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To solve the Traveling Salesman Problem (TSP), this research compares three swarm-

based optimization algorithms: Particle Swarm Optimization (PSO), Ant Colony 

Optimization (ACO), and Elephant Herding Optimization (EHO). Finding the shortest path 

to visit each city once and return to the starting point is the goal of the traditional 

combinatorial optimization problem, TSP. Exact techniques such as Branch and Bound 

(BB) and Dynamic Programming (DP) can effectively handle smaller TSP cases, but they 

become unfeasible as the number of cities increases. The solutions offered by metaheuristic 

algorithms are more scalable. The algorithms' performance is assessed in this study based 

on execution time, scalability, and solution quality for a range of city sizes (5 to 150). 

Results reveal that EHO surpasses the others in achieving lower optimal costs. 
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1. INTRODUCTION

Since the creation of mortal beings, they have constantly 

sought perfection in all aspects of life. One of the most 

important trials in the world is to find a stylish result. In reality, 

numerous complex problems, similar to transportation, 

warehousing, where to vend products, communication 

network design, scheduling, and planning, are frequently too 

large and complex to be optimally answered in a reasonable 

time. Nonetheless, chancing a result is still pivotal, so the 

volition is to originally accept a sour result with a respectable 

position of delicacy and optimization time [1].  

Optimization problems have become so complicated that 

they are difficult for traditional programming approaches to 

decompose and optimize efficiently. A mass grounded 

metaheuristic optimization methods have been developed 

recently [2]. 

The machine learning models, especially ensemble learning 

approaches, to show great promise in solving complicated 

optimization issues by utilizing a variety of data-driven 

strategies to improve decision-making and prediction accuracy 

[3]. Used address challenging optimization issues is 

represented by swarm intelligence (SI) algorithms. Its goal is 

to model the collective behavior of basic agents as they 

attempt to accomplish goals like protecting against attacks and 

finding food. Even though each agent is one capable of basic 

tasks, when the work together and share knowledge, they can 

display extraordinary intelligence [4]. SI algorithms were first 

developed at the University of Michigan in the 1960s. John 

Holland and his associates wrote the first book on the GA in 

1960, and it was later developed and published in 1970 and 

1983 [5]. Have been extensively used by experimenters to 

optimize results and give sufficiently fit results for objective 

functions in optimization problems [2]. In similar problems, 

the ultimate thing is frequently to maximize or minimize an 

objective function, which is used to estimate the quality of the 

performing result. These algorithms aim to ameliorate or 

minimize the problem's objective function, and the Traveling 

Salesman Problem (TSP) is constantly used to test their 

effectiveness and estimate their performance. The TSP as it 

needs changing the shortest path to visit a set of big cities, the 

making it a perfect tool for assessing the effectiveness of 

different algorithms. A number of metaheuristic algorithms, 

including ACO, PSO, and EHO, are utilized to find a solution 

to the TSP, a classic problem in route optimization. Yet, a 

thorough comparison of the algorithms based on execution 

time, use of resources, and solution quality is still required. It 

is seen that (EHO) is quicker than the others, and hence all the 

more useful for big instances of (TSP) where repair has to be 

executed in a hurry. With emphasis laid on computational 

complexity and the quest for finding a balance between 

accuracy and efficiency, the present study attempts to evaluate 

the performance of these algorithms over various sets of 

datasets such that one can offer recommendations towards the 

optimal strategy to adopt for use in applications related to 

automated manufacturing, smart transportation, and logistics 
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optimization. 

 

 

2. LITERATURE REVIEW 

 

From 2000 till 2024, it has been two decades of research to 

implement artificial intelligence (AI) and metaheuristic 

algorithms to determine the solution of the Traveling 

Salesman Problem (TSP), a popular NP-hard combinatorial 

optimization problem. It was all about creating and enhancing 

various algorithms like Branch and Bound (BB), Dynamic 

Programming (DP), Ant Colony Optimization (ACO), Particle 

Swarm Optimization (PSO), and recently Elephant Herding 

Optimization (EHO). 

1) Evolution and Trends in TSP Algorithms: 

TSP solutions in the early stages were exact in nature like 

BB and DP [6, 7], which did not work for large datasets since 

they were exponential in terms of memory and time 

requirements. SI techniques like ACO and PSO were 

introduced to combat the same. ACO is inspired by ant 

foraging behavior [8] and PSO incorporates social 

optimization. Both of them were susceptible to premature 

convergence and parameter sensitivity [9]. EHO inspired by 

elephant herd behavior assisted in improving execution times 

and solution quality for large TSP instances [10], and the 

strengths and weaknesses of the studies reviewed are 

summarized in Table 1. 

2) Thematic Grouping of Literature: 

The literature studied can be classified as: 

➢ Algorithmic Efficiency Improvements: 

• Zhang [11] strengthened often used paths 

to improve ACO, speeding up the solution 

process. 

• Emambocus [12] achieved more accurate 

results using PSO with genetic algorithms. 

• Marqas et al. [13] improved performance 

on huge datasets by optimizing EHO 

parameters. 

➢ Handling Large-Scale Datasets: 

• Robati et al. [14] modified PSO to make 

efficient usage feasible in larger instances 

of TSP. 

• Li et al. [15] and Zhang and Gao [16] 

confirmed EHO's effectiveness in scaling 

across large-dimensional datasets. 

➢ Dynamic and Adaptive Algorithms: 

• A model of ACO that is capable of 

adapting to varying city distances was 

introduced by Zhou et al. [17]. 

3) Relevance to Current Study: 

This paper evaluates three popular algorithms ACO, PSO, 

and EHO using different dataset sizes. EHO consistently 

outperforms ACO in terms of optimal cost, especially as the 

number of cities increases. This highlights the increasing use 

of swarm-based methods in areas such as dynamic routing, 

transportation planning, and intelligent logistics systems. and 

presents an EHO framework that decomposes the problem to 

enable solution quality and scalability. The framework fills 

current research gaps and provides a more flexible method 

than TPS in resolving complex and large-size instances.

 

Table 1. Comparative summary of key studies 

 
Year Algorithm Main Contribution Strengths Weaknesses 

2010 ACO Enhanced pheromone-based search High efficiency on small datasets Limited on large datasets 

2012 PSO Scalable search behavior Fast for large instances Parameter sensitive 

2014 BB Accurate subproblem elimination Optimal for small inputs Impractical for large data 

2015 PSO + GA Hybridized PSO for accuracy Improved results Complex implementation 

2017 ACO Adaptive to dynamic data Responsive to changes Slower performance 

2018 EHO New metaheuristic with fast convergence High quality on big data Less efficient on dynamic data 

2019 DP Accurate results with caching Guarantees optimality High memory usage 

2020 EHO Parameter-tuned EHO Enhanced efficiency Needs tuning expertise 

2021 EHO Contextual performance analysis Versatile across scenarios May require longer time 

2022 EHO Accelerated search and precision Better performance Requires high computing power 

2023 EHO Large-scale dataset handling Robust output Not adaptive to dynamic input 

2024 EHO Practical applications in logistics Real-world relevance May vary in unpredictable settings 

 

 

3. TRAVELING SALESMAN PROBLEM (TSP) 
 

In 1932, the mathematician Karl Menger first proposed the 

TSP. The problem formulation sounds surprisingly simple: 

consider a salesman who has to travel between several towns. 

He starts in his home town, visits each of the cities on some 

list exactly once, and then returns to the starting point. 

Reducing the overall distance traveled is the aim. Even while 

it seems straightforward, the more cities there are, the more 

challenging it becomes to solve this problem optimally. 

Mathematicians and scholars have been looking for effective 

answers for nearly a century. From its simple definition to the 

difficulty of illustrating its solutions is where TSP's beauty lies. 

The cities are very often real locations in practical applications, 

while travel routes are determined by distances. We will focus 

on the TSP instances that represent cities connected with road 

networks, where the distances represent the actual driven 

distance by automobiles. Maps will be used to display the 

results in order to improve comprehension and show how the 

solutions have practical applications. One could initially think 

that the issue can be resolved by just figuring out how long 

each potential tour is and choosing the shortest one. However, 

since the number of alternative tours grows factorially with the 

number of cities, this strategy is only practical for extremely 

small examples. For example, over 3 billion hours are feasible 

in only 14 cities. This "brute force" approach is 

computationally impractical for larger instances. Due to this, 

more complicated algorithms must be devised to successfully 

handle the problem, especially when large input datasets are 

involved [18], a classic graph-based optimization problem 

where a traveler must visit a given set of cities only once 

before returning to the starting point, while minimizing the 

total travel cost. 

To date, no known polynomial time algorithm can solve 
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every TSP instance. This means that it is NP-hard. Owing to 

this complexity, there have been numerous research regarding 

combinatorial optimization. TSP has proved itself as a 

benchmark to test any new optimization techniques as it has 

broad applications in different fields such as manufacturing, 

chip design, and logistics [19-21]. 

 Another perspective on the limitations of AI is the inability 

of the conventional AI techniques to scale up with 

developments in machine learning and optimization for 

information systems possessing big datasets, as well as the 

recent expansion in the industry, particularly energy and 

pharmaceuticals. Computational intelligence, a field dedicated 

to developing intelligent computational models that can 

interpret raw numerical data in real time and provide high 

reliability and minimal errors for engineering and commercial 

applications, has been made possible by this gap [22]. 

 Several heuristic and metaheuristic methods, for example, 

PSO, ACO, and EHO, have been developed for seeking an 

approximate solution for TSP. Each has its merits in a different 

way by trading off the accuracy of the solution against 

computing efficiency. For the best answers in smaller TSP 

scenarios, precise methods like branch-bound and Dynamic 

Programming have also been investigated. However, even 

though these exact methods ensure optimality, they are usually 

restricted to issues with fewer cities due to their large 

computational demands [12-14].  

The length of the optimal tour of TSP problems can be 

found as shown below [14], can be calculated by Eq. (1). 

 

𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑡𝑜𝑢𝑟 = 𝑑𝑝(𝑛)𝑝(1) + (∑ 𝑑𝑝(𝑖)𝑝(𝑖+1)
𝑛−1
𝑖=1 )  (1) 

 

where, p is an ordered list of cities, and p(i) and p(i+1) are 

successive locations in the tour, and p(i) and p(i+1) are 

consecutive cities, The distance between city 𝑝(𝑖) p(i) and city 

𝑝 (𝑖 + 1) p(i+1) is shown by the formula d(p(i), p(i+1)).  

TSP Applications  

• Logistics and supply chains: By minimizing delivery 

vehicle and truck routes, TSP reduces fuel usage and 

travel time [23]. 

• Manufacturing and production: It is used to schedule 

machine tasks and reduce travel time in electronics 

manufacturing, e.g., factories that manufacture printed 

circuit boards (PCBs) [24]. 

• Communications and networking: It is used to build 

wireless and wired networks and enhance data routing 

protocols to reduce delay [25]. 

• Health and medicine: It enables DNA sequencing to 

speed up diagnosis and planning of ambulance routes 

[26]. 

• Power and resource management: It conserves 

operating costs by allocating work crews and planning 

power plant maintenance [27]. 

• Traffic control and urban planning: It conserves 

operating costs and traffic jams by route planning for 

trash collection and regulating traffic lights [28]. 

This overall distance is to be minimized over all city 

orderings. Because of its practical relevance as well as its 

theoretical importance, TSP remains one of the most studied 

optimization problems. It has been applied in network 

architecture enhancement, reduction of production costs, and 

optimization of delivery routes. Further, the problem 

applicability has grown in a number of areas because of novel 

variants, which include the Vehicle Routing Problem and the 

multiple Traveling Salesman Problem. 

4. CLASSICAL ALGORITHMS TO SOLVE TSP 
 

Different exact algorithms such as BB and DP are used to 

solve the TSP. 
 

4.1 Branch and Bound (BB) 
 

General fashion for BB algorithms involves modeling the 

result space as a tree and also covering the tree exploring the 

most promising subtrees first [29].  

This is continued until either there are no subtrees into 

which to further break the problem, or we have arrived at a 

point where, if we continue, only inferior results will be set up. 

can be used to process TSP containing 40–60 cities [18]. 
 

4.2 Dynamic Programming (DP) 
 

Dynamic Programming (DP) is a very important fashion for 

efficiently calculating recurrences by storing partial results 

and reusing them when demanded [30]. 

It is a system for working on a complex problem by 

breaking it down into a collection of simpler sub problems. It 

demands veritably elegant expression of the approach and 

simple thinking and the rendering part is veritably easy. The 

idea is veritably simple if you have answered a problem with 

the given input, also save the result for future reference, to 

avoid working the same problem again, shortly' Flash back 

your history'. Still, in this process, if you observe some over-

lapping sub-problems, the given problem can be broken up 

into lower sub-problems and these lower sub-problems are in 

turn divided into still-lower bones Also, the optimal results of 

the sub-problems contribute to the optimal result of the given 

problem (appertained to as the Optimal Substructure Property 

[31]. 

There are two ways of doing this. 

1. Top-down launch working the given problem by breaking 

it down. However, and also just returns the saved answer, if 

you see that the problem has been answered already. However, 

break it and save the answer, if it has not been answered. This 

is generally easy to suppose and veritably intuitive. This is 

appertained to as Memorization.  

2. Bottom-Up dissect the problem and see the order, in 

which the sub-problems are answered and start working from 

the trivial sub-problem, up to the given problem. In this 

process, it's guaranteed that the sub-problems are answered 

before working on the problem. This is appertained to as 

Dynamic Programming.  

Steps followed while enforcing Dynamic Programming 1. 

Characterize the recursive structure of an optimal result, define 

recursively the value of an optimal result, Cipher, bottom up, 

the cost of a result, and construct an optimal result. This 

approach is also used to break the traveling salesperson 

problem but only for a limited number of metropolises Steps 

followed while implementing Dynamic Programming: 

i. Characterize the recursive structure of an optimal solution. 

ii. Define recursively the value of an optimal solution. 

iii. Compute, bottom up, the cost of a solution. 

iv. Construct an optimal solution. 

This approach is also used to solve the TSP but only for a 

limited number of cities [24]. 
 

 

5. HEURISTIC ALGORITHMS TO SOLVE TSP 
 

The different optimization algorithms such as PSO, ACO 

and EHO This section describes the methods used to solve the 
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TSP. 

 

5.1 Ant Colony Optimization (ACO) 

 

Is a metaheuristic search and optimization method inspired 

by the "intelligent" foraging behavior of natural ant colonies, 

and is widely used to solve (mostly combinatorial) 

optimization problems, The basic principle of ACO is that a 

colony of artificial ants work together to find the best path in 

a graph that represents a possible solution to the target problem, 

The way the artificial ants cooperate with each other is 

inspired by the way natural ants cooperate to find the shortest 

path between two points in a given terrain, such as their nest 

and a food source, When an ant constructs a possible solution, 

it deposits pheromones proportional to the quality of the 

solution in the region of the search space where the solution is 

located. Over time, the ants tend to converge on paths that 

represent close to optimal solutions in the search space [32]. 

 

 
 

Figure 1. Flowchart of the ACO algorithm 

 

Steps of the ACO Algorithm for Solving the TSP as shown 

in the Figure 1: 

1. Parameter Initialization: The number of ants, the 

number of cities, the initial pheromone level, and the 

algorithm parameters are defined as follows: 

• α: pheromone influence 

• Distance influence β 

• Pheromone evaporation rate (ρ) 

2. Solution Construction: Each ant builds 

probabilistically a tour to choose the next city based 

on pheromone level. Distances will be calculated by 

using the formula expressed in Eq. (2). 

 

𝑃𝑖𝑗 =
𝑇𝑖𝑗

𝑎∗𝜂𝑖𝑗
𝛽

∑ 𝑇𝑖𝑗
𝑎∗𝜂

𝑖𝑗
𝛽

𝑘𝜖𝑎𝑙𝑙𝑜𝑤𝑒𝑑

  (2) 

 

𝑃𝑖𝑗  = probability of moving from city (i) to city (j), 𝑇𝑖𝑗
𝑎 = 

Pheromone amount on edge i, j, 

𝜂𝑖𝑗
𝛽

 = 
1

𝑑𝑖𝑗
 : attractiveness (inverse of distance 𝑑𝑖𝑗). 

3. Pheromone Update: After all ants complete their 

tours, update the pheromone levels on the paths used 

by Eq. (3). 

 

𝑇𝑖𝑗 = (1 − 𝑝) ∗ 𝑇𝑖𝑗 + ∑ △ 𝑇𝑖𝑗
𝑘𝑚

𝑘=1   (3) 

 

p: Pheromone evaporation rate, 

△ 𝑇𝑖𝑗
𝑘 =

𝑄

𝐿𝑘
: Pheromone deposited by ant k, 𝑄: constant, 

𝐿𝑘: length of the tour constructed by ant k. 

4. Iteration: Repeat the above steps until a stopping 

criterion is met (e.g., a maximum number of 

iterations or minimal improvement in solution 

quality). 

5. Final Solution: The best tour found over all 

iterations represents the optimal or near-optimal 

solution for the TSP. 

 
ACO Pseudocode 

 

 
 

5.2 Particle Swarm Optimization (PSO) 

 

The PSO algorithm was derived from the collective 

behavior of birds and fish; in the PSO algorithm, the 

population consists of a large number of particles. Each 

particle representing a potential solution is a point in the search 

space, with a fitness value and velocity. PSO is conceptually 

very simple, requiring no derived information about the 

optimization function and using only elementary mathematical 

operators [33]. 

Steps of the PSO Algorithm for Solving the TSP as shown 

in the Figure 2: 

1. Initialization of Particles: 

• Each particle represents a solution (order of 

visiting cities). 

• Each particle is assigned a random position 

and velocity. 

2. Fitness Evaluation: Fitness = Length of the Tour 

Initialize parameters: α, β, ρ, Q, number of ants, number of cities 

Initialize pheromone levels τ on all edges to a small constant 

 

For each iteration: 

    For each ant k (from 1 to number of ants): 

        Place ant k on a random starting city 

        For each city in the tour: 

            Select the next city j to visit based on probability: 

                P_{ij} = [τ_{ij}^α * η_{ij}^β] / Σ[τ_{ik}^α * 

η_{ik}^β] for allowed cities k 

            Add city j to the ant's tour and move the ant to city j 

        Complete the tour and return to the starting city 

        Compute the tour length L_k for ant k 

 

    Update pheromones on all edges: 

        For each edge (i, j): 

            Evaporate pheromone: τ_{ij} = (1 - ρ) * τ_{ij} 

            Deposit new pheromone for each ant k that used edge (i, 

j): 

                τ_{ij} = τ_{ij} + Δτ_{ij}^k where Δτ_{ij}^k = Q / L_k 

 

Repeat until stopping condition (e.g., max iterations or no 

improvement) 

 

Return the shortest tour found 
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(Calculate the total distance between cities in the tour. 

The goal is to minimize this length). 

3. Velocity Update: The velocity of each particle is 

updated based on its personal best position (pBest) 

and the global best position of the swarm (gBest) can 

be calculated by Eq. (4): 

 
𝑉𝑖  = 𝜔 ∗ 𝑉𝑖 +  𝑐1 ∗ 𝑟1 ∗ (𝑝𝐵𝑒𝑠𝑡𝑖 − 𝑋𝑖) + 𝑐2 ∗ 𝑟2 ∗

(𝑔𝐵𝑒𝑠𝑡 − 𝑋𝑖)  
(4) 

 

𝜔 : Inertia weight controls the impact of the previous 

velocity, 

𝑐1 , 𝑐2 : Learning coefficients, with one directing towards 

pBest and the other towards 𝑔𝐵𝑒𝑠𝑡,  

𝑟1, 𝑟2: Random numbers between (0 and 1). 

4. Position Update: The position of the particles (the 

order of the cities) is changed based on the velocity 

updated in the TSP (this is done by swapping or 

adjusting the order of the cities). 

5. Update pBest and gBest: 

• If the new solution is better than pBest, it is 

updated. 

• If the new solution is better than gBest, it is 

also updated. 

6. Iteration: Repeat updating velocity and position 

until the specified number of iterations or 

convergence is reached. 

 

PSO Pseudocode 

 

 

 
 

Figure 2. Flowchart of the PSO algorithm 

 

5.3 Elephant Herding Optimization (EHO) 

 

EHO are optimization problems that require a swarm-based 

metaheuristic search approach, which was defined by Wang 

towards the end of 2015, The algorithm simulates how real 

elephants in a clan would herd their herds [2, 9]. 

 The following is a summary of the herding behavior: 

• The swarms of elephants are divided into several smaller 

groups, known as clans, that are made up of several female 

elephants and their calves [2, 9]. 

• A matriarch, or adult female, is in charge of overseeing 

every clan [2, 9].  

• A male calf in a clan leaves the group when it reaches 

adulthood [2, 9].  

Steps of the EHO Algorithm for Solving the TSP as shown 

in the Figure  3: 

1. Initialization: Randomly initialize positions (tours) for 

each elephant in clans.  

2. Fitness Evaluation: 

• Fitness = Total distance of the tour (sum of 

distances between cities). 

• Minimize this fitness function. 

3. Clan Grouping: Divide elephants into clans (subgroups). 

4. Position Update: Update position of each elephant by Eq. 

(5). 

 

𝑋𝑖𝑗
𝑡+1 = 𝑋𝑏𝑒𝑠𝑡,𝑗

𝑡 + 𝑎 ∗ (𝑋𝑖𝑗
𝑡 − 𝑋𝑐𝑒𝑛𝑡𝑒𝑟,𝑗

𝑡 ) ∗ 𝑟 (5) 

 

𝑋𝑖𝑗
𝑡 : position of elephant i, 𝑋𝑏𝑒𝑠𝑡,𝑗

𝑡 : Best elephant in the clan, 

𝑋𝑐𝑒𝑛𝑡𝑒𝑟,𝑗
𝑡 : clan center, 𝑎: learning rate, 𝑟: random value in [0,1]. 

5. Migration (Separation Operator): Replace worst 

elephant (longest tour) with a random tour by Eq. (6). 

 
𝑋𝑤𝑜𝑟𝑠𝑡 = 𝑋𝑛𝑒𝑤 𝑟𝑎𝑛𝑑𝑜𝑚  (6) 

 

 

 

Initialize parameters: 

    num_particles = Number of particles, num_iterations = 

Maximum number of iterations 

cities = List of cities (coordinates)  

 w = Inertia weight, c1 = Cognitive coefficient, c2 = Social 

coefficient 

Initialize particles: 

    For each particle i from 1 to num_particles: 

        Initialize position X[i] randomly (random tour of cities) 

        Initialize velocity V[i] randomly 

        Initialize pBest[i] = X[i] (best known position of particle) 

        Calculate fitness(pBest[i]) and set pBestFitness[i] = 

fitness(pBest[i]) 

    gBest = Best particle's position in the swarm 

    gBestFitness = Best fitness value among all particles 

For iteration = 1 to num_iterations: 

    For each particle i from 1 to num_particles: 

        Update velocity: 

            V[i] = w * V[i] + c1 * r1 * (pBest[i] - X[i]) + c2 * r2 * 

(gBest - X[i]) 

        Update position: 

            X[i] = UpdatePosition(X[i], V[i])  

        Calculate fitness(X[i]) 

       Update pBest 

        If fitness(X[i]) < pBestFitness[i]: 

            pBest[i] = X[i] 

            pBestFitness[i] = fitness(X[i]) 

        // Update gBest 

        If fitness(X[i]) < gBestFitness: 

            gBest = X[i] 

            gBestFitness = fitness(X[i]) 

   Return gBest as the best tour found 
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𝑋𝑤𝑜𝑟𝑠𝑡: is the current solution of the worst elephant, i.e., the 

elephant with the longest tour, 𝑋𝑛𝑒𝑤 𝑟𝑎𝑛𝑑𝑜𝑚 : is a newly 

generated random solution, created by randomly shuffling the 

cities to form a new tour. 

6. Update Global Best: If a new best tour is found, update 

the global best solution. 

7. Iteration: Repeat until convergence or maximum 

iterations reached. 

 

EHO Pseudocode 

 

 
 

 
 

Figure 3. Flowchart of the EHO algorithm 

6. EXPERIMENT 

 

This section will analyze the results of the proposed 

algorithms for solving the TSP by using a number of 

performance indicators that came from the implementation of 

the following algorithms: ACO, PSO, BB, DP, and EHO. A 

number of criteria were used to analyze the performance, 

including memory consumption (data space, instruction space, 

environment stack space), execution time, CPU consumption, 

time and space complexity, and solution quality (optimal cost), 

these metrics evaluate the effectiveness and practicality of 

different methods for real-world applications in logistics, 

transport, and robotics. 

• Execution Time: In a real-time scenario, 

such as robotics and transport route 

optimization, this metric gauges how fast an 

algorithm can compute a solution. 

• CPU Consumption: It is a measure of 

computational efficiency having an impact 

on cost in the cloud and the lifespan of the 

battery in the embedded device. 

• Space and Time Complexity: This 

describes scalability—exact algorithms (i.e., 

Branch & Bound) require exponential 

memory and time, but metaheuristic 

algorithms (ACO, PSO, EHO) offer 

effective, low-memory solutions. 

• Solution Quality: This analyzes how close 

a computed solution is to the optimal one, 

also known as the answer, and tradeoffs in 

speed and accuracy for scenarios like 

network planning and logistics. 

The effectiveness of the algorithms (ACO, PSO, EHO) for 

solving TSP depends on the parameter values. Tuning the 

parameters ensures faster convergence rates and higher-

quality solutions. 

Key Parameters' Effect on Performance: 

• ACO: (β, p) shape the balance between 

exploration and exploitation. 

• PSO: (ω, c1, c2) Compute the convergence 

speed and diversity of searches. 

• EHO:(N, a) control exploration and stability. 

Optimization Strategies: 

• Manual Tuning: Empirically made changes 

on the basis of experimental findings. 

• Adaptive Tuning: Dynamic parameter 

adjustments during execution. 

On a laptop computer (HP EliteBook x360 1030 G3) with 

an Intel(R) Core (TM) i5-8350U CPU @ 1.70GHz 1.90GHz, 

16 GB of RAM, and Microsoft Windows 10 Pro, the code was 

run and the results were extracted using MATLAB. The 

comparison is shown below. 

 

 
7. RESULT BASED ON THE NUMBER OF CITIES 

 

In order to have a better understanding of how different 

algorithms perform when the number of cities is changed in 

the Traveling Salesman Problem (TSP), the findings have been 

structured into a formal overview that captures dominant 

trends and general observations. Instead of describing each 

data point separately, we provide a summary analysis 

supported by a Table 2 that shows performance measures. 

 

# Initialize parameters 

Initialize elephants with random tours 

Set number of clans, elephants per clan, and max iterations 

Initialize global best (gBest) 

 

# Main loop 

For iteration = 1 to max_iterations: 

    For each clan: 

        Compute clan center (E_center) 

        For each elephant: 

            Update position: X_i = X_best + α * (X_i - 

E_center) * random_factor 

            Ensure valid tour and update personal best (pBest) 

        Update clan’s best (gBest) 

     

    # Migration step 

    Replace worst elephant with a new random tour 

    Update gBest if a better solution is found 

 

# Termination 

Return best tour (gBest) 
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General Observations: 

• BB and DP: These classical algorithms performed

well for small instances (5 or 10 cities), which

returned optimal and correct solutions. However,

with an increasing number of cities, their time

complexity and space complexity soar exponentially,

and hence they are not appropriate for large instances. 

• ACO and PSO: These swarm-based techniques

provided a good trade-off between optimal cost and

execution time. ACO was cost-effective while PSO

was quick to execute but both were parameter-

sensitive.

Table 2. Excremental results to solve TSP 

Cities Algorithm Best Cost Execution Time CPU Time Used Time Complexity 

5 

BB 160.6408513 0.0635367 0.015625 120 

DP 152.9782251 0.0631584 0 800 

ACO 265.3240882 0.0966347 0.03125 12500 

PSO 259.8042864 0.0748312 0.015625 2500 

EHO 24.93147748 0.0765446 0 2500 

10 

BB 242.2875741 0.3512854 0.328125 3628800 

DP 310.9579789 0.181423 0.125 102400 

ACO 264.8897796 0.1290255 0.0625 100000 

PSO 302.4137614 0.1214331 0.03125 10000 

EHO 192.0919305 0.0764755 0.015625 10000 

14 

BB 291.6526084 88.3170388 88.328125 87178291200 

DP 352.7964137 4.4405244 4.4375 3211264 

ACO 393.5055628 0.1603183 0.078125 274400 

PSO 481.7481027 0.0740104 0.015625 19600 

EHO 273.6401486 0.0749235 0 19600 

19 

BB Reaching the solution requires an unacceptably high period of time. 

DP 426.2904349 267.732404 268.078125 189267968 

ACO 426.1901479 0.2017091 0.125 685900 

PSO 702.5979029 0.0744863 0.015625 36100 

EHO 571.0097348 0.0779557 0 36100 

100 

BB Reaching the solution requires an unacceptably high period of time. 

DP Reaching the solution requires an unacceptably high period of time. 

ACO 1007.00986 2.009875 1.9375 100000000 

PSO 4495.766986 0.0987641 0.03125 1000000 

EHO 3924.741041 0.1360135 0.046875 1000000 

150s 

BB Reaching the solution requires an unacceptably high period of time. 

DP Reaching the solution requires an unacceptably high period of time. 

ACO 1333.117111 3.0940642 3.03125 337500000 

PSO 6886.673 0.1309863 0.0625 2250000 

EHO 6352.343576 0.1166032 0.03125 2250000 

• EHO: This algorithm always provided the optimal

cost in most cases and had low execution time,

especially in big city sets. It was highly scalable and

efficient and thus particularly well-suited for big and

intricate datasets.

Trends: 

• For 5 and 10 cities: All algorithms provide solutions

within reasonable execution time. EHO performs

better than others regarding solution quality.

• For 14 and 19 cities: Classical algorithms begin

lagging behind. EHO performs very well; ACO and

PSO scale fairly well.

• For 100 and 150 cities: Swarm-based algorithms

alone (ACO, PSO, EHO) provide solutions within

reasonable time. EHO and ACO perform better than

PSO on cost quality.

8. ANALYSES

We may infer from the data that the meta-heuristic 

algorithms (ACO, PSO, and EHO) performed better as the 

number of cities rose as compared to the BB and DP 

algorithms. EHO came out for providing notably lower 

optimal costs than the other algorithms, while ACO and PSO 

demonstrated balanced performance between execution time 

and ideal cost. The conventional algorithms (BB and DP) are 

less efficient when working with more cities because of their 

great temporal and spatial complexity. 

Critical Analysis: 

Based on the research results, the performance of each 

algorithm is highly sensitive to the size and type of problem. 

ACO and PSO are suitable for deterministic methods, while 

EHO and BB are ideal for small TSP cases. 

9. CONCLUSIONS

follows from the analysis in the above discussion that both 

as can be seen from the carried-out analysis, execution of TSP 

algorithms primarily relies on both dataset size (number of 

cities) and time of execution necessary. Traditional algorithms 

such as BB and DP executed perfectly with small problem 

sizes (e.g., 10 or 5 cities), yielding accurate and efficient 

outcomes. However, their lack of computational efficiency 

was felt as problems turned increasingly complex. As a 

contrast, metaheuristic algorithms, EHO, ACO, and PSO  were 

found more scalable and flexible with bigger data sets. 

Out of the tested algorithms, EHO returned the best costs 

with highest quality for all except one instance of the problem 

sizes and demonstrated its global search capability and 
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convergence property. ACO, on the other hand, had a very 

good cost-effectiveness/executions time ratio, particularly on 

large instances. PSO was also good but demonstrated 

variability with parameter settings. 

Future directions: 

For increasing the convergence rate and solution quality in 

the future research on TSP, researcher could focus on hybrid 

solutions incorporating local search and swarm intelligence 

together with AI-supported learning mechanisms. More 

sophisticated variations of TSP  such as the Vehicle Routing 

Problem and Dynamic TSP can further be augmented by 

adaptive and real-time optimization routines. Machine 

learning algorithms can further facilitate dynamic adjustment 

of parameters such that algorithms may automatically adapt to 

evolving problem instances. Additionally, the use of deep 

learning frameworks can facilitate faster computation and 

increased accuracy in real-world applications like smart 

logistics, autonomous navigation, and cooperative robots.  
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NOMENCLATURE 

ACO Ant Colony Optimization 

AI Artificial Intelligence 

BB Branch And Bound 

DP Dynamic Programming 

EHO Elephant Herding Optimization 

PSO Particle Swarm Optimization 

SI Swarm Intelligence 

Greek symbols 

Β Distance influence 

Ρ Pheromone evaporation rate 

Ω Inertia weight 

Subscripts 

α Pheromone Influence 

k Ant 

t Elephant 

379




