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The Fourier cosine series method was used to obtain solutions to the generalized elastic 

thin-walled column buckling problem for the case of Dirichlet end boundary conditions. The 

problem is a boundary value problem given by a set of three coupled ordinary differential 

equations with three unknown displacement functions, and subject to the Dirichlet end 

boundary conditions. By choosing the origin of the longitudinal coordinate at the middle of 

the column, the Fourier cosine series was found to be a suitable shape function for the 

problem and hence the three displacement modal functions were represented using Fourier 

cosine series, with unknown modal amplitudes. The Fourier cosine series representation of 

the unknown displacement modal functions simplified the problem to an algebraic 

eigenvalue problem given by a set of homogenous algebraic equations whose nontrivial 

solution yielded the characteristic buckling equation. The stability equation was obtained as 

a third-degree polynomial for the asymmetric cross-sectioned column. For asymmetric 

cross-sections, the buckling modes were obtained as coupled flexural-torsional modes. For 

bisymmetric cross-sections, the buckling modes were uncoupled and failure could be 

flexural or flexural-torsional. For monosymmetric cross-sections, one of the buckling modes 

is uncoupled while the others are coupled; and failure could be by either Euler bending or 

bending-torsional buckling. The solutions obtained in this work agree with results obtained 

by previous researchers. 
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1. INTRODUCTION

Elastic thin-walled columns with monosymmetric, 

bisymmetric or asymmetric cross-sections are used in various 

engineering applications. Their materials could be isotropic 

or anisotropic, homogeneous or heterogeneous [1-8]. They 

are used as beams, columns or beam-columns in building 

structures, machine parts, bridge structures, space, aeroplanes, 

aeronautics, boats and ship structures. Their thin-walled 

cross-sections make them prone to buckling failures under 

compressive loads [7, 9-12]. 

The generalized elastic thin-walled column buckling 

problem is represented mathematically as a boundary value 

problem described by a set of complex ordinary differential 

equations (ODEs) and end boundary conditions. In the most 

general case, the problem is complex and nonlinear requiring 

complicated mathematical tools and are intractable for many 

cases of end supports [7]. Euler [9] was one of the first 

scholars that studied the elastic buckling behaviour of thin 

columns. Euler developed from first principles the ordinary 

differential equation (ODE) for the stability of columns. He 

further solved the governing ordinary differential equation 

for various end support conditions, thus obtaining the 

buckling modes and buckling loads. 

Saint Venant [10] presented his work on the torsional 

behaviours of structural beams and columns; and developed 

expressions for the torsional buckling shapes and torsional 

buckling loads for different end supports. Michell [11] and 

Prandtl [12] presented analytical formulations for the lateral 

buckling behaviors of beams, columns and beam-columns, 

and developed analytical results for the flexural-torsional 

buckling loads for beams, columns and beam-column 

elements. Timoshenko [2, 13-15] considering warping 

torsion, developed the system of differential equations 

describing elastic buckling problems of beams, columns and 

beam-columns. 

Further developments and research on the system of 

differential equations for the bending-torisonal stability 

analysis of beams, thin walled columns and beam-columns 

were due to researches carried out by many scholars such as 

Wagner [16], Vlasov [17], Timoshenko and Gere [2], 

Alsayed [18], Zlatko [19], Trahair [20-21], Allen and Bulson 

[22], Chajes [23], Avcar [24], Wang et al. [25], Det [26], 

Nwakali [27], Howlett [28], Zhu [29], and Al-Sheik [30]. 

Ike et al. [4] employed the Galerkinvariational method to 

obtain solutions to the boundary value problem (BVP) of a 

generalised elastic thin-walled column with pinned ends. 

They studied the problem for axial compressive loads 

concentrically applied at the cross-section centroid and for 

which the bimoment vanishes. They concluded that Galerkin 

method reduced the BVP to a set of homogeneous algebraic 

equations for which the nontrivial solutions gave the 

characteristic buckling equation as a third-degree polynomial 

with roots (eigenvalues) used to find the buckling loads [7]. 
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Mama et al. [6] obtained closed form solutions to the 

generalised elastic column buckling problem using the finite 

Fourier sine transformation method [7]. They applied the 

finite Fourier sine transformation to the governing set of 

linear ODEs and found that the BVP transformed to an 

algebraic eigenvalue problem given as a set of homogeneous 

algebraic equations [7]. They used the methods of algebra to 

obtain nontrivial solutions as the characteristic buckling 

equation, which upon expansion is a cubic polynomial with 

roots used to find the buckling loads, and the critical buckling 

load. Onah et al. [5] used the Fourier sine series method to 

obtain the eigenvalues and eigenfunctions on the BVP of the 

generalized elastic thin-walled column buckling problem for 

the case of pinned ends [7]. They represented the three 

unknown displacement modal functions using Fourier sine 

series, which was constructed to satisfy the end boundary 

conditions. They found that the BVP got transformed to a 

system of homogeneous algebraic equations, representing an 

eigenvalue problem [7]. Methods of algebra were used to 

obtain nontrivial solution as the characteristic buckling 

equation which upon expansion was a third-degree 

polynomial with roots that were used to find the buckling 

loads, and the critical buckling load. 

Ike et al. [7] used the least squares weighted residual 

method (LSWRM) to obtain solutions to the generalised 

elastic thin-walled column buckling problem for the case of 

pinned ends. The method was used to formulate the BVP as a 

variational problem of finding displacement modal buckling 

functions that minimized the functional defined as the square 

of the weighted residual. The method was found to simplify 

the problem to an algebraic eigenvalue problem which was 

solved for nontrivial cases to obtain the characteristic 

stability equation as a cubic polynomial. The roots were used 

to find all the buckling loads and the critical buckling load. 

The aim of the study is to use the Fourier cosine series 

method to obtain solutions to generalized elastic thin-walled 

column buckling problem for Dirichlet boundary conditions. 

Mathematically, the problem is described by a set of three 

coupled ordinary differential equations (ODEs) with three 

unknown displacement functions u(x), v(x) and θ(x); where 

u(x) is the displacement component in the y direction, v(x) is 

the displacement component in the z direction, and θ is the 

rotation, x is the longitudinal axis of the thin-walled column. 

The specific objectives are: 

(i) to determine the buckling and modal shape functions 

for the set of three coupled equations in terms of 

Fourier cosine series that satisfy the Dirichlet boundary 

conditions at the two ends. 

(ii) to simplify the solution of the boundary value problem 

(BVP) by reduction to an algebraic eigenvalue problem 

represented by a set of homogeneous equations in the 

buckling mode amplitudes. 

(iii) to solve the resulting eigenvalue problem, and hence 

determine the characteristic buckling equation. 

(iv) to determine the critical buckling loads for two 

particular cases: columns with bisymmetric cross-

sections and monosymmetric cross-sections. 

 

 

2. THEORETICAL FRAMEWORK 
 

The study strictly considered an elastic thin-walled column 

of length l, and with a longitudinal coordinate axis defined by 

the x coordinate. The cross-sectional plane is defined by the 

yz coordinates. The three coupled ordinary differential 

equations that govern the problem when the axial 

compressive load Qx is centroidal, no moments are due to 

transverse loads, and there is no applied torque and the bi-

moment vanishes are given as follows [1-7, 15]: 

 
4 2 2

4 2 2

( ) ( ) ( )
0zz x x z

d u x d u x d x
EI Q Q e

dx dx dx


+ + =   (1) 

 
4 2 2

4 2 2

( ) ( ) ( )
0yy x x y

d v x d v x d x
EI Q Q e

dx dx dx


+ − =   (2) 

 
4 2

4 2

( ) ( )E x
w

I Qd x d x
EC GJ

Adx dx

  
− − 
 

 

2 2

2 2

( ) ( )
0z x y x

d u x d v x
e Q e Q

dx dx
+ − =                   (3) 

 

where, u(x), v(x) and θ(x) are the displacement functions, x is 

the longitudinal coordinate axis. E is the Young’s modulus of 

elasticity of the material  of the column material, G is the 

shear modulus or modulus of rigidity, Cw is the warping 

constant, Izz is the moment of inertia about the z coordinate 

axis, Iyy is the moment of inertia about the y coordinate axis, 

ez, ey are coordinates of the shear center, Qx is the axial 

compressive load, IE is the polar moment of inertia about the 

shear center, A is the area of the cross-section, J is the Saint 

Venant torsional stiffness of cross-section. IE is expressed as: 

 

2 2( )E yy zz y zI I I e e A= + + +                   (4) 

 

 

3. METHOD 
 

3.1 Dirichlet boundary conditions and Fourier cosine 

series for the buckling mode functions 

 

The origin of coordinates is chosen at the center of the 

column of length l, and the Dirichlet boundary conditions for 

the thin-walled column with pinned ends are: 

 

( / 2) ( / 2) 0u x l u x l= − = = =    (5) 

 

( / 2) ( / 2) 0u x l u x l = − = = =    (6) 

 

( / 2) ( / 2) 0v x l v x l= − = = =    (7) 

 

( / 2) ( / 2) 0v x l v x l = − = = =    (8) 

 

( / 2) ( / 2) 0x l x l = − =  = =                    (9) 

 

( / 2) ( / 2) 0x l x l  = − =  = =         (10) 

 

where, the primes denote differentiation with respect to x. 

Suitable Fourier cosine series that satisfy all the Dirichlet 

boundary conditions and can be used to represent the 

displacement buckling modal functions are given as: 
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1

( ) cosn

n

n x
u x u

l



=


=             (11) 

 

1

( ) cosn

n

n x
v x v

l



=


=     (12) 

 

1

( ) cosn

n

n x
x

l



=


 =      (13) 

 

where, un, vn and θn are the amplitudes of the displacements 

for the nth buckling mode. 

 

3.2 Application of the Fourier cosine series method 

 

Substitution of the displacement buckling modal equations 

– Equations (11-13) – into the governing elastic buckling 

equations – Equations (1-3), give: 

 
4 2

4 2
1 1

cos coszz n x n

n n

d n x d n x
EI u Q u

l ldx dx

 

= =

 
+   

2

2
1

cos 0x z n

n

d n x
Q e

ldx



=


+  =   (14) 

 
4 2

4 2
1 1

cos cosyy n x n

n n

d n x d n x
EI v Q v

l ldx dx

 

= =

 
+   

2

2
1

cos 0x y n

n

d n x
Q e

ldx



=


−  =   (15) 

 
4 2

4 2
1

cos E x
w n

n

I Qd n x d
EC GJ

l Adx dx



=

  
 − − 

 
  

2

2
1 1

cos cosn z x n

n n

n x d n x
e Q u

l ldx

 

= =

 
  +   

2

2
1

cos 0y x n

n

d n x
e Q v

ldx



=


− =   (16) 

 

Simplifying, 

 

4 2

1

zz x n

n

n n
EI Q u

l l



=

      
 −         

  

  

2

cos 0x z n

n n x
Q e

l l

  
−  = 

  

   (17) 

 

4 2

1

yy x n

n

n n
EI Q v

l l



=

      
 −         

  

   

2

cos 0x y n

n n x
Q e

l l

  
+  = 

  

  (18) 

 

4 2

1

E x
w n

n

I Qn n
EC GJ

l A l



=

       
 + −            

  

2 2

cos 0x z n y x n

n n n x
Q e u e Q v

l l l

     
− + =   
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 (19) 

 

Further simplification by division by (nπ/l)2 yields: 

 

2

1

cos 0zz x n x z n

n

n n x
EI Q v Q e

l l



=

     
 − −  =       

  (20) 

 

2

1

cos 0yy x n x y n

n

n n x
EI Q v Q e

l l



=

     
 − +  =       

 (21) 

 

2

1

E x
w n

n

I Qn
EC GJ

l A



=

     
 + −          

  

  cos 0x z n y x n

n x
Q e u e Q v

l

 
− + =


  (22) 

 

 

4. RESULTS 

 

4.1 Reduction to algebraic eigenvalue problem 

 

For the nth buckling mode, the following system of 

homogeneous equations is obtained from the buckling modal 

amplitudes: 

 
2

2

2

0

0

zz x x z

yy x x y

E x
z x y x w

n
EI Q Q e

l

n
EI Q Q e

l

I Qn
e Q e Q EC GJ

l A

     − − 
   
  
     −    

  
     − + −    

  

 

0

0

0

n

n

n

u

v

   
   
   
   
  =  
   
   
   

     

                          (23) 

 

For nontrivial solutions of the set of homogeneous 

equations, the determinant of the coefficient matrix must 

vanish and this results in characteristic buckling (stability) 

equation as follows: 

 
2

2

2

0

0 0

zz x x z

yy x x y

E x
x z x y w

n
EI Q Q e

l

n
EI Q Q e

l

I Qn
Q e Q e EC GJ

l A

   − −    

   − =    

   − + −    

(24) 
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We define the buckling loads in pure flexure and torsion as 

follows: 

 
2

E
zz zz

n
P EI

l

 
=  

 
    (25) 

 
2

E
yy yy

n
P EI

l

 
=  

 
    (26) 

 
2

w
E

A n
P EC GJ

I l


  
 = +    

  (27) 

 

Hence, 

 
2

E
w

P In
EC GJ

l A


 

+ = 
 

   (28) 

 

where, 𝑃𝑧𝑧
𝐸  is the Euler flexural buckling load about the zz 

axis, 𝑃𝑦𝑦
𝐸  is the Euler flexural buckling load about the yy axis, 

and 𝑃𝜙 is the pure torsional buckling load. 

The characteristic buckling equation is then given as: 

 

( ) 0

0 ( ) 0

E
zz x x z

E
yy x x y

x EE
x z x y

P Q Q e

P Q Q e

Q IP I
Q e Q e

A A



− −

− =

 
− − 

 
 

   (29) 

 

Expansion of the characteristic buckling equation yields: 

 

( )

( )

E
yy x x y

E
zz x

x EE
x y

P Q Q e

P Q
Q IP I

Q e
A A



−

−

−
 

  
0 ( )

0

E
yy x

x z

x z x y

P Q
Q e

Q e Q e

−
− =

−
  (30) 

 

Expanding further, 

 

2( ) ( )( ) ( )E E E
zz x yy x x x y

I
P Q P Q P Q Q e

A

 
− − − − 

 
 

( )0 ( ) 0E
x z x z yy xQ e Q e P Q− + − =          (31) 

 

Simplifying, 

 

( )( )( )E E E
zz x yy x x

I
P Q P Q P Q

A

− − −  

2 2( )( ) ( ) ( ) 0E E
zz x x y x z yy xP Q Q e Q e P Q− − − − =    (32) 

 

Multiplying by (A/IE), gives: 

 

2( )( )( ) ( )( )E E E
zz x yy x x zz x x y

E

A
P Q P Q P Q P Q Q e

I

− − − − −  

2( ) ( ) 0E
x z yy x

E

A
Q e P Q

I
− − =                     (33) 

 

But 2 2 2
0

xx zz
y z

I I
r e e

A

+ 
= + +  

 
                 (34) 

 

where, r0 is the radius of gyration. 

Hence from Equation (4), we have 

 
2 2( )xx yy y zE

I I e e AI

A A

+ + +
=  

2 2 2
0( )

xx yy
y z

I I
e e r

A

+
= + + =    (35) 

 

Hence, the characteristic buckling equation becomes: 

 

( )( )( )E E
zz x yy x xP Q P Q P Q− − −  

2 2

2 2
0 0

( ) ( )
( ) ( ) 0

x yE Ex z
zz x yy x

Q e Q e
P Q P Q

r r
− − − − =  (36) 

 

Simplifying, we obtain: 

 

2

0

( ) ( )( )
x yE E

zz x yy x x

Q e
P Q P Q P Q

r


  
 − − − −  
   

 

 

2

0

( ) 0Ex z
yy x

Q e
P Q

r

 
− − = 
 

   (37) 

 

Alternatively, 

 

2
2

2
0

( ) ( )( )E E z
yy x zz x x x

e
P Q P Q P Q Q

r


 

− − − − 
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2
2

2
0

( ) 0
yE

yy x x

e
P Q Q

r
− − =    (38) 

 

Eq. (36) is the characteristic stability equation for the 

determination of the buckling loads of a generalised elastic 

thin-walled column with an asymmetrical cross-section and 

for Dirichlet boundary conditions at the ends. The stability 

equation is a third degree polynomial in Qx, and it has three 

zeros. The three zeros of the characteristic stability equations, 

called the three eigenvalues, are found by solving the 

characteristic stability equation using the numerical and 

analytical methods for solving polynomials. The least value 

of the three eigenvalues called the critical buckling load will 

govern the stability behaviour. 

 

4.2 Special cases of the generalised elastic thin-walled 

column buckling problem 

 

Two special cases, considered simplifications of the 

problem namely: (i) columns with bisymmetric cross-
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sections about the y and z coordinate axes, (ii) columns with 

monosymmetric cross-sections about one coordinate axis 

either the y or the z axis. 

(i) Bisymmetric cross-sections 

For bisymmetric cross-sections ez = ey = 0. The 

characteristic buckling equation simplifies to: 

 

( ) 0 0

0 ( ) 0 0

0 0 ( )

E
zz x

E
yy x

E
x

P Q

P Q

I
P Q

A



−

− =

−

  (39) 

 

Expansion yields the characteristic stability equation as the 

third degree polynomial in Qx: 

 

( )( )( ) 0E E E
zz x yy x x

I
P Q P Q P Q

A

− − − =          (40) 

 

The eigenvalues are found as: 

 
2

E
x zz zz

n
Q P EI

l

 
= =  

 
                      (41) 

 
2

E
x yy yy

n
Q P EI

l

 
= =  

 
                       (42) 

 

2

x w
E

A n
Q P EC GJ

I l


  
 = = +    

              (43) 

 

The buckling modes are decoupled in this case, since the 

governing stability equations are decoupled. 

(ii) Monosymmetric cross-sections 

If the axis of symmetry is the zz axis, then ey = 0, ez ≠ 0, 

and the equation simplifies to: 

 

( ) 0

0 ( ) 0 0

0 ( )

E
zz x x z

E
yy x

E
x z x

P Q Q e

P Q

I
Q e P Q

A



− −

− =

− −

  (44) 

 

Expansion yields: 

 

2
2

2
0

( ) ( )( ) 0E E z
yy x zz x x x

e
P Q P Q P Q Q

r


 

− − − − = 
  

    (45) 

 

Hence there are two possibilities for the roots, namely: 

 

0E
yy xP Q− =                                (46) 

 

Or 

 
2

2

0

( )( ) 0E z
zz x x x

e
P Q P Q Q

r

  
− − − = 

 

         (47) 

 

5. DISCUSSION 

 

The Fourier cosine series method has been successfully 

used in this research  to obtain solutions to the generalized 

elastic thin-walled column buckling problem for the case of 

Dirichlet boundary conditions.The problem considered in this 

work is described using a set of three coupled ordinary linear 

differential equations (ODEs) given by Equations (1-3) in 

terms of the three displacement modal functions u(x), v(x) 

and θ(x). For Dirichlet boundary conditions given by 

Equations (5-10) for the origin taken at the middle of the 

column, the three unknown displacement modal buckling 

functions that satisfied the boundary conditions were given in 

terms of Fourier cosine series of infinite terms as Equations 

(11-13) where the displacement amplitudes un, vn, and θn for 

the nth buckling mode were unknown. 

By the Fourier cosine series method, the substitution of the 

displacement modal buckling functions into the governing 

system of ODEs simplified the boundary value problem 

(BVP) to an algebraic problem given by the set of algebraic 

homogeneous equations in Equation (23). Following the 

methods for solving algebraic eigenvalue problems, the 

requirement for nontrivial solution of the homogeneous 

algebraic equations given by the vanishing of the determinant 

of the coefficient matrix was used to find the characteristic 

buckling equation as Equation (24). This was further 

expressed in terms of the flexural buckling load expressions 

about the two axes of the cross-section (𝑃𝑦𝑦
𝐸 , 𝑃𝑧𝑧

𝐸 ) and pure 

torsional buckling load expression (𝑃𝜙)  as Equation (29). 

Expansion of the characteristic buckling equation presented 

in determinantal form and algebraic simplifications resulted 

in the characteristic stability equation for the general 

asymmetric cross-section as the third degree polynomial in 

terms of Qx expressed as Equation (36). The characteristic 

buckling equation for the elastic column buckling problem 

for Dirichlet end boundary conditions and for asymmetric 

cross-section was further simplified to obtain Equations (37) 

or (38). The solution of the characteristic buckling equation 

using analytical and numerical methods for solving nonlinear 

and transcendental equations enable the determination of the 

three eigenvalues, which are used to find the three possible 

buckling loads. The minimum buckling load is the critical 

buckling load which governs the stability behaviour of the 

thin-walled column and determines the buckling mode as 

flexural or torsional or flexural-torsional. Two simplifications 

of the generalized problem were further considered – 

monosymmetric and bisymmetric cross-sectioned thin-walled 

columns. For bisymmetric columns, the governing equations 

were found to be uncoupled, resulting to characteristic 

buckling equations that are uncoupled and given as the 

matrix Equation (39) with vanishing non diagonal terms. The 

solution of the uncoupled characteristic equation gave roots 

(eigenvalues) and buckling modes that are uncoupled. For 

columns with bisymmetric cross-sections, the buckling 

failure could proceed by either pure Euler flexural buckling 

about the yy axis or the zz axis or by pure torsional buckling. 

The least value of the three eigenvalues give the critical 

buckling load and would govern the failure of the elastic 

column with bisymmetrical cross-sections. 

For thin-walled columns with monosymmetric cross-

section where the axis of symmetry is the zz axis, the 
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characteristic stability equation was found as Equation (44). 

Expansion of the determinant yielded a third degree 

polynomial in Qx given as Equation (45). The solution gave 

two possibilities for the buckling failure. The first possibility 

is a pure flexural buckling given by Equation (46). The 

second possibility is represented by the quadratic equation 

(second degree polynomial) in Qx, yielding two flexural-

torsional buckling loads. The smallest buckling load 

(eigenvalue) is the critical buckling load and would govern 

the buckling failure. The solutions for the buckling loads 

agree with previous solutions given by Det [26], Wang et al 

[25], Mama et al. [6] who used the finite Fourier sine 

transformation method, Onah et al [5] who used the Fourier 

sine series method, Ike et al [7] who applied the least squares 

weighted residual method. 

 

 

6. CONCLUSION 

 

The conclusions of the work are as follows: 

(i) the Fourier cosine series method is an effective 

analytical technique for obtaining solutions to the 

boundary value problem (BVP) of elastic buckling of 

thin-walled column for Dirichlet end boundary 

conditions. 

(ii) the method transformed the BVP of a set of coupled 

ordinary differential equations (ODEs) to an algebraic 

eigenvalue problem given by a set of homogeneous 

algebraic equations in terms of the amplitude of the 

modal displacements. 

(iii) the characteristic buckling equation was obtained as a 

third degree polynomial in terms of Qx; and the three 

zeros of the polynomial are the eigenvalues which are 

the three buckling loads. 

(iv) for generalised elastic thin-walled column buckling 

problems with bisymmetric cross-sections, the 

governing stability equations are uncoupled, resulting in 

a system of homogeneous algebraic equations that are 

uncoupled, and characteristic stability equations with 

decoupled buckling loads and decoupled buckling 

modes. 

(v) for generalised elastic thin-walled column buckling 

problems that have monosymmetric cross-sections with 

zz axis as the axis of symmetry, the Euler bending 

buckling mode about the y axis is decoupled while the 

Euler bending buckling mode about z axis is coupled 

with torsional buckling. 

(vi) for generalised elastic thin-walled column buckling 

problems with asymmetric cross-sections, the governing 

stability equations are a set of three coupled ordinary 

differential equations in the three displacement 

functions. The characteristic buckling equation is 

coupled. The two Euler flexural buckling modes about 

the two axes of the cross-section interact with the 

torsional buckling mode. 

(vii) the expressions obtained in this study for the 

characteristic buckling equations and their eigenvalues 

were exact solutions for the Dirichlet boundary 

conditions considered since the Fourier cosine series 

which were the exact displacement modal shape 

functions that satisfied all the natural and essential 

boundary conditions at the ends were employed. 
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