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Adequate indoor lighting is essential for ensuring visual comfort, energy efficiency, and 

compliance with architectural standards. This study presents a novel smartphone-based 

platform for real-time illuminance estimation and visual mapping, that leverages a 

lightweight machine learning model. The application utilizes the smartphone’s built-in 

camera to capture images of the scenes and performs illuminance prediction for each patch 

of the image using a trained regression model, offering a cost-effective alternative to 

physical lux meter grid. The mobile application generates a color-coded heat maps that 

visualize the spatial distribution of illuminance and do the assessment of its compliance 

with an established lighting norm. The advantages of the proposed system include its 

affordability, portability, and prediction accuracy enabled by the machine learning model 

trained on image intensity features. Experimental tests in a controlled indoor setting 

demonstrate high prediction accuracy and low computational requirements, confirming the 

platform’s suitability for use in real-word applications. The tool enables effective and 

precise analysis of light and is hence usable in architectural diagnostics, energy audits, and 

spatial design optimization. In addition, the user-friendly interface benefits both 

professional and non-professional users, facilitating real-time adjustment and optimization 

of indoor lighting. 
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1. INTRODUCTION

The push for smarter and greener buildings has made indoor 

lighting a central aspect of energy-efficient architectural 

design. According to the international energy agency, lighting 

represents a major component of energy use in residential and 

commercial buildings account for as much as 15% of 

worldwide electricity consumption [1]. Ensuring both efficient 

and comfortable lighting conditions is no longer a matter of 

convenience; it is a fundamental requirement for 

environmental sustainability and occupant well-being [2]. 

Traditional illuminance measurement methods, such as 

handheld lux meters or wall-mounted ambient light sensors, 

often fall short when deployed in practical, large-scale 

applications. First, these tools provide only single-point 

measurements, failing to capture spatial variability in lighting 

conditions, which is crucial for identifying under- or over-

illuminated zones. This lack of spatial resolution makes them 

impractical for environments like classrooms, offices, or retail 

spaces where lighting uniformity directly affects comfort and 

productivity. Second, the requirement of manual operation, 

precise sensor placement, and professional calibration limits 

their accessibility for non-expert users. Additionally, high-

quality lux meters are typically expensive and may not be 

feasible for widespread deployment in low-resource settings. 

These limitations emphasize the need for cost-effective, user-

friendly solutions that offer spatially-resolved, real-time 

feedback without relying on specialized instrumentation or 

trained personnel [3]. 

Several recent studies have explored the capabilities of 

image processing techniques to overcome the difficulties faced 

by the traditional lux meter method. Kamath et al. [4] 

presented the analysis of illuminance on work plane prediction 

from low dynamic range, raw image data. While their 

methodology demonstrates that images from cameras can be 

utilized as a stand-in for lux measurements, it is restricted to 

controlled testing environments and lacks the ability to 

produce visual illumination maps. Moreover, Abderraouf et al. 

[5] designed a vision-based indoor lighting estimation method

primarily geared toward daylight harvesting, using image

processing to classify ambient lighting conditions, However,

their approach did not integrate predictive modelling or user

feedback mechanisms, exhibited limited accuracy in

illuminance prediction, and lacked the ability to produce

interpretable illuminance overlays.

Kruisselbrink et al. [6] proposed a custom-built device for 

luminance distribution measurement using High Dynamic 

Range (HDR) imaging method, a widely used technique in 
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photography which is based on the principal of capturing a 

wider dynamic range. Their system demonstrated good indoor 

light estimation accuracy. Nonetheless, it was non-portable, 

required dedicated hardware, had high computational 

demands, and needed time-consuming calibration by trained 

personnel. Similarly, Bishop and Chase [7], introduced a low-

cost luminance imaging device using HDR technique with 

goal of minimizing calibration needs. While economical, this 

application also relies on external imaging components, and 

lacked the real-time, lightweight capabilities required for 

mobile usage. 

In addition to image-processing-based strategies, several 

learning-based techniques have demonstrated high potential in 

indoor illumination estimation. For example, Wang et al. [8] 

proposed CGLight, which combines a ConvMixer backbone 

with a GauGAN-based image-to-illumination mapping 

framework, enabling the generation of spatially consistent and 

realistic lighting predictions. Similarly, in their FHLight 

model, Wang et al. [9] introduced enhancements in the loss 

function design to improve model robustness across diverse 

lighting distributions and indoor geometries. Zhao et al. [10] 

presented SGformer, a transformer-based architecture that 

incorporates both global context and local spatial cues through 

self-attention mechanisms, allowing it to accurately estimate 

spherical lighting parameters from single RGB images. While 

these methods achieve state-of-the-art accuracy in complex 

visual scenes, their reliance on deep feature hierarchies, large-

scale annotated datasets, and GPU acceleration limits their 

practicality for mobile deployment. In contrast, our approach 

adopts a lightweight machine learning framework tailored for 

on-device inference, achieving a favorable trade-off between 

accuracy, interpretability, and computational efficiency, 

particularly suited for real-time illuminance analysis on 

smartphones. 

Some researchers have also investigated the utility of 

smartphone-embedded ambient light sensors (ALS) for lux 

estimation and indoor localization tasks [11]. Although such 

sensors are useful for low-power applications, they typically 

provide single-point measurements with limited accuracy. In 

particular, Gutierrez-Martinez et al. [11] reported an absolute 

error when estimating illuminance of close to 10%. In contrast, 

our camera-based approach, trained via machine learning 

regressors, achieved a significantly lower error of around 2.4%. 

Additionally, the use of features extracted from images allows 

our method to generate spatially dense lighting maps. 

This paper introduces an innovative smartphone-based 

mobile application that take advantage of a high performance 

lightweight machine learning model for real-time illuminance 

estimation and visualization. The app utilizes the 

smartphone’s built-in camera to capture indoor scenes, 

segments them into localized patches, and estimates 

illuminance at the patch level using a trained regression model. 

The predictions are then used to create color-coded heat map 

overlay, which provides intuitive feedback on spatial lighting 

distribution. The average illuminance value of the captured 

scene is then compared with standards set by the Commission 

on Illumination (CIE) and the Illuminating Engineering 

Society (IES) to assess whether the current lighting conditions 

falls under the recommended levels for typical indoor settings 

or not. 

In contrast with the previous studies that rely on static 

laboratory conditions, external hardware or needs a high 

computation power our solution is platform-independent, cost-

effective, and optimized for practical mobile use. Through the 

integration of visual feedback and machine learning inference, 

it facilitates accessible, real-time assessment of indoor lighting, 

offering value to architects, lighting designers, educators, and 

facility managers, this study is guided by two core research 

questions: 

·What level of accuracy can be achieved using different 

machine learning regressors (MLP, Random Forest, Gradient 

Boosting) when predicting patch-wise illuminance from 

camera-derived features?  

·Can such a system operate efficiently on mobile devices 

while providing interpretable, standards-based feedback 

aligned with lighting guidelines? 

These questions drive the development, validation, and 

deployment of the mobile application described herein. This 

paper proceeds with Section 2, which details the approach 

used for data collection, model development, and application 

workflow. Section 3 presents experimental findings and model 

evaluations conducted under varying real-world lighting 

scenarios. The paper concludes with key insights and proposed 

directions for future work. 

2. METHODOLOGY

The system developed in this study represent a real-time 

indoor illuminance estimation tool that utilizes a smartphone's 

onboard camera with a trained machine learning model. 

Illuminance, or the total luminous flux per unit area falling on 

a surface, is quantified in lux (lx). The mathematical 

representation of illuminance is given ass: 

𝐸 =
𝛷

𝐴
(1) 

where, E is illuminance in lux, Φ is luminous flux in lumens, 

and A is area in square meters [12]. Illuminance serves as a 

quantitative metric for assessing the lighting adequacy of a 

surface, which is crucial for evaluating visual comfort and 

lighting quality in indoor environments. 

The proposed system consists of four components: (i) a 

user-friendly mobile application interface, (ii) a machine 

learning illuminance prediction model, (iii) a heat map 

visualization module to represent spatial light distribution, and 

(iv) a recommendation algorithm for assessing compliance

with recognized lighting standards. The complete workflow of

the platform is illustrated in Figure 1.

At the front end, the application enables the user to select a 

specific indoor environment from a predefined list of use cases 

(e.g., residential, classroom, retail). Once the analysis is 

initiated, the smartphone's rear camera activates and captures 

a frame of the current scene. Images were captured using a 

Xiaomi Redmi Note 8 smartphone, equipped with a 48MP 

camera (f/1.8, 1/2.0", 0.8µm) at a 524×324 pixels resolution 

prior to processing and model training. This resolution was 

empirically found to offer a balance between spatial detail and 

computational efficiency and visual aesthetic.  

The captured image is subsequently divided into small 2×2 

pixel patches, providing a fine-grained assessment of lighting 

distribution while maintaining low computational overhead. 

Each patch is analyzed based on the mean intensity values of 

its red, green, and blue (RGB) channels, which serve as the 

input features for the illuminance prediction model. 

The model selected in our study was implemented using 

TensorFlow.js that allows machine learning models to make 
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inference locally on the device without the need for external 

servers which enhances both security and offline accessibility. 

For each patch, the model estimates the corresponding lux 

value. These values are then stored into a two-dimensional 

illuminance matrix which represent the predicted light 

intensity across the captured scene. 

Figure 1. Platform architecture and data flow 

Viridis color map is then used to create a color-coded heat 

map overlay to depict the spatial distribution of illuminance 

levels throughout the scene. The overlay is rendered on top of 

the original image via the use of canvas blending techniques, 

allowing dynamic, intuitive, and real-time visualization. 

Simultaneously, the platform also computes the general 

average illuminance value of the whole frame and compares it 

against the recommended lux levels defined for the selected 

indoor setting. Based on this comparison, the application app 

categorizes regions as underlit, adequately lit, or overlit, and 

delivers contextual lighting recommendations to the user.  

This methodology enables intuitive interpretation of 

lighting adequacy by non-expert users, removing the need for 

specialized instrumentation or technical knowledge. The 

platform's emphasis on accessibility and real-time 

responsiveness supports its applicability in diverse settings, 

including education, healthcare, office, and residential 

environments. 

2.1 Data collection and labelling 

To develop a robust and accurate predictive model for real-

time indoor illuminance estimation using smartphone imagery, 

a dedicated dataset was constructed under controlled 

experimental conditions. The objective was to establish a 

quantitative relationship between visual features extracted 

from image patches and their corresponding ground truth 

illuminance values (in lux), as measured by a calibrated 

physical sensor.  

The data acquisition process was carried out in a scaled 

indoor mock-up environment designed to replicate typical 

residential and office lighting conditions, as shown in Figure 

2. The lighting environment consisted of both natural daylight

whose intensity varied over time and artificial lighting

provided by a dimmable 5730 white LED strip.

The artificial lighting intensity modulated using a 

potentiometer interfaced with an Arduino microcontroller via 

Pulse Width Modulation (PWM) signals, enabling precise and 

continuous control of the lighting output. This setup facilitated 

the simulation of diverse real-world lighting scenarios across 

different times of day, enhancing the robustness of the dataset 

for training and evaluation purposes. 

To collect paired data points, a smartphone was mounted in 

a fixed and stable position to periodically capture images of a 

predefined target area within the indoor mock-up environment. 

The image resolution was fixed, and camera parameters 

including white balance, ISO, exposure, and focus were 

manually locked to reduce the influence of automatic software 

enhancements and ensure consistency and reproducibility 

throughout the dataset.  

Figure 2. Scaled mock-up for data collection process 

Images were captured at a resolution of 524×324 pixels 

before patch extraction. Simultaneously, a BH1750 ambient 

light sensor was placed at the center of the imaged scene and 

connected to the Arduino platform, the BH1750 is a digital 

light sensor capable of measuring illuminance from 1 to 65535 

lux with an accuracy of ±0.5%, and was chosen for its 

reliability and ease of integration via the I2C protocol. The 

complete hardware configuration is illustrated in Figure 3.  

Figure 3. Scaled room interior data collection process (a), 

custom-built illuminance sensor circuit (b) 

For each captured image, a synchronized illuminance 

reading was recorded using timestamp alignment, enabling a 

precise one-to-one mapping between each image and its 

respective lux measurement.  

To eliminate the effect of surface reflectance and ensure that 

the lux measurements reflected true light intensity, the scene’s 

surface was covered with a uniform layer of neutral gray matte 

material (18% reflectance). This is a widely adopted reference 

surface in professional photographic and lighting calibration, 

and it helped minimize bias in RGB values caused by glossy, 

reflective, or dark absorptive textures, while also reducing 

specular noise in the captured images. 

For each collected image a 2×2 pixel patch was segmented 

and extracted, a resolution selected to provide a trade-off 

between spatial granularity and computational efficiency. For 

each patch, four features extracted and stored for training: 
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·Mean intensity of the red channel (R_avg). 

·Mean intensity of the green channel (G_avg). 

·Mean intensity of the blue channel (B_avg). 

·The average grayscale intensity (GS_avg). 

The grayscale intensity was calculated using the standard 

luminance transformation, defined as follows: 

𝐺𝑆 = 0.2989 ∗ 𝑅 + 0.5870 ∗ 𝐺 + 0.1140 ∗ 𝐵 (2) 

where, R, G, and B are red, green, and blue channel intensities, 

respectively. 

These four normalized values were normalized to a [0–1] 

range and used as input to the regression models, while the 

corresponding illuminance (ILS), measured in lux, by the 

BH1750 sensor, served as the target output label. Although the 

lux sensor captures only a single-point reading, the captured 

scene was carefully composed and uniformly illuminated to 

ensure that the recorded value accurately represented the 

lighting condition of the imaged region.  

Data acquisition was performed at one-hour intervals 

throughout an entire calendar year, capturing a wide range of 

lighting scenarios from low-light conditions in the early 

morning and high-intensity illumination at midday, to 

artificially lit environments during the evening.  

The final curated dataset comprises 2,650 entries, each 

representing a distinct 2×2 patch under specific lighting 

conditions, paired with a corresponding ground-truth 

illuminance value (in lux), measured using a BH1750 digital 

light sensor. Each data entry includes R_avg, G_avg, B_avg, 

GS_avg as features and ILS as target output.  

Illuminance values in the dataset span a wide range, from 0 

lux to over 1,200 lux, successfully capturing a representative 

distribution of low, moderate, and high lighting conditions 

typically encountered in indoor spaces.  

To further analyze the internal coherence of the dataset, a 

3D scatter plot (Figure 4) was generated to visualize the 

relationship between G_avg, GS_avg, and ILS. The resulting 

plot reveals a smooth, monotonically increasing surface, with 

no evident anomalies, thereby supporting the internal 

consistency and reliability of the collected dataset. 

Figure 4. 3D scatter plot_ G_avg vs GS_avg vs ILS 

2.2 Model design and training 

The indoor illuminance estimation from image-derived 

features constitutes a regression task characterized by a 

continuous output space. The principal objective of this step is 

to construct predictive models capable of accurately 

estimating illuminance from low-resolution 2×2 color pixel 

patches. To achieve this, three machine learning models were 

selected, trained, and evaluated: 

·Multi-Layer Perceptron (MLP) Regressor. 

·Random Forest Regressor (RFR). 

·Extreme Gradient Boosting (XGBoost) Regressor. 

These models were chosen based on their established 

success in image-based regression tasks, and their ability to 

model complex nonlinear relationships between input features 

and target outputs. 

2.2.1 Multi-Layer Perceptron regressor 

The Multi-Layer Perceptron (MLP) is a fully connected 

feedforward neural network widely used for regression and 

classification due to its ability to model nonlinear input-output 

relationships. It consists of an input layer, one or more hidden 

layers, and an output layer, where each neuron computes a 

weighted sum of inputs, adds a bias, and applies an activation 

function [13]. The operation of a single neuron can be 

expressed as: 

𝑎(𝑙) = 𝛷(∑𝜔𝑖𝑗
(𝑙)
𝑎𝑗
(𝑙−1)

𝑏𝑖
(𝑙)
) (3) 

where, a(l) is the activation function of the neuron in layer l, 

𝜔𝑖𝑗
(𝑙)

 is the weight connecting neuron j in layer l-1 to neuron i 

in layer l, 𝑏𝑖
(𝑙)

 is the bias term, and Φ is the activation function,

typically the rectified linear unit (ReLU) for hidden layers in 

modern applications [14]. 

MLPs are trained using the backpropagation algorithm, 

which minimizes a loss function via gradient descent. For 

regression tasks, the Mean Squared Error (MSE) is commonly 

used and is defined as: 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)

2

𝑛

𝑖−1

(4) 

where, yi is the true illuminance value, 𝑦𝑖̂ is the predicted value,

and n is the total number of samples. 

In this study, the MLP consisted of an input layer with four 

normalized features (R_avg, G_avg, B_avg, GS_avg), two 

hidden layers (200 and 100 neurons) with ReLU activation, 

and a single output neuron predicting illuminance (lux). Adam 

optimizer was used for training due to its adaptive learning rate 

and efficiency on noisy data [15]. Figure 5 illustrates the 

architecture, where features are transformed to learn high-

level patterns.  

The final configuration of the MLP model was obtained 

through grid search hyperparameter tuning. The optimal 

parameters are listed in Table 1, and reflect the settings that 

yielded the best validation performance using k-fold cross-

validation.  

These hyperparameters were selected based on systematic 

experimentation and validation results. The MLP Regressor, 

being a type of feedforward neural network, is capable of 

learning complex nonlinear relationships between input 

features and target outputs. Its flexibility makes it suitable for 

a wide range of problems. However, MLPs are sensitive to the 

choice of hyperparameters, require more computational 

resources for training, and may suffer from overfitting with 

small datasets. 
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Figure 5. MLP architecture for illuminance prediction 

Table 1. The parameters of the MLP model 

Parameters Value 

Hidden Layers [200, 100] 

Activation Function ReLU 

Solver Adam 

Learning Rate Adaptive 

Alpha (L2 regularization) 0.001 

Loss Function MSE 

Batch Size 32 

2.2.2 Random Forest Regressor 

The Random Forest Regressor (RFR) is an ensemble 

learning method that builds multiple decision trees and 

averages their outputs, making it effective for nonlinear 

regression. It enhances generalization and reduces overfitting 

through bootstrap sampling and random feature selection 

during training [16]. Each decision tree is trained on a different 

bootstrap sample (i.e., random sampling with replacement) of 

the training data. During the construction of each tree, only a 

random subset of features is considered at each split [17], 

encouraging decorrelation between trees and enhancing the 

robustness of the ensemble. The overall prediction of the 

Random Forest is computed as the average of the predictions 

made by the individual trees: 

𝑦̂ =
1

𝑇
∑𝑓𝑡(𝑥)

𝑇

𝑡=1

(5) 

where, 𝑦̂ is the final prediction, T is the number of decision 

trees, and ft(x) is the prediction made by the t-th tree made by 

for input [18].  

Each tree predicts by recursively splitting data based on 

features to minimize node impurity. For regression, the 

impurity measure is typically the Mean Squared Error (MSE), 

defined for node m as: 

𝑀𝑆𝐸𝑚 =
1

𝑁𝑀
∑(𝑦𝑖 − 𝑦̄)2

𝑖∈𝑁𝑚

(6) 

where, Nm is the set of samples reaching node m, yi is the target 

value of sample i, ym is the average target value of the samples 

in node m [19].  

In this study, the Random Forest model was optimized using 

grid search and k-fold cross-validation, which result the best 

structure summarized in Table 2. 

This configuration allowed the model to learn complex 

patterns present in the dataset while avoiding overfitting. The 

number of trees was set to 200 to provide a robust ensemble 

and to avoid a high increase in training time. Minimum sample 

constraints used to ensure statistical significance at each node, 

and by using all four normalized input features in model 

training allowed the model to take advantage of both color and 

luminance cues in estimating illuminance.  

Table 2. The parameters of the RFR model 

Parameters Value 

Number of Trees (n_estimators) 200 

Maximum Tree Depth None 

Minimum Samples per Split 2 

Minimum Samples per Leaf 1 

Bootstrap Sampling Enabled 

Splitting Criterion MSE 

2.2.3 XGBoost Regressor 

The eXtreme Gradient Boosting (XGBoost) Regressor is an 

advanced gradient boosting algorithm which is characterized 

by an ameliorated accuracy. It builds an ensemble of decision 

trees sequentially where each tree tries to correct the errors 

made by the previous tree by minimizing a loss function via 

gradient descent this prediction process must sequentially 

traverse multiple decision trees. Even during inference, this 

sequential evaluation of hundreds of trees can result in slower 

prediction speeds compared to simpler models. The model 

predicts output as a sum of functions, each corresponding a 

decision tree:  

𝑦𝑖
∧
= ∑𝑓𝐾(𝑥𝑖), 𝑓𝐾 ∈ 𝛤

𝐾

𝐾=1

(7) 

where, Γ is the space of regression trees, xi is the feature vector 

for instance K is the number of trees. The optimization 

objective consists of a loss function measuring prediction error 

and a regularization term to penalize model complexity: 

𝐿(𝛷) =∑𝑙(𝑦𝑖 , 𝑦̂𝑖) +∑𝛺(𝑓𝑘)

𝑘

𝑘=1

𝑛

𝑖=1

(8) 

𝛺(𝑓) = 𝛾𝑇 +
1

2
𝜆‖𝑤‖2 (9) 

with l as the loss function, Ω(f) as the regulation term where T 

is the number of leaves in the tree, 𝑤 are the leaf weights, and 

γ, λ regularization parameters, this formulation enables 

XGBoost to generalize well on unseen data by controlling 

overfitting [20].  

In this study, XGBoost was trained using the normalized 

features R_avg, G_avg, B_avg, and GS_avg as input, with 

illuminance (ILS) as the output. Grid search and cross-

validation were used to identify the optimal hyperparameters, 

as shown in Table 3. 

Every tree in the ensemble, splits the input space into 

distinct subsets depending on the most informative input 

attributes. As trees are added sequentially, the model corrects 

its previous errors iteratively, leading to a robust predictor 

with the ability to effectively estimate illuminance for 

different lighting conditions. 
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Table 3. The parameters of the XGboost estimator 

Parameters Value 

Number of Trees 100 

Maximum Tree Depth 6 

Learning Rate 0.1 

Loss Function MSE 

Regularisation L2(λ =1) 

2.2.4 Training and validation 

In this study, a well-structured and systematic strategy was 

applied to carry out the training and validation of the three 

regression models in order to identify the most effective one 

for practical deployment in real-world lighting assessment 

tasks. The primary objective was to construct machine 

learning models capable of predicting illuminance values from 

features extracted from smartphone-captured indoor images 

with both high accuracy and strong generalization 

performance.  

Each one of the three models was trained on a preprocessed 

and normalized dataset comprising statistical features 

extracted from 2×2 image patches and their corresponding 

illuminance values (in lux). Training began by randomly 

splitting the dataset into 80% training and 20% validation 

subsets, ensuring that models were evaluated on unseen data. 

To ensure a fair and consistent basis for comparative analysis 

all models utilized the same training-validation split.  

Subsequently, each model underwent hyperparameter 

tuning via Grid Search Cross-Validation to identify the 

combination of parameters yielding the optimal performance 

on the validation set. The tuned parameters for the MLP 

Regressor model, the tuned are the hidden layer sizes, 

activation function, the solver, the alpha value, and the 

learning rate. For the RFR model, the tuned parameters were 

number of estimators, maximum depth, minimum samples 

split, and minimum samples leaf. Finally, for XGBoost 

Regressor the hyperparameters are the number of trees, the 

maximum tree depth, learning rate, loss function, and the 

regularization parameters. 

To optimize the models hyperparameter Grid Search with 

k-fold Cross-Validation was performed this process is a robust

technique for evaluating parameter combinations and avoiding

overfitting. The following hyperparameters were tuned for

each model:

·MLP Regressor: number of hidden layers and their sizes, 

activation function, solver (optimizer), L2, batch size, loss 

function, and learning rate. 

·Random Forest Regressor: number of trees (n_estimators), 

maximum tree depth, minimum samples required to split a 

node, and minimum samples per leaf. 

·XGBoost Regressor: number of trees, maximum tree depth, 

learning rate, loss function, and regularization parameter L2. 

The process of evaluating the regression models requires 

robust and interpretable evaluation metrics. In this study we 

employed three widely accepted indicators to assess 

performance: 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑦𝑖 − 𝑦̂𝑖|

𝑛

𝑖=1

(10) 

MAE’s reliance on absolute values makes it less sensitive 

to outliers than squared-error measures like Mean Squared 

Error (MSE). In addition to MAE, Root Mean Squared Error 

(RMSE) was also used, which is defined as: 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)

2

𝑛

𝑖=1

(11) 

RMSE retains MSE’s sensitivity to large errors while 

expressing them in the target variable’s units (lux), enhancing 

interpretability. It effectively highlights significant prediction 

errors, which are crucial in lighting-sensitive settings like 

laboratories.  

To measure the proportion of variance in the target variable 

that can be explained by the model, the R² score was used: 

𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑦̂𝑖
𝑛
𝑖=1 )2

∑ (𝑦𝑖 − 𝑦̄𝑛
𝑖=1 )2

(12) 

where, 𝑦̅ is the mean of the true illuminance values. A perfect 

model yields R2=1, whereas an R2 close to 0 indicates poor 

model performance. R2 provides an intuitive measure of model 

fit and is useful for comparing model generalization on 

validation data.  

Figure 6. Training and validation process 

Figure 6 illustrates the training and validation pipeline 

employed in this study, depicting the sequential process for 

developing and evaluating the illuminance estimation models. 

The dataset was first split into training and test sets. Using 

cross-validation on the training data, hyperparameters for the 

MLP, Random Forest, and XGBoost Regressors were tuned to 

optimize model fit and generalization.  

The best models were then retrained on the full training set 

and evaluated on the unseen test set. Performance was 

assessed using MAE, RMSE, and R² to measure accuracy and 

generalization. 

2.3 Mobile app functionality 

The lightweight mobile application developed in this study 

is able to make a real-time illuminance analysis using a trained 

machine learning model to process camera input, generate an 

illuminance heatmap, and provide actionable lighting 

recommendation entirely on-device, without relying on 

external computation or connectivity. 

As shown in Algorithm 1, the app captures an image, 

divides it into 2×2 patches, and extracts average R, G, B, 

channels and grayscale intensity from each patch. These 

normalized inputs are then passed into a TensorFlow.js-based 
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model deployed within the mobile environment, enabling real-

time inference for each patch.  

The results form a color-coded heatmap overlay on the 

original image, while the average illuminance is compared 

against standards for the selected indoor environment. 

Algorithm 1. Mobile Application workflow. 

Input: Live camera feed, selected environment. 

Output: Illuminance heat map, average lux, lighting 

recommendation. 

1:   User selects environment from dropdown menu. 

2:   Load trained model and initialize rear camera stream. 

3:   Upon user action ("Scene Analysis"), capture image 

frame. 

4:   Divide captured image into 2×2 pixel patches. 

7:   For each patch: 

8: a. Compute normalized R_avg, G_avg, B_avg, 

and GS_avg. 

9: b. Pass input vector [R, G, B, GS] to trained 

model. 

10: c. Predict illuminance (in lux) and assign color 

from heat map. 

11: Render overlay heat map and compute average 

illuminance value. 

12: Retrieve recommended lux range for selected 

environment. 

13:  If average_lux < min or > max: 

14:          a. Display warning with diagnostic message. 

15: b. Offer button to show problem areas: 

16:                 - Red overlays for over-illuminated patches.

17:                 - Blue overlays for under-illuminated patches.

18:  Else: 

19: a. Display optimal lighting confirmation. 

20:  Allow user to repeat process or return to camera. 

To determine whether the measured value falls outside or 

within the acceptable range recommended by CIE and IES 

associations, Table 4 illustrates the recommended illuminance 

levels for most possible indoor settings. 

Table 4. Recommended lux level 

Environment Recommended Illuminance (lux) 

Residential (Living Room) 100 – 250 

Residential (Bedrooms) 60 – 100 

Residential (Kitchen) 300 – 750 

Classroom/office 300 – 750 

Laboratory 200 – 500 

Operating Rooms 300 – 500 

Conference Rooms 200 – 500 

Display Areas 750 – 1500 

The app automatically provides lighting adjustment 

recommendations based on the computed average illuminance. 

When the lighting level falls outside the recommended range, 

a “Highlight Poorly Illuminated Areas” button appears.  

Upon activation, the overlay updates to visually mark over-

illuminated regions in red and under-illuminated areas in blue, 

helping users easily identify specific lighting issues. 

The user interface flow of the mobile application is 

illustrated in Figure 7 and consists of three main screens. The 

first screen allows users select an indoor environment (e.g., 

living room, classroom, retail), each of which is associated to 

a recommended illuminance range.  

After selection, the app moves to the second screen, which 

streams live video from the smartphone’s rear camera.  

Figure 7. User interface flow of the mobile application 

Pressing the “Scene Analysis” button freezes the current 

frame and transitions to the third screen, displaying the 

analysis overlay and modal recommendations This 

streamlined flow from environment selection to live preview 

and finally to interactive feedback ensures an intuitive and 

efficient user experience. 

3. RESULTS AND DISCUSSION

The primary objective of this study was to develop a robust, 

mobile-based application for real-time illuminance estimation 

and spatial mapping application using light-weight machine 

learning models. To evaluate the performance and viability of 

the proposed methodology, experiments were conducted on a 

filtered dataset and through real-world scenario testing using 

the mobile platform.  

This section presents the training results of the three 

regression models MLP, RFR, and XGBoost based on 

comprehensive evaluation metrics. Additionally, we evaluate 

the visual accuracy of the generated illuminance heatmaps, the 

application’s interactivity, and its responsiveness under 

diverse lighting conditions.   

3.1 Model evaluation and comparison 

To evaluate indoor illuminance prediction, three regression 

models RFR, XGBoost, and MLP were trained using four 

normalized features extracted from each image patch: R_avg, 

G_avg, B_avg, and GS_avg. The models were trained and 

tested on a cleaned dataset with an 80/20 split, with grid search 

and 5-fold cross-validation employed for hyperparameter 

tuning. Performance was assessed using Mean Absolute Error 

(MAE), Root Mean Square Error (RMSE), Coefficient of 
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Determination (R²), and inference time, as summarized in 

Table 5. 

Table 5. Performance comparison of the regression models 

Model MAE RMSE R² Inference Time (s) 

RFR 21.26 47.03 lx 0.9704 0.0397 

XGBoost 23.00 50.81 lx 0.9655 0.0021 

MLP 43.91 77.02 lx 0.9207 0.7047 

As shown in Table 5, the Random Forest Regressor 

achieved the best balance between accuracy and generalization, 

with the lowest MAE and RMSE and an R² of 0.9704, 

demonstrating strong modeling of nonlinear relationships 

under diverse lighting conditions. Although the XGBoost 

model exhibited slightly lower accuracy, it significantly 

outperformed in terms of inference speed (0.0021 seconds per 

prediction), making it more suitable for time-critical 

applications on resource-constrained devices. The MLP, 

despite its theoretical flexibility, underperformed in both 

accuracy and speed, likely due to the limited input features and 

small dataset restricting its generalization ability. 

Figure 8 illustrates the predicted versus actual illuminance 

values for the test set. An ideal model would produce points 

tightly clustered along the diagonal line. The Random Forest 

and XGBoost models closely follow this trend, whereas the 

MLP shows greater variance, with many predictions deviating 

from the ideal. 

Figure 8. Predicted vs. actual illuminance comparison for the 

three regression models 

These findings justify the selection of the Random Forest 

Regressor for deployment in the mobile application, as its 

superior accuracy and robustness outweigh the marginal 

advantage in inference speed offered by XGBoost. Such 

precision is critical in ensuring reliable compliance with 

lighting standards and enhancing user comfort in real-world 

applications. 

3.2 Illuminance mapping accuracy and response time 

analysis 

To assess the platform’s real-world, an experiment was 

conducted to evaluate the spatial accuracy of illuminance 

mapping and the real-time responsiveness of the mobile 

application. This study took place in a typical office setting at 

the Science and Technology Department, Skikda University, 

Algeria, featuring four desks arranged progressively from a 

window, creating a natural illumination gradient, as depicted 

in Figure 9.  

The setup created a continuous illumination gradient from 

the window-facing desk (T1) to the farthest desk (T4). Four 

calibrated digital lux meters were positioned at the center of 

each desk to establish reliable ground truth measurements. 

Concurrently, the smartphone app mounted on a fixed tripod 

to maintain a consistent perspective and distance captured 

images of the scene under varying lighting conditions. 

Figure 9. Experimental setup for the platform’s real-world 

evaluation 

To introduce lighting variations, artificial light levels were 

adjusted, and natural light was controlled by opening or 

closing curtains at different times, enabling testing across 

diverse lighting conditions. For each setup: 

·The smartphone captured an image. 

·The model divided the image into non-overlapping 2×2 

pixel patches. 

·Each patch’s illuminance was predicted using the RFR 

model. 

·Predictions at the four desk centers were compared with 

lux meter readings. 

The predicted values were quantitatively assessed against 

the ground truth using the Mean Absolute Error Percentage 

(MAEP), a metric that indicates average prediction deviation 

as a percentage of true illuminance, providing intuitive insight 

into visual accuracy. The MAEP was computed using the 

following equation: 

𝑀𝐸𝐴𝑃 =
1

𝑛
∑|

𝑦𝑖
𝑝𝑟𝑒𝑑

− 𝑦𝑖
𝑡𝑟𝑢𝑒

𝑦𝑖
𝑡𝑟𝑢𝑒 | × 100

𝑛

𝑖=1

 (13) 

where, 𝑦𝑖
𝑝𝑟𝑒𝑑

 and 𝑦𝑖
𝑡𝑟𝑢𝑒  represent the predicted and ground

truth illuminance values, respectively, and n is the total 

number of measurement points. 

The experiment evaluated multiple lighting scenarios 

throughout the day, from sunrise to sunset, by capturing a 

realistic range of indoor illuminance levels typical of office 

environments. These conditions produced ground truth values 

in the range of 100–1100 lux, consistent with the standard 

requirements for office environments. 

As illustrated in Figure 10, predicted illuminance values 

followed actual measurements closely across all four desks. 

The MAEPs for desks T1, T2, T3, and T4 were 2.22%, 2.72%, 

2.38%, and 2.41%, respectively, resulting in a global average 

MAEP of 2.43%. This low prediction error highlights the 
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system’s ability to generalize across spatial locations and 

under diverse lighting intensities. 

Table 6. Processing time for illuminance mapping 

Process Processing Time in [s] 

Capturing image 0.2 

Pre-processing 0.3 

Illuminance matrix prediction 0.7 

Uploading results 0.2 

Total processing time 1.4 

In addition to spatial accuracy, the platform's response time 

was evaluated to assess the feasibility of deploying the 

solution on mobile devices. Table 6 summarizes the average 

processing time for each phase of the illuminance analysis 

pipeline. The end-to-end process from image capture to 

illuminance mapping and overlay generation required 

approximately 1.4 seconds, confirming the application’s 

suitability for real-time use. 

To further contextualize the performance of the proposed 

platform, Table 7 summarizes a comparative analysis of recent 

studies on indoor illuminance estimation. 

The selected studies include conventional approaches using 

smartphone ambient light sensors [11], image processing 

methods [4], and recent learning-based regressors [8, 9] and 

[10]. While each method presents partial advantage such as 

cost-effectiveness or algorithmic complexity most suffer from 

significant limitations in accuracy, spatial resolution, or real-

time deployment capability. For example, the smartphone 

Ambient Light Sensors (ALS) method by Gutierrez-Martinez 

et al. [11] reports a RMSE of 76 lx, but its single-point 

measurement nature limits its usability for spatial diagnostics. 

Likewise, the handcrafted image-based method by Kamath et 

al. [4] achieved an RMSE of 79.6 lx, but it was tested only in 

constrained settings using a sophisticated LDR camera sensor 

and without heatmap generation. 

Figure 10. Predicted vs. actual illuminance for tables T1–T4 under varying lighting conditions 

Table 7. Comparative analysis of illuminance estimation approaches 

Study Platform Type RMSE Inference Time (s) Notes 

Gutierrez-Martinez et 

al. [11] 

Smartphone ALS 76 lx < 0.01 Single-point, non-spatial; limited in low-light 

environments. 

Kamath et al. [4] Camera (LDR image) 79.6 lx Not reported No visual mapping; tested in controlled conditions 

only. 

Wang et al. [8] Deep CNN (CGLight) 40.2 lx ~2.3 Desktop only; High Latency. 

Wang et al. [9] Deep CNN (FHLight) 32.6 lx ~1.8 Requires GPU; not optimized for smartphone 

deployment. 

Zhao et al. [10] Transformer (SGFormer) 30.8 lx ~2.5 Complex; high model size; no spatial heatmap. 

Ours Smartphone camera 77.02 lx ~0.04 Real-time, spatial mapping. 

Recent deep learning-based models such as studies [8-10] 

provide enhanced accuracy on synthetic or benchmark datasets; 

however, their RMSE still range from 30 lx to 60 lx with 

inference times unsuitable for mobile applications. In contrast, 

the proposed Random Forest-based system delivers a MAEP 

of just 2.43%, corresponding to an RMSE of 47.03 lx, while 

running in real time on a smartphone and offering spatial 

illuminance mapping capability.  

These findings highlight the effectiveness and efficiency of 

the proposed platform in delivering real-time, spatially 

detailed illuminance estimations. The combination of low 

latency, high spatial fidelity, and minimal error margins makes 

the system a viable tool for mobile-based lighting diagnostics. 

Its applications extend to architectural design, smart lighting 

control, energy auditing, and visual comfort evaluation in both 

residential and professional environments. 
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3.3 Application functionality test 

To validate the practicality of the proposed mobile 

illuminance assessment platform, a functionality test was 

conducted in real-world classroom environment. The 

objective was to evaluate the application’s responsiveness to 

typical variations in lighting, including changes in both natural 

daylight and artificial illumination. 

The platform was deployed on a standard Android Xiaomi 

Redmi Note 8 smartphone and tested in a spacious university 

classroom at Skikda University, under a variety of lighting 

conditions ranging from partial daylight to full artificial 

illumination. For each test session, users executed the entire 

application workflow, which included: 

·Selecting the indoor environment. 

·Activating the live video feed. 

·Capturing a frame of the scene. 

·Generating an illuminance heatmap. 

Figure 11 presents a sequence of screenshots representing 

an optimal lighting scenario. The application accurately 

detects and maps the indoor light distribution, calculates the 

average illuminance, and verifies its alignment with the 

recommended lux range for classrooms (300–750 lx). The 

resulting heatmap is uniform and consistent, demonstrating the 

platform's reliability under standard lighting conditions. 

Conversely, Figure 12 shows a contrasting scenario 

characterized by over-illumination due to excessive natural 

light exposure. 

Figure 11. Sequence of screenshots for an optimal lighting scenario in classroom setting 

Figure 12. Sequence of screenshots for an over illuminating lighting scenario in classroom setting 
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In this case, the application accurately predicted an average 

illuminance exceeding the upper threshold of the acceptable 

range. In response, it generated a recommendation to reduce 

the lighting level. Furthermore, the user utilized the “Show 

poorly illuminated areas” feature to highlight over-illuminated 

regions, which were visually marked with red overlays, 

facilitating easy identification of lighting imbalances. 

These two real-case demonstrations confirm the 

application's effectiveness in delivering actionable feedback 

through real-time visual analysis, while maintaining consistent 

user interface behavior and responsiveness under varying 

conditions. Users noted smooth screen transitions, intuitive 

interaction flows, and minimal latency during image capture 

and processing. Overall, the mobile application exhibits strong 

usability and operational reliability, even in dynamic and 

fluctuating lighting environments. 

3.4 Limitations 

While the proposed platform demonstrated promising 

performance, several limitations must be acknowledged to 

contextualize its applicability and guide future enhancements. 

First, the model’s predictive accuracy is inherently 

influenced by the hardware characteristics of the smartphone 

used for image acquisition. Variations in sensor sensitivity, 

lens quality, and onboard image processing algorithms (such 

as automatic exposure, white balance correction, or HDR 

enhancement) can introduce inconsistencies in pixel 

intensities, thereby affecting the model's generalizability 

across different devices. Since the current implementation 

does not incorporate device-specific calibration procedures, 

variations in camera hardware could lead to discrepancies in 

illuminance prediction when the application is deployed on 

heterogeneous smartphones. 

Second, the experimental validation was limited to 

controlled indoor environments specifically, an office and a 

classroom using a single smartphone model. While these 

environments are representative of common use cases, they do 

not encompass the full range of indoor spatial configurations, 

surface materials, or artificial lighting technologies 

encountered in real-world applications. Consequently, the 

model’s scalability and robustness under more diverse 

conditions, such as residential, commercial, or industrial 

settings, remain to be validated. 

Third, the system's performance may degrade under highly 

complex or non-uniform lighting scenarios. Conditions 

involving strong backlighting, mixed color temperature 

sources, intense reflections, or localized glare can compromise 

the accuracy of patch-wise illuminance predictions, as such 

conditions are underrepresented in the current training dataset. 

Moreover, the system does not currently correct for the non-

linear exposure behavior of smartphone cameras in high-

dynamic-range scenes, which may further affect luminance 

estimation in extreme lighting conditions. 

Additionally, the absence of a cross-device normalization 

mechanism poses another limitation. The current approach 

assumes a uniform camera response function, and does not 

explicitly account for the wide variability in sensor 

performance and software tuning across smartphone models. 

This limits the platform’s ability to deliver consistent results 

across devices without a prior calibration step. 

Finally, although the application performs all computations 

locally using TensorFlow.js to preserve user privacy and 

ensure offline functionality, this design choice introduces a 

non-negligible computational burden. The inference process, 

which involves predicting illuminance for numerous small 

patches per frame, can be computationally intensive on 

smartphones with limited processing capabilities. This may 

result in latency during real-time operation, particularly on 

low- to mid-range devices, unless further model optimization 

or compression techniques are adopted. 

4. CONCLUSIONS

This study introduced a low-cost, smartphone-based tool 

capable of real-time indoor illuminance estimation and 

mapping, leveraging deep learning and classical machine 

learning models to support compliance with lighting design 

standards.  

The proposed mobile application enables users to assess 

lighting conditions visually and numerically, eliminating the 

need for costly lux meters or specialized instrumentation. 

Through a platformatic development pipeline encompassing 

data collection, model training, validation, and integration into 

a real-world application, we demonstrated that compact 

devices can provide accurate and spatially-resolved 

illuminance feedback. 

Experimental results showed that among the three tested 

models Multi-Layer Perceptron, Random Forest Regressor, 

and Gradient Boosting Regressor; the Random Forest 

Regressor demonstrated the best trade-off between prediction 

accuracy (MAE: 21.25, R²: 0.97) and inference speed (≈ 40 

ms). Furthermore, Mean Absolute Error Percentage (MAEP) 

of 2.43% across multiple desk locations in real-world 

environments, validated the consistency and spatial reliability 

of the predicted illuminance distribution under varied 

conditions. The complete application maintained a total 

processing time of under one second, rendering it suitable for 

responsive mobile-based lighting analysis. By offering real-

time heatmap visualizations and context-aware lighting 

recommendations within a single portable platform, this 

application presents new opportunities for intuitive lighting 

diagnostics in residential, educational, healthcare, and 

commercial spaces. The user-friendly interface and 

compatibility with consumer-grade smartphones further 

enhance its accessibility and scalability. 

However, it is important to acknowledge that the platform 

was only evaluated in a limited range of indoor environments 

using a single smartphone model. Broader deployment 

scenarios involving diverse room geometries, surface 

reflectance, and device-specific camera characteristics should 

be explored to confirm the model’s robustness and 

generalizability. 

Future work will focus on addressing the current limitations 

and enhancing the platform's robustness, scalability, and 

adaptability. A key priority will be the evaluation of system 

performance across a broader range of real-world indoor 

environments, including residential, industrial, and 

commercial settings, each with distinct lighting configurations, 

surface textures, and spatial geometries. This expanded 

validation will help assess the model’s generalization 

capabilities beyond controlled office and classroom scenarios. 

To improve cross-device consistency, future versions may 

incorporate device-specific calibration routines or 

normalization layers to account for variability in camera 

hardware and built-in image processing algorithms. In parallel, 

advanced preprocessing techniques such as high-dynamic-
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range (HDR) fusion or exposure correction could be explored 

to better handle scenes with complex or uneven illumination 

patterns, including glare, shadows, and mixed lighting sources. 

From a computational standpoint, optimizing the model for 

real-time inference on low-end and mid-range smartphones 

will be essential. This may involve quantization, model 

pruning, or knowledge distillation to reduce memory and 

processing demands without compromising accuracy. 

Furthermore, the integration of lightweight edge computing 

frameworks could ensure smooth performance while 

preserving offline functionality. 

Finally, future iterations of the system could incorporate 

temporal illumination tracking and user feedback mechanisms. 

These enhancements would enable the platform to learn from 

environmental patterns and user behavior over time, ultimately 

supporting intelligent daylight harvesting strategies and 

adaptive lighting control systems that respond dynamically to 

both spatial and temporal context. 
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NOMENCLATURE 

RGB Red, Green, Blue channel intensities 

GS Grayscale intensity 

ILS 

MAE 

Illuminance level in lux 

Mean Absolute Error 

RMSE Root Mean Square Error 

R² Coefficient of Determination 

MAEP  Mean Absolute Error Percentage 

Subscripts 

pred Predicted illuminance 

true True (measured) illuminance 

lux Illuminance in lux units 
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