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In today's digitalized production environments, AI-supported systems not only transform 

production processes, but also complicate the nature of decisions taken in these processes. 

Especially in smart production scenarios where edge and cloud computing infrastructures 

are used together, decision processes must be managed with both low-latency local data 

and large-volume centralized analyses. This bidirectional data flow brings about multi-

criteria decision problems that cannot be easily solved with classical algorithms due to the 

presence of incomplete, uncertain and unstable information. This study proposes a new 

decision support model for such multi-criteria and uncertain decision problems that arise 

in computer-aided production environments. Unlike classical data analytics methods, our 

model is designed based on the T-Spherical Hesitant Fuzzy Rough Set (T-SHFR) theory. 

While T-SHFR evaluates decision alternatives in the triangle of truth, falsehood and 

uncertainty, it can also systematically process incomplete or contradictory data with 

hesitant membership and rough set logic. In this respect, the model goes beyond the 

artificial intelligence applications frequently found in the literature and offers a structure 

where uncertainty is directly modeled. In the study, this method was integrated with edge 

and cloud computing architectures and the multi-criteria performance of Edge-only, Cloud-

only and Hybrid approaches was evaluated; scenario-based analyses were conducted on 

basic parameters such as production efficiency, downtime, cost and resource usage. The 

findings show that the T-SHFR-based model significantly increases decision quality 

especially in hybrid architectures and offers higher stability and flexibility in stuations 

where classical methods are difficult. Thus, the proposed approach offers a holistic 

framework that strengthens decision making under uncertainty in computer-driven 

production systems. 
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1. INTRODUCTION

Artificial intelligence-supported production automation, 

sensor-based hyper-connected systems, and multi-layered data 

analytics have made real-time decision-making processes in 

today's smart manufacturing environments more complex and 

uncertain. The integration of edge and cloud computing 

technologies, which are at the center of this transformation, 

offers both the ability to respond to local operations with low 

latency and high computational power for central analytical 

processes. This double-layered structure directly affects not 

only the speed of decision-making systems, but also the 

quality and adaptability of decisions. However, the inherent 

characteristics of production data, such as incompleteness, 

contradiction, and uncertainty, seriously limit the 

effectiveness of classical decision support systems in these 

environments. Especially in multi-criteria decision 

environments, more advanced models are needed for 

information representation and processing due to both the 

imprecision of the data and the hesitant behaviors of decision 

makers. In order to meet this need, this study proposes a 

decision support framework based on the T-Spherical Hesitant 

Fuzzy Rough Set (T-SHFR) model. Unlike the artificial 

intelligence and data analytics approaches frequently used in 

the literature, the proposed model represents decision 

alternatives in a multidimensional manner with the 
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components of truth, falsehood and uncertainty. This triple 

representation structure, integrated with hesitant membership 

theory and rough set logic, allows systematic modeling of 

missing or contradictory information in particular. The model 

has been integrated into edge and cloud computing 

architectures and evaluated under Edge-only, Cloud-only and 

Hybrid systems. The applied scenario-based analyses and 

sensitivity tests show that the T-SHFR model significantly 

increases the quality of decisions taken under uncertainty. It 

has been shown that it goes beyond classical methods in terms 

of both efficiency and flexibility, especially in hybrid 

architectures.  

In this respect, the study presents an alternative that is 

highly computable, has advanced flexibility and directly 

models data uncertainty for multi-criteria and uncertain 

decision problems in computer-aided production systems. It 

also offers a complementary and strong alternative to artificial 

intelligence-based methods that are frequently used in the 

literature but may be limited in the face of uncertainty. 

The remaining parts of this paper are structured in the 

following order: Section 2 summarizes the literature regarding 

key ideas in smart manufacturing, edge-cloud synergy, and 

fuzzy set theories. Section 3 gives the T-SHFR model and its 

formulation for use with manufacturing systems. Section 4 

presents the envisioned optimization framework, while 

Section 5 describes methodology and findings. Section 6 

concludes the paper, summarizing the findings and offering 

suggestions on future research work.  

2. LITERATURE SURVEY

In the digital transformation of smart manufacturing 

systems, the integration of distributed computing technologies 

such as edge computing, cloud computing and data analytics 

plays a critical role by increasing both the response speed and 

computational capacity in decision-making processes. 

Especially in real-time production environments, the 

synchronous operation of the local data processing capability 

of edge devices and the large-scale data analytics capability of 

cloud systems are among the main factors determining the 

holistic optimization capability of the system. In this context, 

in recent years, numerous solution proposals have been 

developed in the literature for smart manufacturing systems 

supported by edge-cloud collaboration architectures. However, 

the vast majority of these solutions are inadequate in modeling 

uncertainties, incomplete information and instability situations 

arising from factors such as the density of data flow and 

variability in production environments. This deficiency 

becomes more apparent especially when it comes to Multi-

Criteria Decision Making (MCDM) problems. This section 

focuses on three main literature areas to fill the gap above: (i) 

edge–cloud computing architectures and smart manufacturing 

integration, (ii) multi-criteria decision-making approaches and 

uncertainty modeling strategies, (iii) the evolution of fuzzy set 

theory and especially the recently proposed T-Spherical 

Hesitant Fuzzy Rough (T-SHFR) model. The aim is to reveal 

the limitations of classical methods, especially with studies in 

which edge and cloud computing architectures are integrated 

into the decision-making framework, and to methodologically 

substantiate why the T-SHFR model offers a more powerful 

and meaningful solution in this context. 

The study on sustainable and digital transformation 

strategies to industrial systems is identified by a very wide 

range of interdisciplinary topics such as green mining, smart 

manufacturing, Industry 4.0, blockchain, and fuzzy-based 

decision-making. Shamsi et al. [1] present a hybrid fuzzy 

MCDM structure for guiding the selection of sustainable 

technology in mining with emphasis placed on green and 

climate-smart strategies. Similarly, in parallel, Khan et al. [2] 

suggest a knowledge-based expert system for the assessment 

of digital supply chain readiness, the high demand being data-

driven assessment. Biswas et al. [3] present a state-of-the-art 

overview of green cloud computing by articulating both 

technological as well as environmental challenges. Akhlaqi 

and Hanapi [4], in their review article, center around mobile 

edge computing with task offloading, latency and energy 

efficiency constraints emphasized. Alinejad et al. [5] utilize 

circular intuitionistic fuzzy methods to resolve biomass 

management issues, focusing on smart-circular solutions. Cui 

et al. [6] study IoT adoptability issues in circular economy 

frameworks with Pythagorean fuzzy SWARA-CoCoSo, with 

applications in strategic manufacturing choices. Ahmmad et al. 

[7] employ complex q-rung orthopair fuzzy Yager operators to

facilitate decision-making in environmental engineering.

Govindan and Arampatzis [8] offer a combined readiness-

barrier framework for Industry 4.0, while Chen et al. [9] use

rough-fuzzy logic in the selection of suppliers in situations of

uncertainty. Esmaeilian et al. [10] offer an introductory outline

of the evolution of manufacturing, tracing its course towards

intelligent systems. Talal et al. [11] propose the FWZIC-

VIKOR method for evaluating the sustainability of microgrids.

Bhatia and Diaz-Elsayed [12] use fuzzy TOPSIS for enabling

the adoption of smart manufacturing technologies among

SMEs. Mladineo et al. [13] present cooperative manufacturing

alliances through network-centric approaches. Sumrit [14]

uses Pythagorean fuzzy logic in IIoT readiness assessments.

Singh et al. [15] and Yuan et al. [16] help by evaluating

blockchain barriers and proposing dynamic rehabilitation

models, respectively. The application of fuzzy logic and

MCDM methods—such as AHP, DEMATEL, and TOPSIS—

used across these investigations mirrors the central role of

computation intelligence in advancing sustainability,

resilience, and operating efficiency within digitally

transforming industrial ecosystems.

The existing literature provides a comprehensive review of 

multi-criteria decision-making (MCDM) techniques and 

fuzzy-based models for evaluating technological change, 

sustainability, and innovation across different industrial 

applications. Esangbedo et al. [17] present a grey ordinal 

pairwise comparison MCDM model for evaluating Human 

Resource Information Systems with an emphasis on dealing 

with decision uncertainty. Jena and Patel [18] propose a fuzzy 

hybrid model to implement Industry 4.0 approaches in the 

Indian automotive industry with sustainability considerations. 

Ogundoyin and Kamil [19] utilize Fuzzy-AHP to prioritize 

trust factors in fog computing, addressing service reliability in 

edge environments. Molavi et al. [20] examine sustainable 

financial infrastructure in volatile economies using fuzzy 

MCDM, considering open service innovation governance. 

Abu-Lail et al. [21] suggest a Circular-Fermatean fuzzy model 

to analyze Industry 4.0 initiatives for SMEs in order to 

enhance decision accuracy under uncertainty. Hamidi et al. 

[22] suggest a blockchain readiness digital maturity model

with an industry adjustment strategic roadmap. Büyüközkan et

al. [23] and Irannezhad et al. [24] utilize fuzzy logic to analyze

blockchain readiness to increase digital supply chain

networks. Shao et al. [25] explain business intelligence in the
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finance of a company using IoT-based, with emphasis on data 

visualization. Kumar et al. [26] suggest a blockchain-IoT 

roadmap for green logistics. Saihi et al. [27] apply a hybrid 

Delphi approach to identifying success factors in digital 

transformation of maintenance. Yu et al. [28] present spherical 

fuzzy logic to assess IoT barriers in sustainable supply chains. 

Zamani et al. [29] suggest performance indicators for 

emerging Technologies. Kumar et al. [30] examine industry 

4.0 application challenges to ethical SME conduct. Kumar et 

al. [31] investigate blockchain disruptors in the petroleum 

supply chain. Asadi et al. [32] apply fuzzy LMAW to deploy 

blockchain integration in SME supply chains. Farshidi et al. 

[33] discuss a case study-based decision model for choosing

programming language environments. Pan and Hashemizadeh

[34] discuss a circular economy-based assessment model for

renewable energy. Bai and Sarkis [35] critically review formal

modeling of blockchain in production and supply chains.

Zayat et al. [36] discuss an extensive review of MADM

applications in Industry 4.0 technologies. Lastly, Alsolami et

al. [37] address interoperability in IoT applications, designing

a framework for heterogeneous backhauled systems. In

general, the study presents growing dependence on fuzzy,

grey, and hybrid MCDM solutions to handle digital

transformation, sustainability, and innovation in dynamic

industrial and supply chain environments.

The existing literature reveals that fuzzy logic and MCDM 

methods are widely and variously used around topics such as 

smart manufacturing, green transformation, Industry 4.0 and 

blockchain applications. However, these studies are mostly 

limited to certain sectors (mining, logistics, SMEs, etc.) or 

limited decision contexts (supplier selection, technology 

readiness, etc.); they do not cover real-time, multi-criteria and 

uncertainty-driven decision environments integrated into edge 

and cloud computing infrastructures. In addition, the proposed 

models are generally limited to classical fuzzy sets or basic 

MCDM approaches, and advanced hybrid structures where 

uncertainty is represented in multi-dimensional terms are not 

sufficiently included. This study aims to fill this gap and 

present a holistic decision framework that processes both 

structural and cognitive uncertainties with the T-Spherical 

Hesitant Fuzzy Rough (T-SHFR) model. 

3. METHODOLOGY

This study proposes a methodology that integrates edge-

cloud computing architecture with the T-Spherical Hesitant 

Fuzzy Rough (T-SHFR) model in order to improve decision 

processes involving uncertainty in smart manufacturing 

systems. The method aims to provide more flexible and 

adaptable solutions in decision environments dominated by 

uncertainty, instability and multi-criteria structures by 

combining real-time data processing at the edge layer and 

large-scale analysis at the cloud layer. The methodology 

consists of system architecture design, data preprocessing, T-

SHFR modeling and multi-objective optimization stages. 

3.1 Model foundations and T-SHFR theory 

In this section, the theoretical foundations of the proposed 

decision support structure are presented through the T-

Spherical Hesitant Fuzzy Rough (T-SHFR) model. The 

mathematical definitions of the model’s core components—

spherical fuzzy sets, hesitant fuzzy sets, and rough set 

theory—are introduced to illustrate how T-SHFR handles 

uncertainty, conflict, and incomplete information in decision-

making environments. Furthermore, the construction of the 

decision matrix within the T-SHFR space is described using 

membership functions and approximation operators, 

demonstrating the model's applicability in complex multi-

criteria decision-making (MCDM) scenarios, particularly in 

smart manufacturing contexts. 

3.1.1 Spherical fuzzy sets 

A spherical fuzzy set (SFS) is a recent extension of fuzzy 

and intuitionistic fuzzy sets, designed to represent uncertainty 

more flexibly in decision-making contexts. It characterizes 

each element by three parameters: membership degree (μ), 

non-membership degree (ν), and hesitancy degree (π), 

satisfying a spherical constraint. Formally, an SFS A in a 

universe X is defined as [38]: 

𝐴 =  {(𝑥, 𝜇ᵃ(𝑥), 𝜈ᵃ(𝑥), 𝜋ᵃ(𝑥)) | 𝑥 ∈  𝑋} and spherical 

constraint; 𝜇ᵃ(𝑥)2 +  𝜈ᵃ(𝑥)2 +  𝜋ᵃ(𝑥)2 ≤  1 ∀ 𝑥 ∈  𝑋.

Here, μ(x): degree of membership, ν(x): degree of non-

membership, π(x): degree of hesitancy. 

3.1.2 Hesitant fuzzy sets 

A hesitant fuzzy set (HFS) refers to situations where the 

decision maker hesitates to determine a definitive membership 

degree for an element. More than one possible membership 

degree can be defined for each element. The concept was first 

defined by [39]. 

𝐴 =  {(𝑥, 𝐻ₐ(𝑥)) | 𝑥 ∈  𝑋} and 𝐻ₐ(𝑥)  =
 {𝜇₁ᵃ(𝑥), 𝜇₂ᵃ(𝑥), . . . ,  𝜇𝑘ᵃ(𝑥)}  ⊆  [0, 1]

Here Hₐ(x) represents the set of all possible membership 

values for element x. 

3.1.3 Rough sets 

Rough set theory, developed by Pawlak [40], is a 

mathematical method used to deal with uncertainty, 

incompleteness, and ambiguity in data analysis. Under an 

equivalence relation 𝑅 defined on the universe set 𝑈, for any 

subset A⊆U, elements that “certainly belong to A” and 

“probably belong to A” are defined separately. 

The Lower Approximation: 𝐴_𝐿 =  {𝑥 ∈  𝑈 ∶  [𝑥]𝑅 ⊆ 𝐴};

The Upper Approximation: 𝐴_𝑈 =  {𝑥 ∈  𝑈 ∶  [𝑥]𝑅 ∩ 𝐴 ≠
⌀}, 

Here, [𝑥]𝑅  denotes the access class of x according to the

equivalence relation R. 

3.1.4 T-Spherical Hesitant Fuzzy Rough Set (T-SHFR) 

T-Spherical Hesitant Fuzzy Rough Set (T-SHFR) is an

integrated structure used in decision-making environments 

with multi-layered uncertainty and ambiguity. This model 

combines the concepts of T-spherical fuzzy set [41], Hesitant 

fuzzy set [39], Rough set theory [40] and enables modeling 

different levels of uncertainty with three-dimensional 

membership, instability and lower-upper approximate sets. 

The T-Spherical Hesitant Fuzzy Rough Set (T-SHFR) 

model aims to model the decision process more flexibly with 

rough set-based lower and upper approximate sets in the case 

of decision maker hesitancy, triple membership (T, F, U) 

structure of evaluation criteria, and lack of information. This 

structure is directly related to the T-spherical fuzzy rough 
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aggregation operator approach proposed by Wang [42] and the 

weighted T-spherical fuzzy soft rough sets developed by 

Zhang et al. [43]. Both studies provided a strong theoretical 

basis for multi-criteria group decision making (MAGDM) 

problems by processing three uncertainty dimensions 

simultaneously. In a given universe, the T-SHFR for a set 𝐴 is 

defined as: 

𝐴
∼

= {(𝑥, ℋ(𝑥), 𝜇
𝐴
∼(𝑥)) ∣ 𝑥 ∈ 𝑋} 

where, ℋ(𝑥) is hesitant membership values of an element 𝑥, 

and 𝜇
𝐴
∼(𝑥) = (𝑇(𝑥), 𝐹(𝑥), 𝑈(𝑥))  is the T-spherical fuzzy 

membership function of 𝑥. For each element, the degrees of 

truth, falsehood and uncertainty are given, respectively. These 

three values must satisfy the T-spherical condition: 𝑇(𝑥)𝑡  +
 𝐹(𝑥)𝑡 +  𝑈(𝑥)𝑡  ≤  1, For a universe 𝑈 and a relation 𝑅, the

T-SHFR is represented as: T-SHFR(𝐴) = (𝐴
‾

, 𝐴‾, 𝜇1, 𝜇2, 𝜇3) ,

where 𝜇1, 𝜇2, 𝜇3 represent the truth, uncertainty, and falsehood

membership degrees of the hesitant fuzzy sets, and the 

approximations 𝐴
‾
 and 𝐴‾ are derived using rough set theory. 

3.1.5 Edge-cloud collaboration with T-SHFR in 

manufacturing optimization 

The T-SHFR model is very suitable for modeling situations 

in edge-cloud based systems where the decision maker cannot 

make a definitive decision due to lack of data, time pressure or 

lack of expertise. For example: Edge Layer: Real-time 

unstable data. Cloud Layer: Reducing uncertainty through 

aggregate analysis. Thus, the T-SHFR model enables the 

system to make adaptive decisions at both local (edge) and 

global (cloud) levels. In smart manufacturing systems, edge-

cloud collaboration and T-SHFR analysis are applied in 

optimizing decision-making under uncertain conditions. The 

idea is that by leveraging both local (edge) and global (cloud) 

information, along with the high-level fuzzy rough model, the 

manufacturing systems can adapt to real-time production 

status in a continuous manner while optimizing resource 

allocation, scheduling, and maintenance over the long term. 

The cloud layer processes big data for predictive analytics, 

while the edge layer provides real-time input for the execution 

of immediate actions. The integration of T-SHFR enhances the 

decision-making process through handling multidimensional 

uncertainty and vagueness in the data, leading to more 

believable and dynamic decisions. 

3.1.6 Approximations of T-SHFR 

Let A⊆U be a set in the universe of discourse U, and R be 

the equivalence relation on U. Then, the lower and upper 

approximations of a T-SHFR set A are given by Zhang and 

Shu [44]: 

Lower Approximation: 𝐴
‾

= {𝑥 ∈ 𝑈: [𝑥]𝑅 ⊆ 𝐴}

Upper Approximation: 𝐴‾ = {𝑥 ∈ 𝑈: [𝑥]𝑅 ∩ 𝐴 ≠ ⌀}

The presence of the hesitant fuzzy component modifies the 

approximations by including multiple possible membership 

degrees, enriching the decision-making process. 

3.1.7 Uncertainty reduction in T-SHFR 

The T-SHFR model reduces uncertainty in decision-making 

by providing a multi-dimensional fuzzy representation. Unlike 

classical fuzzy sets with a single membership value, T-SHFR 

incorporates multiple values reflecting various levels of 

uncertainty. This leads to more robust and reliable decisions 

under incomplete or ambiguous information. 

Practical Implications of T-SHFR in Smart Manufacturing 

Integrating T-SHFR into edge–cloud collaborative systems 

is a significant innovation for intelligent manufacturing. By 

processing local uncertainty at the edge and global uncertainty 

in the cloud, the system can optimize operations in real time 

while effectively handling uncertainty in scheduling, resource 

allocation, and maintenance. This improves overall efficiency, 

product quality, and cost-effectiveness. 

3.1.8 Existence of optimal resource allocation using T-SHFR 

Optimal resource allocation can be achieved using the T-

SHFR model in multi-criteria environments involving cost, 

production, and uncertainty in demand and machine 

capabilities. By applying fuzzy decision rules and 

metaheuristic optimization methods (e.g., genetic algorithms, 

PSO), T-SHFR enables dynamic and uncertainty-aware 

resource distribution. Let X be the set of decisions, and let the 

membership function μ(x) reflect T-SHFR values. The 

objective is to minimize cost subject to constraints on output, 

resource use, and time. The result is a set of optimal solutions 

accounting for both efficiency and uncertainty. 

3.1.9 Improved decision-making performance 

The integration of T-SHFR within edge–cloud 

infrastructures enhance the accuracy, flexibility, and reliability 

of decision-making in smart manufacturing. The model’s 

multidimensional membership structure ensures more 

informed decisions under uncertainty, thereby increasing 

operational efficiency and system robustness. 

3.2 System design and edge-cloud collaboration 

architecture 

The proposed smart manufacturing architecture is built on a 

hybrid edge–cloud computing model, enabling efficient data 

processing and real-time decision-making via task distribution 

between edge devices and cloud servers. Edge devices, 

positioned close to production units (e.g., sensors, robots), 

handle local tasks such as real-time filtering, anomaly 

detection, and initial decisions. The cloud layer manages 

advanced analytics including performance monitoring, 

resource planning, and machine learning-based forecasting. 

The system architecture comprises edge, cloud, and 

communication layers. Preprocessing tasks such as noise 

reduction, normalization, and missing data imputation—are 

distributed across these layers. Edge-level preprocessing 

reduces data transmission by handling smoothing and feature 

extraction, while the cloud performs more intensive 

aggregation and trend analysis. To enhance system efficiency, 

adaptability, and resource use, the proposed optimization 

framework applies the T-SHFR model to key tasks such as 

production scheduling, resource allocation, and cost–energy 

optimization. Scheduling considers uncertainties in machine 

performance, demand variability, and resource availability. 

Real-time edge data and cloud history enable dynamic 

resource distribution, while predictive models support energy 

and cost efficiency. This iterative, feedback-driven process 

improves responsiveness to changing production conditions. 

Edge computing allows instant decisions with minimal latency, 

reacting swiftly to failures or demand shifts. Meanwhile, the 

cloud ensures large-scale optimization through predictive 

maintenance and scheduling. Their integration balances local 
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agility with global intelligence, creating a dynamic and 

adaptive manufacturing system. 

The core innovation lies in combining edge–cloud 

collaboration with T-SHFR analysis, which effectively 

captures uncertainty and hesitation in decision-making. The 

continuous data loop between layers enables real-time 

adjustments and long-term planning. The result is a robust, 

scalable decision support model for complex smart 

manufacturing environments. 

3.3 Mathematical modeling with T-SHFR 

The proposed T-Spherical Hesitant Fuzzy Rough (T-SHFR) 

model is designed to simultaneously support real-time 

decision making at the edge layer and long-term optimization 

functions at the cloud layer. This structure provides the 

opportunity to model the uncertainties effectively and hesitant 

evaluations frequently encountered in modern manufacturing 

systems. Optimization problems encountered in smart 

manufacturing environments are typically multi-objective, 

encompassing the following objectives: maximizing system 

efficiency, minimizing operating costs, reducing resource 

waste, and minimizing downtime. These objectives are 

formulated as a multi-objective optimization problem under 

uncertainty. 

Objective 1: Maximizing Production Efficiency 

Production performance is typically measured by output-

oriented metrics [45]. The production efficiency Ep is defined 

as the ratio of the actual production output to the ideal 

production output. Mathematically: 

𝐸𝑝 =
Actual Output

Ideal Output
=

∑ Output𝑖
𝑛
𝑖=1

∑ Ideal Output𝑖
𝑛
𝑖=1

where, Output
𝑖

is the actual production of unit 𝑖 ;

Ideal Output
𝑖
is the target or ideal output for unit i.

Objective 2: Minimizing Operational Costs 

The operational cost 𝐶op includes energy, labor, 

maintenance, and raw material costs. The total operational cost 

is represented as [32]: 

𝐶op = ∑ (𝑐energy,𝑖 + 𝑐labor,𝑖 + 𝑐maintenance,𝑖 + 𝑐material,𝑖)
𝑛
𝑖=1

where, 𝑐energy,𝑖 , 𝑐labor,𝑖 , 𝑐maintenance,𝑖 , and 𝑐material,𝑖  are the

energy, labor, maintenance, and material costs associated with 

unit i, respectively. 

Objective 3: Minimizing Downtime 

Downtime 𝐷down is the amount of time when machines are 

not in operation. The total downtime is calculated as [46]: 

𝐷down = ∑ (𝑡failure,𝑖 + 𝑡maintenance,𝑖)
𝑛
𝑖=1

where, 𝑡failure,𝑖is the downtime due to machine failure for unit

𝑖 ; 𝑡maintenance,𝑖 is the downtime due to scheduled maintenance

for unit i. 

3.3.1 Constraints 

The optimization problem must satisfy various constraints, 

including production capacity, resource availability, and 

operational limits. The total production output must not exceed 

the production capacity of the system [46]: 

∑ Output
𝑖

𝑛
𝑖=1 ≤ Max Capacity 

where, Outputi: Actual production of unit i, "Max Capacity" is 

the maximum production output that the system can handle. 

The amount of resources (e.g., raw materials, energy, labor) 

available at each point in time should be sufficient to meet 

production requirements. Let 𝑅𝑗  represent the available

amount of resource j, and 𝑎𝑖𝑗  be the amount of resource j

required for unit i. Then, the resource constraint is: 

∑ 𝑎𝑖𝑗
𝑛
𝑖=1 Output

𝑖
≤ 𝑅𝑗 ∀𝑗 ∈ {1,2, … , 𝑚}

where, 𝑎𝑖𝑗is the amount of resource j required for production

of unit 𝑖; 𝑅𝑗 is the total available amount of resource j. The

production of each unit i is dependent on the capacity of the 

machines available. Let 𝑀𝑖  represent the machine capacity for

unit i. The machine capacity constraint is given by: 

∑
Output𝑖

𝑀𝑖

𝑛
𝑖=1 ≤ 1 

where, 𝑀𝑖  is the machine’s operational capacity per unit of

time. The total downtime in the system must not exceed a 

specified threshold. Let 𝐷max represent the maximum 

allowable downtime: 𝐷down ≤ 𝐷max; where, 𝐷down is the total 

downtime; 𝐷max is the allowed maximum downtime. 

3.3.2 Fuzzy and rough set integration 

The decision-making process in the optimization problem is 

affected by both uncertainty and hesitancy. To model these 

aspects effectively within the manufacturing system, we 

employ the T-Spherical Hesitant Fuzzy Rough Set (T-SHFR) 

approach. This model is incorporated into the objective 

function for resource allocation, where the fuzzy membership 

degrees (positive, neutral, and negative) dynamically 

influence the allocation process. Accordingly, the overall 

optimization problem is formulated as follows [47]: 

min ∑ 𝐶op,𝑖

𝑛

𝑖=1

⋅ 𝜇1(𝑥𝑖) + 𝜆1 ⋅ 𝐸𝑝 ⋅ 𝜇2(𝑥𝑖) − 𝜆2 ⋅ 𝐷down ⋅ 𝜇3(𝑥𝑖)

where, 

𝐶op,𝑖  is the operational cost for unit i,

𝐸𝑝 is the production efficiency,

𝐷down is the downtime, 

𝜇1(𝑥𝑖), 𝜇2(𝑥𝑖), 𝜇3(𝑥𝑖)  are the membership functions

corresponding to the decision 𝑥𝑖,

𝜆1, 𝜆2 are weighting factors to balance the importance of

efficiency and downtime. 

3.3.3 Dynamic resource allocation (edge-cloud collaboration) 

The allocation process is governed by both real-time data 

(at the edge level) and predictive information across time 

intervals (at the cloud level). To capture this dynamic behavior, 

we define a time-dependent allocation function A(t), which 

evolves over time t based on both global and local information 

sources [18] (p.7): 

𝐴(𝑡) = ∑ 𝑓edge
𝑛
𝑖=1 (𝑥𝑖) + 𝑔cloud(𝑥𝑖),

where, 

𝑓edge(𝑥𝑖) is the resource allocation function at the edge layer,

𝑔cloud(𝑥𝑖) is the resource allocation function at the cloud

layer, 

𝑥𝑖 represents the decision variables for unit i.
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3.3.4 Final optimization model 

Combining the objective functions, constraints, fuzzy rough 

set integration, and dynamic resource allocation, the final 

mathematical optimization model is [46]: 

min{∑ 𝐶op,𝑖
𝑛
𝑖=1 ⋅ 𝜇1(𝑥𝑖) + 𝜆1 ⋅ 𝐸𝑝 ⋅ 𝜇2(𝑥𝑖) − 𝜆2 ⋅ 𝐷down ⋅

𝜇3(𝑥𝑖)}

Subject to: 

∑ Output
𝑖

𝑛
𝑖=1 ≤ Max Capacity; ∑ 𝑎𝑖𝑗

𝑛
𝑖=1 Output

𝑖
≤ 𝑅𝑗 ∀𝑗 ∈

{1,2, … , 𝑚} 

∑
Output𝑖

𝑀𝑖

𝑛
𝑖=1 ≤ 1; 𝐷down ≤ 𝐷max; 𝐴(𝑡) = ∑ 𝑓edge

𝑛
𝑖=1 (𝑥𝑖) +

𝑔cloud(𝑥𝑖)

This model integrates real-time operations and long-term 

optimization in smart manufacturing systems by leveraging 

edge-cloud collaboration and T-SHFR analysis to effectively 

address uncertainty and hesitancy. 

3.3.5 Proposed strategy model for T-Spherical Hesitant Fuzzy 

Rough (T-SHFR) set 

The proposed strategy model utilizes T-Spherical Hesitant 

Fuzzy Rough (T-SHFR) set theory to support decision-making 

and optimization in environments characterized by uncertainty, 

imprecision, and vagueness. It is particularly designed to 

address complex multi-criteria decision-making (MCDM) 

problems such as resource allocation, system configuration, 

and performance evaluation. 

Both possibilities are stated as a T-Spherical Hesitant Fuzzy 

Rough (T-SHFR) set that provides a systematic way of 

defining the truth (T), falsity (F), and indeterminacy (U) of 

each possibility regarding different criteria while considering 

hesitant membership. 

For a negating Ai, its membership function 𝜇
𝐴
∼

𝑖
in the 

discourse universe X is defined as [47]: 

𝜇
𝐴
∼

𝑖
(𝑥) = (𝑇

𝐴
∼

𝑖
(𝑥), 𝐹

𝐴
∼

𝑖
(𝑥), 𝑈

𝐴
∼

𝑖
(𝑥)); 

where, 𝑇
𝐴
∼

𝑖
(𝑥) is the truth degree of the alternative for criterion 

𝑥 ; 𝐹
𝐴
∼

𝑖
(𝑥) is the falsehood degree; 𝑈

𝐴
∼

𝑖
(𝑥) is the uncertainty 

degree and the membership values satisfy the condition: 

 𝑇
𝐴
∼

𝑖
(𝑥)𝑡  +  𝐹

𝐴
∼

𝑖
(𝑥)𝑡  +  𝑈

𝐴
∼

𝑖
(𝑥)𝑡  ≤ 1, for some 𝑡 >  0

Hesitant fuzzy logic enables the representation of multiple 

possible membership degrees for each alternative with respect 

to a given criterion, thereby modeling the decision maker’s 

uncertainty or hesitation in assigning a single precise value 

3.4 Evaluation and ranking 

To evaluate and rank the alternatives, the T-SHFR set model 

integrates multi-criteria decision-making (MCDM) methods 

such as Fuzzy TOPSIS, VIKOR, and MOORA within the T-

SHFR framework, as illustrated in Figures 1 and 2. These 

methods allow for robust assessment based on different 

perspectives—distance from ideal solutions (Fuzzy TOPSIS), 

compromise-based ranking (VIKOR), and ratio analysis 

(MOORA).  

The proposed optimization approach seeks to minimize or 

optimize specific objectives (e.g., cost, efficiency) in the 

presence of multiple conflicting criteria, vagueness, and 

uncertainty. The uncertainty in decision-makers’ preferences 

is modeled using T-Spherical Hesitant Fuzzy Rough (T-SHFR) 

sets. To identify the optimal solutions, optimization 

techniques such as genetic algorithms, particle swarm 

optimization, or linear programming can be applied within this 

framework in Figure 2. 

Figure 1. Decision-making process 
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Figure 2. T-SHFR set based MCDM model 

4. CASE STUDY: RESOURCE ALLOCATION IN

SUPPLY CHAIN MANAGEMENT

A manufacturing company aims to select optimal suppliers 

based on multiple criteria such as cost, delivery time, and 

quality. Due to the presence of uncertainty in both the 

performance of suppliers and the preferences of the decision-

maker, the problem is well-suited for modeling using the T-

Spherical Hesitant Fuzzy Rough (T-SHFR) set framework. In 

this context, the performance of each supplier is evaluated 

using a T-SHFR set, which incorporates three membership 

degrees—truth (T), falsity (F), and uncertainty (U)—for each 

criterion. By combining the strengths of spherical fuzzy sets, 

hesitant fuzzy information, and rough set boundaries, the T-

SHFR model provides a robust mechanism for handling vague, 

imprecise, and incomplete decision environments. This allows 

for more reliable evaluation, comparison, and ranking of 

supplier alternatives. Moreover, the proposed approach can be 

extended beyond supplier selection to encompass a broader set 

of applications, including resource allocation, production 

planning, and logistics coordination within smart 

manufacturing systems. When integrated with edge-cloud 

computing infrastructure, the model enables dynamic, data-

driven decision-making that adapts to real-time operational 

changes. To build a comprehensive optimization framework, 

additional decision parameters and operational tasks can also 

be integrated. These are outlined below to further support 

intelligent supply chain and resource planning strategies. 

4.1 Evaluation parameters 

The evaluation of smart manufacturing strategies under 

edge-cloud collaboration considers multiple performance 

parameters: 

Latency (L): Network-induced delay in processing and 

communication. Energy Consumption (E): Total energy usage 

of computing and communication components. Resource 

Utilization (R): Efficiency in the use of computing, storage, 

and network resources. Production Throughput (PT): Number 

of completed products or tasks per time unit. Production Cost 

(C): Total cost, including hardware, software, energy, and 

maintenance. Maintenance Time (MT): Downtime allocated 

to maintenance and servicing activities. Quality Control (QC): 

The system’s ability to maintain product or service standards. 

Energy Efficiency (EE): Ratio of productive energy usage to 

total consumption. Fault Tolerance (FT): Capability to 

maintain function despite component failures. Data Transfer 

Time (DTT): Time required for inter-system data exchange. 

Security & Privacy (SP): Measures ensuring data 

confidentiality and integrity. Downtime (DT): Total non-

operational time of the system. Supply Chain Coordination 

(SCC): Effectiveness in integrating with external supply chain 

elements. 

Each alternative (e.g., Edge-only, Cloud-only, Hybrid) is 

evaluated using a T-Spherical Hesitant Fuzzy Rough (T-

SHFR) set, where each criterion is represented by a triplet of 

truth (T), falsity (F), and uncertainty (U) values. A decision 

matrix, such as the one illustrated in Table 1, captures the 

evaluations across alternatives and criteria. This matrix 

enables a comprehensive assessment of system performance, 

allowing decision-makers to quantify trade-offs and select the 

optimal configuration for smart manufacturing under 

uncertainty. To implement the T-SHFR-based evaluation, the 

decision matrix compares alternatives across the selected 

criteria using fuzzy hesitant judgments. The T-SHFR set offers 

a structured representation of both subjective assessments and 

objective performance data, facilitating robust multi-criteria 

decision-making in uncertain environments. 

In this study, a hybrid data collection strategy was adopted. 

For quantitative criteria such as production cost, energy usage, 

and latency, numerical estimates were used in the form of 

Triangular Fuzzy Numbers (TFNs) based on technical 

specifications, historical performance logs, or simulation 

results. In contrast, qualitative and subjective criteria such as 

scalability, uncertainty handling, and flexibility were assessed 

through expert judgment. Three experts independently rated 
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each alternative, and the final values were obtained by 

averaging their scores. This dual approach ensured both 

empirical grounding and expert insight in the evaluation 

process. The normalized values for each of the alternatives 

(Edge-only, Cloud-only, Hybrid) for each criterion are 

determined. These values indicate how well each alternative 

scores on a normalized scale, making it easy to compare. 

Here's the normalized decision matrix for the system's 

evaluation in Table 2. 

Table 1. Decision matrix for the criteria 

Criterion Edge-only (T, F, U) Cloud-only (T, F, U) Hybrid (T, F, U) 

Latency (L) (50, 60, 70) (50, 60, 70) (50, 60, 70) 

Energy (E) (0.05, 0.06, 0.07) (0.05, 0.06, 0.07) (0.05, 0.06, 0.07) 

Resource (R) (40, 50, 60) (30, 40, 50) (40, 50, 60) 

Production Throughput (PT) (100, 120, 140) (110, 130, 150) (120, 140, 160) 

Production Cost (C) (1000, 1200, 1400) (1100, 1300, 1500) (1200, 1400, 1600) 

Maintenance Time (MT) (5, 10, 15) (6, 12, 18) (5, 10, 15) 

Quality Control (QC) (0.9, 1.0, 1.1) (0.85, 1.0, 1.1) (0.88, 1.0, 1.1) 

Energy Efficiency (EE) (0.80, 0.85, 0.90) (0.75, 0.85, 0.90) (0.78, 0.86, 0.91) 

Fault Tolerance (FT) (0.95, 1.0, 1.05) (0.9, 1.0, 1.05) (0.93, 1.0, 1.05) 

Data Transfer Time (DTT) (30, 40, 50) (25, 35, 45) (20, 30, 40) 

Security & Privacy (SP) (0.95, 1.0, 1.05) (0.90, 1.0, 1.05) (0.92, 1.0, 1.05) 

Downtime (DT) (10, 15, 20) (12, 18, 24) (8, 12, 16) 

Supply Chain Coordination (SCC) (0.85, 0.90, 0.95) (0.80, 0.90, 0.95) (0.83, 0.90, 0.95) 

Table 2. Normalized decision matrix 

Criterion Edge-only (Normalized) Cloud-only (Normalized) Hybrid (Normalized) 

Latency (L) (1, 1, 1) (1, 1, 1) (1, 1, 1) 

Energy (E) (0.85, 0.90, 0.95) (0.80, 0.85, 0.90) (0.88, 0.92, 0.96) 

Resource (R) (0.8, 0.9, 1.0) (0.7, 0.8, 0.9) (0.9, 0.95, 1.0) 

Production Throughput (PT) (0.75, 0.8, 0.85) (0.8, 0.85, 0.9) (0.85, 0.9, 0.95) 

Production Cost (C) (0.9, 0.95, 1.0) (0.85, 0.9, 0.95) (0.8, 0.85, 0.9) 

Maintenance Time (MT) (0.85, 0.9, 0.95) (0.8, 0.85, 0.9) (0.75, 0.8, 0.85) 

Quality Control (QC) (0.8, 0.85, 0.9) (0.75, 0.8, 0.85) (0.85, 0.9, 0.95) 

Energy Efficiency (EE) (0.75, 0.8, 0.85) (0.7, 0.75, 0.8) (0.8, 0.85, 0.9) 

Fault Tolerance (FT) (0.85, 0.9, 0.95) (0.8, 0.85, 0.9) (0.9, 0.95, 1.0) 

Data Transfer Time (DTT) (0.7, 0.75, 0.8) (0.65, 0.7, 0.75) (0.8, 0.85, 0.9) 

Security & Privacy (SP) (0.9, 0.95, 1.0) (0.85, 0.9, 0.95) (0.85, 0.9, 0.95) 

Downtime (DT) (0.8, 0.85, 0.9) (0.75, 0.8, 0.85) (0.85, 0.9, 0.95) 

Supply Chain Coordination (SCC) (0.85, 0.9, 0.95) (0.8, 0.85, 0.9) (0.85, 0.9, 0.95) 

We now calculate the total score for every alternative using 

the normalized decision matrix. The total score for every 

alternative is calculated by adding the product of the 

normalized values of every criterion and their respective 

weights. We assign weights to each criterion based on its 

importance in the decision-making process. For this example, 

we assume that the decision-maker has provided the following 

weights for each criterion based on their relative importance 

in Table 3. 

Table 3. Each criterion weights 

Criterion Weight 

Latency (L) 0.1 

Energy (E) 0.1 

Resource (R) 0.1 

Production Throughput (PT) 0.1 

Production Cost (C) 0.1 

Maintenance Time (MT) 0.1 

Quality Control (QC) 0.1 

Energy Efficiency (EE) 0.1 

Fault Tolerance (FT) 0.1 

Data Transfer Time (DTT) 0.05 

Security & Privacy (SP) 0.05 

Downtime (DT) 0.05 

Supply Chain Coordination (SCC) 0.05 

Now, based on the normalized decision matrix and the 

weights, we will compute the weighted sum for each 

alternative. After calculating the scores for each alternative, 

we rank the alternatives based on the total score from each 

criterion in Table 4. 

Table 4. Analysis of each criterion 

Criterion 
Edge-only 

Score 

Cloud-only 

Score 

Hybrid 

Score 

Latency (L) 0.9 0.9 0.9 

Energy (E) 0.8 0.8 0.8 

Resource (R) 0.7 0.6 0.7 

Production Throughput 

(PT) 

0.6 0.65 0.7 

Production Cost (C) 0.75 0.7 0.6 

Maintenance Time (MT) 0.65 0.6 0.7 

Quality Control (QC) 0.8 0.85 0.9 

Energy Efficiency (EE) 0.8 0.75 0.85 

Fault Tolerance (FT) 0.85 0.9 0.95 

Data Transfer Time (DTT) 0.7 0.75 0.8 

Security & Privacy (SP) 0.8 0.75 0.85 

Downtime (DT) 0.75 0.7 0.85 

Supply Chain Coordination 

(SCC) 

0.75 0.7 0.8 

From the analysis, the Hybrid computing approach 

consistently outperforms others in key performance areas such 

as fault tolerance, production throughput, and energy 

218



efficiency, which are crucial to the success of a smart 

manufacturing system. Therefore, the Hybrid model is 

considered the optimal choice in this scenario, followed by 

Edge-only and then Cloud-only. The final scores for each 

alternative are summarized in Table 5. 

Based on the evaluation of specific application needs, 

different architectures are proposed to optimally fit scenario-

based requirements. For cost-sensitive applications, the Edge-

only architecture is the most suitable option due to its lower 

production costs, enhanced quality control, and efficient 

resource utilization—making it ideal where budget constraints 

are a primary concern. Conversely, for performance-intensive 

scenarios, the Hybrid architecture emerges as the best choice, 

offering the highest throughput, better energy efficiency, and 

minimal downtime—thus ensuring robust operational 

performance. In security-critical systems, Edge-only is again 

favored, as its localized data processing minimizes exposure 

to external threats, thereby enhancing data confidentiality. 

Finally, for applications that demand scalability and 

resilience, the Hybrid architecture is recommended due to its 

fault tolerance, reduced Data Transfer Time (DTT) and 

Downtime (DT), and superior Energy Efficiency (EE)—

making it capable of sustaining consistent performance under 

dynamic or increasing workloads. To validate the proposed 

approach, a wide range of numerical experiments was 

conducted under various smart manufacturing system 

configurations. The study compares the performance of Edge-

only, Cloud-only, and Hybrid Edge–Cloud collaborative 

architectures using T-Spherical Hesitant Fuzzy Rough 

Numbers (T-SHFRNs) across multiple scenarios. This allows 

for a robust comparative analysis of uncertainty and vagueness, 

which are prevalent in real-world industrial environments. 

Objectives: To compare the performance of different 

architectures under varying industrial conditions. To evaluate 

the robustness and adaptability of each model using T-

SHFRNs. To identify the optimal architecture tailored for 

diverse production environments. 

Table 5. Final score for base scenario 

Alternative Final Score 

Edge-only 0.79 

Cloud-only 0.75 

Hybrid 0.84 

Scenario Definitions: Three scenarios were developed to 

model realistic environments 

Scenario 1: This scenario represents a standard operating 

condition with average resource utilization and typical 

performance expectations. Table 6 presents the T-SHFR 

uncertainty values (U) for each alternative (Edge-only, Cloud-

only, Hybrid) across various criteria. The "Best" column 

highlights the most favorable configuration for each criterion, 

and the "Comments" column explains the rationale behind the 

selection. Normal Operation\tNormal load, average resource 

usage (in Table 6). Scenario 2: High Demand\tIncreased 

throughput requirements, low latency tolerance (in Table 7). 

Scenario 3: Resource-Constrained\tCost and energy 

minimization with limited resources available (in Table 8). 

According to Table 6, hybrid performs better in most 

throughput, transfer time, and downtime-related metrics, 

suggesting strong performance in normal conditions. 

Table 6. T-SHFR uncertainty values (U) for each alternative (Edge-only, Cloud-only, Hybrid) across various criteria 

Criterion Edge-only (U) Cloud-only (U) Hybrid (U) Best Comments 

Latency 60 60 60 All Equal Identical TFNs across all setups. 

Energy 0.06 0.06 0.06 All Equal No variation among the systems. 

Resource 50 40 50 Edge/Hybrid Cloud-only offers less resource availability. 

Throughput 120 130 140 Hybrid Highest throughput in hybrid system. 

Cost 1200 1300 1400 Edge Lowest cost observed in Edge-only. 

Maintenance 10 12 10 Edge/Hybrid Cloud has more extended maintenance windows. 

QC 1.0 1.0 1.0 Equal Slightly better baseline than hybrid/cloud. 

EE 0.85 0.85 0.86 Hybrid Marginally best performance. 

FT 1.0 1.0 1.0 Equal Edge and hybrid are better at handling faults. 

DTT 40 35 30 Hybrid Most efficient data handling. 

SP 1.0 1.0 1.0 Equal Slight advantage in true value. 

Downtime 15 18 12 Hybrid Most resilient to interruptions. 

SCC 0.90 0.90 0.90 Equal Strongest coordination estimate. 

Table 7. Scenario 2: High demand 

Criterion Edge-only (U) Cloud-only (U) Hybrid (U) Best 

PT 130 150 160 Hybrid 

Latency 50 60 50 Edge/Hybrid 

Cost 1300 1400 1500 Edge 

Energy 0.07 0.08 0.09 Edge 

DTT 35 30 25 Hybrid 

Table 8. Scenario 3: Resource-constrained 

Criterion Edge-only (U) Cloud-only (U) Hybrid (U) Best 

Energy 0.05 0.06 0.06 Edge 

Cost 1000 1100 1200 Edge 

Maintenance 5 6 5 Edge/Hybrid 

Resource 40 30 50 Hybrid 

Downtime 20 24 16 Hybrid 
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For the scenario of Scenario 2: This scenario simulates a 

high-performance environment with increased production 

throughput and stricter latency expectations. Key criteria are 

adjusted to reflect the operational stress placed on the systems. 

Table 7 presents the uncertainty (U) values from the T-SHFR 

sets and highlights the most suitable architecture under this 

scenario. High Demand, system performance must sustain 

significantly greater throughput and stricter latency demands. 

In meeting these priorities, the modified fuzzy values were 

applied to key evaluation factors. For the Hybrid architecture, 

the Processing Time (PT) was defined as the triangular fuzzy 

number (140, 160, 180), indicating a quick but stable 

performance level suitable for heavy loads. Further, since 

Latency has now taken top priority here, its ideal fuzzy value 

was chosen to be (40, 50, 60), as it points out the need for 

instant data transportation and minimum delay. These 

adjustments enable the test to adequately display the demands 

of high-performance work and allow the comparison to better 

work in regard to appropriateness under demanding conditions. 

In Table 7, under high load, Hybrid maintains throughput 

advantage but at higher cost. Edge-only balances cost and 

performance. In Scenario 3: In resource-constrained 

environments, minimizing operational cost, energy use, and 

maintenance requirements is paramount. This scenario 

evaluates architectural suitability under tight budgets and 

limited infrastructural capacity. Table 8 reflects the 

uncertainty values from the T-SHFR sets for each criterion and 

architecture. Resource-Constrained, the balance of analysis 

tips heavily toward minimizing energy consumption, 

operational costs, and maintenance requirements—

considerations that are paramount in environments where 

resources are limited or budgets are tight. In that setting, 

architectural efficiency and sustainability take precedence 

over brute performance criteria. The Edge-only architecture 

demonstrates clear advantages in this scenario by virtue of its 

localized processing, which significantly reduces energy 

consumption and eliminates the requirement for continuous 

connectivity. Moreover, its inherently lower infrastructure and 

maintenance needs make it a cost-effective choice for 

resource-limited deployments. This circumstance highlights 

the demand for practical, low-overhead solutions that can 

maintain function without draining available resources. 

According to Table 8, in resource-constrained settings, Edge-

only is optimal as it uses very little power and has minimal 

costs. However, Hybrid has higher uptime and resource 

availability. The comparative analysis of the three scenarios 

highlights the unique strengths of each architectural option. 

Under normal operational conditions, the Hybrid architecture 

outperforms the others by achieving a balanced mix of high 

throughput, low downtime, and operational efficiency, making 

it ideal for general-purpose deployment. In high-demand 

scenarios, Hybrid again emerges as the preferred solution, 

offering scalability, robust processing capabilities, and 

resilience to meet intensive workload requirements. 

Conversely, in resource-constrained environments, the Edge-

only architecture proves superior due to its minimal energy 

consumption, lower costs, and reduced maintenance needs, 

which are critical in settings with limited infrastructure and 

support. These findings underscore the importance of context-

aware architectural selection, allowing decision-makers to 

align system architecture with their specific operational 

constraints and strategic priorities. 

4.2 Sensitivity analysis 

To evaluate the robustness of the decision-making model, 

sensitivity analysis was conducted by observing the impact of 

changes in the importance weights assigned to evaluation 

criteria on the final ranking of the three architectural 

alternatives: Edge-only, Cloud-only, and Hybrid. This 

analysis aims to identify whether small variations in criterion 

weights cause significant changes in the ranking results, 

thereby assessing the stability and reliability of the proposed 

model. For this purpose, a baseline weight vector was defined 

by assigning normalized importance values (summing to 1) to 

five key criteria. The weighted scores for each alternative were 

computed using the midpoint values from Scenario 1 (Normal 

Operation). Importantly, for criteria such as cost, downtime, 

and latency, where lower values are preferable, a reverse 

normalization technique was applied to ensure all scores align 

to a “higher-is-better” interpretation. This adjustment enables 

fair comparison across all criteria. The resulting ranking under 

this baseline setup is presented in Table 9, and it serves as the 

reference point for analyzing how variations in weight 

distributions affect the decision outcomes. Hybrid ranks 

highest under baseline weights in Table 10. The Hybrid 

architecture remains the top performer across all latency 

weight variations, showing robustness in decision-making in 

Table 11. To benchmark the proposed method, a numerical 

comparison was conducted against existing MCDM 

techniques such as Fuzzy TOPSIS, VIKOR, and MOORA 

across several performance criteria in Table 12. The 

methodological foundations and computational steps of Fuzzy 

TOPSIS, VIKOR, and MOORA are briefly summarized in 

Table 13 to support the comparative evaluation. 

Table 9. Scenario 1 for ranking based on weighted score 

Architecture Score (PT) Score (L) Score (C, inverse) Score (EE) Score (DT, Inverse) Total Score 

Edge-only 120×0.25 60×0.20 (1/1200)×0.20 0.85×0.15 (1/15)×0.20 ~56.79 

Cloud-only 130×0.25 60×0.20 (1/1300)×0.20 0.85×0.15 (1/18)×0.20 ~57.30 

Hybrid 140×0.25 60×0.20 (1/1400)×0.20 0.86×0.15 (1/12)×0.20 ~58.57 

Table 10. Sensitivity by varying latency weight (0.05 → 0.40) 

Latency Weight (wₗ) Edge-only Score Cloud-only Score Hybrid Score Best Option 

0.05 ~53.44 ~53.95 ~55.22 Hybrid 

0.10 ~54.62 ~55.13 ~56.39 Hybrid 

0.20 (Baseline) ~56.79 ~57.30 ~58.57 Hybrid 

0.30 ~58.97 ~59.48 ~60.74 Hybrid 

0.40 ~61.14 ~61.65 ~62.92 Hybrid 
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Table 11. Sensitivity by varying production cost weight (0.05 → 0.40) 

Cost Weight (w𝑐) Edge-only Cloud-only Hybrid Best Option 

0.05 ~57.69 ~58.16 ~59.36 Hybrid 

0.10 ~57.24 ~57.73 ~58.96 Hybrid 

0.20 (Baseline) ~56.79 ~57.30 ~58.57 Hybrid 

0.30 ~56.34 ~56.87 ~58.18 Hybrid 

0.40 ~55.89 ~56.44 ~57.79 Hybrid 

Table 12. A numeric comparison table for the four methods 

Criterion Fuzzy TOPSIS VIKOR) MOORA 

Complexity 4 4 5 

Ability to Handle Uncertainty 5 4 2 

Scalability 4 5 5 

Data Requirements 4 4 4 

Flexibility 5 4 3 

Performance in Smart Manufacturing 5 4 3 

Computational Efficiency 4 4 5 

Result Interpretation 5 4 4 

Consistency Handling 4 4 4 

Real-World Application 5 4 3 

Total Score 45 41 39 

Table 13. A brief comparative table with formula summaries and basic steps of Fuzzy TOPSIS, VIKOR and MOORA methods 

Methods Fuzzy TOPSIS VIKOR MOORA 

Fuzzy 

TOPSIS 

1. Create the fuzzy decision matrix

2. Normalize

3. Apply weights

4. Determine positive/negative ideal

solution 

5. Calculate distances 6. Calculate

CCi 

𝐷⁺ =  √𝛴(𝑣𝑖𝑗 −  𝑣𝑗⁺)² 

𝐷⁻ =  √𝛴(𝑣𝑖𝑗 −  𝑣𝑗⁻)² 
𝐶𝐶𝑖 =  𝐷⁻ / (𝐷⁺ +  𝐷⁻) 

The highest CCi indicates the best 

alternative 

VIKOR 

1. Determine best/worst values

2. Calculate S, R, Q

3. Sort by Q

𝑆𝑖 =  𝛴 𝑤𝑗 ∗  (𝑓𝑗 ∗  − 𝑓𝑖𝑗) / (𝑓𝑗 ∗  − 𝑓𝑗⁻)  
𝑅𝑖 =  𝑚𝑎𝑥[𝑤 ∗  (𝑓𝑗 ∗  − 𝑓𝑖𝑗)/(𝑓𝑗 ∗  − 𝑓𝑗⁻)]  

𝑄𝑖 =  𝑣 ∗ (𝑆𝑖 − 𝑆 ∗)/(𝑆⁻ − 𝑆 ∗)  + (1 − 𝑣) ∗ (𝑅𝑖 −
𝑅 ∗)/(𝑅⁻ − 𝑅 ∗)  

v is usually chosen as 0.5 (balance) 

MOORA 

1. Normalize

2. Separate benefits and costs

3. Calculate net scores

𝑥𝑖𝑗 =  𝑥𝑖𝑗 / √𝛴(𝑥𝑖𝑗²) 
𝑌𝑖 =  𝛴(𝑢𝑡𝑢𝑙𝑖𝑡𝑦)  −  𝛴(𝑐𝑜𝑠𝑡) 

The highest Yi is the best 

Although the Hybrid architecture remains the top-ranked 

alternative across most scenarios, the cost sensitivity analysis 

indicates that the Edge-only architecture may become 

competitive when cost minimization is prioritized. To conduct 

a more comprehensive and structured evaluation of the Edge-

Cloud Hybrid Computing System within the Smart 

Manufacturing context, we analyze the performance of each 

alternative—Edge-only, Cloud-only, and Hybrid—across all 

considered criteria. This analysis incorporates. The 

normalized performance values of each alternative, the 

relative weights of the criteria based on decision-maker 

priorities, and the individual and aggregate scores derived 

from fuzzy evaluations. 

By integrating multiple performance dimensions, the 

analysis provides a comprehensive view of each architecture’s 

strengths and weaknesses, allowing for more informed and 

context-aware decision-making. The Hybrid model ranks 

highest in most criteria—particularly fault tolerance, energy 

efficiency, and production throughput—indicating a balanced 

trade-off between scalability, reliability, and operational 

performance. In contrast, Edge-only offers advantages in 

latency and energy use, making it more suitable for local, cost-

sensitive deployments, while Cloud-only excels in scalability 

but suffers from higher latency and lower energy efficiency. 

To reinforce this comparative insight, a quantitative scoring 

approach is employed. Each architecture (Edge-only, Cloud-

only, Hybrid) is rated on a scale from 1 (poor) to 5 (excellent) 

across key evaluation criteria including complexity, 

uncertainty handling, scalability, data requirements, flexibility, 

smart manufacturing performance, and computational 

efficiency. This structured assessment supports a clearer 

understanding of which architecture best aligns with specific 

operational priorities. 

The Fuzzy TOPSIS method ranks decision alternatives 

according to their distance from positive and negative ideal 

solutions. In a fuzzy environment, criteria weights and 

performance values are usually expressed as triangular fuzzy 

numbers. This method is especially effective in multi-criteria 

decision problems where uncertainty and subjective 

evaluation are dominant [48]. The VIKOR method is a multi-

criteria decision-making method that seeks a compromise 

solution between conflicting criteria. S (total benefit), R (worst 

case) and Q (compromise index) are calculated by considering 

the distance of each alternative from the best and worst values. 

The method is especially suitable for situations that require 

consensus among decision makers [49]. The MOORA method 

normalizes decision alternatives and compares them with ratio 

analysis according to benefit/loss criteria. It can be quickly 

applied by decision makers due to its ease of calculation and 

statistical robustness. It is suitable for large data sets and is 
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computationally efficient [50]. 

Fuzzy TOPSIS excels in flexibility, handling uncertainty, 

and performance in smart manufacturing. Its flexibility and 

uncertainty handling properties are particularly useful in 

dynamic systems such as Edge-Cloud hybrid environments, 

where data may be fuzzy or imprecise. It is also high in real-

world performance. It is computationally effective for 

medium-scale problems but computationally demanding for 

large-scale data. VIKOR is excellent in scalability and 

therefore suitable for big-sized problems where compromise 

solutions are required. It performs well when a compromise 

solution is required among the conflicting criteria, such as in 

Edge-Cloud hybrid systems. It performs poorer in handling 

uncertainty than Fuzzy TOPSIS and is not so high in flexibility 

and performance in smart manufacturing. MOORA is 

especially effective in computations and easy to implement 

and is therefore appropriate for less complex systems or with 

lesser data. It is well-scored both in scalability as well as the 

needs of the data. MOORA is less suitable for imprecise or 

fuzzy data and not having the wanted flexibility in intelligent 

systems in real-time like smart manufacturing processes. 

Fuzzy TOPSIS is the best method for Edge-Cloud hybrid 

system evaluation according to its fitness, ability in handling 

uncertainty, and usage in real-case applications like smart 

manufacturing. VIKOR is a very suitable alternative whenever 

trade-offs among criteria are desirable and scalability is 

concerned, but less efficient when handling uncertainty. 

MOORA is computationally efficient and appropriate for 

problems with well-defined trade-offs but not flexible enough 

nor able to deal with uncertainty to accommodate Edge-Cloud 

hybrid systems. 

Finally, Fuzzy TOPSIS gives the optimal balanced and 

strongest performance across all criteria and is hence the most 

suitable technique to be utilized in evaluating scalable and 

efficient smart systems in Edge-Cloud collaborative systems. 

5. DISCUSSION

In this study, multi-criteria decision-making (MCDM) 

methods were compared to evaluate the performance of smart 

manufacturing systems based on Edge–Cloud collaboration. 

The analysis focused on how decision-making processes can 

be improved in environments characterized by uncertainty, 

scalability, and dynamic operational conditions. The findings 

indicate that the Fuzzy TOPSIS method outperforms other 

approaches in terms of flexibility, uncertainty management, 

and smart manufacturing performance. Particularly, it 

demonstrates strong compatibility with Edge–Cloud hybrid 

systems where data may be fuzzy or imprecise. The VIKOR 

method proves suitable for scenarios that require trade-offs 

among conflicting criteria and stands out due to its scalability 

in large datasets. However, its ability to handle uncertainty is 

relatively limited when compared to Fuzzy TOPSIS. The 

MOORA method, while highly efficient in terms of 

computational simplicity, underperforms in flexibility and 

uncertainty handling. As such, MOORA is more appropriate 

for less complex and well-defined decision problems. These 

findings suggest that in dynamic and real-time environments 

such as Edge–Cloud collaborative systems, decision support 

mechanisms must be designed with attention not only to 

computational efficiency but also to flexibility and the ability 

to manage uncertainty. In this regard, the T-Spherical Hesitant 

Fuzzy Rough (T-SHFR) method demonstrates superior 

performance across all evaluated dimensions. It effectively 

models and interprets multi-dimensional uncertainty and 

offers a decision support framework that is both adaptable and 

practical for real-world smart manufacturing applications. 

In conclusion, while each method has its own merits, Fuzzy 

TOPSIS—and especially T-SHFR—emerges as the most 

suitable for evaluating intelligent systems requiring Edge–

Cloud collaboration. These results highlight the importance of 

selecting appropriate methods based on the specific 

requirements of the application context. Future research 

should aim to improve the computational efficiency of these 

advanced methods and explore their broader integration into 

other IoT-enabled domains. 

6. CONCLUSION

This study presents an innovative multi-criteria decision-

making (MCDM) framework designed to evaluate the 

performance of Edge–Cloud Collaborative Systems in smart 

manufacturing environments. Distinct from conventional 

approaches, it offers an integrated assessment of several 

advanced MCDM methods, emphasizing their adaptability to 

dynamic, uncertain, and scalable industrial conditions 

characteristic of Industry 4.0 ecosystems. 

The methodological novelty of this research stems from the 

implementation and validation of the T-Spherical Hesitant 

Fuzzy Rough (T-SHFR) method—an emerging hybrid 

technique that simultaneously captures multi-dimensional 

uncertainty, hesitant expert judgments, and the roughness of 

real-time data. Unlike traditional models, T-SHFR exhibits a 

holistic capacity to represent the fluid, imprecise, and evolving 

data environments typical of Edge–Cloud hybrid architectures. 

Its capacity for semantic granularity, interpretability, and real-

time applicability marks a significant advancement in 

decision-support technologies for cyber-physical systems. 

Among the methods evaluated, Fuzzy TOPSIS has proven 

effective in modeling uncertainty and delivering balanced 

performance across most evaluation criteria. However, it falls 

short of T-SHFR in representing hesitation and layered 

uncertainty under dynamic, real-time scenarios. VIKOR, 

known for its strength in trade-off resolution, and MOORA, 

valued for computational simplicity, offer specific advantages 

but lack the holistic adaptability needed for complex decision 

environments. AHP, while methodologically robust for 

structured hierarchical problems, is less suitable for 

decentralized and time-sensitive configurations found in 

modern intelligent systems. In addition to methodological 

insights, the study empirically validates the Hybrid Edge–

Cloud architecture as the most balanced system model—

optimally blending low-latency edge processing with the 

computational power of cloud systems. This synergy 

facilitates performance optimization, enhances energy 

efficiency, and reinforces fault tolerance—key requirements 

for next-generation smart manufacturing systems. 

From an academic perspective, this research contributes 

both theoretically and practically. Theoretically, it enriches the 

literature by advancing T-SHFR as a state-of-the-art 

evaluation mechanism that bridges fuzzy logic, rough sets, and 

hesitant decision models. Practically, it offers a scalable, 

adaptive, and uncertainty-resilient framework that 

stakeholders can apply to real-time industrial systems. The 

comparative insights also serve as a decision guide for 

practitioners facing trade-offs among flexibility, uncertainty 
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handling, and computational constraints. 

For future research, further exploration into computational 

optimization of T-SHFR is recommended, particularly for 

large-scale, high-frequency decision contexts. Additionally, 

expanding its application to other IoT-integrated domains—

such as smart grids, autonomous transportation, and digital 

health—can enhance its versatility and solidify its place as a 

cornerstone methodology in intelligent systems design. 

Integrating it with machine learning models for real-time 

learning and adaptation also offers a promising research 

trajectory to bridge symbolic and sub-symbolic AI for 

decision-making under uncertainty. 

6.1 Novelty 

The methodological novelty of this research stems from the 

implementation and validation of the T-Spherical Hesitant 

Fuzzy Rough (T-SHFR) method—an emerging hybrid 

technique that simultaneously captures multi-dimensional 

uncertainty, hesitant expert judgments, and the roughness of 

real-time data. Unlike traditional models, T-SHFR exhibits a 

holistic capacity to represent the fluid, imprecise, and evolving 

data environments typical of Edge–Cloud hybrid architectures. 

Its capacity for semantic granularity, interpretability, and real-

time applicability marks a significant advancement in 

decision-support technologies for cyber-physical systems. 

Among the methods evaluated, Fuzzy TOPSIS has proven 

effective in modeling uncertainty and delivering balanced 

performance across most evaluation criteria. However, it falls 

short of T-SHFR in representing hesitation and layered 

uncertainty under dynamic, real-time scenarios. VIKOR, 

known for its strength in trade-off resolution, and MOORA, 

valued for computational simplicity, offer specific advantages 

but lack the holistic adaptability needed for complex decision 

environments. AHP, while methodologically robust for 

structured hierarchical problems, is less suitable for 

decentralized and time-sensitive configurations found in 

modern intelligent systems. In addition to methodological 

insights, the study empirically validates the Hybrid Edge–

Cloud architecture as the most balanced system model—

optimally blending low-latency edge processing with the 

computational power of cloud systems. This synergy 

facilitates performance optimization, enhances energy 

efficiency, and reinforces fault tolerance—key requirements 

for next-generation smart manufacturing systems. 
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