
Charting New Routes: Comparing Swarm-Based Approaches to the Traveling Salesman

Problem

Ali Hassan Ahmed Wadi1* , Shahla Uthman Umar2

1 Computer Science Department, College of Computer Science and Information Technology, University of Kirkuk, Kirkuk

36001, Iraq
2 Software Department, College of Computer Science and Information Technology, University of Kirkuk, Kirkuk 36001, Iraq

Corresponding Author Email: stcm23009@uokirkuk.edu.iq

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/ijcmem.130214 ABSTRACT

Received: 19 December 2024

Revised: 15 March 2025

Accepted: 26 March 2025

Available online: 30 June 2025

To solve the Traveling Salesman Problem (TSP), this research compares three swarm-

based optimization algorithms: Particle Swarm Optimization (PSO), Ant Colony

Optimization (ACO), and Elephant Herding Optimization (EHO). Finding the shortest path

to visit each city once and return to the starting point is the goal of the traditional

combinatorial optimization problem, TSP. Exact techniques such as Branch and Bound

(BB) and Dynamic Programming (DP) can effectively handle smaller TSP cases, but they

become unfeasible as the number of cities increases. The solutions offered by metaheuristic

algorithms are more scalable. The algorithms' performance is assessed in this study based

on execution time, scalability, and solution quality for a range of city sizes (5 to 150).

Results reveal that EHO surpasses the others in achieving lower optimal costs.

Keywords:

Traveling Salesman Problem, Elephant

Herding Optimization, Ant Colony

Optimization, Particle Swarm Optimization,

Branch and Bound, Dynamic Programming,

optimization algorithms, combinatorial

optimization

1. INTRODUCTION

Since the creation of mortal beings, they have constantly

sought perfection in all aspects of life. One of the most

important trials in the world is to find a stylish result. In reality,

numerous complex problems, similar to transportation,

warehousing, where to vend products, communication

network design, scheduling, and planning, are frequently too

large and complex to be optimally answered in a reasonable

time. Nonetheless, chancing a result is still pivotal, so the

volition is to originally accept a sour result with a respectable

position of delicacy and optimization time [1].

Optimization problems have become so complicated that

they are difficult for traditional programming approaches to

decompose and optimize efficiently. A mass grounded

metaheuristic optimization methods have been developed

recently [2].

The machine learning models, especially ensemble learning

approaches, to show great promise in solving complicated

optimization issues by utilizing a variety of data-driven

strategies to improve decision-making and prediction accuracy

[3]. Used address challenging optimization issues is

represented by swarm intelligence (SI) algorithms. Its goal is

to model the collective behavior of basic agents as they

attempt to accomplish goals like protecting against attacks and

finding food. Even though each agent is one capable of basic

tasks, when the work together and share knowledge, they can

display extraordinary intelligence [4]. SI algorithms were first

developed at the University of Michigan in the 1960s. John

Holland and his associates wrote the first book on the GA in

1960, and it was later developed and published in 1970 and

1983 [5]. Have been extensively used by experimenters to

optimize results and give sufficiently fit results for objective

functions in optimization problems [2]. In similar problems,

the ultimate thing is frequently to maximize or minimize an

objective function, which is used to estimate the quality of the

performing result. These algorithms aim to ameliorate or

minimize the problem's objective function, and the Traveling

Salesman Problem (TSP) is constantly used to test their

effectiveness and estimate their performance. The TSP as it

needs changing the shortest path to visit a set of big cities, the

making it a perfect tool for assessing the effectiveness of

different algorithms. A number of metaheuristic algorithms,

including ACO, PSO, and EHO, are utilized to find a solution

to the TSP, a classic problem in route optimization. Yet, a

thorough comparison of the algorithms based on execution

time, use of resources, and solution quality is still required. It

is seen that (EHO) is quicker than the others, and hence all the

more useful for big instances of (TSP) where repair has to be

executed in a hurry. With emphasis laid on computational

complexity and the quest for finding a balance between

accuracy and efficiency, the present study attempts to evaluate

the performance of these algorithms over various sets of

datasets such that one can offer recommendations towards the

optimal strategy to adopt for use in applications related to

automated manufacturing, smart transportation, and logistics

International Journal of Computational Methods and
Experimental Measurements

Vol. 13, No. 2, June, 2025, pp. 371-379

Journal homepage: http://iieta.org/journals/ijcmem

371

https://orcid.org/0009-0005-0088-244X
http://orcid.org/0000-0002-7746-1994
https://crossmark.crossref.org/dialog/?doi=10.18280/ijcmem.130214&domain=pdf

optimization.

2. LITERATURE REVIEW

From 2000 till 2024, it has been two decades of research to

implement artificial intelligence (AI) and metaheuristic

algorithms to determine the solution of the Traveling

Salesman Problem (TSP), a popular NP-hard combinatorial

optimization problem. It was all about creating and enhancing

various algorithms like Branch and Bound (BB), Dynamic

Programming (DP), Ant Colony Optimization (ACO), Particle

Swarm Optimization (PSO), and recently Elephant Herding

Optimization (EHO).

1) Evolution and Trends in TSP Algorithms:

TSP solutions in the early stages were exact in nature like

BB and DP [6, 7], which did not work for large datasets since

they were exponential in terms of memory and time

requirements. SI techniques like ACO and PSO were

introduced to combat the same. ACO is inspired by ant

foraging behavior [8] and PSO incorporates social

optimization. Both of them were susceptible to premature

convergence and parameter sensitivity [9]. EHO inspired by

elephant herd behavior assisted in improving execution times

and solution quality for large TSP instances [10], and the

strengths and weaknesses of the studies reviewed are

summarized in Table 1.

2) Thematic Grouping of Literature:

The literature studied can be classified as:

➢ Algorithmic Efficiency Improvements:

• Zhang [11] strengthened often used paths

to improve ACO, speeding up the solution

process.

• Emambocus [12] achieved more accurate

results using PSO with genetic algorithms.

• Marqas et al. [13] improved performance

on huge datasets by optimizing EHO

parameters.

➢ Handling Large-Scale Datasets:

• Robati et al. [14] modified PSO to make

efficient usage feasible in larger instances

of TSP.

• Li et al. [15] and Zhang and Gao [16]

confirmed EHO's effectiveness in scaling

across large-dimensional datasets.

➢ Dynamic and Adaptive Algorithms:

• A model of ACO that is capable of

adapting to varying city distances was

introduced by Zhou et al. [17].

3) Relevance to Current Study:

This paper evaluates three popular algorithms ACO, PSO,

and EHO using different dataset sizes. EHO consistently

outperforms ACO in terms of optimal cost, especially as the

number of cities increases. This highlights the increasing use

of swarm-based methods in areas such as dynamic routing,

transportation planning, and intelligent logistics systems. and

presents an EHO framework that decomposes the problem to

enable solution quality and scalability. The framework fills

current research gaps and provides a more flexible method

than TPS in resolving complex and large-size instances.

Table 1. Comparative summary of key studies

Year Algorithm Main Contribution Strengths Weaknesses

2010 ACO Enhanced pheromone-based search High efficiency on small datasets Limited on large datasets

2012 PSO Scalable search behavior Fast for large instances Parameter sensitive

2014 BB Accurate subproblem elimination Optimal for small inputs Impractical for large data

2015 PSO + GA Hybridized PSO for accuracy Improved results Complex implementation

2017 ACO Adaptive to dynamic data Responsive to changes Slower performance

2018 EHO New metaheuristic with fast convergence High quality on big data Less efficient on dynamic data

2019 DP Accurate results with caching Guarantees optimality High memory usage

2020 EHO Parameter-tuned EHO Enhanced efficiency Needs tuning expertise

2021 EHO Contextual performance analysis Versatile across scenarios May require longer time

2022 EHO Accelerated search and precision Better performance Requires high computing power

2023 EHO Large-scale dataset handling Robust output Not adaptive to dynamic input

2024 EHO Practical applications in logistics Real-world relevance May vary in unpredictable settings

3. TRAVELING SALESMAN PROBLEM (TSP)

In 1932, the mathematician Karl Menger first proposed the

TSP. The problem formulation sounds surprisingly simple:

consider a salesman who has to travel between several towns.

He starts in his home town, visits each of the cities on some

list exactly once, and then returns to the starting point.

Reducing the overall distance traveled is the aim. Even while

it seems straightforward, the more cities there are, the more

challenging it becomes to solve this problem optimally.

Mathematicians and scholars have been looking for effective

answers for nearly a century. From its simple definition to the

difficulty of illustrating its solutions is where TSP's beauty lies.

The cities are very often real locations in practical applications,

while travel routes are determined by distances. We will focus

on the TSP instances that represent cities connected with road

networks, where the distances represent the actual driven

distance by automobiles. Maps will be used to display the

results in order to improve comprehension and show how the

solutions have practical applications. One could initially think

that the issue can be resolved by just figuring out how long

each potential tour is and choosing the shortest one. However,

since the number of alternative tours grows factorially with the

number of cities, this strategy is only practical for extremely

small examples. For example, over 3 billion hours are feasible

in only 14 cities. This "brute force" approach is

computationally impractical for larger instances. Due to this,

more complicated algorithms must be devised to successfully

handle the problem, especially when large input datasets are

involved [18], a classic graph-based optimization problem

where a traveler must visit a given set of cities only once

before returning to the starting point, while minimizing the

total travel cost.

To date, no known polynomial time algorithm can solve

372

every TSP instance. This means that it is NP-hard. Owing to

this complexity, there have been numerous research regarding

combinatorial optimization. TSP has proved itself as a

benchmark to test any new optimization techniques as it has

broad applications in different fields such as manufacturing,

chip design, and logistics [19-21].

 Another perspective on the limitations of AI is the inability

of the conventional AI techniques to scale up with

developments in machine learning and optimization for

information systems possessing big datasets, as well as the

recent expansion in the industry, particularly energy and

pharmaceuticals. Computational intelligence, a field dedicated

to developing intelligent computational models that can

interpret raw numerical data in real time and provide high

reliability and minimal errors for engineering and commercial

applications, has been made possible by this gap [22].

 Several heuristic and metaheuristic methods, for example,

PSO, ACO, and EHO, have been developed for seeking an

approximate solution for TSP. Each has its merits in a different

way by trading off the accuracy of the solution against

computing efficiency. For the best answers in smaller TSP

scenarios, precise methods like branch-bound and Dynamic

Programming have also been investigated. However, even

though these exact methods ensure optimality, they are usually

restricted to issues with fewer cities due to their large

computational demands [12-14].

The length of the optimal tour of TSP problems can be

found as shown below [14], can be calculated by Eq. (1).

𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑡𝑜𝑢𝑟 = 𝑑𝑝(𝑛)𝑝(1) + (∑ 𝑑𝑝(𝑖)𝑝(𝑖+1)
𝑛−1
𝑖=1) (1)

where, p is an ordered list of cities, and p(i) and p(i+1) are

successive locations in the tour, and p(i) and p(i+1) are

consecutive cities, The distance between city 𝑝(𝑖) p(i) and city

𝑝 (𝑖 + 1) p(i+1) is shown by the formula d(p(i), p(i+1)).

TSP Applications

• Logistics and supply chains: By minimizing delivery

vehicle and truck routes, TSP reduces fuel usage and

travel time [23].

• Manufacturing and production: It is used to schedule

machine tasks and reduce travel time in electronics

manufacturing, e.g., factories that manufacture printed

circuit boards (PCBs) [24].

• Communications and networking: It is used to build

wireless and wired networks and enhance data routing

protocols to reduce delay [25].

• Health and medicine: It enables DNA sequencing to

speed up diagnosis and planning of ambulance routes

[26].

• Power and resource management: It conserves

operating costs by allocating work crews and planning

power plant maintenance [27].

• Traffic control and urban planning: It conserves

operating costs and traffic jams by route planning for

trash collection and regulating traffic lights [28].

This overall distance is to be minimized over all city

orderings. Because of its practical relevance as well as its

theoretical importance, TSP remains one of the most studied

optimization problems. It has been applied in network

architecture enhancement, reduction of production costs, and

optimization of delivery routes. Further, the problem

applicability has grown in a number of areas because of novel

variants, which include the Vehicle Routing Problem and the

multiple Traveling Salesman Problem.

4. CLASSICAL ALGORITHMS TO SOLVE TSP

Different exact algorithms such as BB and DP are used to

solve the TSP.

4.1 Branch and Bound (BB)

General fashion for BB algorithms involves modeling the

result space as a tree and also covering the tree exploring the

most promising subtrees first [29].

This is continued until either there are no subtrees into

which to further break the problem, or we have arrived at a

point where, if we continue, only inferior results will be set up.

can be used to process TSP containing 40–60 cities [18].

4.2 Dynamic Programming (DP)

Dynamic Programming (DP) is a very important fashion for

efficiently calculating recurrences by storing partial results

and reusing them when demanded [30].

It is a system for working on a complex problem by

breaking it down into a collection of simpler sub problems. It

demands veritably elegant expression of the approach and

simple thinking and the rendering part is veritably easy. The

idea is veritably simple if you have answered a problem with

the given input, also save the result for future reference, to

avoid working the same problem again, shortly' Flash back

your history'. Still, in this process, if you observe some over-

lapping sub-problems, the given problem can be broken up

into lower sub-problems and these lower sub-problems are in

turn divided into still-lower bones Also, the optimal results of

the sub-problems contribute to the optimal result of the given

problem (appertained to as the Optimal Substructure Property

[31].

There are two ways of doing this.

1. Top-down launch working the given problem by breaking

it down. However, and also just returns the saved answer, if

you see that the problem has been answered already. However,

break it and save the answer, if it has not been answered. This

is generally easy to suppose and veritably intuitive. This is

appertained to as Memorization.

2. Bottom-Up dissect the problem and see the order, in

which the sub-problems are answered and start working from

the trivial sub-problem, up to the given problem. In this

process, it's guaranteed that the sub-problems are answered

before working on the problem. This is appertained to as

Dynamic Programming.

Steps followed while enforcing Dynamic Programming 1.

Characterize the recursive structure of an optimal result, define

recursively the value of an optimal result, Cipher, bottom up,

the cost of a result, and construct an optimal result. This

approach is also used to break the traveling salesperson

problem but only for a limited number of metropolises Steps

followed while implementing Dynamic Programming:

i. Characterize the recursive structure of an optimal solution.

ii. Define recursively the value of an optimal solution.

iii. Compute, bottom up, the cost of a solution.

iv. Construct an optimal solution.

This approach is also used to solve the TSP but only for a

limited number of cities [24].

5. HEURISTIC ALGORITHMS TO SOLVE TSP

The different optimization algorithms such as PSO, ACO

and EHO This section describes the methods used to solve the

373

TSP.

5.1 Ant Colony Optimization (ACO)

Is a metaheuristic search and optimization method inspired

by the "intelligent" foraging behavior of natural ant colonies,

and is widely used to solve (mostly combinatorial)

optimization problems, The basic principle of ACO is that a

colony of artificial ants work together to find the best path in

a graph that represents a possible solution to the target problem,

The way the artificial ants cooperate with each other is

inspired by the way natural ants cooperate to find the shortest

path between two points in a given terrain, such as their nest

and a food source, When an ant constructs a possible solution,

it deposits pheromones proportional to the quality of the

solution in the region of the search space where the solution is

located. Over time, the ants tend to converge on paths that

represent close to optimal solutions in the search space [32].

Figure 1. Flowchart of the ACO algorithm

Steps of the ACO Algorithm for Solving the TSP as shown

in the Figure 1:

1. Parameter Initialization: The number of ants, the

number of cities, the initial pheromone level, and the

algorithm parameters are defined as follows:

• α: pheromone influence

• Distance influence β

• Pheromone evaporation rate (ρ)

2. Solution Construction: Each ant builds

probabilistically a tour to choose the next city based

on pheromone level. Distances will be calculated by

using the formula expressed in Eq. (2).

𝑃𝑖𝑗 =
𝑇𝑖𝑗

𝑎∗𝜂𝑖𝑗
𝛽

∑ 𝑇𝑖𝑗
𝑎∗𝜂

𝑖𝑗
𝛽

𝑘𝜖𝑎𝑙𝑙𝑜𝑤𝑒𝑑

 (2)

𝑃𝑖𝑗 = probability of moving from city (i) to city (j), 𝑇𝑖𝑗
𝑎 =

Pheromone amount on edge i, j,

𝜂𝑖𝑗
𝛽

 =
1

𝑑𝑖𝑗
 : attractiveness (inverse of distance 𝑑𝑖𝑗).

3. Pheromone Update: After all ants complete their

tours, update the pheromone levels on the paths used

by Eq. (3).

𝑇𝑖𝑗 = (1 − 𝑝) ∗ 𝑇𝑖𝑗 + ∑ △ 𝑇𝑖𝑗
𝑘𝑚

𝑘=1 (3)

p: Pheromone evaporation rate,

△ 𝑇𝑖𝑗
𝑘 =

𝑄

𝐿𝑘
: Pheromone deposited by ant k, 𝑄: constant,

𝐿𝑘: length of the tour constructed by ant k.

4. Iteration: Repeat the above steps until a stopping

criterion is met (e.g., a maximum number of

iterations or minimal improvement in solution

quality).

5. Final Solution: The best tour found over all

iterations represents the optimal or near-optimal

solution for the TSP.

ACO Pseudocode

5.2 Particle Swarm Optimization (PSO)

The PSO algorithm was derived from the collective

behavior of birds and fish; in the PSO algorithm, the

population consists of a large number of particles. Each

particle representing a potential solution is a point in the search

space, with a fitness value and velocity. PSO is conceptually

very simple, requiring no derived information about the

optimization function and using only elementary mathematical

operators [33].

Steps of the PSO Algorithm for Solving the TSP as shown

in the Figure 2:

1. Initialization of Particles:

• Each particle represents a solution (order of

visiting cities).

• Each particle is assigned a random position

and velocity.

2. Fitness Evaluation: Fitness = Length of the Tour

Initialize parameters: α, β, ρ, Q, number of ants, number of cities

Initialize pheromone levels τ on all edges to a small constant

For each iteration:

 For each ant k (from 1 to number of ants):

 Place ant k on a random starting city

 For each city in the tour:

 Select the next city j to visit based on probability:

 P_{ij} = [τ_{ij}^α * η_{ij}^β] / Σ[τ_{ik}^α *

η_{ik}^β] for allowed cities k

 Add city j to the ant's tour and move the ant to city j

 Complete the tour and return to the starting city

 Compute the tour length L_k for ant k

 Update pheromones on all edges:

 For each edge (i, j):

 Evaporate pheromone: τ_{ij} = (1 - ρ) * τ_{ij}

 Deposit new pheromone for each ant k that used edge (i,

j):

 τ_{ij} = τ_{ij} + Δτ_{ij}^k where Δτ_{ij}^k = Q / L_k

Repeat until stopping condition (e.g., max iterations or no

improvement)

Return the shortest tour found

374

(Calculate the total distance between cities in the tour.

The goal is to minimize this length).

3. Velocity Update: The velocity of each particle is

updated based on its personal best position (pBest)

and the global best position of the swarm (gBest) can

be calculated by Eq. (4):

𝑉𝑖 = 𝜔 ∗ 𝑉𝑖 + 𝑐1 ∗ 𝑟1 ∗ (𝑝𝐵𝑒𝑠𝑡𝑖 − 𝑋𝑖) + 𝑐2 ∗ 𝑟2 ∗

(𝑔𝐵𝑒𝑠𝑡 − 𝑋𝑖)
(4)

𝜔 : Inertia weight controls the impact of the previous

velocity,

𝑐1 , 𝑐2 : Learning coefficients, with one directing towards

pBest and the other towards 𝑔𝐵𝑒𝑠𝑡,

𝑟1, 𝑟2: Random numbers between (0 and 1).

4. Position Update: The position of the particles (the

order of the cities) is changed based on the velocity

updated in the TSP (this is done by swapping or

adjusting the order of the cities).

5. Update pBest and gBest:

• If the new solution is better than pBest, it is

updated.

• If the new solution is better than gBest, it is

also updated.

6. Iteration: Repeat updating velocity and position

until the specified number of iterations or

convergence is reached.

PSO Pseudocode

Figure 2. Flowchart of the PSO algorithm

5.3 Elephant Herding Optimization (EHO)

EHO are optimization problems that require a swarm-based

metaheuristic search approach, which was defined by Wang

towards the end of 2015, The algorithm simulates how real

elephants in a clan would herd their herds [2, 9].

 The following is a summary of the herding behavior:

• The swarms of elephants are divided into several smaller

groups, known as clans, that are made up of several female

elephants and their calves [2, 9].

• A matriarch, or adult female, is in charge of overseeing

every clan [2, 9].

• A male calf in a clan leaves the group when it reaches

adulthood [2, 9].

Steps of the EHO Algorithm for Solving the TSP as shown

in the Figure 3:

1. Initialization: Randomly initialize positions (tours) for

each elephant in clans.

2. Fitness Evaluation:

• Fitness = Total distance of the tour (sum of

distances between cities).

• Minimize this fitness function.

3. Clan Grouping: Divide elephants into clans (subgroups).

4. Position Update: Update position of each elephant by Eq.

(5).

𝑋𝑖𝑗
𝑡+1 = 𝑋𝑏𝑒𝑠𝑡,𝑗

𝑡 + 𝑎 ∗ (𝑋𝑖𝑗
𝑡 − 𝑋𝑐𝑒𝑛𝑡𝑒𝑟,𝑗

𝑡) ∗ 𝑟 (5)

𝑋𝑖𝑗
𝑡 : position of elephant i, 𝑋𝑏𝑒𝑠𝑡,𝑗

𝑡 : Best elephant in the clan,

𝑋𝑐𝑒𝑛𝑡𝑒𝑟,𝑗
𝑡 : clan center, 𝑎: learning rate, 𝑟: random value in [0,1].

5. Migration (Separation Operator): Replace worst

elephant (longest tour) with a random tour by Eq. (6).

𝑋𝑤𝑜𝑟𝑠𝑡 = 𝑋𝑛𝑒𝑤 𝑟𝑎𝑛𝑑𝑜𝑚 (6)

Initialize parameters:

 num_particles = Number of particles, num_iterations =

Maximum number of iterations

cities = List of cities (coordinates)

 w = Inertia weight, c1 = Cognitive coefficient, c2 = Social

coefficient

Initialize particles:

 For each particle i from 1 to num_particles:

 Initialize position X[i] randomly (random tour of cities)

 Initialize velocity V[i] randomly

 Initialize pBest[i] = X[i] (best known position of particle)

 Calculate fitness(pBest[i]) and set pBestFitness[i] =

fitness(pBest[i])

 gBest = Best particle's position in the swarm

 gBestFitness = Best fitness value among all particles

For iteration = 1 to num_iterations:

 For each particle i from 1 to num_particles:

 Update velocity:

 V[i] = w * V[i] + c1 * r1 * (pBest[i] - X[i]) + c2 * r2 *

(gBest - X[i])

 Update position:

 X[i] = UpdatePosition(X[i], V[i])

 Calculate fitness(X[i])

 Update pBest

 If fitness(X[i]) < pBestFitness[i]:

 pBest[i] = X[i]

 pBestFitness[i] = fitness(X[i])

 // Update gBest

 If fitness(X[i]) < gBestFitness:

 gBest = X[i]

 gBestFitness = fitness(X[i])

 Return gBest as the best tour found

375

𝑋𝑤𝑜𝑟𝑠𝑡: is the current solution of the worst elephant, i.e., the

elephant with the longest tour, 𝑋𝑛𝑒𝑤 𝑟𝑎𝑛𝑑𝑜𝑚 : is a newly

generated random solution, created by randomly shuffling the

cities to form a new tour.

6. Update Global Best: If a new best tour is found, update

the global best solution.

7. Iteration: Repeat until convergence or maximum

iterations reached.

EHO Pseudocode

Figure 3. Flowchart of the EHO algorithm

6. EXPERIMENT

This section will analyze the results of the proposed

algorithms for solving the TSP by using a number of

performance indicators that came from the implementation of

the following algorithms: ACO, PSO, BB, DP, and EHO. A

number of criteria were used to analyze the performance,

including memory consumption (data space, instruction space,

environment stack space), execution time, CPU consumption,

time and space complexity, and solution quality (optimal cost),

these metrics evaluate the effectiveness and practicality of

different methods for real-world applications in logistics,

transport, and robotics.

• Execution Time: In a real-time scenario,

such as robotics and transport route

optimization, this metric gauges how fast an

algorithm can compute a solution.

• CPU Consumption: It is a measure of

computational efficiency having an impact

on cost in the cloud and the lifespan of the

battery in the embedded device.

• Space and Time Complexity: This

describes scalability—exact algorithms (i.e.,

Branch & Bound) require exponential

memory and time, but metaheuristic

algorithms (ACO, PSO, EHO) offer

effective, low-memory solutions.

• Solution Quality: This analyzes how close

a computed solution is to the optimal one,

also known as the answer, and tradeoffs in

speed and accuracy for scenarios like

network planning and logistics.

The effectiveness of the algorithms (ACO, PSO, EHO) for

solving TSP depends on the parameter values. Tuning the

parameters ensures faster convergence rates and higher-

quality solutions.

Key Parameters' Effect on Performance:

• ACO: (β, p) shape the balance between

exploration and exploitation.

• PSO: (ω, c1, c2) Compute the convergence

speed and diversity of searches.

• EHO:(N, a) control exploration and stability.

Optimization Strategies:

• Manual Tuning: Empirically made changes

on the basis of experimental findings.

• Adaptive Tuning: Dynamic parameter

adjustments during execution.

On a laptop computer (HP EliteBook x360 1030 G3) with

an Intel(R) Core (TM) i5-8350U CPU @ 1.70GHz 1.90GHz,

16 GB of RAM, and Microsoft Windows 10 Pro, the code was

run and the results were extracted using MATLAB. The

comparison is shown below.

7. RESULT BASED ON THE NUMBER OF CITIES

In order to have a better understanding of how different

algorithms perform when the number of cities is changed in

the Traveling Salesman Problem (TSP), the findings have been

structured into a formal overview that captures dominant

trends and general observations. Instead of describing each

data point separately, we provide a summary analysis

supported by a Table 2 that shows performance measures.

Initialize parameters

Initialize elephants with random tours

Set number of clans, elephants per clan, and max iterations

Initialize global best (gBest)

Main loop

For iteration = 1 to max_iterations:

 For each clan:

 Compute clan center (E_center)

 For each elephant:

 Update position: X_i = X_best + α * (X_i -

E_center) * random_factor

 Ensure valid tour and update personal best (pBest)

 Update clan’s best (gBest)

 # Migration step

 Replace worst elephant with a new random tour

 Update gBest if a better solution is found

Termination

Return best tour (gBest)

376

General Observations:

• BB and DP: These classical algorithms performed

well for small instances (5 or 10 cities), which

returned optimal and correct solutions. However,

with an increasing number of cities, their time

complexity and space complexity soar exponentially,

and hence they are not appropriate for large instances.

• ACO and PSO: These swarm-based techniques

provided a good trade-off between optimal cost and

execution time. ACO was cost-effective while PSO

was quick to execute but both were parameter-

sensitive.

Table 2. Excremental results to solve TSP

Cities Algorithm Best Cost Execution Time CPU Time Used Time Complexity

5

BB 160.6408513 0.0635367 0.015625 120

DP 152.9782251 0.0631584 0 800

ACO 265.3240882 0.0966347 0.03125 12500

PSO 259.8042864 0.0748312 0.015625 2500

EHO 24.93147748 0.0765446 0 2500

10

BB 242.2875741 0.3512854 0.328125 3628800

DP 310.9579789 0.181423 0.125 102400

ACO 264.8897796 0.1290255 0.0625 100000

PSO 302.4137614 0.1214331 0.03125 10000

EHO 192.0919305 0.0764755 0.015625 10000

14

BB 291.6526084 88.3170388 88.328125 87178291200

DP 352.7964137 4.4405244 4.4375 3211264

ACO 393.5055628 0.1603183 0.078125 274400

PSO 481.7481027 0.0740104 0.015625 19600

EHO 273.6401486 0.0749235 0 19600

19

BB Reaching the solution requires an unacceptably high period of time.

DP 426.2904349 267.732404 268.078125 189267968

ACO 426.1901479 0.2017091 0.125 685900

PSO 702.5979029 0.0744863 0.015625 36100

EHO 571.0097348 0.0779557 0 36100

100

BB Reaching the solution requires an unacceptably high period of time.

DP Reaching the solution requires an unacceptably high period of time.

ACO 1007.00986 2.009875 1.9375 100000000

PSO 4495.766986 0.0987641 0.03125 1000000

EHO 3924.741041 0.1360135 0.046875 1000000

150s

BB Reaching the solution requires an unacceptably high period of time.

DP Reaching the solution requires an unacceptably high period of time.

ACO 1333.117111 3.0940642 3.03125 337500000

PSO 6886.673 0.1309863 0.0625 2250000

EHO 6352.343576 0.1166032 0.03125 2250000

• EHO: This algorithm always provided the optimal

cost in most cases and had low execution time,

especially in big city sets. It was highly scalable and

efficient and thus particularly well-suited for big and

intricate datasets.

Trends:

• For 5 and 10 cities: All algorithms provide solutions

within reasonable execution time. EHO performs

better than others regarding solution quality.

• For 14 and 19 cities: Classical algorithms begin

lagging behind. EHO performs very well; ACO and

PSO scale fairly well.

• For 100 and 150 cities: Swarm-based algorithms

alone (ACO, PSO, EHO) provide solutions within

reasonable time. EHO and ACO perform better than

PSO on cost quality.

8. ANALYSES

We may infer from the data that the meta-heuristic

algorithms (ACO, PSO, and EHO) performed better as the

number of cities rose as compared to the BB and DP

algorithms. EHO came out for providing notably lower

optimal costs than the other algorithms, while ACO and PSO

demonstrated balanced performance between execution time

and ideal cost. The conventional algorithms (BB and DP) are

less efficient when working with more cities because of their

great temporal and spatial complexity.

Critical Analysis:

Based on the research results, the performance of each

algorithm is highly sensitive to the size and type of problem.

ACO and PSO are suitable for deterministic methods, while

EHO and BB are ideal for small TSP cases.

9. CONCLUSIONS

follows from the analysis in the above discussion that both

as can be seen from the carried-out analysis, execution of TSP

algorithms primarily relies on both dataset size (number of

cities) and time of execution necessary. Traditional algorithms

such as BB and DP executed perfectly with small problem

sizes (e.g., 10 or 5 cities), yielding accurate and efficient

outcomes. However, their lack of computational efficiency

was felt as problems turned increasingly complex. As a

contrast, metaheuristic algorithms, EHO, ACO, and PSO were

found more scalable and flexible with bigger data sets.

Out of the tested algorithms, EHO returned the best costs

with highest quality for all except one instance of the problem

sizes and demonstrated its global search capability and

377

convergence property. ACO, on the other hand, had a very

good cost-effectiveness/executions time ratio, particularly on

large instances. PSO was also good but demonstrated

variability with parameter settings.

Future directions:

For increasing the convergence rate and solution quality in

the future research on TSP, researcher could focus on hybrid

solutions incorporating local search and swarm intelligence

together with AI-supported learning mechanisms. More

sophisticated variations of TSP such as the Vehicle Routing

Problem and Dynamic TSP can further be augmented by

adaptive and real-time optimization routines. Machine

learning algorithms can further facilitate dynamic adjustment

of parameters such that algorithms may automatically adapt to

evolving problem instances. Additionally, the use of deep

learning frameworks can facilitate faster computation and

increased accuracy in real-world applications like smart

logistics, autonomous navigation, and cooperative robots.

REFERENCES

[1] Erfani, H., Zakizadeh, M. (2024). Meta-heuristic
algorithms A comprehensive review.
http://doi.org/10.13140/RG.2.2.34895.80801

[2] Almufti, S., Marqas, R., Asaad, R. (2019). Comparative
study between elephant herding optimization (EHO) and

U-turning ant colony optimization (U-TACO) in solving
symmetric traveling salesman problem (STSP). Journal
Of Advanced Computer Science & Technology, 8(2): 32.
https://sciencepubco.com/index.php/JACST/article/

view /29403.
[3] Nooruldeen, O., Baker, M.R., Aleesa, A.M., Ghareeb, A.,

Shaker, E.H. (2023). Strategies for predictive power:
Machine learning models in city-scale load forecasting.

e-Prime-Advances in Electrical Engineering, Electronics
and Energy, 6: 100392.
https://doi.org/10.1016/j.prime.2023.100392

[4] Rashid, T.A., Shekho Toghramchi, C.I., Sindi, H.,
Alsadoon, A., Bačanin, N., Umar, S.U., Shamsaldin,

A.S., Mohammadi, M. (2021). An improved BAT

algorithm for solving job scheduling problems in hotels

and restaurants. Artificial Intelligence: Theory and
Applications, 973: 155-171. https://doi.org/10.1007/978-

3-030-72711-6_9

[5] Umar, S.U., Rashid, T.A., Ahmed, A.M., Hassan, B.A.,
Baker, M.R. (2024). Modified bat algorithm: A newly
proposed approach for solving complex and real-world
problems. Soft Computing, 28(13): 7983-7998.
https://doi.org/10.1007/s00500-024-09761-5

[6] Kennedy, J., Eberhart, R. (1995). Particle swarm
optimization. In Proceedings of ICNN'95-International
Conference on Neural Networks, Perth, WA, Australia,
pp. 1942-1948.
https://doi.org/10.1109/ICNN.1995.488968

[7] Stützle, T., Dorigo, M. (2004). Ant colony optimization.
https://www.researchgate.net/publication/36146886_An
t_Colony_Optimization.

[8] Bellman, R. (1952). On the theory of dynamic
programming. Proceedings of the national Academy of
Sciences, 38(8): 716-719.
https://doi.org/10.1073/pnas.38.8.716

[9] Wang, G.-G., Deb, S., Gao, X.-Z., Dos Santos Coelho, L.

(2016). A new metaheuristic optimisation algorithm

motivated by elephant herding behaviour. International

Journal of Bio-Inspired Computation, 8(6): 394-409.

https://doi.org/10.1504/IJBIC.2016.081335

[10] Bisseling, R.H. (2017). Algorithms for the travelling

salesman problem. 2017.

https://studenttheses.uu.nl/handle/20.500.12932/29854

[11] Zhang, X.X., Shi, P.J., Liu, L.Y., Tang, Y., et al. (2010).

Ambient TSP concentration and dustfall in major cities

of China: Spatial distribution and temporal variability.

Atmospheric Environment, 44(13): 1641-1648.

https://doi.org/10.1016/j.atmosenv.2010.01.035

[12] Emambocus, B.A.S., Jasser, M.B., Hamzah, M.,

Mustapha, A., Amphawan, A. (2021). An enhanced swap

sequence-based particle swarm optimization algorithm to

solve TSP. IEEE Access, 9: 164820-164836.

https://doi.org/10.1109/ACCESS.2021.3133493

[13] Marqas, R.B., Almufti, S.M., Othman, P.S., Abdulrahma,

C.M. (2020). Evaluation of EHO, U-TACO and TS

metaheuristics algorithms in solving TSP. Journal of

XI’AN University of Architecture & Technology, 12(4).

https://www.researchgate.net/publication/340739815_E

valuation_of_EHO_U-

TACO_and_TS_Metaheuristics_algorithms_in_Solving

_TSP.

[14] Robati, A., Barani, G.A., Nezam Abadi Pour, H., Fadaee,

M.J., Rahimi Pour Anaraki, J. (2012). Balanced fuzzy

particle swarm optimization. Applied Mathematical

Modelling, 36(5): 2169-2177.

https://doi.org/10.1016/j.apm.2011.08.006

[15] Li, J., Guo, L., Li, Y., Liu, C. (2019). Enhancing elephant

herding optimization with novel individual updating

strategies for large-scale optimization problems.

Mathematics, 7(5): 395.

https://doi.org/10.3390/math7050395

[16] Zhang, Z., Gao, Y. (2023). Solving large-scale global

optimization problems and engineering design problems

using a novel biogeography-based optimization with

Lévy and Brownian movements. International Journal of

Machine Learning and Cybernetics, 14(1): 313-346.

https://doi.org/10.1007/s13042-022-01642-3

[17] Zhou, Y., He, F., Qiu, Y. (2017). Dynamic strategy based

parallel ant colony optimization on GPUs for TSPs.

http://scis.scichina.com/en/2017/068102-

supplementary.pdf.

[18] Abdulfattah, G.M., Ahmad, M.N., Asaad, R.R. (2018). A

reliable binarization method for offline signature system

based on unique signer’s profile. International Journal of

Innovative Computing, Information and Control, 14(2):

573-586. https://doi.org/10.24507/ijicic.14.02.573

[19] Asaad, R.R., Abdulnabi, N.L. (2018). Using local

searches algorithms with Ant colony optimization for the

solution of TSP problems. Academic Journal of Nawroz

University, 7(3): 1-6.

https://doi.org/10.25007/ajnu.v7n3a193

[20] Muawanah, S., Muzayanah, U., Pandin, M.G., Alam,

M.D., Trisnaningtyas, J.P. (2023). Stress and coping

strategies of Madrasah’s teachers on applying distance

learning during COVID-19 pandemic in Indonesia.

Qubahan Academic Journal, 3(4): 206-218.

[21] Umar, S.U., Rashid, T.A. (2021). Critical analysis: Bat

algorithm-based investigation and application on several

domains. World Journal of Engineering, 18(4): 606-620.

https://doi.org/10.1108/WJE-10-2020-0495

[22] Laporte, G. (1992). The vehicle routing problem: An

378

overview of exact and approximate algorithms. European

Journal of Operational Research, 59(3): 345-358.

https://doi.org/10.1016/0377-2217(92)90192-C

[23] Applegate, D.L., Bixby, R.E., Chvátal, V., Cook, W.J.

(2007). The Traveling Salesman Problem.

https://www.ceas3.uc.edu/ret/archive/2017/ret/docs/read

ings/Project%203/Project%203_Introduction%20to%20

TSP.pdf.

[24] Fischetti, M., Salazar-Gonzalez, J.J., Toth, P. (2007).

The generalized traveling salesman and orienteering

problems. In the Traveling Salesman Problem and Its

Variations, Boston, pp. 609-662.

https://doi.org/10.1007/0-306-48213-4_13

[25] Johnson, D.S., McGeoch, L.A. (2003). 8. The traveling

salesman problem: A case study. Local Search in

Combinatorial Optimization. pp. 215-310.

https://doi.org/10.1515/9780691187563-011

[26] Reinelt, G. (2003). The Traveling Salesman:

Computational Solutions for TSP Applications (Vol.

840). Springer. https://doi.org/10.1007/3-540-48661-5

[27] Golden, B.L., Raghavan, S., Wasil, E.A. (2008). The

Vehicle Routing Problem: Latest Advances and New

Challenges (Vol. 43). Springer Science & Business

Media. https://doi.org/10.1007/978-0-387-77778-8

[28] Ali, F.H., Jassim, S.M. (2018). New improved heuristic

method for solving travelling salesman problem. Iraqi

Journal of Science, 59(4C): 2289-2300.

https://doi.org/10.24996/ijs.2018.59.4C.16

[29] Lawler, E.L., Wood, D.E. (1966). Branch-and-bound

methods: A survey. Operations Research, 14(4): 699-719.

https://doi.org/10.1287/opre.14.4.699

[30] Boddy, M. (1991). Anytime problem solving using

dynamic programming. In Proceedings of the Ninth

National Conference on Artificial Intelligence, pp. 738-

743.

https://dl.acm.org/doi/abs/10.5555/1865756.1865791

[31] Lähdeaho, O., Hilmola, O.P. (2024). An exploration of

quantitative models and algorithms for vehicle routing

optimization and traveling salesman problems. Supply

Chain Analytics, 5: 100056.

https://doi.org/10.1016/j.sca.2023.100056

[32] Anwar, I.M., Salama, K.M., Abdelbar, A.M. (2015).

Instance selection with ant colony optimization. Procedia

Computer Science, 53: 248-256.

https://doi.org/10.1016/j.procs.2015.07.301

[33] Yang, Y., Deng, Y., Xiao, B., Zhao, X. (2024). The

method to integrate species explode and deracinate

algorithm with particle swarm optimization algorithm.

IEEE Access, 12: 52439-52451.

https://doi.org/10.1109/ACCESS.2024.3387308

NOMENCLATURE

ACO Ant Colony Optimization

AI Artificial Intelligence

BB Branch And Bound

DP Dynamic Programming

EHO Elephant Herding Optimization

PSO Particle Swarm Optimization

SI Swarm Intelligence

Greek symbols

Β Distance influence

Ρ Pheromone evaporation rate

Ω Inertia weight

Subscripts

α Pheromone Influence

k Ant

t Elephant

379

