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The widespread adoption of Electric Vehicles (EVs) has intensified the need for efficient and 

scalable Electric Vehicle Charging Infrastructure (EVCI). A critical aspect of this development 

is the optimal siting of charging stations, which involves complex multi-criteria decision-

making based on spatial, economic, technical, and behavioral factors. This paper presents a 

comprehensive Systematic Literature Review on location analysis for EVCI planning, 

synthesizing findings from 91 peer-reviewed studies published between 2011 and 2024. We 

categorize and evaluate existing methodologies ranging from mathematical optimization 

models to Geographical Information System (GIS)-based and machine learning techniques and 

develop a comparative framework highlighting their strengths, limitations, and applicable 

contexts. In addition, we propose a unified taxonomy of influencing factors and a structured 

classification of decision-support approaches. Beyond summarization, the study identifies 

critical research gaps such as underexplored rural deployment models, limited real-time data 

integration, and inconsistent treatment of user behavior. To bridge these gaps, we suggest a 

hybrid GIS-Machine Learning (ML) conceptual framework and offer insights for future work 

aimed at scalable and equitable EVCI deployment. The outcomes provide urban planners, 

policymakers, and researchers with a roadmap for technically sound and sustainable 

infrastructure planning. 
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1. INTRODUCTION

The global shift towards sustainable transportation has 

accelerated the adoption of Electric Vehicles (EVs). As EV 

adoption increases, the demand for charging infrastructure is 

also increasing. The appropriate location of charging stations 

is essential for their effective utilization and the overall 

success of EV adoption. Location analysis is done by 

evaluating and selecting optimal sites for charging stations 

based on technical, economic, environmental, and social 

criteria. Despite its importance, the methodologies and factors 

involved are diverse and advancing. 

The strategically locating EV charging stations is important 

for a number of reasons. Firstly, it ensures accessibility and 

convenience for EV owners, encouraging wider adoption of 

EVs by alleviating concerns about range anxiety. Placing 

charging stations in urban areas, along highways, and at key 

destinations such as shopping centers or workplaces gives 

seamless integration of EVs, which will be helpful into daily 

routines and long-distance travel. Moreover, strategic 

planning of charging stations can help to optimize the use of 

existing infrastructure and resources. By placing stations in 

areas with high traffic or where drivers are likely to spend time, 

such as near public transit hubs or popular attractions areas. 

With this, the usage of charging infrastructure can be 

maximized which will lead to more efficient operation and 

reduced wait times for users. This study presents a review that 

not only synthesizes 91 peer-reviewed articles published 

between 2011 and 2024 but also proposes a hybrid conceptual 

framework integrating GIS, Multicriteria Decision Making 

(MCDM), and ML approaches for improved site selection. We 

systematically classify methodologies, compare them based 

on technical criteria, and highlight key influencing factors and 

implementation challenges. In addition, we perform a 

comparative analysis of modeling techniques and suggest 

actionable future research directions. By bridging the 

methodological and application gaps in current literature, this 

review aims to serve as a foundational guide for researchers, 

urban planners, and policymakers working towards scalable 

and sustainable EVCI deployment. 

2. LITERATURE REVIEW

2.1 Systematic review strategy 

This systematic literature review aims to explore the 

methodologies, decision-making frameworks, and challenges 

involved in the location analysis of EVCI. The review 

synthesizes the research published over the past two decades, 

covering different geographical regions, charging technology 
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advancements, and application areas. The review seeks to 

provide insights into the current state of knowledge, highlight 

research gaps, and offer recommendations for future studies in 

the field of EVCI planning. This study aims to review the 

literature on EVCI site selection methodologies and attempts 

to answer the research questions shown in Figure 1.  

Systematic literature review was conducted using a four-

step approach, The process involves formulating review 

questions, identifying relevant literature based on inclusion 

and exclusion criteria, selecting studies for review, extracting 

and analysing data, and interpreting the results for 

dissemination. To address the research questions, we searched 

several databases for research published between 2011 and 

2024 related to the EVCI location problem. Following a 

thorough evaluation of the models used in each study, as well 

as the methods for selecting variables and ranking alternative 

locations, we selected 96 papers for inclusion. The steps to 

carry out this review comprise of identification, screening of 

titles and abstracts, full-text assessment, and final selection as 

given in Figure 2.  

 

2.2 Review of findings 

 

The findings are analyzed based on various factors, 

including identifying common methodologies used for 

location analysis in EVCI, comparing different approaches for 

site selection, and examining the factors that influence 

charging station location. The review also explores the 

strengths and weaknesses of each method. The table of 

literature review summarizes the key studies on EVCI 

planning, providing an overview of the approaches and 

findings from different research efforts. 

 

 
 

Figure 1. Research questions for systematic literature review 

 

 
 

Figure 2. Systematic literature review block diagram 
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Figure 3. Year wise distribution of research publications 

 

2.2.1 Publication trends of location analysis for EVCI 

Figure 3 illustrates the year-wise distribution of the selected 

research papers for this systematic literature review, showing 

that most of the research was conducted in 2023 and 2024. 

Additionally, as shown in Figure 4, 14% of the selected papers 

are conference papers, while 86% are journal papers. Figure 5 

provides an analysis of the keywords from the selected papers. 

The detail analysis of the papers used for this review is given 

in Table 1.  

 

 
 

Figure 4. Research publications 

 

 
 

Figure 5. Keywords analysis 

2.2.2 Most used model for location analysis 

The detailed explanations for each specific application of 

these models or methods were streamlined to provide concise 

descriptions with fully encompassing all reviewed material. 

Future researchers can infer an appropriate model-method 

combination by assessing the available data, processing 

capabilities, and their chosen optimization strategy, such as 

maximizing profits or minimizing service distances. 

Most of the reviewed studies predominantly employed GIS-

based MCDM models with various methods for location and 

criteria processing, while approximately one-third integrated 

location selection models with GIS-based MCDM models. 

Figure 6 and Figure 7 illustrate the frequency of usage of 

standalone GIS models and combined approaches. A 

comprehensive categorization of these modelling techniques, 

along with their frequency of use in the reviewed studies and 

a list of corresponding research papers, is provided in Table 2. 

A Mixed-Integrated Linear Programming (MILP) model was 

utilized to determine the optimal locations and sizes of 

charging stations, aiming to maximize overall profits while 

adhering to five key constraints [1]. GIS was incorporated to 

process critical geographical parameters within the MILP 

framework. Similarly, the problem was formulated as a 

Mixed-Integer Non-Linear Programming (MINLP) model, 

which was solved using a genetic algorithm [2]. 

Set covering models (SCM), including the Set Cover 

Problem (SCP), Maximal Covering Location Problem 

(MCLP), and Location Set Covering Problem (LSCP), are 

designed to address coverage objectives for elements within a 

set. These approaches are classified into three categories: 

maximum coverage, p-center, and p-median problems. The 

maximum coverage problem focuses on maximizing demand 

coverage for a specified number of EVCI, the p-center 

problem minimizes driving distance with a fixed number of 

stations, and the p-median problem uses the median driving 

range as a key metric and employed a MCLP to identify the 

optimal number and locations of charging stations, ensuring 

that no EV demand point exceeds the maximum service 

distance [3]. It is also noted that the MCLP is NP-hard and can 

be addressed using techniques such as linear programming 

relaxation, greedy-adding heuristics, genetic algorithms, and 

heuristic concentration. Multi objective optimization approach 

is also used for finding parking lots suitable for charging [4]. 
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A Three-Step Heuristic Approach is introduced to the Electric 

Vehicle Path Planning Problem considering Charging 

availability [5, 6]. Geographical information system is the 

most widely used method for location analysis along with 

MCDM for site selection problem. 

From Figure 8, GIS and MCDM techniques dominate the 

literature, while machine learning approaches are gaining 

momentum. Figure 6 presents a timeline of methodological 

adoption from 2015 to 2024, showing a steady rise in the use 

of MCDM and a more recent increase in machine learning 

applications, highlighting a shift toward data-driven decision-

making frameworks. 

 

 
 

Figure 6. Method Adoption Trend (2015-24). This timeline illustrates the rise in adoption of spatial, decision-support, and 

predictive methods for EVCI planning over the past decade. The chart is derived from a longitudinal review of selected 

publications [1, 7-25] 

 

 
 

Figure 7. Radar chart for weighted overlay analysis methods comparison. The comparison highlights differences in complexity, 

suitability for GIS-based integration, and ability to handle uncertainty. Methodologies are synthesized from multiple sources [1, 

7-25]  

 

 
 

Figure 8. Method Usage Frequencies over reviewed literature. This bar chart summarizes the frequency with which different 

methodologies were applied in EV charging station site selection studies. Data synthesized from key references [1, 7-25] 
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2.2.3 Data processing methods that are most used for location 

analysis of EVCI 

In the reviewed literature, various methodologies have been 

employed for data processing to optimize site selection for 

EVCI. A significant proportion of studies have utilized 

variants of the Weighted Overlay Analysis (WOA) approach, 

including but not limited to Simple Additive Weighting 

(SAW) [26, 27], Analytical Hierarchy Process (AHP), 

Weighted Sum Model (WSM), and Technique for Order 

Preference by Similarity to Ideal Solution (TOPSIS). These 

methodologies are adept at concurrently evaluating multiple 

variables and effectively incorporating the influence of 

qualitative or non-quantifiable factors on spatial parameters. A 

comprehensive overview of these methods is provided in 

Table 3. Numerous researchers have recommended 

conducting a comparative analysis of these WOA techniques 

to determine the approach that yields the most accurate and 

optimal results. 

The AHP emerged as the second most frequently employed 

methodology in the reviewed research, with twelve out of 

seventy-four studies utilizing this technique or its fuzzy 

variant (FAHP). AHP operates through a hierarchical structure 

and assigns quantitative weights to decision criteria [28]. It 

involves pairwise comparisons conducted by experts to 

determine the relative importance of alternatives [7, 8]. 

This method is widely recognized for its ease of use and 

scalability across diverse problem domains. “AHP, developed 

under the framework of MCDM, comprises techniques 

suitable for ranking critical management problems,” 

employing the relative importance scale [25, 29, 30]. In this 

scale, attributes are assigned values from 1 to 9, where 1 

represents negligible importance and 9 signifies the highest 

importance for the location of EVCI. While AHP facilitates 

straightforward comparisons by individual experts, it may 

encounter inconsistencies in criteria ranking, particularly 

when dealing with several alternatives. To address challenges 

related to imprecise and uncertain data, a fuzzy extension of 

AHP (FAHP) has been proposed. FAHP leverages linguistic 

variables, making it particularly effective for processing the 

inherent uncertainties in EVCS location research. 

The TOPSIS is another widely utilized optimization method 

in GIS-based EVCI studies. Among all reviewed papers, nine 

applied this method or its fuzzy variant (Fuzzy TOPSIS). 

TOPSIS is employed to generate a reliable ranking of 

alternative EVCI sites by determining the site with the shortest 

distance to the positive ideal solution and the farthest distance 

from the negative ideal solution. Criterion values for the 

alternatives were derived from pixel values within the 

corresponding GIS criterion map layers. The rankings 

obtained through TOPSIS were then compared with those 

derived from pixel-based suitability indices established in 

their research, demonstrating the method's utility in evaluating 

spatial alternatives effectively [7, 20]. 

The Complex Proportional Assessment (COPRAS) method 

employs stepwise ranking and multi-attribute evaluation 

techniques for selecting alternative EVCI sites. A variation, 

FAHP-COPRAS, which incorporates fuzzy logic to address 

uncertainty and provides compromise solutions by evaluating 

the significance and degree of utility of alternatives. An 

extension of COPRAS, known as Fuzzy COPRAS, further 

enhances its ability to process ambiguous datasets [8]. 

Another notable method for optimal EVCI site selection is 

the Preference Ranking Organization Method for Enrichment 

of Evaluations (PROMETHEE). This approach supports 

decision-making by identifying congruencies and conflicts 

among alternatives, enabling a well-informed selection 

process [31]. PROMETHEE ranks EVCI site alternatives 

through binary comparisons of criteria, distinguishing itself 

from other MCDM methods by emphasizing the importance 

of relationships among criteria. Generally, used distance 

measure in those methods is Euclidean distance for 

considering road distances and further evaluation of the 

criteria [32, 33]. These internal relationships are determined 

by the dataset's distribution, adding a unique dimension to its 

evaluation process [34]. Multi-influencing factors (MIF) is 

also used in many studies with MCDM for different location 

analysis and site selection problems [35-38]. 

In addition to the methods mentioned, various other models, 

algorithms, heuristic techniques, and hybrid approaches are 

present in the reviewed literature and have been applied to 

address the site selection problem for EVCI. These methods 

integrate different strategies to optimize decision-making, 

leveraging a combination of analytical, computational, and 

heuristic processes to tackle the complexity of site selection 

under varying conditions. The radar graph in Figure 7 

illustrates a comparative assessment of weighted overlay 

analysis methods across three dimensions: computational 

complexity, suitability for GIS integration, and capacity to 

handle uncertainty. Methods like AHP and TOPSIS scored 

high on GIS compatibility and decision robustness, while 

Fuzzy Logic stood out in handling imprecise data. This 

visualization helps highlight method suitability based on the 

analytical needs of EV infrastructure planning. 

 
2.2.4 Factors/criteria influencing charging infrastructure 

location 

Table 1 gives the different criteria for EVCI site selection, 

where distance from roads/ highways is considered as major 

criteria for charging infrastructure planning along with land 

cost, proximity to petrol stations, availability of power grid, 

etc. 

 
Table 1. Criteria for EVCI planning 

 
Sr. 

No. 
Criteria Reference 

1 Solar Radiation [1, 8, 39] 

2 Slope [1, 40-42] 

3 Aspect (south facing areas) [1] 

4 Traffic Volume [1, 43] 

5 Land Use/ Land Cover [1, 8] 

6 Distance from Highway, Roads [1, 6, 8, 40-42, 44] 

7 Population Density [6, 40, 41, 43, 44] 

8 Shopping malls [6, 40, 42] 

9 Land Values/cost [6, 40, 41, 43] 

10 Income Rates [40] 

11 Transportation Stations [6, 40] 

12 Petrol Stations [6, 40, 41, 44] 

13 Park Areas [6, 40, 44] 

14 Green Areas/vegetation [40, 44] 

15 Operating and management cost [6, 43] 

16 Consumption level [6] 

17 Construction Cost [6, 8, 43] 

18 Population Density [6, 43, 44] 

19 
Generation of noise and air 

pollution 
[6] 

20 Reliability on Power [43] 

21 Availability of power station [8, 41, 43, 44] 

22 Air quality Index [43, 44] 

23 Land Availability [43] 
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24 Distance to vegetation [41, 44] 

25 Distance to water bodies [7, 41, 44] 

26 Distance to landslide risk [41] 

27 Earthquake risk [41] 

28 EV ownership [41] 

29 Distance to another EVCS [41, 44] 

30 Gas station distribution [7, 44] 

31 Annual Average temperature [8] 

32 Possibility of power expansion [8] 

33 Proximity to commercial offices [44] 

34 

Distance from 

bus/railway/metro/monorail 

stations 

[44] 

 

2.2.5 Challenges in the planning and implementation of EVCI 

The planning and implementation of EVCI present a 

multitude of challenges spanning technological, economic, 

regulatory, and environmental dimensions [45, 46]. A 

significant barrier is the inadequacy of existing power grids 

[47] to handle the increased load from EV charging, 

necessitating substantial investments in grid modernization 

and capacity expansion [48, 49]. Additionally, the lack of 

standardization in charging protocols and connectors across 

manufacturers complicates interoperability [50], while the 

high initial costs of installation and equipment deter 

widespread deployment, especially in regions with low EV 

adoption. Land availability, particularly in urban areas, further 

exacerbates the issue, limiting the optimal placement of 

charging stations to ensure accessibility and high utilization 

[51, 52]. 

Regulatory and policy inconsistencies across regions 

impede uniform development, with lengthy permitting 

processes and high electricity tariffs adding to the complexity 

[8, 40]. Moreover, the environmental impact of charging 

stations powered by non-renewable energy diminishes the 

sustainability of EVs [53], highlighting the need for renewable 

integration [39, 54]. Operational challenges, including station 

reliability, real-time monitoring, and maintenance, further 

hinder scalability [55]. Addressing these challenges requires a 

multifaceted approach involving policy standardization, 

public-private partnerships, and investment in advanced 

technologies to ensure efficient, scalable, and environmentally 

sustainable EVCI deployment. 

The adoption of EVs and the expansion of charging 

infrastructure face several barriers and challenges as given in 

Figure 9. High initial costs of EVs, limited battery range, and 

long charging times discourage potential buyers [56-58]. The 

lack of widespread charging stations, especially in rural areas, 

leads to range anxiety.  

Existing power grids may struggle with increased demand, 

requiring significant upgrades. The cost of installing fast-

charging stations is high, and standardization issues between 

different manufacturers create compatibility problems. 

Additionally, concerns over battery disposal, raw material 

sourcing (like lithium and cobalt) [59], and environmental 

impact pose sustainability challenges [60-62]. Overcoming 

these barriers requires coordinated efforts from governments, 

industries, and consumers to improve infrastructure, reduce 

costs, and advance battery technology [63, 64]. 

The detail analysis of the review is given in Table 2 which 

summarizes the methodologies employed for location analysis 

of EVCI, specifying their respective use cases, input 

parameters, and highlighting their advantages and limitations. 

These methods include optimization models, GIS-based 

approaches, and simulation techniques. 

Table 3 provides a summary of the key elements involved 

in location analysis using Geographic Information Systems, 

including the relevant bands, wavelengths, and resolution 

necessary for effective analysis. It also highlights how these 

factors are applied in determining optimal locations for EVCI. 

The table offers insights into the role of GIS in enhancing the 

accuracy and efficiency of location analysis. 

The reviewed literature highlights the use of GIS for spatial 

analysis, MCDM for structured decision-making, and ML for 

demand prediction in EV charging infrastructure planning. 

However, gaps remain as GIS approaches often overlook 

temporal and behavioral dynamics, and MCDM methods rely 

heavily on subjective inputs. ML models are rarely integrated 

with spatial decision tools. Few studies adopt a hybrid 

framework combining these methods, indicating a need for 

integrated, adaptable approaches that are both data-driven and 

regionally scalable. 

 

 
 

Figure 9. Barriers of EV 
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Table 2. Literature review 

 
Ref Methodology Objective Key Contribution Limitation 

[1] GIS + MILP 
Maximize profit and 

coverage 

Land use and traffic data for site 

selection 
Heavy traffic data not considered 

[3] GIS + MLCP 
Improve demand 

coverage 

Used census and traffic data, 50% 

coverage improvement 

Petrol stations as candidate sites 

not explored 

[7] 
GIS + 

AHP/FAHP/TOPSIS 
Maximize EVs charged Combined location indexes Grid availability not considered 

[8] 
GIS + AHP + Fuzzy 

MCDM 
Maximize EVs charged Identified top 10 sites in Howrah Used only 4 criteria 

[35] GIS + MIF + TOPSIS Maximize coverage 
Used AUC = 0.826 to validate 

suitability 

Lacked comparison with other 

MCDM methods 

[40] 
ML + Gaussian 

Optimization 

Incremental EVCS 

deployment 

Demand-based predictive site 

expansion 

Needs large data; forecasts only 

future needs 

[41] GIS + MCDM Maximize EVCS utility Road slope, availability ranked as key Only 3 criteria considered 

[43] SCLP, MCLP Maximize accessibility 
Time/distance thresholds; policy-level 

support 

Lack of mode integration, 

implementation gaps 

[65] GIS + TODIM 
Optimize PVCS in 

Beijing 

Sensitivity and stability checks 

included 

Focus only on PVCS; 

psychological aspect vague 

[44] MCDM 
Optimize EVCS 

locations 

Generated 155,000 alternatives in 

Poznan 
Pedestrian routing not considered 

[66] GIS + MCDM Cost, Distance 13 solar EVCS sites on highway 
Focused only on solar, 6 criteria 

used 

[67] 
Multi-Objective 

Optimization 

Reduce infrastructure 

cost 
Spread stations evenly across city Lacked user behavior input 

[68] GIS + QFD + TOPSIS Maximize coverage Combines user feedback with MCDM 
Expert matrix from only 3 

evaluators 

[69] GIS + BN-BWM 
Demand + network 

constraints 

Considers both demand and grid 

limitations 
Manual input; small sample 

[70] GIS + Wind Assessment 
Maximize EVCS in 

hills 

Wind-based site selection for off-grid 

regions 
Limited to mountainous terrain 

[71] GIS 
Enhance investment 

efficiency 

Urban context correlations with EVCS 

success 

Needed variable selection 

techniques 

[72] GIS + MCDA 
Stakeholder integrated 

planning 
Combined stakeholder input with GIS Census-level integration needed 

[73] AHP + WLC 
Optimize spatial 

placement 

Estimated 1,200 EVSE units needed in 

region 

Financial and consumer 

psychology not modeled 

[74] AHP + WLC Minimize unsafe sites Identified risk zones prone to flooding 
Grid impact of EVCS growth not 

modeled 

[75] 
GIS + Fuzzy AHP + 

TOPSIS 
Optimal siting strategy 

Strategic 4-step siting method for 

Ankara 

More technical grid variables 

needed 

 

Table 3. Key points for location analysis using GIS and its data source 

 
Application Area Band/ Index Resolution Purpose in Location Analysis Source 

Urban Areas & 

Infrastructure 

Red (R)  10 – 30 m Detecting urban areas, infrastructure, and roads [76, 77] 

Green (G) 10 – 30 m Mapping vegetation health and water bodies [76, 77] 

Blue (B) 10 – 30 m Identifying water bodies and urban features [76, 77] 

NDBI Varies Identifying built-up urban areas [76, 77] 

Urban Index (UI) Varies Mapping urban infrastructure [76, 77] 

Vegetation & 

Green Spaces 
NDVI  Varies Mapping green areas, parks, and vegetation cover [77, 78] 

Water & Moisture 

Content 

NDWI  Varies Mapping water bodies and assessing water availability [76, 77] 

SWIR 20 – 30 m Assessing moisture content, land cover, urban heat islands [76, 77] 

Heat & 

Temperature 

Land Surface 

Temperature (LST)  
Varies Identifying urban heat islands and energy planning zones [79, 78] 

Topography & 

Elevation 

Digital Elevation Model 

(DEM)  
1 – 30 m Evaluating slope, flood-prone areas, and drainage patterns [79, 80] 

 

 

3. A CONCEPTUAL HYBRID FRAMEWORK FOR 

LOCATION ANALYSIS OF EV CHARGING 

INFRASTRUCTURE 

 

To bridge the identified gaps in existing methodologies and 

enhance the decision-making process in EVCI location 

planning, we propose a conceptual hybrid framework that 

integrates GIS tools, MCDM techniques, and ML models. The 

framework is designed to combine the spatial filtering 

capabilities of GIS with the structured decision logic of 

MCDM and the predictive adaptability of ML, as illustrated in 

Figure 10.  

Figure 9 gives a hybrid, multi-stage approach integrating 

GIS, MCDM, and ML techniques. The process begins with the 

Input Layer, where spatial, socio-economic, grid, and 

behavioral data are gathered. This data is first processed 
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through GIS-Based Spatial Filtering to eliminate infeasible 

locations and highlight high-demand zones. Table 3 presents 

the different key points for location analysis using GIS and its 

data source for GIS based spatial analysis. Next, MCDM-

Based Prioritization is applied to evaluate potential sites using 

criteria like accessibility, installation cost, and environmental 

factors, with weights derived from expert input. Finally, ML-

Based Demand Forecasting employs machine learning models 

to predict charging demand and segment user clusters. The 

outcome is a Decision Support Output layer presenting a 

ranked list of optimal locations with visual dashboards, 

enabling data-driven, scalable planning for electric vehicle 

infrastructure deployment. 

 

 
 

Figure 10. Conceptual framework for EVCI location 

planning 

 

To identify optimal locations for EVCI in Thane district, a 

suitability map was generated using a hybrid GIS–MCDM–

ML framework. The spatial filtering was performed using GIS 

tools to eliminate restricted zones and identify candidate areas. 

The AHP was employed as the MCDM technique to assign 

weights to location factors, based on pairwise comparisons. 

Steps of MCDM are given in Table 4. The weighted overlay 

analysis was conducted in QGIS-Python using seven decision 

criteria. In addition, a Random Forest Regression model was 

used to predict EV charging demand based on factors such as 

population density, traffic intensity, and proximity to 

commercial hubs. The final suitability score for each grid cell 

was derived from a weighted combination of MCDM scores 

(60%) and ML predictions (40%). The resulting heatmap 

reveals zones of high suitability around urban centers and 

major road corridors, while peripheral or forested areas show 

lower suitability. A total of 7 criteria were used for the AHP-

based prioritization, derived from literature and expert inputs. 

The final weights were applied in a GIS weighted overlay to 

generate the suitability surface Table 4. 

The Random Forest model used for demand forecasting was 

evaluated using standard regression metrics. The model 

achieved a coefficient of determination (R²) of 0.84, indicating 

that it was able to explain 84% of the variance in the observed 

charging demand. The Root Mean Square Error (RMSE) was 

8.7 and the Mean Absolute Error (MAE) was 6.1, both of 

which suggest good predictive accuracy and low average 

deviation between actual and predicted values. These metrics 

reflect the model’s robustness and suitability for spatial 

demand estimation, reinforcing its utility in supporting 

infrastructure planning decisions. A Random Forest regression 

model was trained using input features like population density, 

distance to highways, POI density, and existing EV 

penetration. The model predicted spatial charging demand, 

and its output was normalized and combined with the AHP 

score. 

The final suitability score was computed as:  

 

Final Score= 0.6 x AHP score + 0.4 x Predicted ML Demand 

 

A total of seven criteria were used in the AHP model. The 

Consistency Ratio was 0.08, indicating reliable pairwise 

comparisons. The Table 4 below summarizes the selected 

criteria and their relative importance. And Table 5 gives the 

steps of proposed methodology using MCDM. 

 

Table 4. Selected criteria for MCDM 

 
Sr. No. Criterion Description Weight (AHP) 

1 Proximity to Roads Accessibility and traffic exposure 0.25 

2 Grid/Transformer Access Availability of electrical infrastructure 0.20 

3 Population Density Indication of residential demand 0.15 

4 Land Cost and Availability Economic feasibility 0.15 

5 Traffic Flow Volume Utilization potential 0.10 

6 Environmental Sensitivity Avoidance of restricted areas 0.10 

7 Proximity to Commercial Institutions Service demand in public zones 0.05 

 

Table 5. Steps of MCDM for site selection 

 
Steps Description 

1. Criteria Identification 
Selected 7 key factors influencing EVCI site suitability (e.g., proximity to roads, grid access, 

population density, etc.) based on literature and expert input. 

2. Pairwise Comparison Matrix 

Construction 
Constructed a matrix using to compare the importance of each criterion against others. 

3. AHP Weight Calculation Normalized the matrix and calculated the priority weights for each criterion. 

4. Consistency Check 
Assessed the consistency of judgments; the Consistency Ratio (CR) was 0.08, indicating acceptable 

consistency (CR < 0.1). 

5. Weighted Overlay in GIS 
Reclassified spatial layers and applied the calculated AHP weights to generate suitability scores via 

weighted overlay. 

6. Suitability Mapping Created a suitability map showing the ranking of potential locations for EV charging infrastructure. 

7. Hybrid Integration with ML 
Combined the AHP-based scores (60%) with ML-based demand forecasts (40%) to derive the final 

suitability score. 
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4. RESULT AND DISCUSSION 

 

Literature on site selection that integrates spatial analysis 

with mathematical models faces challenges due to the need to 

address real-world physical and theoretical constraints 

simultaneously. While numerous solutions to the EVCS 

location problem have been proposed, with notable success in 

the papers evaluated in this systematic review, further 

refinement is required. The MCDM model with more detailed 

data for significant variables and conducting sensitivity 

studies on grids of varying sizes can improve parameter 

evaluation. Including data layers reflecting dynamic vehicle 

movement and stochastic driving behavior can aid in 

estimating near real-world service efficiency. Expanding 

models to account for interregional travel and EV class 

differentiation, especially for drivers in large metropolitan 

areas who lack fixed origin-destination patterns, is critical. 

Additionally, incorporating time-dependent traffic parameters 

in stochastic programming models can mitigate performance 

bottlenecks [81]. Queuing theory is also recommended as a 

solution that can be integrated into decision frameworks and 

network design models [1]. 

Real-world driving pattern data derived from GIS can be 

incorporated into road network operations and traffic control 

strategies [49]. Combining such data with sensitivity studies at 

various scales can help establish models for EV charging 

guidance. This approach could optimize service reliability and 

reduce system waiting times by strategically locating chargers 

based on specific traffic patterns. The traffic characteristics 

around existing fuel stations could be analyzed to optimize 

charging station coverage [3]. The need for effective MCDM 

methods and the inclusion of additional technical criteria, 

recommending the use of artificial intelligence, VIKOR, 

ELECTRE, PROMETHEE, and micro-level analysis to 

address knowledge gaps and strengthen the connection 

between EVCS networks and power distribution [34, 35, 82]. 

The importance of higher-quality data regarding power 

distribution criteria to enhance service stability [25]. 

Engaging community stakeholders is another significant 

recommendation [83]. Incorporating community input to 

ensure the relevance of data layers in MCDM models is also 

an important component [7]. EVCI locations can better align 

with consumer needs and provide effective coverage through 

pragmatic model designs. Although equity was not explicitly 

included in the reviewed papers, it remains a critical factor for 

policymakers and stakeholders, as its inclusion can ensure 

fairness in the EVCS location process [12]. Future research 

should incorporate equity considerations to optimize location 

selection for all community members. 

A notable gap in the literature is the lack of studies 

addressing EVCI location challenges in rural areas. Most 

models and methods, whether GIS-based or not, primarily 

focus on urban applications, often neglecting rural attributes 

[74, 84]. Addressing the divergent conditions and data 

availability between rural and urban regions is crucial for 

expanding research into less populated areas. Site selection is 

inherently a multi-criteria problem that spans multi-regional 

and heterogeneous spaces. Integration of charging stations 

with renewable energy will also be the important factor while 

considering locations for EVCI [85, 86]. The interactions 

between urban, suburban, rural, and transitional areas 

necessitate complementary modelling methods and data 

selection techniques [87]. However, as the complexity of 

models increases or more criteria are included, there is no 

assurance of finding a more optimal solution [88, 89]. 

Developing all-inclusive frameworks risks conflicts between 

spatial and mathematical elements. Thus, ongoing evaluations 

from diverse perspectives and scales are essential for refining 

tools [90, 91]. Future research should prioritize integrating 

diverse datasets and methods with varying temporal and 

spatial parameters to achieve more robust solutions. 

The hybrid GIS–MCDM–ML framework described earlier 

was applied to the Thane district case study. This framework 

leverages GIS for spatial filtering and feasibility analysis, 

MCDM (e.g., AHP) for prioritizing candidate sites based on 

multiple weighted criteria, and ML algorithms (e.g., Random 

forest) for demand forecasting and user behavior modeling. By 

combining spatial, contextual, and behavioral data, the 

framework delivers a ranked list of potential locations 

supported by predictive insights and visualized outputs. As 

illustrated in Figure 10, this approach not only enhances 

transparency and scalability in site selection but also enables 

dynamic, data-driven planning tailored to evolving urban and 

grid conditions. Model validation plots in Figures 11 and 12 

confirm strong predictive accuracy, as detailed in the 

Methodology section. The Feature Importance chart in Figure 

13 reveals that population density and proximity to highways 

are the most influential factors in forecasting EV charging 

demand. 

 

 
 

Figure 11. Actual Vs predicted EV charging demand 

 

 
 

Figure 12. Residual plot 
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Figure 13. Feature importance graph (Random Forest) 

 

The proposed hybrid model was validated through a multi-

level approach. The AHP component was tested for logical 

consistency (CR = 0.08) and subjected to sensitivity analysis. 

The Random Forest regression model achieved high predictive 

accuracy (R² = 0.89), validated using standard metrics and 

feature importance alignment. Final suitability maps in Figure 

14 were visually and spatially validated against high-demand 

corridors, with strong overlap observed near urban centers and 

transport routes. These validations collectively demonstrate 

the model’s robustness, practical relevance, and potential for 

scalable deployment in real-world EV infrastructure planning. 

The sensitivity analysis is carried out and it indicates that 

±10% changes in AHP weights result in minimal impact on 

top-ranked locations, confirming the robustness of the model 

except in scenarios prioritizing traffic volume, where minor 

rank shifts occurred. Based on visual interpretation of the final 

suitability heatmap, approximately 15 to 20 spatial clusters 

were identified as highly suitable zones shown in Figure 14, 

primarily located along key transport corridors and urban 

centers. Informal feedback was collected from two municipal 

planning officers and a MSEDCL engineer involved in EV 

grid readiness assessment. They affirmed that the selected 

criteria, especially transformer access and proximity to 

highways are consistent with operational considerations in EV 

infrastructure siting. This feedback supports the practical 

relevance of the proposed hybrid framework. 

 

 
 

Figure 14. Final EV charging station suitability map- Thane 

District 

Despite the robustness of the proposed hybrid framework, 

the reliability of the results is inherently dependent on the 

correctness and resolution of spatial datasets used, such as land 

use maps, road networks, and demographic layers. 

Additionally, the absence of real-time data sources such as 

GPS mobility traces or live traffic feeds and limited integration 

of user behavior patterns may affect the responsiveness of the 

model in dynamic urban contexts. While the model performs 

well in the Thane district case, generalizing it to other regions 

may require recalibration of MCDM weights and retraining of 

ML models to reflect local socio-economic and infrastructural 

variations. 

To assess the effectiveness of the proposed framework, it is 

compared qualitatively with selected models from recent 

studies. Traditional GIS-only models provide robust spatial 

visualization but lack predictive power. MCDM-based models 

offer structured decision-making but depend heavily on expert 

judgment [26]. ML models improve prediction accuracy but 

often ignore spatial and stakeholder inputs. Our hybrid 

approach combines the spatial accuracy of GIS, the decision 

structure of MCDM, and the learning capability of ML, 

offering better adaptability and more comprehensive outputs. 

This integrated approach is particularly advantageous for 

region-specific planning, where both spatial precision and 

demand prediction are essential. The proposed framework 

depends on spatial and socio-economic data; poor data can 

reduce accuracy. It also involves computational complexity, 

making large-scale or real-time use challenging. Recalibration 

is needed for different regions, and limited real-time or 

behavioral data may affect responsiveness in dynamic 

scenarios. 

 

 

5. CONCLUSION 

 

Effective planning and deployment of EVCI is crucial to 

support the accelerating adoption of EVs and to ensure that 

charging networks are both accessible and efficient. In this 

Review, we analyzed 91 research articles published over the 

past decade to provide a comprehensive perspective on the 

methods, models, and decision-support systems used for EVCI 

location planning. Our findings reveal that GIS-based tools, 

MCDM approaches, and optimization techniques dominate 

the existing literature, while interest in machine learning 

applications is steadily growing. We identify key influencing 

factors such as traffic flow, power grid capacity, user behavior, 

and land costs and examine how these variables are addressed 

across different methodologies. Comparative tables are 

provided to illustrate the strengths, limitations, and practical 

applications of each approach. 

Going beyond a conventional review, we introduce a 

conceptual hybrid framework that combines spatial filtering, 

MCDM-based prioritization, and machine learning-driven 

demand forecasting. This integrated approach is designed to 

overcome persistent challenges in the literature, such as the 

limited use of real-time or behavioral data and the lack of 

multi-layered decision-making strategies. The study also 

outlines promising directions for future research. These 

include incorporating dynamic data sources like GPS and IoT, 

developing user behavior models to support more user-centric 

site selection, and adopting equity-driven planning strategies 

to serve underrepresented communities. Different machine 

learning models can also be integrated with alternative 

MCDM techniques such as TOPSIS or VIKOR to enhance the 
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adaptability, precision, and decision-support capabilities of the 

framework across varied urban contexts. These insights aim to 

guide urban planners, policymakers, and researchers in 

developing more sustainable, data-informed, and inclusive 

EVCI networks. Although this study focuses on the Thane 

district, the proposed framework is designed to be adaptable to 

other regions. The methodology allows for recalibration of 

MCDM criteria weights based on local priorities and 

stakeholder input. GIS layers can be replaced with region-

specific spatial datasets, and the machine learning model can 

be retrained using local EV adoption and traffic patterns. This 

flexibility makes the framework suitable for both urban and 

semi-urban planning contexts. 
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