
Spectral Approximations Optimized by Flower Pollination Algorithm for Solving

Differential Equations

Ghedjemis Fatiha1* , Khelil Naceur2

1 Department of Mathematics, Mohamed Khider University, Biskra 07000, Algeria
2 Laboratory of Mathematical Analysis Probabilities Optimizations, Mohamed Khider University, Biskra 07000, Algeria

Corresponding Author Email: fatiha.ghedjemis@univ-biskra.dz

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/ijcmem.130211 ABSTRACT

Received: 27 April 2025

Revised: 12 June 2025

Accepted: 20 June 2025

Available online: 30 June 2025

This study introduces Chebyshev Metaheuristic Solver Approach (CMSA), a new

computational approach, to get approximate solutions with high-accuracy to a vast range

of linear and non-linear differential equations (DEs). The main idea is changing the

differential problem into a continuous optimization task. First the approximate solution

was written as a truncated series of Chebyshev polynomials, where they are chosen due to

their numerical stability and optimal approximation properties. The undetermined

coefficients of this series turn into the decision variables in an optimization task. The

objective function is derived from the residual of the differential equation, integrated with

penalty terms to achieve initial or boundary conditions enforcement. Then the Flower

Pollination Algorithm (FPA), a nature-inspired metaheuristic algorithm, is used to find the

optimal polynomial coefficients via the minimization of this objective function. This

hybrid approach symbiotically integrates the spectral method’s exponential convergence

properties with the metaheuristic’s powerful global search capabilities. The demonstration

of the efficiency and robustness of the approach is done through rigorous computational

tests on benchmark problems, involving integro-differential and non-linear boundary value

problems. A comparison of the computed results with known exact solutions, validates this

optimization-driven spectral technique, showing excellent accordance. The approach is

simple to implement and displays outstanding potential for tackling complex DE systems

where traditional methods maybe stick.

Keywords:

differential equations, metaheuristic

algorithms, Chebyshev polynomials, flower

pollination algorithm.

1. INTRODUCTION

The real-world phenomena can be modelled mathematically

as differential equations (Des). Analytical solutions provide

exactness, but they are can be achieved only for a limited case

of linear and simple problems [1]. In consequence, researchers

run to numerical methods for obtaining approximate solutions.

Classical numerical methods, like the Finite Element

Method (FEM) and Finite Difference Method (FDM), work

using the problem domain’s discretization into a mesh of

points or elements. These techniques are powerful and flexible,

but they have local accuracy, where it is restricted by a

polynomial order of convergence. Attaining high accuracy

often necessitates a prohibitively fine mesh, yielding to wide

systems of equations, that leads to significant computational

cost.

To master these limitations, spectral methods have achieved

eminence as a class of highly accurate numerical approaches

[2]. Opposed to local methods, spectral methods give global

approximate solution utilizing a basis of smooth, infinitely

differentiable functions, like orthogonal or trigonometric

polynomials. This global technique allows them to attain

"spectral" or exponential convergence for problems with

smooth solutions. This signifies as the number of basis

functions increases the error decreases exponentially, yielding

to solutions with high accuracy, accompanied by a relatively

small number of degrees of freedom.

However, the principal challenge in spectral methods is the

determination of the basis expansion’s coefficients. In

classical approaches such as collocation or Galerkin methods

the DE is imposed at specific points or in a weighted-integral

sense. This generally yields to complex structured systems of

algebraic equations, which may become difficult to solve or il-

conditioned, particularly for non-linear DEs.

Reframing the coefficient-getting problem as an

optimization task is an alternative paradigm. The aim becomes

to obtain the set of coefficients that minimizes the residual, or

"error”, of the approximate solution among the entire domain.

This technique based on transforming the DE problem into a

continuous optimization problem, generally high-dimensional.

The power of this technique lies in its adaptability and its

capability to handle non-linearities implicitly in the objective

function.

Metaheuristic algorithms are powerful gradient-free search

strategy, for solving such optimization tasks [3-5]. These

natural-inspired algorithms, utilize a population of candidate

solutions in the aim of exploring the search space and

converging towards a global optimum. Notable examples

International Journal of Computational Methods and
Experimental Measurements

Vol. 13, No. 2, June, 2025, pp. 343-349

Journal homepage: http://iieta.org/journals/ijcmem

343

https://orcid.org/0000-0002-5405-1095
https://crossmark.crossref.org/dialog/?doi=10.18280/ijcmem.130211&domain=pdf

involve:

• Genetic Algorithm (GA): Mimicking the Darwinian

evolution, GA utilizes selection, crossover, and

mutation operators to develop a population of

solutions over generations [6]. It is considered as high

effective method at global exploration.

• Particle Swarm Optimization (PSO): Created by

Kennedy and Eberhart [7], PSO inspired by the

swarm intelligence of birds flocking. Every solution

modifies its trajectory depending on its own best-

obtained position and the best-obtained position of

the entire swarm, this makes an effective balance

between individual and social knowledge.

• Artificial Bee Colony (ABC): Developed by

Karaboga [8], mimicking the comportment of ants in

searching food.

• Firefly Algorithm (FA): Made by Yang [9].

The Flower Pollination Algorithm (FPA), developed by

Yang [10], is a newer metaheuristic that imitates the flowers

pollination process. It balances global exploration using cross-

pollination via Lévy flights, and local exploitation utilizing

self-pollination, achieving excellent results for a large range of

complex optimization problems.

There are a lots of metaheuristic algorithms that prove their

efficiency on solving several problems, including Cuckoo

Search [11], Whale Optimization Algorithm [12]. Likewise,

recent ones such as Barnacles Mating Optimizer [13],

Dandelion Optimizer [14], and Dwarf Mongoose

Optimization Algorithm [15].

Artificial intelligence, especially deep learning and Physics-

Informed Neural Networks (PINNs) [16-18], has presented

another powerful model for solving DEs. PINNs utilize the

residual of the DE as part of the loss function for training a

neural network that directly constitutes the solution. While

extremely powerful, PINNs often necessitate tuning a large

number of hyperparameters where their theoretical

convergence properties are still a vibrant field of study.

This work deliberately deviates by combining the well-

understood, high-accuracy approach of spectral methods with

the robust global search of metaheuristics. This framework

hybridizes the "best of both worlds" while keeping away from

the complexities of deep neural network training.

This paper presents the Chebyshev Metaheuristic Solver

Approach (CMSA), an approach that transforms a DE into an

optimization task to be solved via Flower Pollination

Algorithm.

The remainder of the paper is structured as follows: In

Section 2, a description of the proposed approach is given,

with an outline of the problem formulation to an optimization

task (how to use Chebyschev polynomials and FPA) to clarify

its fundamental principles and mechanisms. In section 3,

different problems are solved using the method. The results

show impressive solutions that underscore the effectiveness of

the proposed approach in dealing with various challenges.

Finally, a conclusion and future scope of the work are given,

where the proposed approach can be extended to a system of

DE’s and with other metaheuristic algorithms.

2. CHEBYSHEV METAHEURISTIC SOLVER

APPROACH (CMSA)

The proposed CMSA approach transforms a differential

problem into an optimization task in three key steps: first,

approximate the solution utilizing a Chebyshev series, then,

formulate an objective function relying on the residual error,

and finally, implement the Flower Pollination Algorithm to

obtain the optimal series coefficients.

2.1 Solution’s approximation via Chebyshev polynomials

Assuming a general differential equation, potentially non-

linear, written implicitly within a domain [𝑥0, 𝑥𝑛]:

𝑓(𝑥, 𝑦(𝑥), 𝑦′ (𝑥), . . . , 𝑦(𝑘) (𝑥)) = 0 (1)

with 𝑚 initial or boundary conditions 𝐶𝑖(𝑦) = 𝑑𝑖 for 𝑖 =
1, … . . , 𝑚.

The aim is to obtain an approximate solution 𝑦𝑁(𝑥) that

nearby satisfies the Eq. (1) and the conditions 𝐶𝑖. Transform

this into an optimization task by defining a fitness function

(objective function) to be optimized (for this case to be

minimized).

First, write the approximate solution utilizing a basis

expansion (detailed in Section 2.2):

𝑦(𝑥) ≈ 𝑦𝑁(𝑥) = ∑ 𝑎𝑗𝑇𝑗(𝑥)

𝑁

𝑗=0

 (2)

𝑇𝑗(𝑥) are Chebyshev first kind polynomials, 𝑁 is the degree

of approximation, and 𝑎𝑗 are unknown coefficients that aimed

to obtain.

The choice of Chebyshev polynomials as basis function is

for several captivating reasons:

o The Chebyshev polynomial has the minimax

property where the polynomial possesses the smallest

maximum deviation from zero on [−1, 1].
This minimax property ensures the convergence to the

optimal approximation, where the approximation error is

dispersed among the domain, yielding to the best possible

uniform approximate function for a certain degree 𝑁.
o The nodes or roots of Chebyshev polynomials are

collected near the endpoints of the interval. Utilizing

these points for minimizing error or collocation is

familiar to reduce the Runge phenomenon, an issue

of large oscillations that can arise in polynomial

interpolation with equally spaced points. This yields

to superior numerical stability.

o Chebyshev polynomials have efficient and stable

differentiation, where their derivatives are also

Chebyshev series. So that the coefficients can be

calculated systematically using stable recurrence

relations. This makes it simple to evaluate the

derivatives necessary by the differential equation.

The standard Chebyshev polynomials 𝑇𝐽(𝑥) constitute a

basis well-suited for function approximation on [−1, 1] . A

simple mapping transformation for 𝑥, can generalized to the

interval [𝑥0, 𝑥𝑛]. Their features permit for stable and efficient

calculation of the approximation 𝑌𝑁(𝑥) and its derivatives.

The derivatives 𝑌𝑁
′ (𝑥), … , 𝑌𝑁

(𝑘)(𝑥) can be written as linear

combinations of Chebyshev polynomials where their

coefficients are derived from the original 𝑎𝑗 utilizing standard

recurrence relations. This makes calculating the residual 𝑅(𝑥)

easy once the coefficients 𝑎𝑗 are evaluated. The select of 𝑁,

the degree of the polynomial expansion, controls the possible

accuracy and the dimensionality of the optimization problem,

344

where it is equal to 𝑁 + 1 variables.

2.2 Optimization problem formulation

Replacing 𝑦𝑁(𝑥) and its derivatives into Eq. (1) leads a

residual function, which is generally different of zero:

𝑅(𝑥; 𝑎0, … , 𝑎𝑁)

= 𝑓(𝑥, 𝑦𝑁(𝑥), 𝑦𝑁
′ 𝑁 (𝑥), . . . , 𝑦𝑁

(𝑘)
 𝑁 (𝑥))

(3)

The main objective is to minimize this residual throughout

the domain. We quantify this utilizing a discrete

approximation of the integrated squared residual. We choose

𝑀 collocation points 𝑥𝑝 among [𝑥0 , 𝑥𝑛] (like uniformly

spaced points or Chebyshev nodes) and compute the sum of

squared residuals:

𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝐸𝑟𝑟𝑜𝑟 = ∑[𝑅(𝑥; 𝑎0, … , 𝑎𝑁)]2

𝑀

𝑝=1

 (4)

To guarantee that the boundary/initial conditions are

satisfied, we add penalty terms into the objective function. For

each condition 𝐶𝑖(𝑦) = 𝑑𝑖, calculate 𝐶𝑖(𝑌𝑁) and incorporate a

weighted penalty depends on the deviation:

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝑖 = |𝐶𝑖(𝑦𝑁) − 𝑑𝑖|
2 (5)

The terminal objective function 𝑂𝑏𝑗𝑓 integrates the

residual error and condition penalties:

𝑂𝑏𝑗𝑓(𝑎0, … , 𝑎𝑁) = 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝐸𝑟𝑟𝑜𝑟

+ ∑ 𝑤𝑖 .

𝑚

𝑖=1

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝑖
(6)

where, 𝑤𝑖 are eighting factors, possibly fixed to 1 or modified

based on scaling.

The problem has been transformed from finding the optimal

approximate solution of the DE to obtaining the vector of

coefficients 𝑎 = [𝑎0, … , 𝑎𝑁]𝑇 that minimizes 𝑂𝑏𝑗𝑓(𝑎) .

Where, this is an unconstrained, continuous optimization

problem.

2.3 Coefficient determination via flower pollination

algorithm

The Flower Pollination Algorithm (FPA) [19] is used to

solve the optimization problem introduced by minimizing Eq.

(6). FPA is a population-based metaheuristic where every

"pollen particle" constitutes a possible solution vector 𝑎 =
[𝑎0, … , 𝑎𝑁]𝑇 . The algorithm iteratively improves the

population relied on rules mimicking flower pollination in

nature:

• Global or Cross Pollination: Imitates pollinators

traveling long distances, usual modeled utilizing

Lévy flights. This advances exploration of the search

space. At iteration 𝑡 , a solution 𝑎𝑡 is updated

dependent on the current best solution 𝑎𝑏𝑒𝑠𝑡 obtained

so far:

𝑎𝑡+1 = 𝑎𝑡 + 𝐿. (𝑎𝑏𝑒𝑠𝑡 − 𝑎𝑡) (7)

The fact that 𝐿 is a step size drawn from a Lévy distribution,

allows occasional long jumps.

• Local or Self Pollination: Imitates self-pollination or

pollination between nearby flowers, guided by

factors like wind or proximity. This makes the

exploitation of promising regions easier. A solution

𝑎𝑡is updated dependent on two solutions 𝑎𝑗 and 𝑎𝑘

randomly chosen from the same population:

𝑎𝑡+1 = 𝑎𝑡 + 𝑈. (𝑎𝑗 − 𝑎𝑘) (8)

where, 𝑈 is a random number derived from a uniform

distribution.

• Switching Probability: A probability 𝑝 usual set

around 0.8, decides whether global (Eq. (7)) or local

(Eq. (8)) pollination is executed for each solution in

each iteration.

The algorithm starts by initializing a population of random

candidate coefficient vectors, calculating their fitness

employing 𝑜𝑏𝑗𝑓, and iteratively implementing the pollination

rules and selection, and keeping the best solutions, until a stop

criterion is met (e.g., satisfactory objective function value or

maximum number of iterations). The final 𝑎𝑏𝑒𝑠𝑡 offers the

coefficients for the approximate solution 𝑌𝑁(𝑥).

2.4 Summary of the proposed CMSA algorithm

1) The inputs are: the differential equation f(. . .) = 0,

conditions 𝐶𝑖(𝑦) = 𝑑𝑖 , domain [𝑥0, 𝑥𝑛], polynomial

degree 𝑁 , number of collocation points 𝑀 , FPA

parameters such as population size 𝑛𝑝𝑜𝑝 , switch

probability 𝑝, max iterations 𝑀𝑎𝑥𝐼𝑡𝑒𝑟.

2) Construct the objective Function 𝑜𝑏𝑗𝑓 Eq. (6),

involving the residual calculation Eqs. (3)-(4) using

Chebyshev basis polynomials Eq. (2) and condition

penalties Eq. (5).

3) Generate an initial population of 𝑛𝑝𝑜𝑝 coefficient

vectors randomly 𝑎(0) among predefined bounds

[Lb, Ub] from Table 1. Calculate 𝑜𝑏𝑗𝑓 for every

pollen and determine the initial best solution 𝑎𝑏𝑒𝑠𝑡 .

4) FPA Iteration Loop from t = 1 to MaxIter:

For every solution 𝑎𝑡 in the population:

o Create a random number 𝑟~𝑈(0; 1).

o If 𝑟 < 𝑝: Do global pollination (Eq. (7)) to

obtain a candidate 𝑎𝑐𝑎𝑛𝑑 .

o Else: Do local pollination (Eq. (8)) to obtain

a candidate 𝑎𝑐𝑎𝑛𝑑 .

o Check bounds, if 𝑎𝑐𝑎𝑛𝑑 goes outside

[Lb, Ub] or not.

o Calculate 𝑜𝑏𝑗𝑓(𝑎𝑐𝑎𝑛𝑑).

o If 𝑜𝑏𝑗𝑓(𝑎𝑐𝑎𝑛𝑑) is smaller than 𝑜𝑏𝑗𝑓(𝑎𝑡)

replace 𝑎𝑡 with 𝑎𝑐𝑎𝑛𝑑.

o Update 𝑎𝑏𝑒𝑠𝑡 if a new general best solution

is found.

5) The output is the final 𝑎𝑏𝑒𝑠𝑡 coefficient vector.

6) The final step is to construct Solution by forming the

approximate solution 𝑌𝑁(𝑥) via Eq. (2) with the

derived 𝑎𝑏𝑒𝑠𝑡 coefficients.

3. EXPERIMENTAL RESULTS AND DISCUSSION

To evaluate the performance of the proposed CMSA

framework, an implementation was done for two benchmark

345

problems originating from [1]. The algorithm was applied in

MATLAB R2018a on a system with an Intel Core i5 processor

(1.6GHz) and 8GB RAM. For every problem, multiple runs

(e.g., 10-20) were done to account for the stochastic nature of

FPA, and the best result is stated.

3.1 First problem: integro-Differential equation

Supposing the linear integro-differential equation:

𝑦′(𝑥) + 2𝑦(𝑥) + 5 ∫ 𝑦(𝑡)𝑑𝑡

𝑥

0

= 𝐻(𝑥)

conditioned by y(0) = 0 , with H(x) is the Heaviside step

function (1 for 𝑥 ≥ 0, 0 for 𝑥 < 0). The interval of solution is

[0, 𝜋].
This can be converted to a second-order ODE, after

differentiating:

𝑦′′(𝑥) + 2𝑦′(𝑥) + 5𝑦(𝑥) = 0 (9)

y(0) = 0 and y′(0) = 1 (extracted from the original

equation at 𝑥 = 0).

The exact solution of the proposed problem is:

𝑦𝑒𝑥𝑎𝑐𝑡(𝑥) =
1

2
𝑒−𝑥 sin(2𝑥)

Implement the CMSA utilizing the second-order

formulation (Eq. (9)) with conditions y(0) = 0, y′(0) = 1.

The FPA parameters employed for approximations with

N = 5, 7, 9 are given in Table 1.

Table 1. Parameters utilized in the flower pollination

algorithm for solving the benchmark problems 1, 2

Parameter 𝑵 = 𝟓 𝑵 = 𝟕 𝑵 = 𝟗

Pop.Size 𝑛𝑝𝑜𝑝

Max. Iter

Switch prob

Lower bound Lb

Upper Bound Ub

25

10000

0.8

-2

2

25

10000

0.8

-2

2

25

10000

0.8

-2

2

The approximate solutions given by Chebyshev

metaheuristic solver for different range of Chebyshev

polynomials are:

In the case of 𝑁 = 5

𝑦5(𝑥) = −0.0085𝑥5 + 0.0299𝑥4 + 0.1559𝑥3 − 0.7661𝑥2

+ 0.7660𝑥 + 1.4400𝑒 − 05

Or,

𝑦5(𝑥) = −0.37182𝑇0(𝑥) + 0.87766𝑇1(𝑥) − 0.3681𝑇2(𝑥)
+ 0.036336𝑇3(𝑥) + 0.0037344𝑇4(𝑥)
− 0.00052904𝑇5(𝑥)

In the case of 𝑁 = 7

𝑦7(𝑥) = −0.0043𝑥7 + 0.0568𝑥6 − 0.2827𝑥5 + 0.5934𝑥4

− 0.1995𝑥3 − 0.9959𝑥2 + 0.9998𝑥
− 7.7900𝑒 − 06

Or,

𝑦7(𝑥) = −0.257686𝑇0(𝑥) + 0.671156𝑇1(𝑥)
− 0.17463𝑇2(𝑥) − 0.13963𝑇3(𝑥)
+ 0.084822𝑇4(𝑥) − 0.01814𝑇5(𝑥)
+ 0.00177379𝑇6(𝑥) − 0.000067𝑇7(𝑥)

Figures 1 and 2 make a comparison of the approximate

solutions 𝑌𝑁(𝑥) given using CMSA for N = 5 and N = 7 with

the exact solution 𝑦𝑒𝑥𝑎𝑐𝑡 .

Table 2 shows the Root Mean Square Error obtained by the

approximate solution of the integro-differential Eq. (1), using

the Chebyshev Metaheuristic Solver Approach and the general

approach introduced in reference [20].

Figure 1. Exact solution against CMSA approximation

(first problem for N = 5)

Figure 2. Exact solution against CMSA approximation

(first problem for N = 7)

Table 2. Comparison table of RMSE for the integro

differential equation obtained by CMSA and PSO ([20])

Optimizer RMSE

CMSA 𝑁 = 5

CMSA 𝑁 = 7

PSO

3.14𝑒 − 02

1.05𝑒 − 02

1.805𝑒 − 01

The results reveal an excellent agreement between the exact

and the approximate solutions. The approximation quality

346

enhances visibly as the polynomial degree 𝑁 augments from 5

to 7, proving the expected convergence comportment of the

Chebyshev approximation facilitated by the FPA’s coefficient

search. The approximate solutions nearly trace the exact

curve within the entire domain, especially for 𝑁 = 7.

3.2 Second problem; non-Linear Bernoulli boundary value

problem

Now, tracking the non-linear Bernoulli equation

represented as a boundary value problem:

𝑦′′(𝑥) + (𝑦′(𝑥))2 − 2 𝑒{−𝑦(𝑥)} = 0

with the boundary conditions y(0) = 0 and y(1) = 0, among

the interval [0, 1].
The exact solution of the suggested problem is:

𝑦𝑒𝑥𝑎𝑐𝑡(𝑥) = ln ((𝑥 −
1

2
)

2

+
3

4
)

The CMSA was implemented with N = 5, 7, 9 . FPA

parameters were the same as those employed in the first

example (see Table 1). Figures 3-5 compare the CMSA

approximations against the exact solution for N = 5, N = 7,

and N = 9, respectively.

The approximate solutions obtained from using CMSA are:

For N = 5

𝑦5(𝑥) = 2.7085𝑒 − 16𝑥5 − 0.5403𝑥4 + 1.0805𝑥3

+ 0.4798𝑥2 − 1.0200𝑥 − 7.0000𝑒 − 06

Or,

𝑦5(𝑥) = 0.03728𝑇0(𝑥) − 0.20964𝑇1(𝑥) − 0.030246𝑇2(𝑥)
+ 0.27013𝑇3(𝑥) − 0.067533𝑇4(𝑥)
+ 1.6928𝑒 − 17𝑇5(𝑥)

For N = 7

𝑦7(𝑥) = 0.1304𝑥7 − 0.2878𝑥6 + 0.1077𝑥5 − 0.4096𝑥4

+ 0.9883𝑥3 + 0.4854𝑥2 − 1.0146𝑥

Or,

𝑦7(𝑥) = −0.00082011𝑇0(𝑥) − 0.13476𝑇1(𝑥)
− 0.096989𝑇2(𝑥) + 0.32353𝑇3(𝑥)
− 0.10515𝑇4(𝑥) + 0.020998𝑇5(𝑥)
− 0.0089923𝑇6(𝑥) + 0.002038𝑇7(𝑥)

For N = 9

𝑦9(𝑥) = −0.2689𝑥9 + 0.5652𝑥8 + 0.3149𝑥7 − 1.3724𝑥6

+ 0.6025𝑥5 − 0.0599𝑥4 + 0.7203𝑥3

+ 0.4990𝑥2 − 1.0010𝑥 − 0.0001

Or,

𝑦9(𝑥) = −0.047332𝑇0(𝑥) − 0.044291𝑇1(𝑥)
− 0.17647𝑇2(𝑥) + 0.38347𝑇3(𝑥)
− 0.14118𝑇4(𝑥) + 0.034289𝑇5(𝑥)
− 0.007565𝑇6(𝑥) − 0.0045317𝑇7(𝑥)
+ 0.0044153𝑇8(𝑥) − 0.0010502𝑇9(𝑥)

Table 3. Comparison table of RMSE for the non-linear

Bernoulli equation obtained by SPMS and PSO ([20])

Optimizer RMSE

CMSA 𝑁 = 5

CMSA 𝑁 = 7

CMSA 𝑁 = 9

PSO

1.9𝑒 − 03

1.1𝑒 − 03

2.8144𝑒 − 04

3.0503𝑒 − 04

Table 3 shows the Root Mean Square Error obtained by the

approximate solution of the non-linear Bernoulli equation

(second problem), using the Chebyshev metaheuristic solver

and the general approach introduced in reference [20].

Figure 3. Exact solution against CMSA approximation

(second problem for N = 5)

Figure 4. Exact solution against CMSA approximation

(second problem for N = 7)

Figure 5. Exact solution against CMSA approximation

(second problem for N = 9)

347

High degree of agreement is observed for all tested degrees

𝑁. Even with 𝑁 = 5, the shape of the exact solution has been

well captured by the approximation. As 𝑁 augments to 7 and

9, the approximate solution come to be graphically

indistinguishable from the exact solution, showcasing the

method's ability to handle non-linearities and boundary

conditions efficiently. The fast convergence suggests that the

integration of Chebyshev polynomials and FPA optimization

navigates with success the solution space to obtain highly

accurate coefficient sets.

4. CONCLUSION AND FUTURE WORKS

This paper presented a Chebyshev Metaheuristic Solver

Approach (CMSA), a hybrid computational strategy for

solving differential equations. By formulating the approximate

solution using Chebyshev polynomials and using the Flower

Pollination Algorithm to approximate the coefficients based

on the minimization of the equation residual and boundary

condition deviations, we instituted a versatile framework valid

to various DE types.

The experimental results found for both linear integro-

differential and non-linear boundary value problems prove the

efficiency and accuracy of the suggested approach. The

CMSA leaded with success approximations that converge fast

towards the exact solutions as the degree of the polynomial

expansion augments. The approach integrates the power of

spectral approximation with the robust search abilities of

metaheuristics.

Future studies could be done:

• Applying the CMSA method to a vast range of

challenging DEs, including systems of equations,

partial differential equations, and problems with

complex boundary conditions, would institute more

its applicability.

• Exploring the employ of other metaheuristic

algorithms (like GA, PSO, or advanced hybrid

variants) within this framework, could conduct to

improved effectivity or robustness.

• investigating adaptive strategies for choosing the

polynomial degree 𝑁 or the number of collocation

points 𝑀 could improve the approach's automation

and performance, could improve the approach's

automation and performance.

• Implementing the proposed method for solving

practical problems in science and engineering

domains is a promising avenue for future exploration.

REFERENCES

[1] Boyce, W.E., DiPrima, R.C., Coombes, K.R., Hunt, B.R.,

Lipsman, R.L. (1997). Elementary differential equations

and boundary value problems, 6th ed, J. Wiley Sons,

New York.

https://www.amazon.com/Elementary-Differential-

Equations-Boundary-Mathematica/dp/0471282928.

[2] Shen, J., Tang, T., Wang, L.L. (2011). Spectral methods:

Algorithms, analysis and applications, Vol. 41. Springer

Science & Business Media.

[3] Boussaïd, I., Lepagnot, J., Siarry, P. (2013). A survey on

optimization metaheuristics. Information Sciences, 237:

82-117. https://doi.org/10.1016/j.ins.2013.02.041

[4] Črepinšek, M., Liu, S.H., Mernik, M. (2013).

Exploration and exploitation in evolutionary algorithms:

A survey. ACM Computing Surveys (CSUR), 45(3): 1-

33. https://doi.org/10.1145/2480741.2480752

[5] Yang, X.S., Karamanoglu, M. (2020). Nature-inspired

computation and swarm intelligence: A state-of-the-art

overview. Nature-Inspired Computation and Swarm

Intelligence, Algorithm Academic Press, 3-18.

https://doi.org/10.1016/B978-0-12-819714-1.00010-5

[6] Holland, J.H. (1984). Genetic algorithms and adaptation.

Adaptive Control of Ill-Defined Systems, Springer,

Boston, MA., 16: 317-333. https://doi.org/10.1007/978-

1-4684-8941-5_21

[7] Kennedy, J., Eberhart, R. (1995). Particle swarm

optimization. In Proceedings of The IEEE International

Conference on Neural Networks, Perth, WA, Australia,

pp. 1942-1948.

https://doi.org/10.1109/ICNN.1995.488968

[8] Karaboga, D. (2010). Artificial bee colony algorithm.

Scholarpedia, 5(3): 6915.

http://doi.org/10.4249/scholarpedia.6915

[9] Yang, X.S. (2010) Firefly algorithm, an introduction

with metaheuristic applications. Engineering

Optimization: An Introduction with Metaheuristic

Applications, 221-230.

https://doi.org/10.1002/9780470640425.ch17

[10] Yang, X.S. (2010). Nature-inspired metaheuristic

algorithms. Luniver Press.

[11] Gandomi, A.H., Yang, X.S., Alavi, A.H. (2013). Cuckoo

search algorithm: A metaheuristic approach to solve

structural optimization problems. Engineering with

Computers, 29(2): 17-35.

https://doi.org/10.1007/s00366-011-0241-y

[12] Mirjalili, S., Lewis, A. (2016). The whale optimization

algorithm. Advances in Engineering Software, 95: 51-67.

https://doi.org/10.1016/j.advengsoft.2016.01.008

[13] Sulaiman, M.H., Mustaffa, Z., Saari, M.M., Daniyal, H.

(2020). Barnacles mating optimizer: A new bio-inspired

algorithm for solving engineering optimization problems.

Engineering Applications of Artificial Intelligence, 87:

103330. https://doi.org/10.1016/j.engappai.2019.103330

[14] Zhao, S., Zhang, T., Ma, S., Chen, M. (2022). Dandelion

Optimizer: A nature-inspired metaheuristic algorithm for

engineering applications. Engineering Applications of

Artificial Intelligence, 114: 105075.

https://doi.org/10.1016/j.engappai.2022.105075

[15] Agushaka, J.O., Ezugwu, A.E., Abualigah, L. (2022).

Dwarf mongoose optimization algorithm. Computer

Methods in Applied Mechanics and Engineering, 391:

114570. https://doi.org/10.1016/j.cma.2022.114570

[16] Ahmadkhanpour, F., Kheiri, H., Azarmir, N., Khiyabani,

F.M. (2025). Solving initial value problems using

multilayer perceptron artificial neural networks.

Computational Methods for Differential Equations,

13(1): 13-24. 10.22034/cmde.2024.58774.2486

[17] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E. (2021).

DeepXDE: A deep learning library for solving

differential equations. Society of Industrial and Applied

Mathematics Review, 63(1): 208-228.

https://doi.org/10.1137/19M1274067

[18] Parand, K., Aghaei, A.A., Kiani, S., Zadeh, T.I.,

Khosravi, Z. (2024). A neural network approach for

solving nonlinear differential equations of Lane-Emden

348

type. Engineering with Computers, 40(2): 953-969.

https://doi.org/10.1007/s00366-023-01836-5

[19] Yang, X.S. (2012). Flower pollination algorithm for

global optimization. In International Conference on

Unconventional Computing and Natural Computation.

Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 240-

249. https://doi.org/10.1007/978-3-642-32894-7_27

[20] Babaei, M. (2013). A general approach to approximate

solutions of nonlinear differential equations using

particle swarm optimization. Applied Soft Computing,

13(7): 3354-3365.

https://doi.org/10.1016/j.asoc.2013.02.005

NOMENCLATURE

𝑎𝑗 Vector of Chebyshev polynomial

coefficients

𝑎𝑏𝑒𝑠𝑡 Best coefficient vector found by FPA

𝑎𝑐𝑎𝑛𝑑 Candidate coefficient vector in FPA

𝑎𝑗 , 𝑎𝑘 Randomly chosen coefficient vectors

from population in FPA

𝑎𝑡 Coefficient vector at FPA iteration 𝑡

𝐶𝑖(𝑦) i-th boundary or initial condition operator

𝑑𝑖 Specified value for the 𝑖-th boundary or

initial condition

𝑓 Function defining the differential

equation

𝐻 Heaviside step function

𝑘 Order of the highest derivative in the

differential equation

𝐿 Step size in FPA global pollination,

drawn from Lévy distribution

𝐿𝑏 Lower bound for coefficient values in

FPA search space

𝑀 Number of collocation points

𝑀𝑎𝑥𝐼𝑡𝑒𝑟 Maximum number of iterations for FPA

𝑁 Degree of the Chebyshev polynomial

approximation

𝑛𝑝𝑜𝑝 Population size in FPA

𝑜𝑏𝑗𝑓 Objective function to be minimized

𝑝 Switching probability in FPA

𝑅(𝑥; 𝑎𝑖) Residual function of the DE using the

approximate solution

𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝐸𝑟𝑟𝑜𝑟 Sum of squared residuals over

collocation points

𝑟 Random number uniformly distributed in

[0,1) for FPA logic

𝑇𝑗 Chebyshev polynomial of the first kind of

degree 𝑗

𝑡 Iteration counter in FPA

𝑈 Random number drawn from a uniform

distribution U (0,1) for FPA local

pollination

𝑈𝑏 Upper bound for coefficient values in

FPA search space

𝑤𝑖 Weighting factor for the 𝑖 -th condition

penalty

𝑥 Independent variable

𝑥0, 𝑥𝑛 Start and end points of the domain of

interest

𝑥𝑝 𝑝-th collocation point

𝑌𝑁(𝑥) Approximate solution to the differential

equation using 𝑁-degree polynomial

𝑦(𝑥) General or exact solution to the

differential equation

𝑦(𝑘)(𝑥) 𝑘-th derivative of 𝑦(𝑥) with respect to 𝑥

𝑦𝑒𝑥𝑎𝑐𝑡(𝑥) Known exact solution for benchmark

problems

Subscripts and

Superscripts

0 Initial value

𝑏𝑒𝑠𝑡 The best solution found so far

𝑐𝑎𝑛𝑑 A candidate solution

𝑒𝑥𝑎𝑐𝑡 An exact solution

𝑖 Boundary/initial conditions or general

counting

𝑗, 𝑘 Polynomial terms or solutions in FPA

𝑁 Degree of polynomial approximation

𝑛 Final value

𝑝 Collocation points

𝑡 Iteration number

(𝑘) Order of differentiation

349

