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This study introduces Chebyshev Metaheuristic Solver Approach (CMSA), a new 

computational approach, to get approximate solutions with high-accuracy to a vast range 

of linear and non-linear differential equations (DEs). The main idea is changing the 

differential problem into a continuous optimization task. First the approximate solution 

was written as a truncated series of Chebyshev polynomials, where they are chosen due to 

their numerical stability and optimal approximation properties. The undetermined 

coefficients of this series turn into the decision variables in an optimization task. The 

objective function is derived from the residual of the differential equation, integrated with 

penalty terms to achieve initial or boundary conditions enforcement. Then the Flower 

Pollination Algorithm (FPA), a nature-inspired metaheuristic algorithm, is used to find the 

optimal polynomial coefficients via the minimization of this objective function. This 

hybrid approach symbiotically integrates the spectral method’s exponential convergence 

properties with the metaheuristic’s powerful global search capabilities. The demonstration 

of the efficiency and robustness of the approach is done through rigorous computational 

tests on benchmark problems, involving integro-differential and non-linear boundary value 

problems. A comparison of the computed results with known exact solutions, validates this 

optimization-driven spectral technique, showing excellent accordance. The approach is 

simple to implement and displays outstanding potential for tackling complex DE systems 

where traditional methods maybe stick. 
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1. INTRODUCTION

The real-world phenomena can be modelled mathematically 

as differential equations (Des). Analytical solutions provide 

exactness, but they are can be achieved only for a limited case 

of linear and simple problems [1]. In consequence, researchers 

run to numerical methods for obtaining approximate solutions. 

Classical numerical methods, like the Finite Element 

Method (FEM) and Finite Difference Method (FDM), work 

using the problem domain’s discretization into a mesh of 

points or elements. These techniques are powerful and flexible, 

but they have local accuracy, where it is restricted by a 

polynomial order of convergence. Attaining high accuracy 

often necessitates a prohibitively fine mesh, yielding to wide 

systems of equations, that leads to significant computational 

cost. 

To master these limitations, spectral methods have achieved 

eminence as a class of highly accurate numerical approaches 

[2]. Opposed to local methods, spectral methods give global 

approximate solution utilizing a basis of smooth, infinitely 

differentiable functions, like orthogonal or trigonometric 

polynomials. This global technique allows them to attain 

"spectral" or exponential convergence for problems with 

smooth solutions. This signifies as the number of basis 

functions increases the error decreases exponentially, yielding 

to solutions with high accuracy, accompanied by a relatively 

small number of degrees of freedom. 

However, the principal challenge in spectral methods is the 

determination of the basis expansion’s coefficients. In 

classical approaches such as collocation or Galerkin methods 

the DE is imposed at specific points or in a weighted-integral 

sense. This generally yields to complex structured systems of 

algebraic equations, which may become difficult to solve or il-

conditioned, particularly for non-linear DEs. 

Reframing the coefficient-getting problem as an 

optimization task is an alternative paradigm. The aim becomes 

to obtain the set of coefficients that minimizes the residual, or 

"error”, of the approximate solution among the entire domain. 

This technique based on transforming the DE problem into a 

continuous optimization problem, generally high-dimensional. 

The power of this technique lies in its adaptability and its 

capability to handle non-linearities implicitly in the objective 

function. 

Metaheuristic algorithms are powerful gradient-free search 

strategy, for solving such optimization tasks [3-5]. These 

natural-inspired algorithms, utilize a population of candidate 

solutions in the aim of exploring the search space and 

converging towards a global optimum. Notable examples 
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involve: 

• Genetic Algorithm (GA): Mimicking the Darwinian 

evolution, GA utilizes selection, crossover, and 

mutation operators to develop a population of 

solutions over generations [6]. It is considered as high 

effective method at global exploration. 

• Particle Swarm Optimization (PSO): Created by 

Kennedy and Eberhart [7], PSO inspired by the 

swarm intelligence of birds flocking. Every solution 

modifies its trajectory depending on its own best-

obtained position and the best-obtained position of 

the entire swarm, this makes an effective balance 

between individual and social knowledge. 

• Artificial Bee Colony (ABC): Developed by 

Karaboga [8], mimicking the comportment of ants in 

searching food. 

• Firefly Algorithm (FA): Made by Yang [9]. 

The Flower Pollination Algorithm (FPA), developed by 

Yang [10], is a newer metaheuristic that imitates the flowers 

pollination process. It balances global exploration using cross-

pollination via Lévy flights, and local exploitation utilizing 

self-pollination, achieving excellent results for a large range of 

complex optimization problems. 

There are a lots of metaheuristic algorithms that prove their 

efficiency on solving several problems, including Cuckoo 

Search [11], Whale Optimization Algorithm [12]. Likewise, 

recent ones such as Barnacles Mating Optimizer [13], 

Dandelion Optimizer [14], and Dwarf Mongoose 

Optimization Algorithm [15]. 

Artificial intelligence, especially deep learning and Physics-

Informed Neural Networks (PINNs) [16-18], has presented 

another powerful model for solving DEs. PINNs utilize the 

residual of the DE as part of the loss function for training a 

neural network that directly constitutes the solution. While 

extremely powerful, PINNs often necessitate tuning a large 

number of hyperparameters where their theoretical 

convergence properties are still a vibrant field of study. 

This work deliberately deviates by combining the well-

understood, high-accuracy approach of spectral methods with 

the robust global search of metaheuristics. This framework 

hybridizes the "best of both worlds" while keeping away from 

the complexities of deep neural network training. 

This paper presents the Chebyshev Metaheuristic Solver 

Approach (CMSA), an approach that transforms a DE into an 

optimization task to be solved via Flower Pollination 

Algorithm. 

The remainder of the paper is structured as follows: In 

Section 2, a description of the proposed approach is given, 

with an outline of the problem formulation to an optimization 

task (how to use Chebyschev polynomials and FPA) to clarify 

its fundamental principles and mechanisms. In section 3, 

different problems are solved using the method. The results 

show impressive solutions that underscore the effectiveness of 

the proposed approach in dealing with various challenges. 

Finally, a conclusion and future scope of the work are given, 

where the proposed approach can be extended to a system of 

DE’s and with other metaheuristic algorithms. 

 

 

2. CHEBYSHEV METAHEURISTIC SOLVER 

APPROACH (CMSA) 

 

The proposed CMSA approach transforms a differential 

problem into an optimization task in three key steps: first, 

approximate the solution utilizing a Chebyshev series, then, 

formulate an objective function relying on the residual error, 

and finally, implement the Flower Pollination Algorithm to 

obtain the optimal series coefficients. 

 

2.1 Solution’s approximation via Chebyshev polynomials 

 

Assuming a general differential equation, potentially non-

linear, written implicitly within a domain [𝑥0, 𝑥𝑛]: 
 

𝑓(𝑥, 𝑦(𝑥), 𝑦′ (𝑥), . . . , 𝑦(𝑘) (𝑥))  =  0 (1) 

 

with 𝑚  initial or boundary conditions 𝐶𝑖(𝑦) = 𝑑𝑖  for 𝑖 =
1, … . . , 𝑚. 

The aim is to obtain an approximate solution 𝑦𝑁(𝑥) that 

nearby satisfies the Eq. (1) and the conditions 𝐶𝑖. Transform 

this into an optimization task by defining a fitness function 

(objective function) to be optimized (for this case to be 

minimized). 

First, write the approximate solution utilizing a basis 

expansion (detailed in Section 2.2): 

 

𝑦(𝑥) ≈ 𝑦𝑁(𝑥) = ∑ 𝑎𝑗𝑇𝑗(𝑥)

𝑁

𝑗=0

 (2) 

 

𝑇𝑗(𝑥) are Chebyshev first kind polynomials, 𝑁 is the degree 

of approximation, and 𝑎𝑗 are unknown coefficients that aimed 

to obtain. 

The choice of Chebyshev polynomials as basis function is 

for several captivating reasons: 

o The Chebyshev polynomial has the minimax 

property where the polynomial possesses the smallest 

maximum deviation from zero on [−1, 1]. 
This minimax property ensures the convergence to the 

optimal approximation, where the approximation error is 

dispersed among the domain, yielding to the best possible 

uniform approximate function for a certain degree 𝑁. 
o The nodes or roots of Chebyshev polynomials are 

collected near the endpoints of the interval. Utilizing 

these points for minimizing error or collocation is 

familiar to reduce the Runge phenomenon, an issue 

of large oscillations that can arise in polynomial 

interpolation with equally spaced points. This yields 

to superior numerical stability. 

o Chebyshev polynomials have efficient and stable 

differentiation, where their derivatives are also 

Chebyshev series. So that the coefficients can be 

calculated systematically using stable recurrence 

relations. This makes it simple to evaluate the 

derivatives necessary by the differential equation. 

The standard Chebyshev polynomials 𝑇𝐽(𝑥)  constitute a 

basis well-suited for function approximation on [−1, 1] . A 

simple mapping transformation for 𝑥, can generalized to the 

interval [𝑥0, 𝑥𝑛]. Their features permit for stable and efficient 

calculation of the approximation 𝑌𝑁(𝑥)  and its derivatives. 

The derivatives 𝑌𝑁
′ (𝑥), … , 𝑌𝑁

(𝑘)(𝑥)  can be written as linear 

combinations of Chebyshev polynomials where their 

coefficients are derived from the original 𝑎𝑗 utilizing standard 

recurrence relations. This makes calculating the residual 𝑅(𝑥) 

easy once the coefficients 𝑎𝑗 are evaluated. The select of 𝑁, 

the degree of the polynomial expansion, controls the possible 

accuracy and the dimensionality of the optimization problem, 
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where it is equal to 𝑁 + 1 variables. 

 

2.2 Optimization problem formulation 

 

Replacing 𝑦𝑁(𝑥)  and its derivatives into Eq. (1) leads a 

residual function, which is generally different of zero: 

 

𝑅(𝑥; 𝑎0, … , 𝑎𝑁)

= 𝑓(𝑥, 𝑦𝑁(𝑥), 𝑦𝑁
′  𝑁 (𝑥), . . . , 𝑦𝑁

(𝑘)
 𝑁 (𝑥)) 

(3) 

 

The main objective is to minimize this residual throughout 

the domain. We quantify this utilizing a discrete 

approximation of the integrated squared residual. We choose 

𝑀  collocation points 𝑥𝑝  among [𝑥0 , 𝑥𝑛]  (like uniformly 

spaced points or Chebyshev nodes) and compute the sum of 

squared residuals: 

 

𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝐸𝑟𝑟𝑜𝑟 = ∑[𝑅(𝑥; 𝑎0, … , 𝑎𝑁)]2

𝑀

𝑝=1

 (4) 

 

To guarantee that the boundary/initial conditions are 

satisfied, we add penalty terms into the objective function. For 

each condition 𝐶𝑖(𝑦) = 𝑑𝑖, calculate 𝐶𝑖(𝑌𝑁) and incorporate a 

weighted penalty depends on the deviation: 

 

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝑖 = |𝐶𝑖(𝑦𝑁) − 𝑑𝑖|
2 (5) 

 

The terminal objective function 𝑂𝑏𝑗𝑓  integrates the 

residual error and condition penalties: 

 

𝑂𝑏𝑗𝑓(𝑎0, … , 𝑎𝑁) =  𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝐸𝑟𝑟𝑜𝑟

+ ∑ 𝑤𝑖 .

𝑚

𝑖=1

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝑖 
(6) 

 

where, 𝑤𝑖  are eighting factors, possibly fixed to 1 or modified 

based on scaling. 

The problem has been transformed from finding the optimal 

approximate solution of the DE to obtaining the vector of 

coefficients 𝑎 = [𝑎0, … , 𝑎𝑁]𝑇  that minimizes 𝑂𝑏𝑗𝑓(𝑎) . 

Where, this is an unconstrained, continuous optimization 

problem. 

 

2.3 Coefficient determination via flower pollination 

algorithm 

 

The Flower Pollination Algorithm (FPA) [19] is used to 

solve the optimization problem introduced by minimizing Eq. 

(6). FPA is a population-based metaheuristic where every 

"pollen particle" constitutes a possible solution vector 𝑎 =
[𝑎0, … , 𝑎𝑁]𝑇 . The algorithm iteratively improves the 

population relied on rules mimicking flower pollination in 

nature: 

• Global or Cross Pollination: Imitates pollinators 

traveling long distances, usual modeled utilizing 

Lévy flights. This advances exploration of the search 

space. At iteration 𝑡 , a solution 𝑎𝑡  is updated 

dependent on the current best solution 𝑎𝑏𝑒𝑠𝑡 obtained 

so far: 

 

𝑎𝑡+1 = 𝑎𝑡 + 𝐿. (𝑎𝑏𝑒𝑠𝑡 − 𝑎𝑡) (7) 

 

The fact that 𝐿 is a step size drawn from a Lévy distribution, 

allows occasional long jumps. 

• Local or Self Pollination: Imitates self-pollination or 

pollination between nearby flowers, guided by 

factors like wind or proximity. This makes the 

exploitation of promising regions easier. A solution 

𝑎𝑡is updated dependent on two solutions 𝑎𝑗 and 𝑎𝑘 

randomly chosen from the same population: 

 

𝑎𝑡+1 = 𝑎𝑡 + 𝑈. (𝑎𝑗 − 𝑎𝑘) (8) 

 

where, 𝑈  is a random number derived from a uniform 

distribution. 

• Switching Probability: A probability 𝑝  usual set 

around 0.8, decides whether global (Eq. (7)) or local 

(Eq. (8)) pollination is executed for each solution in 

each iteration. 

The algorithm starts by initializing a population of random 

candidate coefficient vectors, calculating their fitness 

employing 𝑜𝑏𝑗𝑓, and iteratively implementing the pollination 

rules and selection, and keeping the best solutions, until a stop 

criterion is met (e.g., satisfactory objective function value or 

maximum number of iterations). The final 𝑎𝑏𝑒𝑠𝑡  offers the 

coefficients for the approximate solution 𝑌𝑁(𝑥). 

 

2.4 Summary of the proposed CMSA algorithm 

 

1) The inputs are: the differential equation f(. . . ) = 0, 

conditions 𝐶𝑖(𝑦) = 𝑑𝑖 , domain [𝑥0, 𝑥𝑛], polynomial 

degree 𝑁 , number of collocation points 𝑀 , FPA 

parameters such as population size 𝑛𝑝𝑜𝑝 , switch 

probability 𝑝, max iterations 𝑀𝑎𝑥𝐼𝑡𝑒𝑟. 

2) Construct the objective Function 𝑜𝑏𝑗𝑓  Eq. (6), 

involving the residual calculation Eqs. (3)-(4) using 

Chebyshev basis polynomials Eq. (2) and condition 

penalties Eq. (5). 

3) Generate an initial population of 𝑛𝑝𝑜𝑝  coefficient 

vectors randomly 𝑎(0)  among predefined bounds 

[Lb, Ub]  from Table 1. Calculate 𝑜𝑏𝑗𝑓  for every 

pollen and determine the initial best solution 𝑎𝑏𝑒𝑠𝑡 . 

4) FPA Iteration Loop from t = 1 to MaxIter: 

For every solution 𝑎𝑡  in the population: 

o Create a random number 𝑟~𝑈(0; 1). 

o If 𝑟 < 𝑝: Do global pollination (Eq. (7)) to 

obtain a candidate 𝑎𝑐𝑎𝑛𝑑 . 

o Else: Do local pollination (Eq. (8)) to obtain 

a candidate 𝑎𝑐𝑎𝑛𝑑 . 

o Check bounds, if 𝑎𝑐𝑎𝑛𝑑  goes outside 

[Lb, Ub] or not. 

o Calculate 𝑜𝑏𝑗𝑓(𝑎𝑐𝑎𝑛𝑑). 

o If 𝑜𝑏𝑗𝑓(𝑎𝑐𝑎𝑛𝑑)  is smaller than 𝑜𝑏𝑗𝑓(𝑎𝑡) 

replace 𝑎𝑡 with 𝑎𝑐𝑎𝑛𝑑. 

o Update 𝑎𝑏𝑒𝑠𝑡 if a new general best solution 

is found. 

5) The output is the final 𝑎𝑏𝑒𝑠𝑡  coefficient vector. 

6) The final step is to construct Solution by forming the 

approximate solution 𝑌𝑁(𝑥)  via Eq. (2) with the 

derived 𝑎𝑏𝑒𝑠𝑡  coefficients. 

 

 

3. EXPERIMENTAL RESULTS AND DISCUSSION 

 

To evaluate the performance of the proposed CMSA 

framework, an implementation was done for two benchmark 
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problems originating from [1]. The algorithm was applied in 

MATLAB R2018a on a system with an Intel Core i5 processor 

(1.6GHz) and 8GB RAM. For every problem, multiple runs 

(e.g., 10-20) were done to account for the stochastic nature of 

FPA, and the best result is stated. 

  

3.1 First problem: integro-Differential equation 

  

Supposing the linear integro-differential equation: 

 

𝑦′(𝑥) + 2𝑦(𝑥) + 5 ∫ 𝑦(𝑡)𝑑𝑡

𝑥

0

= 𝐻(𝑥) 

 

conditioned by y(0) = 0 , with H(x)  is the Heaviside step 

function (1 for 𝑥 ≥ 0, 0 for 𝑥 < 0). The interval of solution is 

[0, 𝜋]. 
This can be converted to a second-order ODE, after 

differentiating: 

 

𝑦′′(𝑥) + 2𝑦′(𝑥) +  5𝑦(𝑥) = 0 (9) 

 

y(0) = 0  and y′(0) = 1  (extracted from the original 

equation at 𝑥 = 0). 

The exact solution of the proposed problem is: 

 

𝑦𝑒𝑥𝑎𝑐𝑡(𝑥) =
1

2
𝑒−𝑥 sin(2𝑥) 

 

Implement the CMSA utilizing the second-order 

formulation (Eq. (9)) with conditions y(0) = 0, y′(0) = 1. 

The FPA parameters employed for approximations with 

N = 5, 7, 9 are given in Table 1. 
 

Table 1. Parameters utilized in the flower pollination 

algorithm for solving the benchmark problems 1, 2 

 
Parameter 𝑵 = 𝟓 𝑵 = 𝟕 𝑵 = 𝟗 

Pop.Size 𝑛𝑝𝑜𝑝 

Max. Iter 

Switch prob 

Lower bound Lb 

Upper Bound Ub 

25 

10000 

0.8 

-2 

2 

25 

10000 

0.8 

-2 

2 

25 

10000 

0.8 

-2 

2 

 

The approximate solutions given by Chebyshev 

metaheuristic solver for different range of Chebyshev 

polynomials are: 

In the case of 𝑁 = 5 

 

𝑦5(𝑥) = −0.0085𝑥5 + 0.0299𝑥4 + 0.1559𝑥3 − 0.7661𝑥2

+ 0.7660𝑥 + 1.4400𝑒 − 05 

 

Or, 

 

𝑦5(𝑥) = −0.37182𝑇0(𝑥) + 0.87766𝑇1(𝑥) − 0.3681𝑇2(𝑥)
+ 0.036336𝑇3(𝑥) + 0.0037344𝑇4(𝑥)
− 0.00052904𝑇5(𝑥) 

 

In the case of 𝑁 = 7 

 

𝑦7(𝑥) = −0.0043𝑥7 + 0.0568𝑥6 − 0.2827𝑥5 + 0.5934𝑥4

− 0.1995𝑥3 − 0.9959𝑥2 + 0.9998𝑥
− 7.7900𝑒 − 06 

 

Or, 

𝑦7(𝑥) = −0.257686𝑇0(𝑥) + 0.671156𝑇1(𝑥)
− 0.17463𝑇2(𝑥) − 0.13963𝑇3(𝑥)
+ 0.084822𝑇4(𝑥) − 0.01814𝑇5(𝑥)
+ 0.00177379𝑇6(𝑥) − 0.000067𝑇7(𝑥) 

 

Figures 1 and 2 make a comparison of the approximate 

solutions 𝑌𝑁(𝑥) given using CMSA for N = 5 and N = 7 with 

the exact solution 𝑦𝑒𝑥𝑎𝑐𝑡 . 

Table 2 shows the Root Mean Square Error obtained by the 

approximate solution of the integro-differential Eq. (1), using 

the Chebyshev Metaheuristic Solver Approach and the general 

approach introduced in reference [20]. 

 

 
 

Figure 1. Exact solution against CMSA approximation 

(first problem for N = 5) 

 

 
 

Figure 2. Exact solution against CMSA approximation 

(first problem for N = 7) 

 

Table 2. Comparison table of RMSE for the integro 

differential equation obtained by CMSA and PSO ([20]) 

 
Optimizer RMSE 

CMSA 𝑁 = 5 

CMSA 𝑁 = 7 

PSO 

3.14𝑒 − 02 

1.05𝑒 − 02 

1.805𝑒 − 01 

 

The results reveal an excellent agreement between the exact 

and the approximate solutions. The approximation quality 
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enhances visibly as the polynomial degree 𝑁 augments from 5 

to 7, proving the expected convergence comportment of the 

Chebyshev approximation facilitated by the FPA’s coefficient 

search. The approximate solutions nearly trace the exact 

curve within the entire domain, especially for 𝑁 = 7. 

 

3.2 Second problem; non-Linear Bernoulli boundary value 

problem 

 

Now, tracking the non-linear Bernoulli equation 

represented as a boundary value problem: 

 

𝑦′′(𝑥) + (𝑦′(𝑥))2 − 2 𝑒{−𝑦(𝑥)} = 0 

 

with the boundary conditions y(0) = 0 and y(1) = 0, among 

the interval [0, 1]. 
The exact solution of the suggested problem is: 

 

𝑦𝑒𝑥𝑎𝑐𝑡(𝑥) = ln ((𝑥 −
1

2
)

2

+
3

4
) 

 

The CMSA was implemented with N = 5, 7, 9 . FPA 

parameters were the same as those employed in the first 

example (see Table 1). Figures 3-5 compare the CMSA 

approximations against the exact solution for N = 5, N = 7, 

and N = 9, respectively. 

The approximate solutions obtained from using CMSA are: 

For N = 5 

 

𝑦5(𝑥) = 2.7085𝑒 − 16𝑥5 − 0.5403𝑥4 + 1.0805𝑥3

+ 0.4798𝑥2 − 1.0200𝑥 − 7.0000𝑒 − 06 

 

Or, 

 

𝑦5(𝑥) = 0.03728𝑇0(𝑥) − 0.20964𝑇1(𝑥) − 0.030246𝑇2(𝑥)
+ 0.27013𝑇3(𝑥) − 0.067533𝑇4(𝑥)
+ 1.6928𝑒 − 17𝑇5(𝑥) 

 

For N = 7 

 

𝑦7(𝑥) = 0.1304𝑥7 − 0.2878𝑥6 + 0.1077𝑥5 − 0.4096𝑥4

+ 0.9883𝑥3 + 0.4854𝑥2 − 1.0146𝑥 

Or, 

 

𝑦7(𝑥) = −0.00082011𝑇0(𝑥) − 0.13476𝑇1(𝑥)
− 0.096989𝑇2(𝑥) + 0.32353𝑇3(𝑥)
− 0.10515𝑇4(𝑥) + 0.020998𝑇5(𝑥)
− 0.0089923𝑇6(𝑥) + 0.002038𝑇7(𝑥) 

 

For N = 9 

 

𝑦9(𝑥) = −0.2689𝑥9 + 0.5652𝑥8 + 0.3149𝑥7 − 1.3724𝑥6

+ 0.6025𝑥5 − 0.0599𝑥4 + 0.7203𝑥3

+ 0.4990𝑥2 − 1.0010𝑥 − 0.0001 

 

Or, 

 

𝑦9(𝑥) = −0.047332𝑇0(𝑥) − 0.044291𝑇1(𝑥)
− 0.17647𝑇2(𝑥) + 0.38347𝑇3(𝑥)
− 0.14118𝑇4(𝑥) + 0.034289𝑇5(𝑥)
− 0.007565𝑇6(𝑥) − 0.0045317𝑇7(𝑥)
+ 0.0044153𝑇8(𝑥) − 0.0010502𝑇9(𝑥) 

 

Table 3. Comparison table of RMSE for the non-linear 

Bernoulli equation obtained by SPMS and PSO ([20]) 

 
Optimizer RMSE 

CMSA 𝑁 = 5 

CMSA 𝑁 = 7 

CMSA 𝑁 = 9 

PSO 

1.9𝑒 − 03 

1.1𝑒 − 03 

2.8144𝑒 − 04 

3.0503𝑒 − 04 

 

Table 3 shows the Root Mean Square Error obtained by the 

approximate solution of the non-linear Bernoulli equation 

(second problem), using the Chebyshev metaheuristic solver 

and the general approach introduced in reference [20]. 

 

 
 

Figure 3. Exact solution against CMSA approximation 

(second problem for N = 5) 

 

 
 

Figure 4. Exact solution against CMSA approximation 

(second problem for N = 7) 

 

 
 

Figure 5. Exact solution against CMSA approximation 

(second problem for N = 9) 
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High degree of agreement is observed for all tested degrees 

𝑁. Even with 𝑁 = 5, the shape of the exact solution has been 

well captured by the approximation. As 𝑁 augments to 7 and 

9, the approximate solution come to be graphically 

indistinguishable from the exact solution, showcasing the 

method's ability to handle non-linearities and boundary 

conditions efficiently. The fast convergence suggests that the 

integration of Chebyshev polynomials and FPA optimization 

navigates with success the solution space to obtain highly 

accurate coefficient sets. 

 

 

4. CONCLUSION AND FUTURE WORKS 

 

This paper presented a Chebyshev Metaheuristic Solver 

Approach (CMSA), a hybrid computational strategy for 

solving differential equations. By formulating the approximate 

solution using Chebyshev polynomials and using the Flower 

Pollination Algorithm to approximate the coefficients based 

on the minimization of the equation residual and boundary 

condition deviations, we instituted a versatile framework valid 

to various DE types. 

The experimental results found for both linear integro-

differential and non-linear boundary value problems prove the 

efficiency and accuracy of the suggested approach. The 

CMSA leaded with success approximations that converge fast 

towards the exact solutions as the degree of the polynomial 

expansion augments. The approach integrates the power of 

spectral approximation with the robust search abilities of 

metaheuristics. 

Future studies could be done: 

• Applying the CMSA method to a vast range of 

challenging DEs, including systems of equations, 

partial differential equations, and problems with 

complex boundary conditions, would institute more 

its applicability. 

• Exploring the employ of other metaheuristic 

algorithms (like GA, PSO, or advanced hybrid 

variants) within this framework, could conduct to 

improved effectivity or robustness. 

• investigating adaptive strategies for choosing the 

polynomial degree 𝑁  or the number of collocation 

points 𝑀  could improve the approach's automation 

and performance, could improve the approach's 

automation and performance. 

• Implementing the proposed method for solving 

practical problems in science and engineering 

domains is a promising avenue for future exploration. 
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NOMENCLATURE 

 

𝑎𝑗 Vector of Chebyshev polynomial 

coefficients 

𝑎𝑏𝑒𝑠𝑡  Best coefficient vector found by FPA 

𝑎𝑐𝑎𝑛𝑑  Candidate coefficient vector in FPA 

𝑎𝑗 , 𝑎𝑘 Randomly chosen coefficient vectors 

from population in FPA 

𝑎𝑡 Coefficient vector at FPA iteration 𝑡 

𝐶𝑖(𝑦) i-th boundary or initial condition operator 

𝑑𝑖 Specified value for the 𝑖-th boundary or 

initial condition 

𝑓 Function defining the differential 

equation 

𝐻 Heaviside step function 

𝑘 Order of the highest derivative in the 

differential equation 

𝐿 Step size in FPA global pollination, 

drawn from Lévy distribution 

𝐿𝑏 Lower bound for coefficient values in 

FPA search space 

𝑀 Number of collocation points 

𝑀𝑎𝑥𝐼𝑡𝑒𝑟 Maximum number of iterations for FPA 

𝑁 Degree of the Chebyshev polynomial 

approximation 

𝑛𝑝𝑜𝑝 Population size in FPA 

𝑜𝑏𝑗𝑓 Objective function to be minimized 

𝑝 Switching probability in FPA 

𝑅(𝑥; 𝑎𝑖) Residual function of the DE using the 

approximate solution 

𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝐸𝑟𝑟𝑜𝑟 Sum of squared residuals over 

collocation points 

𝑟 Random number uniformly distributed in 

[0,1) for FPA logic 

𝑇𝑗 Chebyshev polynomial of the first kind of 

degree 𝑗 

𝑡 Iteration counter in FPA 

𝑈 Random number drawn from a uniform 

distribution U (0,1) for FPA local 

pollination 

𝑈𝑏 Upper bound for coefficient values in 

FPA search space 

𝑤𝑖  Weighting factor for the 𝑖 -th condition 

penalty 

𝑥 Independent variable 

𝑥0, 𝑥𝑛 Start and end points of the domain of 

interest 

𝑥𝑝 𝑝-th collocation point 

𝑌𝑁(𝑥) Approximate solution to the differential 

equation using 𝑁-degree polynomial 

𝑦(𝑥) General or exact solution to the 

differential equation 

𝑦(𝑘)(𝑥) 𝑘-th derivative of 𝑦(𝑥) with respect to 𝑥 

𝑦𝑒𝑥𝑎𝑐𝑡(𝑥) Known exact solution for benchmark 

problems 

 

Subscripts and 

Superscripts 

 

 

0 Initial value 

𝑏𝑒𝑠𝑡 The best solution found so far 

𝑐𝑎𝑛𝑑 A candidate solution 

𝑒𝑥𝑎𝑐𝑡 An exact solution 

𝑖 Boundary/initial conditions or general 

counting 

𝑗, 𝑘 Polynomial terms or solutions in FPA 

𝑁 Degree of polynomial approximation 

𝑛 Final value 

𝑝 Collocation points 

𝑡 Iteration number 

(𝑘) Order of differentiation 
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