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Time series count data such as daily cases of Covid-19 requires adequate modelling and 

forecasting. Traditional time series models do not have limitations in modelling time series 

count data, also known as unbounded N-valued data. This study involved in-depth analyses 

of various models in fitting time unbounded N-valued data. Models such as the Zero-

Inflated Poisson, zero-inflated Binomial, and ARIMA popularly used to fit time series 

count were compared with the integer-valued generalized autoregressive conditional 

heteroscedasticity (INGARCH) models. The investigation involved two critical aspects: 

simulation and real-life data analysis. First, we simulated the time series count data, 

modelled and compared the performance of the competing models. The simulation 

outcomes consistently favoured the Negative Binomial INGARCH models highlighting 

their suitability for count data modelling. Subsequently, we examined life data on Covid-

19 data in Nigeria. The life data also yielded strong support for the NB INGARCH model. 

This study recommends further exploration of the NB INGARCH model, as it exhibits 

substantial promise in effectively modelling over-dispersed zero-inflated data. The current 

study contributes valuable insights into selecting appropriate models for time series count 

data, addressing the intricate challenges posed by this specialized data type. Also, the 

overall outcome of the study helps in national planning, and resource allocation for the 

people needing health intervention. 
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1. INTRODUCTION

Time series counts data are discrete time series which 

include zero and positive integers. There are dedicated models 

suitable for fitting a specific type of data, such as the Poisson 

regression, Negative Binomial, and other discrete distributions 

in the exponential class of family because of certain 

characteristics such as link function. In the same light, models 

such as Autoregressive Moving Average (ARMA), 

Autoregressive Integrated Moving Average (ARIMA) and 

extensions are suitable in fitting time series data. Time series 

count data are generated daily in various fields but not always 

treated as it should, example of such is daily admittance of 

patience or discharge in the health facilities [1], another is 

daily new cases of Covid-19 infected cases, to mention but a 

few. The traditional methods such as Ordinary Least Square 

(OLS) usually break down when used in fitting time series or 

count data. The OLS faces problems such as heteroskedasticity 

thereby causing overfitting when used to fit count data or time 

series data [2].  

There are numerous alternative models that have been 

developed to address the problem of heteroscedasticity or 

overfitting. These models cover a wide range of statistical 

techniques, such as Discrete Weibull distributions, Dirichlet 

mixture models and COM-Poisson models [3]. The main goal 

is to offer robust methods for modelling count data that exhibit 

under- or over-dispersion. However, while these models have 

proven useful in a variety of contexts, their utility may not 

extend seamlessly to the domain of time series count data. The 

domain of count data analysis presents its own set of unique 

challenges and complexities, frequently necessitating the 

development of distinct modelling strategies and 

methodologies. 

Addressing the complexities of zero-inflated count data 

presents an immense challenge in the realm of statistical 

analysis and time series modelling [4, 5]. These data, which 

are frequently distinguished by an excess of zero values and a 

non-standard distribution, are encountered in a variety of 

fields, ranging from epidemiology and finance to ecology and 

social sciences [6, 7]. Understanding and effectively modeling 

zero-inflated time series count data is a practical necessity, as 

it is used in predicting disease outbreaks [8], analyzing 

financial anomalies [9], and studying population dynamics 

[10], among many other domains. 

Zero-inflation occurs in data when two distinct processes 

govern the observed counts: one that generates zeros more 

frequently than a standard distribution would predict, and 

another that generates non-zero counts [5]. These complexities 

necessitate the use of specialized modelling techniques to 

account for excess zeros, temporal dependencies, and other 

time series data-specific factors [11]. In this context, choosing 

an appropriate model is critical because it directly affects 

prediction accuracy and inference validity [12-14].  

The critical task of comparing different models for fitting 
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zero-inflated time series count data is considered in this study. 

The study objectives lie in modelling time series count data 

using the appropriate model which is often ignored and 

demonstrate its robustness and adequacy in fitting count data 

by using various model selection criteria and the scoring 

function. This study intends to provide useful insights for 

scholars, as well as practitioners dealing with zero-inflated 

time series count data by examining various methodologies 

and shedding light on the best practices for modelling.  

This study evaluates several models, including ARIMA, 

zero-inflated binomial, zero-inflated Poisson, and Integrated 

generalized autoregressive conditional heteroscedasticity 

(INGARCH), and assesses their applicability to stock 

modelling based on based on distributions such as Poisson, the 

linear and quadratic negative binomial, the double Poisson and 

the generalized Poisson [15]. The selected models underwent 

a thorough assessment, considering their capacity to represent 

the data's zero-inflated nature, temporal dependencies, and 

produce precise forecasts.  

The findings of this comparative study will help us better 

understand how to model zero-inflated time series count data 

and will also assist researchers in finding the best model for 

their particular use cases [16]. Navigating the wide range of 

modelling techniques available is crucial because the choice 

depends on the calibre and dependability of the insights 

obtained from the data [17]. This exploration of zero-inflated 

time series count data is expected to be enlightening, offering 

innovative perspectives on the opportunities within the field 

[18]. The remaining sections of the paper include the 

methodology in Section 2, the results in Section 3, Section 4 

the discussion, and finally Section 5, the summary and 

conclusion.   

2. METHODOLOGY

2.1 The INGARCH models 

In this session, we discuss the INGARCH (𝑝, 𝑞)  model 

which has been developed to fit time series data.  

If an Unbounded N-Valued is denoted by {𝑌𝑡: 𝑡 ∈ ℕ}, and

time-dependent 𝑟-dimensional covariate vector, {𝑋𝑡: 𝑡 ∈ ℕ},

say 𝑋𝑡 = (𝑋𝑡,1, … , 𝑋𝑡,𝑟)
𝑇

.  The conditional mean, 𝜇𝑡 =

𝐸(𝑌𝑡⎹𝐹𝑡−1), given that 𝜇𝑡  belongs to set of natural number,

{𝜇𝑡: 𝑡 ∈ ℕ}. The general form of the model can be expressed

as:  

𝑔(𝜇𝑡) = 𝛽0 + ∑ 𝛽𝑘𝑔̃(𝑌𝑡−𝑖𝑘
)

𝑝

𝑘=1

, 𝑖 = 1, 2 … (1) 

𝑔(𝑥) = 𝑔̃(𝑥) = 𝑥. The model (1) becomes 

 𝜇𝑡 = 𝛽0 + ∑ 𝛽𝑘𝑌𝑡−𝑘

𝑝

𝑘=1

+ ∑ 𝛼𝑙𝜇𝑡−𝑙

𝑞

𝑙=1

(2) 

If 𝑔  and 𝑔̃  have equal identity, we can write 𝑔(𝑥) =
log(𝑥) , 𝑎𝑛𝑑 𝑔̃(𝑥) = log(𝑥 + 1). 

The 𝛼 captures the impact of past shocks or innovations-the 

unexpected changes in the series. It represents the sensitivity 

of the conditional variance to the previous error term, which is 

the shock. The larger the alpha, the greater the influence of 

past shocks on future count uncertainty. 

It mathematically represents how much of the past squared 

errors or innovations contribute towards the present 

conditional variance. 

The 𝛽  represents the persistence of past conditional 

variance on the current volatility. It captures the effect of 

volatility in the previous period on volatility in the current 

period. The larger the beta, the higher the influence of past 

volatility on current volatility. If beta is near 1, it suggests that 

the volatility is highly persistent over time. 

Setting 𝑣𝑡 = 𝑙𝑜𝑔(𝜇𝑡), it follows that (2) can be further be

expressed as 

𝑣𝑡 = 𝛽0 + ∑ 𝛽𝑘𝑙𝑜𝑔(𝑌𝑡−𝑖𝑘
+ 1)

𝑝

𝑘=1

+ ∑ 𝛼𝑙𝑣𝑡−𝑙

𝑞

𝑙=1

(3) 

The Poisson model 𝑌𝑡⎹𝐹𝑡−1~𝑃𝑜𝑖𝑠𝑠𝑜𝑛  (𝜇𝑡)  can be

expressed as  

𝑃(𝑌𝑡 = 𝑦⎹𝐹𝑡−1) =
𝜇𝑡

𝑦
𝑒𝑥𝑝(−𝜇𝑡)

𝑦!
(4) 

Poisson model being equi-dispersed, the conditional mean 

is equal to the conditional variance, 𝑉𝐴𝑅(𝑌𝑡⎹𝐹𝑡−1) =
𝐸(𝑌𝑡⎹𝐹𝑡−1), and 𝑉𝐴𝑅(𝑌𝑡⎹𝐹𝑡−1) = 𝜇𝑡 + 𝜇𝑡

2 𝜙⁄ .

Let us assume that 𝑌𝑡 = 𝑦⎹𝐹𝑡−1~𝑁𝑒𝑔𝑏𝑖𝑛(𝜇𝑡, 𝜙) with 𝜙 ∈
(0, ∞), where 𝜙 is the dispersion, the model can be expressed 

as follows: 

𝑃(𝑌𝑡 = 𝑦⎹𝐹𝑡−1) =
Γ(𝜙 + 𝑧)

Γ(𝑧 + 1)Γ(𝜙)
(

𝜙

𝜙 + 𝜇𝑡

)
𝜙

(
𝜇𝑡

𝜙 + 𝜇𝑡

)
𝑦

𝑧 = 0, 1 …. 

(5) 

2.2 Scoring condition 

The scoring condition is an important aspect of the model. 

The scoring condition helps to obtain a better forecast, so the 

smaller a scoring value is, the better or accurate the forecast. 

The importance of scoring conditions in time series counts 

INGARCH models are as follows: 

(i) Model Estimation and Parameter Identification: Scoring

conditions are mathematical preconditions that must be 

fulfilled for the estimation procedure to work. More precisely, 

scoring conditions are related to the first derivative of the 

likelihood function, i.e., the score function. Given any 

INGARCH model, proper scoring conditions will provide 

consistent and efficient estimates of parameters.  

(ii) Conditional Mean and Variance: The scoring conditions

ensure that these quantities are correctly modelled in that the 

conditional mean and conditional variance evolve 

appropriately, given the past count data and specified structure 

(autoregressive or moving average components). Violation of 

these conditions might result in incorrect or miscalculated 

time-varying volatility estimates, thus affecting the model's 

predictive capability.  

(iii) Ensuring Proper Model Structure: INGARCH models

are based on the premise that counts are a discrete-time 

stochastic process, and the scoring conditions ensure that the 

dependence structure of this process is correctly specified. It 

includes how the current count is influenced by the past counts 

and the past conditional variances. The typical distribution of 

the count process in an INGARCH model is either Poisson or 

Negative Binomial, and such assumptions are partly justified 

by the scoring conditions. If these assumptions are violated - 
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for instance, due to overdispersion or autocorrelation - the 

model needs modification, and the scoring conditions help 

identify such issues.  

(iv) Algorithm Convergence Consistency and Efficiency of

the Estimators: Scoring conditions provide the basis for crucial 

asymptotic properties of the estimators. The estimators of the 

parameters are consistent-that is, for an increasing sample size, 

they converge to the true parameter values-and efficiency 

(they have minimum variance among all unbiased estimators)-

provided the scoring conditions are met. The estimators may 

become inconsistent or inefficient without appropriate scoring 

conditions, with possible inaccurate conclusions concerning 

the process underlying the data. 

For Time series count INGARCH models, scoring 

conditions are essential for satisfactory model estimation, 

hypothesis testing, and forecasting. This helps to ensure that 

the model parameters will be identified and estimated 

correctly so that the predictive performance of the model can 

be relied on and the statistical inferences drawn from the 

model are valid. Failure to satisfy the scoring conditions may 

result in unreliable estimates that may have unpleasant 

consequences for time series forecasting and predictive 

modelling. 

In this study, the scoring value is obtained using the 

following six different scoring conditions:  

a. Logarithmic score:

𝑙𝑜𝑔𝑠(𝑃𝑡 , 𝑌𝑡) = −𝑙𝑜𝑔𝑝𝑦

b. Quadratic or Brier score:

𝑞𝑠(𝑃𝑡 , 𝑌𝑡) = −2𝑝𝑦 + ||𝑝||2

c. Spherical score:

𝑠𝑝ℎ𝑠(𝑃𝑡 , 𝑌𝑡) = −
𝑝𝑦

||𝑝||

d. Ranked probability score:

𝑟𝑝𝑠(𝑃𝑡 , 𝑌𝑡) = ∑(𝑃𝑡(𝑥) − 1(𝑌𝑡 ≤ 𝑥))2

𝑛

𝑡=1

e. Dawid-Sebastiani score:

𝑑𝑠𝑠(𝑃𝑡 , 𝑌𝑡) = (
𝑌𝑡 − 𝜇𝑝𝑡

𝜎𝑝𝑡

)
2

+ 2𝑙𝑜𝑔𝜎𝑝𝑡

f. Normalized squared error score:

𝑛𝑠𝑒𝑠(𝑃𝑡 , 𝑌𝑡) = (
𝑌𝑡 − 𝜇𝑝𝑡

𝜎𝑝𝑡

)
2

g. Squared error score:

𝑠𝑒𝑠(𝑃𝑡 , 𝑌𝑡) = 𝑠𝑒𝑠(𝑌𝑡 − 𝜇𝑝𝑡)2

The aim is to determine best parametric model to fit the 

reported daily cases of COVID-19 data with minimal error.  

2.3 Parameter estimation 

The Quasi maximum likelihood (QML) in Liboschik et al. 

[19] was used for parameters estimation. It should be noted

that if a Poisson distribution is assumed, then an ordinary

maximum likelihood estimator is obtained. On the other hand,

if we assume Negative Binomial, we obtain a quasi-ML

estimator [20].

Let the vector of regression parameters be denoted by 𝜗 =

(𝛽0, 𝛽1, … , 𝛽𝑝, 𝛼1, … 𝛼𝑞) , the parameter space for the

INGARCH model in (2) can be expressed as 

Ξ = {𝜗 ∈ ℝ𝑝+𝑞+𝑟+1: 𝛽0 > 0, 𝛽1, … , 𝛽𝑝,𝛼1, … 𝛼𝑞

≥ 0, ∑ 𝛽𝑘

𝑝

𝑘=1

+ ∑ 𝛼𝑙 < 1

𝑞

𝑙=1

} 

(6) 

From Eq. (4), the conditional quasi log-likelihood function 

is given by 

𝓵(𝜗) = 

∑ 𝑙𝑜𝑔𝑝𝑡(𝑦𝑡; 𝜗) = ∑ (𝑦𝑡𝐼𝑛(𝜇𝑡(𝜗)) − 𝜇𝑡(𝜗))

𝑛

𝑡=1

𝑛

𝑡=1

(7) 

where 𝑝𝑡(𝑦𝑡; 𝜗) = 𝑃(𝑌𝑡 = 𝑦⎹𝐹𝑡−1) . The conditional score

function from Eq. (7) is given as 

𝑆𝑛(𝜗) =
𝜕ℓ(𝜗)

𝜕𝜗
= ∑ (

𝑦𝑡

𝜇𝑡(𝜗)
− 1)

𝜕𝜇𝑡(𝜗)

𝜕𝜗

𝑛

𝑡=1

(8) 

The vector of partial derivatives 𝜕𝜇𝑡(𝜗) 𝜕𝜗⁄  can be

computed recursively. The conditional information matrix is 

given as  

𝐺𝑛(𝜗; 𝜎2) = ∑ (
𝜕𝜇𝑡(𝜗)

𝜕𝜗
⎹𝐹𝑡−1)

𝑛

𝑡=1

= ∑ (
1

𝜇𝑡(𝜗)
+ 𝜎2)

𝑛

𝑡=1

(
𝜕𝜇𝑡(𝜗)

𝜕𝜗
) (

𝜕𝜇𝑡(𝜗)

𝜕𝜗
) 

(9) 

If Poisson is assumed, 𝜎2 = 0 and if it is negative binomial

𝜎2 = 1 𝜙⁄ . The conditional information matrix for Poisson

distribution is denoted by 𝐺𝑛
∗(𝜗) = 𝐺𝑛(𝜗; 0).  INGARCH

Poisson and Negative Binomial was used to forecast the new 

Covid-19 cases based on conditional distribution and 

parametric bootstrap method. The analyses were carried out 

using software package by R Core Team [21], with some 

function in the package “tscount” [22] for estimation of 

parameters of the models.  

3. RESULTS

3.1 Simulation 

The simulation of integer valued count was conducted based 

on negative binomial distribution. The procedure involved 

generating five hundred (500) samples. The strength of the 

models is examined based on one simulated data. The 

intervention between 50 and 150, the delta chosen was 0.8, 

which shows that the intervention decays exponentially 

because it satisfies the condition 0 < 𝛿 < 1. Intervention can 

be determined where serial dependence is observed in data, 
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where there was correlation with previous observations 

separated by some time delay. The summary statistics for the 

simulation is presented in Table 1.  

 

Table 1. Descriptive statistics of simulated time series count 

 
Min. Mean SD Skew. Max. Var. 

0.00 11.42 13.69 2.22 87.00 187.41 

 

Table 1 show that the simulated data is positively skewed 

and over-dispersed with higher variance than the mean.  

Results of fitting 𝐴𝑅𝐼𝑀𝐴 (𝑝, 𝑑, 𝑞),  and the INGARCH 

models to the simulated data is presented in Table 2. 𝑝 is AR 

order, 𝑑 is no-seasonal differences, and 𝑞 is MA order. The 

software R auto-generates the suitable order of 

𝑎𝑟𝑖𝑚𝑎(𝑝, 𝑑, 𝑞) . Table 2 also shows the results for Zero-

inflated Poisson (ZIP), the zero-inflated Negative Binomial 

(ZINB).   

 

Table 2. Model selection criteria 

 
Model Selection AIC BIC 

Poi INGARCH (1,1) 7978.27 7999.343 

ZINB 3462.41 3487.698 

ZIP 8352.036 8360.466 

NB INGARCH (1,1) 3355.31* 3367.95* 

ARIMA (1,0,1) 3970.71 3987.57 

 

The results in Table 2 show that Negative Binomial 

INGARCH (1, 1)  outperformed both Poisson INGARCH, 

ZIP, ZINB, and ARIMA (1, 0, 1)  based on AIC and BIC, 

while ARIMA (1, 0, 1) which agrees with the study [23]. This 

is an indication ZINB INGARCH performs excellently well 

on over-dispersed count data.  

 

3.2 Life data 

 

The data used in this study is obtained from. The site 

contains record of Covid-19 data for many countries, but our 

interest in this study is the record for Nigeria Covid-19 data. 

The Data covers 28th February 2020 to 14th March 2022, 

making a total count of 746. A time plot of the 746 data point 

on the daily cases of Covid-19 in Nigeria data is presented in 

Figure 1.  

 

 
 

Figure 1. Time series plot of the life data 

 

The descriptive statistics of the life data is presented in 

Table 3. It should be noted that the summary statistics in Table 

3 would be useful in fitting the INGARCH model.  

 

Table 3. Summary statistics of daily new cases of COVID-19 

in Nigeria 

 
Min. Mean SD Skew. Max. Var. 

0.00 341.81 44.94 4.20 6158 201546.5 

 

Table 3 shows that the data is over-dispersed with higher 

variance (201546.5) than the mean (341.81).  

From Table 3, the Covid-19 data is also positively skewed 

and over-dispersed just like the simulated data. 

The Non-random Probability Integral Transform (PIT) 

histogram and Marginal calibration plot new daily cases of 

COVID-19 positive test in Nigeria for a period of 746 days 

after first difference is presented in Figure 2.  

 

 
 

Figure 2. Non-randomized PIT histogram 

 

 
 

Figure 3. Marginal calibration plot 

 

A PIT histogram is used to evaluate the consistency between 

the observation and the probability forecast. The PIT 

histogram is a diagnostic tool to assess the goodness-of-fit of 

probabilistic models. The histogram of a predictive 

distribution that is centered at the correct value will be 

uniform, while the occurrence of bin deviation can be thought 

of as a sign of potential problems with the model's 

specification, calibration, or fit to the data. If a PIT histogram 
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is flat with no bin with an unusual low or high level, then the 

predictive distribution is ideal. However, Figure 2 shows the 

difference between the observations at each value between the 

highest and lowest observation and the average predictive 

cumulative distribution function is known as marginal 

calibration.  

Figure 3 shows that the predictive distribution is ideal since 

the PIT histogram is flat with no bin with an unusual low or 

high level.  The model is well-calibrated showing a curve that 

closely follows the diagonal line across all levels of predicted 

probabilities, indicating that the predicted probabilities 

accurately reflect the actual outcome frequencies across the 

entire range of predictions. On fitting the models under study 

to the Covid-19 data, the model selection criteria are presented 

in Table 4. 

Table 4. Model selection criteria 

Model AIC BIC QIC 

Pois INGARCH 159564.6 159587.7 159564.6 

NB INGARCH 13202.2* 13229.9* 475376.7 

ZIP 280875.6 280884.8 - 

ZINB 14956.4 14568.9 - 

ARIMA (1,0,1) 110574.1 110686.9 - 

The information in Table 4 shows that NB INGRACH 

model based on model selection criteria outperformed Poisson 

INGARCH; hence, the NB INGARCH is the most reliable and 

appropriate for the Covid-19 data.  

Results of parameter estimation obtained are presented in 

Table 5. 

Table 5. Parameter estimation 

Estimate S.E C.I (Lower) C.I (Upper)

Intercept 2.216 1.951 -1.608 6.040 

beta_1 0.561 0.348 -0.122** 1.243 

alpha_27 0.057 0.252 -0.438 0.552 

interv_1 0.295 0.728 -1.132 1.722 

interv_2 -0.670 8.254 -16.847 15.507 

sigmasq 67.783 - - - 

From Table 5, the coefficient beta_1 is the regression on the 

previous observation. It shows that the impact of volatility on 

the current period was 0.561. If beta is near 1 than 0, it suggests 

that the volatility is somewhat highly persistent over time. As 

relating to the new cases of Covid-19 data, the beta is 

moderately persistent over time, meaning that the number of 

new cases of Covid-19 will be moderately persistent over time. 

The coefficient alpha_27 is the regression values of the 

conditional mean of the twenty seventh unit back in time. It 

shows that the impact of the shock was 0.057 in the series. The 

small shows that the future uncertainty of new cases of Covid-

19 will not be so much. The Intervention 1 (interv_1) was 

t=281 (observation) had 324 counts, while intervention 2 was 

t=366 (observation) had 341 counts. These are values of t that 

were close to the mean value of the data (342). 

The estimation of the overdispersion coefficient , 𝜎2  is

67.783, and 𝜙, the dispersion parameter of Negative Binomial 

is 1/𝜎2. Following the estimation in Table 5, the fitted model

for the new cases of Covid-19 infection in the period 𝑡 given 

by 𝑌𝑡⎹𝐹𝑡−1~𝑁𝑒𝑔𝑏𝑖𝑛(𝜇𝑡 , 0.015) is

𝜇𝑡 = 2.216 + 0.561𝑌𝑡−2 + 0.057𝑌𝑡−27

+0.295(𝑡 = 281) − 0.670(𝑡 = 366)
(10) 

Relating Table 5 to Eq. (10), the intercept is 2.216, the 

beta_1 is 0.561, beta_27 is 0.047, interv_1 is 0.295, and 

interv_2 is -0.670. The scoring function values were estimated 

and presented in Table 6.  

Table 6. Scoring for INGARCH models 

Score 

Function 

NB INGARCH 

(1,1) 

Poisson INGARCH 

(1,1) 

Value Value 

Logarithmic 6.0470e+00 1.795114e+01 

Quadratic -8.0477e-03 9.756911e-03 

Spherical -6.8964e-02 -5.001848e-02

Rankprob 6.7120e+01 5.913281e+01

Dawseb 1.0890e+01 3.375576e+01

Normsq 9.7435e-01 2.860757e+01

Sqerror 8.9605e+03 5.439806e+05

The accuracy of the probabilistic predictions was assessed 

based on scoring function presented in Table 6. The model that 

gives a lower score function is preferred. INGARCH Binomial 

outperformed INGARCH Poisson except for “Rankprob”. 

Table 7 shows the twenty day-ahead predicted cases of Covid-

19 data. 

Table 7. Predicted cases 

Day Predicted CI (Lower) CI (Upper) 

1 10 0 54 

2 69 0 728 

3 47 0 52 

4 119 0 117 

5 80 0 49 

6 168 0 106 

7 136 0 165 

8 163 0 59 

9 186 0 73 

10 160 0 71 

11 219 0 54 

12 190 0 144 

13 231 0 90 

14 200 0 67 

15 236 0 81 

16 203 0 43 

17 240 0 101 

18 181 0 104 

19 214 0 70 

20 201 0 87 

The second column of Table 7 shows the predicted cases, 

the third and fourth column are the 95% upper and lower 

confidence interval respectively for conditional distribution.  

4. DISCUSSION

This study focuses on comparing various models for fitting 

zero-inflated time series count data, using Covid-19 statistics. 

The study addresses the challenge of modelling time series 

count data, which often involves over-dispersion and zero-

inflation. Various models, including Poisson INGARCH, 

Negative Binomial INGARCH, Zero-Inflated Poisson, Zero-

Inflated Binomial, and ARIMA, are assessed in terms of their 

suitability and performance. Two critical aspects of analysis 

are considered: simulation and real-life data. 

In the simulation phase, it is observed that Negative 

Binomial INGARCH models perform exceptionally well, 
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showing superiority over other models such as Poisson 

INGARCH, Zero-Inflated Poisson, Zero-Inflated Binomial, 

and ARIMA. This is evident from the AIC and BIC 

comparisons. In the life data analysis, using Covid-19 

statistics, the study indicates that the Zero-Inflated Negative 

Binomial (ZINB) model demonstrates the best fit based on 

model selection criteria, particularly AIC and BIC. This result 

implies that the NB INGARCH model holds substantial 

promise in effectively modelling over-dispersed and zero-

inflated data, which is characteristic of COVID-19 case 

counts. The results also show that the Covid-19 new cases will 

be consistent over a period. The implication of the study is that 

we could adopt a more reliable model for modelling 

unbounded N-valued integer, such as daily Covid-19 data. 

Such would help the policy makers to make adequate 

preparation for health facilities and the required funding. The 

study aligns with Sustainable Development Goal (SDG) 8 is 

focused on promoting sustained, inclusive economic growth. 

The limitation of the study lies in access to data of new Covid-

19 cases in other countries for comparative studies. 

These results emphasize the significance of choosing an 

appropriate model that accounts for over-dispersion and zero-

inflation, which are common characteristics of count data in 

various contexts. Adesina et al. [24] showed the superiority of 

ARFIMA over ARIMA to model Covid-19 data, and future 

study can investigate the strength of such model against the 

INGARCH models. The current study offers superior 

modelling relative to Chan et al. [25] and Busari and Samson 

[26] who used count regression models, ARIMA, and other

machine learning models without giving attention to the count

part. Though the study found negative Binomial and ARIMA

most appropriate respectively.

5. CONCLUSION

The study has demonstrated the superiority of Negative 

Binomial INGARCH (1,1) model over the competing models 

and contributes significant insights into the selection of 

appropriate models for time series count data, with a particular 

focus on zero-inflated data. The study's findings suggest that 

Negative Binomial INGARCH model performed well with 

both simulated and life data.  

The study recommends future research to validate these 

findings with diverse simulation approaches and other real 

data sources. Additionally, it encourages the exploration of the 

NB INGARCH model, as it shows potential for being a robust 

and versatile choice for modelling over-dispersed zero-

inflated time series count data, filling a notable gap in existing 

literature. This research, therefore, contributes valuable 

insights for both scholars and practitioners dealing with time 

series count data and offers a promising direction for future 

studies. Future research can also extend to the INGARCH to 

mixture models such as Dirichlet mixture models.  
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