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Wireless propagation is a crucial technology in modern advancements, requiring highly 

accurate prediction. Path loss propagation is influenced by various parameters that must be 

accounted for to predict the signal route over the entire distance and refine breakpoint 

models with precise interference calculations. The breakpoint distance is defined as the 

point separating two distinct trends of path loss, each following a different path loss 

exponent. This paper reviews the Fresnel, Perera, and True breakpoints in a dual-slope 

model reference at 2 GHz, using a fixed exponent of n₁ = 2 before the breakpoint and n₂ = 

4 after. It then proposes a distance-adaptive exponent model that considers a steady path 

by incorporating a flexible exponent based on environmental factors, mitigating the abrupt 

change in path loss exponent at breakpoints observed in the dual-slope model, which leads 

to discontinuities. The comparison results under similar conditions demonstrate that both 

models perform similarly over short distances of up to 100 meters, while the dual-slope 

model is more suitable for distances of up to 1 km. However, due to its stability and 

consistency, the distance-adaptive exponent model is more appropriate for longer 

distances. Validation using RMSE, followed by comparative analysis, confirms that our 

model offers higher stability in interference scenarios. These findings will assist 

researchers and wireless designers in predicting and selecting the most accurate and 

effective propagation model. 
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1. INTRODUCTION

Wireless communication plays a crucial role in modern 

technology, enabling high-speed data transfer for applications 

such as 5G, IoT, and smart city infrastructure. One 

fundamental challenge while designing wireless networks is 

accurately modeling signal propagation, which directly 

impacts network planning, interference management, and 

coverage optimization. Ideally, path loss models are essential 

in predicting the attenuation of transmitted signals over 

distance and are widely used in radio wave propagation 

studies. 

Positioning strategies relying on measured signal strength 

depend greatly on the precision of RF estimations regarding 

received power [1-5]. These demands have led researchers in 

RF prediction to re-evaluate the criteria and precision of 

current breakpoint location and path loss estimation [6, 7].  

Moreover, despite the dramatic expansion of wireless 

cellular communication networks over the past two decades, 

they continue to face increasing interference, which degrades 

service quality. This interference arises from suboptimal 

cellular network design and inadequate optimization, 

primarily due to the absence of highly accurate propagation 

models [8]. No RF path loss model can precisely predict signal 

intensity, as each model has specific validity constraints and is 

tailored to particular RF scenarios. To enhance their 

applicability to real-world RF propagation conditions without 

causing environmental disruptions, it is vital to understand 

their rationality ranges and apply necessary correction factors 

[9, 10]. 

Traditionally, path loss models fall into two categories: 

single-slope models, like Free-Space Path Loss, and dual-

slope models, which adjust the path loss exponent at a defined 

breakpoint. The Dual-Slope Path Loss Model provides a more 

realistic representation of signal attenuation by considering 

two distinct propagation regions. The first region, before the 

breakpoint, is dominated by free-space propagation, where the 

path loss exponent is approximately n1 = 2. Beyond the 

breakpoint, additional factors such as ground reflection, 

diffraction, and obstructions contribute to increased signal 

attenuation, resulting in a higher path loss exponent of n2 = 4, 

as noted in reference [11].  

In contrast, the traditional Dual-Slope Model suffers from 

abrupt changes in the path loss exponent at the breakpoint, 

which can lead to discontinuities in signal prediction. This can 

introduce significant errors, especially in urban and suburban 

environments, where signal behavior is influenced by 

multipath effects, terrain variations, and environmental clutter 

[8, 12]. Researches like Feuerstein et al. [12] and Elmutasim 

and Mohd [13] define the breakpoint as the point at which the 

Fresnel zone starts interfering with the ground, while Perera et 

al. [14] demonstrated that this model exhibits significant 
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discrepancies when assessed against various measurement 

campaign findings. 

Researchers have developed empirical refinement models, 

such as the Perera breakpoint, which adjusts the breakpoint 

distance to match suburban and urban propagation data better 

[15, 16]. However, this approach still uses fixed exponents 

before and after the breakpoint rather than responding to 

environmental variability. Other wireless communication 

design models include standard models such as 3GPP and 

WINNER II. Such models use environment-specific 

parameters and empirical exponents; however, they are rigid 

and do not allow for smooth changes in exponents. Their 

breakpoint lengths are frequency-dependent and lack physical 

[17-19]. Another aspect that recent studies have examined is 

the use of machine learning (ML) models for path loss 

prediction, which include neural networks and regression 

trees. These models frequently outperform traditional 

equations in site-specific deployments; however, they 

necessitate large, labelled datasets and function as black 

boxes, which limits their interpretability and portability [20, 

21]. 

To overcome these limitations, we propose distance-

adaptive exponent (DAE) model as an adjustable model, 

where the path loss exponent n varies continuously with 

distance rather than switching abruptly at a predefined 

breakpoint. The key contributions of this study are as follows: 

• Proposal of DAE model that dynamically adapts the path 

loss exponent as a function of distance. 

• Integration of multiple breakpoints (Fresnel, Perera, and 

True breakpoints) to refine transition regions between free-

space propagation and multipath-dominated environments. 

• Comparison of traditional vs. distance-adaptive exponent 

(DAE) model, highlighting improvements in accuracy and 

continuity. 

• Validation through MATLAB simulations, demonstrating 

reduced error in path loss prediction. 

 

 

2. RATIONALE FOR BREAKPOINT MODELS 

SELECTION 
 

Breakpoints in wireless propagation modelling describe 

distances at which signal attenuation changes according to 

physical or environmental variables. The proposed DAE 

model incorporates three critical breakpoints: Fresnel, Perera, 

and True. Each breakpoint is designed to reflect a logical 

change in propagation behaviour, allowing the model to 

simulate real-world signal behaviour more accurately in both 

urban and rural settings. 

The Fresnel breakpoint is the crucial distance at which the 

direct and first-order ground-reflected paths start to interact. It 

is derived from physical optics and commonly utilized in the 

Two-Ray Ground Reflection Model, as follows: 𝑑𝑓 =
2ℎ𝑡ℎ𝑟

λ
, 

where ℎ𝑡 height of the transmitter, ℎ𝑟 height of the receiver, 

and λ is the wavelength [13]. However, in such a scenario, the 

breakpoint represents the point beyond which ground 

reflection and diffraction begin to dominate, and the path loss 

increases faster than in free-space conditions. The Perera 

breakpoint 𝑑𝑝 =
4ℎ𝑡ℎ𝑟

λ
, on the other hand, is an empirical 

variation of the Fresnel breakpoint. It was initially designed to 

better suit urban and suburban propagation conditions. It alters 

the original formulation by adding a greater multiplier. The 

such breakpoint recognizes the additional complexity of 

multipath effects, signal dispersion from surrounding 

buildings, and more aggressive path loss over the theoretical 

Fresnel distance [12-14]. The literature has used it to provide 

a more realistic upper limit for free-space propagation in 

constructed environments. Whereas the third option, known as 

a True breakpoint, is suggested as a tunable or calibrated 

distance derived from either measurement data or simulation 

optimization. It is defined as a scaled version of the Perera 

distance: 𝑑𝑇 = α . 𝑑𝑝 , where α  is an adjustment coefficient 

that can be tuned based on real-world measurement data or 

model calibration.  

Utilizing these three breakpoints within the adaptive path 

loss exponent model facilitates segmentation of propagation 

behaviour over long distances, decreased modelling error, 

especially near transition zones, and offer capability to 

represent both ideal theoretical behaviour (Fresnel) and real-

world environmental effects (Perera and True) [12-14]. Figure 

1 illustrates Free-Space Path Loss (FSPL) along with 

superimposed Fresnel, Perera, and True breakpoint distances. 

These thresholds signify transition zones in propagation where 

the signal's attenuation characteristics alter due to ground 

reflection, environmental factors, or empirical adjustments. 

 

 
 

Figure 1. FSPL with breakpoints in the propagation path 
 

While the proposed model utilizes Fresnel, Perera, and True 

breakpoints, various other breakpoint models could be 

introduced in the literature to define path loss transitions, 

particularly for urban, rural, and mixed environments. These 

encompass 3GPP UMi and UMa Breakpoints which is defines 

breakpoints differently for Urban Micro (UMi) and Urban 

Macro (UMa) environments. For UMa, for instance, 

𝑑𝐵𝑝3𝐺𝑃𝑃 =
2π𝑓𝑐ℎ𝑡ℎ𝑟

c
 which is limited to 3GPP environment 

definitions, lacks flexibility across topologies and based on the 

frequency; in addition, the such model does not model 

exponent as a function of distance; hence causes sharp 

transitions according to the research [17]. Similar to WINNER 

II channel models, the breakpoint distance is defined by 

𝑑𝐵𝑝𝑊𝐼𝑁𝑁𝐸𝑅 =
4𝑓𝑐ℎ𝑡ℎ𝑟

c
 which is frequency-coupled as well, less 

intuitive for geometric based on the study [18]. Table 1 shows 

the comparison of various breakpoints modes specifications 

using physical basis, tunable possibility, suitability for 

exponent adaptation, and general model flexibility. 

Table 1 clearly illustrates which breakpoint modes are 

flexible and suitable for adaptive exponent. While these 

models could evolve into powerful machine learning 

applications for various purposes, the paper concentrates on 

interpretable, tunable models appropriate for real-time and 

wide-area deployment. 
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Table 1. Breakpoints comparison 

Breakpoint Type Physical Basis Tunable Suitable for Adaptive Exponent Flexibility 

Fresnel Yes No Yes Low 

Perera Empirical Partly Yes Medium 

True Calibrated Yes Yes High 

3GPP/ UMa/ UMi Empirical/ Frequency based No No Medium 

WINNER II Frequency-bound No No Low 

3. BREAKPOINT DISTANCES MODELS

Many measurement efforts have confirmed that signal 

intensity in line-of-sight (LOS) propagation often adheres to 

the dual-slope attenuation model. The strength of the received 

signal decreases due to exponential attenuation both prior to 

and beyond the breakpoint distances, respectively. This dual-

slope attenuation model is represented as [22]: 

𝑃𝐿(𝑑) = {
𝑃𝐿1 , 𝑑 ≤ 𝑑𝑝
𝑃𝐿2, 𝑑 ≥ 𝑑𝑝

(1) 

where, 𝑃𝐿1 and 𝑃𝐿2 represent the path loss values before and

after the breakpoint location, respectively. d denotes the link 

separating the transmitter and receiver, while 𝑑𝑝  is the 

breakpoint distance that isolate the two slopes.  

The conceptual breakpoint distance models rely on the two-

ray propagation path loss framework [23, 24], which has been 

validated through various RF measurement studies. This 

model describes signal strength, including both direct and 

reflected waves [25]: 

𝐻(𝑓) = |𝐴𝑡𝐴𝑟𝑒𝑗𝑘𝑑1 + 𝛤𝐴𝑡𝐴𝑟𝑒−𝑗𝑘𝑑2| (2) 

where, 𝐻(𝑓) represents the two-ray path loss model, 𝐴𝑡  and

𝐴𝑟 are the antenna gains at the transmitter and receiver,

respectively, 𝑑1 and 𝑑2 denote the travelling distances of the

direct and reflected beams, respectively, 𝛤  is the Fresnel 

reflection coefficient, while 𝑘 is the wave factor and equal to 

2π/λ. 

While according to the study [6], the pathloss could be given 

by:  

𝑃𝐿 = 10𝑙𝑜𝑔10 (
|𝐻(𝑓)|

𝑃𝑡

2

) (3) 

where, 𝑃𝑡 is transmitted power.

The suggested Perera's breakpoint distance framework, 

derived by equating the two approximations based on the study 

[26], is expressed as follows: 

𝑑𝑏𝑟𝑘 = 8.41.
ℎ𝑡ℎ𝑟

λ
(4) 

Clearly in Eq. (4) the model predicts 𝑑𝑏𝑟𝑘 to be more than

estimated using the most commonly referenced model 

introduced in references [8, 12, 13], which can be expressed as 
 4ℎ𝑡ℎ𝑟

λ
 . To thoroughly investigate the forecasting precision of 

Perera's breakpoint distance model, we will compare its 

effectiveness relative to its underlying framework, the two-ray 

model. According to studies [24, 26], the communication 

function of a two-ray radio channel is expressed as follows:  

𝐻𝑉,𝐻 = 𝑓𝑡
𝑉,𝐻(𝜃𝑑

𝑡 , 𝜙𝑑
𝑡 )𝑓𝑟

𝑉,𝐻(𝜃𝑑
𝑟 , 𝜙𝑑

𝑟 )
𝜆

4𝜋𝑟𝑑

𝑒−𝑗𝑘𝑟𝑑 

+𝑓𝑡
𝑉,𝐻(𝜃𝑔

𝑡 , 𝜙𝑔
𝑡 )𝑓𝑟

𝑉,𝐻(𝜃𝑔
𝑟 , 𝜙𝑔

𝑟)𝑅𝑉,𝐻

𝜆

4𝜋𝑟𝑔

𝑒−𝑗𝑘𝑟𝑔 
(5) 

where, 𝑓𝑟
𝑉,𝐻(∙,∙)  and 𝑓𝑡

𝑉,𝐻(∙,∙)  are receiver and far-field

amplitude distributions of the antenna radiation patterns for 

vertical and horizontal polarizations,, respectively; 𝜃𝑖
𝑡,𝑟 , 𝜙𝑖

𝑡,𝑟

are the transmitter and receiver ray i’s elevation and azimuth 

angles (direct or reflected), respectively; 𝑟𝑔 and 𝑟𝑑 denote the

propagation distances of the direct and ground (or water) 

reflected paths, respectively; 𝑘 is the wave number (𝑘 =
2𝜋

𝜆
);

and 𝜆 wavelength corresponding to the operating frequency. 

Nevertheless, Perera’s model is derivative from the two-ray 

path loss model and predicts the breakpoint distance 𝑑𝑝 as: 

𝑑𝑝 =
4ℎ𝑡ℎ𝑟

λ
(6) 

where, ℎ𝑡 and ℎ𝑟 heights of transmitter and receiver antenna,

and λ is the wavelength of operating frequency.  

However, the study [26] introduces a correction term of 

Perera’s model as: 

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑𝑑𝑝 = 8.41.
ℎ𝑡ℎ𝑟

λ
+ 𝐶 (7) 

where, 𝐶 is the correction term given by: 

𝐶 = 𝑓1(ℎ𝑟) + 𝑓2(ℎ𝑟)
ℎ𝑡

λ
(8) 

The formulations of 𝑓1(ℎ𝑟)  and 𝑓2(ℎ𝑟)  are given in the

research [26]. 

Consequently, our paper’s contribution to improving the 

dual-slope path loss model by introducing distance-adaptive 

exponent (DAE) model exponent instead of fixed values. This 

refinement enables the model to dynamically adjust depending 

on the link distance between the transmitter and the receiver. 

Eq. (9) explained the comprehensive concept contribution: 

𝑛(𝑑) = 𝑛1 + 𝛾 ⋅ 𝑙𝑜𝑔10(𝑑) (9) 

where, 𝑛1 is the free-space baseline (typically 2), and 𝛾 is a

tuning parameter reflecting environment dynamics that can 

clarify 𝛾 can be empirically related to environmental factors. 

Thus, the fixed exponent 𝑛1=2 which is before breakpoint and

𝑛2 =4 after the breakpoint, leaded to defined adjustable

exponent as: 

𝑛𝐷𝐴𝐸 = 2 + ϒ. 𝑙𝑜𝑔10(𝑑) (10) 

where, 𝑛𝐷𝐴𝐸 is the distance-dependent path loss exponent, ϒ
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works as a tunning factor to control the rate of change depends 

on environment for example in urban = 0.1 up to 0.8 and in 

rural = 0.05 according to the research [27], whereas 𝑑 

considers the link distance between transmitter and receiver 

antenna.  

Eq. (10) increases the path loss exponent gradually instead 

of making an abrupt jump from n1 = 2 to n2 = 4, which provides 

a more realistic transition between different propagation 

conditions. The idea for this contribution arose to avoid the 

abrupt switch from traditional models while also providing a 

smooth transition between different distances, more accurately 

reflecting real-world propagation. In other words, the 

approach offers customizable advantage via offering different 

ϒ that allows adjustments for urban, suburban, and rural areas. 

4. RESULT AND DISCUSSION

This segment showcases simulation results of breakpoint 

distance in different models using the parameters in Table 2. 

Table 2. The significant parameters in the simulation 

Simulation 

Parameters Values 

Frequency 2 GHz 

Transmitter Height 20 m 

Receiver Height 5 m 

Antenna Height 2 meters 

d _Fresnel 
2ℎ𝑡ℎ𝑟

λ

d _Perera 
4ℎ𝑡ℎ𝑟

λ
d _True d_Perera × 1.2 

Path loss 

exponents 

𝑛1=2 before breakpoint, 𝑛2=4 after breakpoint,

and 𝑛𝑎𝑑𝑗𝑢𝑠𝑡𝑎𝑏𝑙𝑒 = 2 + ϒ. 𝑙𝑜𝑔10 (𝑑)

The simulation setting is consistent with realistic setups 

found in scenarios. Both LTE and early 5G rollouts often use 

a 2 GHz carrier frequency, a 20-meter base station height, and 

a 5-meter receiver height, particularly in suburban or highway 

installations. As a result, the suggested model is both 

theoretically sound and relevant to real-world applications 

such as cell design, handover margin optimization, and 

interference modelling. 

Figure 2. Breakpoint distance in Fresnel, Perera, and True in 

dual slope path loss 

While the Figure 2 describes the dual-slope path loss 

incorporate with Fresnel, Perera, and True breakpoints. The 

traditional Dual-Slope model exhibits a sudden change in the 

path loss exponent at breakpoints, leading to discontinuities. 

The models' breakpoints distance using 2 GHz is located 

from 1 km up to 6 km, while to demonstrate the concept, the 

investigation was conducted using 7, 10, and 18 GHz to 

explain the influences, as shown in Figures 3, 4, and 5. 

In Figure 3, when using a frequency of 7 GHz the 

breakpoint distance is located at 7 km for Fresnel, reaches 10 

km for Perera, and is slightly more in True. However, Figure 

4 shows the breakpoint at 10 GHz. 

Figure 3. Fresnel, Perera, and True breakpoints in 7 GHz 

using dual slope path loss 

Figure 4. Fresnel, Perera, and True breakpoints in 10GHz 

using dual slope path loss 

At 10 GHz, the Fresnel breakpoint is achieved at 8 km, 

while it is obtained at approximately 11 km and 12 km for 

Perera and True, respectively, clearly indicating to wireless 

link designers and planners that wavelength influences the 

breakpoint distance. 

Moreover, Figure 5 presents the simulation using a 

frequency of 18 GHz, which could be used in mobile backhaul 

solutions. The results show a gradual increase in breakpoints, 

as illustrated in Figure 5. 

At 18 GHz, the models exhibited remarkable growth, 

surpassing 10 km at the Fresnel breakpoint and reaching 15 
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km at Perera, while showing a slight increase at the True 

breakpoint. The results provide insight into the impact of 

frequency on breakpoint distance. 

Figure 5. Fresnel, Perera, and True breakpoints in 18GHz 

using dual slope path loss 

In contrast, the adjustable model demonstrates a gradual 

increase in the exponent, leading to a smoother and more 

realistic transition between propagation regions. This 

improvement is particularly evident in the transition region 

between the Fresnel, Perera, and True breakpoints, where the 

adaptive exponent reduces sudden jumps in signal attenuation. 

Figure 6 illustrates this concept, clearly distinguishing 

between them.  

Figure 6. A comparison between dual slope and adjustable 

path loss models 

Nevertheless, the validation results in Figure 6 confirm that 

the Adjustable Dual-Slope Path Loss Model outperforms the 

traditional Dual-Slope Model in terms of stability and 

accuracy. The proposed model achieves remarkable 

consistency in RMSE as well, demonstrating its ability to 

provide more realistic path loss predictions with its steady 

behavior. However, a slight shift appears when reaching 1 km 

and beyond. While the Dual-Slope Model shows ideal 

validation up to 1 km, it then begins to exhibit notable severity 

beyond that, unless it reaches 135 dB path loss at 10 km. 

Figure 7 further illustrates that the adjustable model maintains 

significantly stable performance across distance values, 

proving its effectiveness in wireless propagation modeling. 

Figure 7. Validation between dual slop and adjustable with 

FSPL reference 

Consequently, RMSE was performed to verify the study and 

compare the dual-slope and adjustable models using FSPL as 

a reference. The validation provides significant results by 

equalizing the two models over short distances of up to 100 

meters, while giving an advantage to the dual-slope model as 

the distance extends to 1 km. Beyond that, the adjustable 

model performs better due to the dual-slope model's 

significant decline over longer distances. In summary, the 

validation illustrated in Figure 8 employs R-squared (R²) and 

root mean squared error (RMSE) metrics to discover 

accurately the model’s calculations.  

Figure 8. RMSE and R² calculation between dual slop and 

adjustable with FSPL reference 

The adjustable model achieved an RMSE of 4.58 dB and R² 

= 0.938, compared to 5.47 dB and R² = 0.901 for the dual-

slope model. This demonstrates a 16.2% reduction in error and 

a significantly improved fit to the reference FSPL model, 

validating the proposed model’s predictive strength. Whereas 

for more comparative analysis, the proposed model adapts to 

propagation environments by adjusting the exponent via a 

tuning parameter 𝛾. As shown in Figure 9, environments with 

higher γ, such as dense urban areas, yield steeper path loss 

curves, while rural environments with lower γ experience 

minimal attenuation over long distances. This adaptable 
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structure allows the model to represent a variety of real-world 

deployment scenarios without the need for separate modelling 

equations. 

It's worth noting that one limitation of this work is the 

absence of direct field measurement validation. However, the 

simulation data was generated using standardized propagation 

formulas and environments based on 3GPP TR 38.901. 

Nevertheless, the door remains open to extending the model to 

real-world datasets that would enhance robustness and assess 

practicality in dynamic environments. 

Figure 9. Comparative analysis in different environments 

5. CONCLUSION

This work proposes an improved dual-slope path loss model 

with an adjustable path loss exponent that seamlessly 

transitions between different propagation settings, particularly 

above 1 km, where the dual-slope model is severely prone to 

attenuation. The proposed technique computes path loss in a 

stepwise manner across Fresnel, Perera, and True breakpoints, 

resulting in steady and higher accuracy in urban and suburban 

propagation settings. The results indicate that frequency plays 

a crucial role, with higher frequencies experiencing greater 

path loss over distance. This underscores the importance of 

careful frequency selection. However, while the dual-slope 

model can be effective at shorter distances not exceeding a few 

kilometers, the adjustable model provides a more disciplined 

behavior by dynamically altering the exponent as a function of 

distance. This eliminates the harsh discontinuities found in 

typical dual-slope models, especially over kilometer-scale 

distances. Despite the use of an adjustable path loss exponent 

enhances accuracy by allowing for a seamless transition in 

attenuation behaviour. However, it introduces new model 

parameters, including the tuning factor, which may raise the 

challenge. But in fact, this difficulty is manageable and does 

not require large adaptations to existing wireless networks. 

The adaptability feature could be predefined for various 

environments (urban, rural, suburban), or dynamically 

adjusted using simple threshold logic or automated tuning 

based on terrain classification. Future studies will integrate 

intelligent reflection with breakpoint placements.  

ACKNOWLEDGMENT 

The author wishes to thank Sohar University in Oman for 

providing the resources and academic environment that 

facilitated the successful completion of this research. 

REFERENCES 

[1] Wang, G., Chen, H., Li, Y., Jin, M. (2012). On received-

signal-strength based localization with unknown transmit

power and path loss exponent. IEEE Wireless

Communications Letters, 1(5): 536-539.

https://doi.org/10.1109/WCL.2012.072012.120428

[2] Ergen, S.C., Tetikol, H.S., Kontik, M., Sevlian, R.,

Rajagopal, R., Varaiya, P. (2013). RSSI-fingerprinting-

based mobile phone localization with route constraints.

IEEE Transactions on Vehicular Technology, 63(1):

423-428. https://doi.org/10.1109/TVT.2013.2274646

[3] Salman, N., Ghogho, M., Kemp, A.H. (2011). On the

joint estimation of the RSS-based location and path-loss

exponent. IEEE Wireless Communications Letters, 1(1):

34-37.

https://doi.org/10.1109/WCL.2012.121411.110059

[4] Basheer, M.R., Jagannathan, S. (2013). Localization and

tracking of objects using cross-correlation of shadow

fading noise. IEEE Transactions on Mobile Computing,

13(10): 2293-2305.

https://doi.org/10.1109/TMC.2013.34

[5] Elmutasim, I. (2023). A brief review of massive MIMO

technology for the next generation. The International

Arab Journal of Information Technology, 20(2): 262-

269.

[6] El-Sallabi, H. (2011). Terrain partial obstruction LOS

path loss model for rural environments. IEEE Antennas

and Wireless Propagation Letters, 10: 151-154.

https://doi.org/10.1109/LAWP.2011.2108254

[7] He, R., Zhong, Z., Ai, B., Ding, J., Guan, K. (2012).

Analysis of the relation between Fresnel zone and path

loss exponent based on two-ray model. IEEE Antennas

and Wireless Propagation Letters, 11: 208-211.

https://doi.org/10.1109/LAWP.2012.2187270

[8] Xia, H., Bertoni, H.L., Maciel, L.R., Lindsay-Stewart,

A., Rowe, R. (2002). Radio propagation characteristics

for line-of-sight microcellular and personal

communications. IEEE Transactions on Antennas and

Propagation, 41(10): 1439-1447.

https://doi.org/10.1109/8.247785

[9] Oda, Y., Tsunekawa, K., Hata, M. (2000). Advanced

LOS path-loss model in microcellular mobile

communications. IEEE Transactions on Vehicular

Technology, 49(6): 2121-2125.

https://doi.org/10.1109/25.901884

[10] Milstein, L.B., Schilling, D.L., Pickholtz, R.L., Erceg,

V., et al. (2002). On the feasibility of a CDMA overlay

for personal communications networks. IEEE Journal on

Selected Areas in Communications, 10(4): 655-668.

https://doi.org/10.1109/49.136061

[11] Hernandez-Valdez, G., Cruz-Perez, F.A., Lara-

Rodriguez, D. (2008). Sensitivity of the system

performance to the propagation parameters in LOS

microcellular environments. IEEE Transactions on

Vehicular Technology, 57(6): 3488-3509.

https://doi.org/10.1109/TVT.2008.919608

[12] Feuerstein, M.J., Blackard, K.L., Rappaport, T.S., Seidel,

S.Y., Xia, H.H. (1994). Path loss, delay spread, and

outage models as functions of antenna height for

256



microcellular system design. IEEE Transactions on 

Vehicular Technology, 43(3): 487-498. 

https://doi.org/10.1109/25.312809 

[13] Elmutasim, I.E., Mohd, I.I. (2020). Radio propagation in

evaporation duct using SHF range. Publisher

International Journal of Advanced Science and

Technology IJAST Journal: Science and Engineering

Research Support Society, SERSC Australia.

[14] Perera, S.C.M., Williamson, A.G., Rowe, G.B. (1999).

Prediction of breakpoint distance in microcellular

environments. Electronics Letters, 35(14): 1135-1136.

https://doi.org/10.1049/el:19990834

[15] Galvan-Tejada, G.M., Aguilar-Torrentera, J. (2019).

Analysis of propagation for wireless sensor networks in

outdoors. Progress in Electromagnetics Research B, 83:

153-175. https://doi.org/10.2528/PIERB18100801

[16] Politi, R.R., Tanyel, S. (2025). Minimizing delay at

closely spaced signalized intersections through green

time ratio optimization: A hybrid approach with k-means

clustering and genetic algorithms. IEEE Access, 13:

43981-43999.

https://doi.org/10.1109/ACCESS.2025.3549970

[17] Jiang, T., Zhang, J., Tang, P., Tian, L., et al. (2021).

3GPP standardized 5G channel model for IIoT scenarios:

A survey. IEEE Internet of Things Journal, 8(11): 8799-

8815. https://doi.org/10.1109/JIOT.2020.3048992

[18] Safjan, K., D'Amico, V., Bultmann, D., Martin-

Sacristan, D., Saadani, A., Schoneich, H. (2011).

Assessing 3GPP LTE-advanced as IMT-advanced

technology: The WINNER+ evaluation group approach.

IEEE Communications Magazine, 49(2): 92-100.

https://doi.org/10.1109/MCOM.2011.5706316

[19] Riviello, D.G., Di Stasio, F., Tuninato, R. (2022).

Performance analysis of multi-user MIMO schemes

under realistic 3GPP 3-D channel model for 5G

mmWave cellular networks. Electronics, 11(3): 330.

https://doi.org/10.3390/electronics11030330

[20] Hassija, V., Chamola, V., Mahapatra, A., Singal, A., et

al. (2024). Interpreting black-box models: A review on

explainable artificial intelligence. Cognitive

Computation, 16(1): 45-74.

https://doi.org/10.1007/s12559-023-10179-8 

[21] Elmezughi, M.K., Salih, O., Afullo, T.J., Duffy, K.J.

(2022). Comparative analysis of major machine-

learning-based path loss models for enclosed indoor

channels. Sensors, 22(13): 4967.

https://doi.org/10.3390/s22134967

[22] Fernández, H., Rubio, L., Rodrigo Peñarrocha, V.M.,

Reig, J. (2024). Dual-slope path loss model for

integrating vehicular sensing applications in urban and

suburban environments. Sensors, 24(13): 4334.

https://doi.org/10.3390/s24134334

[23] Mi, Y., Zhang, X., Liu, X., Wei, J. (2024). Measurement-

based improved two-ray model for maritime scenarios.

In 2024 6th International Conference on

Communications, Information System and Computer

Engineering (CISCE), Guangzhou, China, pp. 973-977.

https://doi.org/10.1109/CISCE62493.2024.10653322

[24] Elmutasim, I.E., Mohamed, I.I., Bilal, K.H. (2023).

Seawater salinity modelling based on electromagnetic

wave characterization. International Journal of Electrical

and Computer Engineering, 13(4): 4112-4118.

https://doi.org/10.11591/ijece.v13i4.pp4112-4118

[25] Sun, Z., Liu, T., Wang, L. (2020). Analysis of DME

signal strength in approach direction under two-ray

model. In 2020 IEEE 2nd International Conference on

Civil Aviation Safety and Information Technology

(ICCASIT), Weihai, China, pp. 105-109.

https://doi.org/10.1109/ICCASIT50869.2020.9368606

[26] El-Sallabi, H., Qaraqe, K. (2015). Correction terms of

ground and water reflection surfaces for Perera’s

breakpoint distance model. IEEE Antennas and Wireless

Propagation Letters, 15, 786-789.

https://doi.org/10.1109/LAWP.2015.2474698

[27] Kustysheva, I. (2017). Consideration of environmental

factors in planning and development of urban areas. IOP

Conference Series: Materials Science and Engineering,

262(1): 012166. https://doi.org/10.1088/1757-

899X/262/1/012166

257




