, suburban 

zones, and industrial zones. Prior to the implementation of the 

AI system, traffic volume was heavily concentrated in the city 

center, accounting for 70% of the total. Following the 

implementation, the distribution became more balanced: 40% 

in the city center, 35% in suburban areas, and 25% in industrial 

zones. This indicates that the AI navigation system 

successfully redistributed vehicles more evenly, reducing 

congestion in the city center while optimizing road capacity in 

other areas. as shown in Figure 11. 

 

 
 

Figure 11. Traffic volume distribution before and after ai 

implementation 

 

5.3 System responsiveness and latency 

 

The system’s real-time response speed is a critical 

parameter in high-density traffic environments such as 

downtown Batam. The system demonstrated an average 

decision latency of 423 milliseconds, indicating its capability 

to provide near-instantaneous route updates. 

This Figure 12 displays the system’s response time to 

various real-time traffic events such as congestion, accidents, 

and extreme weather conditions. The system was able to 

respond to congestion within 30 seconds, accidents within 40 

seconds, and weather-related events within 35 seconds. This 

rapid response highlights the system’s reliability in delivering 

real-time information and alternative route suggestions, which 

is essential for avoiding delays and enhancing road user safety. 

 

 
 

Figure 12. System responsiveness to real-time events 

 

5.4 Route prediction accuracy 

 

The system achieved a route prediction accuracy rate of 

91.3%, validated through field testing using GPS-equipped 

vehicles. In comparison, conventional navigation systems 

such as Google Maps demonstrated an accuracy of 85.6%, 

primarily due to their limitations in responding to micro-level 

traffic condition changes. 

The model’s performance was evaluated using Root Mean 

Square Error (RMSE) and Mean Absolute Error (MAE) 

metrics as shown in Table 13. 

 

Table 13. Model performance in predicting travel duration 

 
Navigation Model RMSE (seconds) MAE (seconds) 

AI System 42.05.00 30.02.00 

Conventional System 65.08.00 48.03.00 

 

These findings indicate that the proposed AI architecture is 

sufficiently reliable in managing the complex urban mobility 

dynamics of a city like Batam, demonstrating its potential 

applicability for broader smart city traffic management 

systems. 

 

5.5 User experience and interface effectiveness 

 

Usability testing was conducted with 100 respondents, 

including public transportation drivers, private vehicle owners, 

and logistics couriers. The survey results revealed that 87% of 

users found the system more beneficial compared to the 

navigation tools they had previously used. High ratings were 

given to aspects such as map clarity, real-time notifications, 

and congestion avoidance recommendations in Figure 13. 

 

 
 

Figure 13. User satisfaction level after using ai-based 

navigation system 

 

This chart illustrates user satisfaction levels with the AI-

based navigation system. A total of 52% of respondents 

reported being very satisfied, 35% satisfied, 10% neutral, and 

only 3% dissatisfied. The high satisfaction rate indicates that 

the system is well-received by the public and is capable of 

providing a more efficient, comfortable, and safe driving 

experience. 

 

 

6. CONCLUSION 

 

This study successfully developed an AI-based intelligent 

navigation system to address traffic congestion in Batam City. 

The system proved effective in reducing average travel time 
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by 22.8% compared to conventional navigation systems, as 

well as distributing traffic load more evenly across the road 

network. Additionally, the system provides adaptive rerouting 

based on real-time traffic conditions, allowing users to select 

more efficient routes. 

The route prediction accuracy of the AI system reached 

91.3%, higher than the 85.6% accuracy of conventional GPS 

systems, demonstrating the superiority of the AI system in 

optimizing travel. The rerouting time of this system is also 

very fast, with an average latency of only 423 milliseconds, 

enabling users to receive route directions promptly after 

changes in traffic conditions occur. 

User experience with the system has been highly positive, 

with a high satisfaction rate, indicating strong public 

acceptance of this technology. This reflects that the system is 

not only effective in improving traffic efficiency but also 

provides a more comfortable and safer driving experience for 

users. 

Overall, this AI-based navigation system offers an effective 

solution for reducing congestion, improving transportation 

efficiency, and optimizing traffic management in Batam. This 

technology can be applied to other developing cities with 

adjustments to local conditions, supporting sustainable 

development goals such as reducing carbon emissions and fuel 

consumption. Moving forward, integrating this system into 

city transportation policies could have a broader positive 

impact on the quality of life and traffic safety. 
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