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In image processing, accurate classification of blur types is an essential pre-requisite 

for efficient aerial image restoration and enhancement. In this paper, a hybrid approach 

is proposed that combines a deep Convolutional Neural Network (CNN) for initial 

feature extraction with a Generative Adversarial Network (GAN) for feature 

enhancement and refinement. For final decision-making in the correct classification of 

blur types, such as Gaussian, motion, and defocus blur, a Radial Basis Function (RBF) 

classifier is utilized. The performance of the proposed approach is thoroughly assessed 

on the VisDrone2019-DET dataset, which contains an extremely diverse collection of 

blurred aerial images suffering from diverse distortion patterns. Experimental evidence 

shows that the hybrid approach outperforms baseline machine learning algorithms and 

single deep architectures greatly in terms of classification accuracy, recall, and F1-

score. These results highlight the capability of combining deep feature learning with 

adversarial training and non-linear classification for accurate blur categorization in real-

world aerial imaging conditions. Experimental results show that the hybrid model 

attains promising classification accuracy, with the Vision Transformer (ViT)+GAN-

RBF combination producing the highest performance (95.5% accuracy). These results 

highlight the strength of combining state-of-the-art deep features with conventional 

classifiers to boost the classification of Gaussian, motion, and out-of-focus blur in aerial 

images. 
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1. INTRODUCTION

In many domains, such as military reconnaissance, 

environmental studies, traffic monitoring, remote sensing, 

surveillance, and disaster relief, aerial imagery is essential. 

Photographs taken with drones, satellites, or cameras mounted 

on airplanes at various speeds and altitudes are frequently 

impacted by blur from technical and environmental factors. 

Detecting objects accurately, classifying them, and analyzing 

scenes can be challenging when blurring occurs, as it 

significantly degrades image quality. To enhance the 

performance of computer vision and remote sensing 

applications, issues related to blurring need to be addressed.  

Blurring in aerial images arises from various factors that 

affect the image's sharpness and clarity. Drones, satellites, and 

other aerial platforms experience vibrations, wind 

disturbances, and sudden movements, leading to motion blur 

in images. These issues are mainly due to camera movement 

and instability of the platform. Additionally, atmospheric 

conditions, such as changes in humidity, temperature, and 

pressure, further reduce image sharpness. These conditions 

lead to distortions that create a Gaussian blur effect. Another 

crucial aspect is the limitations in focusing, where defocus blur 

occurs, making objects appear unclear due to incorrect depth 

settings, varying terrain heights, or improper camera 

calibration. Furthermore, shutter speed and exposure time play 

a role in image quality; a slow shutter speed relative to the 

movement of the aerial platform can cause motion blur, and 

poor exposure settings can exacerbate other types of blurs. 

Understanding these factors is vital for enhancing overall 

image clarity and improving the processing of aerial images. 

Blur significantly degrades the usefulness of aerial imagery 

in vital applications. For traffic monitoring, blurred images 

may impair accurate detection and tracking of vehicles, 

influencing real-time traffic monitoring and congestion 

control. For disaster response, image blur can mask valuable 

visual information like destroyed infrastructure, blocked 

roads, or trapped people, causing delays in rescue and relief 

operations. In monitoring, blur degrades the accuracy of 

detecting objects or activities of interest, which may 

undermine security evaluations. Hence, precise blur 

classification and correction are necessary for the reliability of 

these high-impact aerial imaging tasks. 

Traditional methods for classifying blur often depend on 

features crafted manually and classical signal processing 

techniques. These approaches can be limited in their ability to 

generalize across various types of blurs or adapt to the diverse 

conditions found in real-world scenarios. They frequently 

struggle to accurately differentiate between different kinds of 

blur when faced with changing conditions such as lighting, 

Mathematical Modelling of Engineering Problems 
Vol. 12, No. 6, June, 2025, pp. 2139-2147 

Journal homepage: http://iieta.org/journals/mmep 

2139

https://crossmark.crossref.org/dialog/?doi=10.18280/mmep.120629&domain=pdf


 

noise, or resolution shifts, necessitating specialized knowledge 

for effective feature extraction [1, 2]. 

On the other hand, deep learning techniques, in particular 

Convolutional Neural Networks (CNNs), have been shown to 

learn hierarchical and sophisticated features while being 

dataset agnostic, which makes them an ideal choice for any 

method pertaining to blur classification [3, 4].  

Modern methodologies, built on the strengths of CNNs, 

can enhance both the resilience and adaptability of blur 

classification models, thus addressing the challenges faced by 

traditional methods. Various approaches for both detection 

and classification of different types of blurs (defocus, 

Gaussian, motion, crop haze) have been proposed. CNNs have 

been particularly successful in this area, with simplified 

models achieving superior performances versus traditional 

ones [5, 6]. 

 

 

2. RELATED WORK  

 

Reducing blur is crucial when using aerial photography 

since it can impair the quality of the scene analysis, object 

detection, and classification processes. Multiple solutions 

have been proposed over the years, including hybrid models, 

deep learning-based methods, and traditional methods. It is 

mostly based on mathematical models dealing with image 

processing algorithms. These techniques evaluate blur by 

examining picture gradients, frequency components, and 

statistical metrics. Methods based on Fourier Transforms, for 

instance, use frequency anisotropy to identify motion blur. 

These methods don't need big training datasets and are model-

driven. The Fourier Transform of pictures' anisotropy is used 

to determine blur features by looking at frequency components 

in a methodology that was initially introduced to identify 

motion blur caused by airplane movement [7]. Wavelet 

Transform Analysis Assesses picture edge sharpness using the 

Haar wavelet transform. This approach successfully 

determines the existence and degree of blur by looking at edge 

types and their clarity [8]. 

Different approaches have been proposed to identify and 

classify various blur types, defocus, Gaussian, motion, and 

haze blur. Recently, CNNs proved to be a promising approach 

by showing better performance results both for simplified 9 or 

ensemble [9] CNN models compared to traditional methods. 

Researchers used a ResNet-50 convolutional neural net to 

classify blurry images. The effectiveness of convolutional 

architectures for blur identification is supported by prior work, 

such as the ensemble CNN approach [10], which demonstrated 

high accuracy in classifying blurred images. It improves 

classification accuracy and training efficiency by applying 

skip connections to eliminate the problem of the gradient 

vanishing [11]. Deep Belief Networks (DBNs) have also been 

researched to classify the type of blur and to estimate the blur 

parameters [12]. Also, some methods applied edge detection 

features [13] for classification. To improve blur classification, 

researchers have suggested using ensemble CNN methods and 

explored deblurring algorithms like Lucy-Richardson-Rosen 

to further improve the performance of deep learning networks 

[14]. 

Hybrid technique can combine classic vision techniques 

that process images along with DNN models to gain the 

benefits of both. For example, one such approach is Depth 

Distillation for Defocus Blur Detection [15] which improves 

blur classification using depth knowledge. They can reduce 

depth clues into the blur detection model to distinguish blurred 

or out-of-focus regions, so this method can improve more blur 

classification accuracy. In reference [16], a hybrid deep 

learning model has been proposed only to enhance the 

detection of objects in the drone imagery to detect the target 

object. This model integrates both deep learning algorithms 

and traditional feature representation methods to enhance 

detection accuracy, which is particularly beneficial during 

search and rescue operations. Lin et al. [17] highlighted that 

deep-learning methods can classify blurred images by 

analyzing high spatial frequencies. The Lucy-Richardson-

Rosen algorithm enhances image quality, improving 

classification accuracy, as demonstrated with the blurred 'bell 

pepper' image analyzed using GoogLeNet but Performance is 

affected by weak intensity distributions and experimental 

errors. 

Karaali et al. [18] focused on distinguishing between depth 

edges and pattern edges in defocused images using a deep 

CNN (E-NET). It classifies edges to avoid ambiguity in blur 

estimation, but does not classify types of blurs beyond this 

context. Here, Depth edges have uncertain blur estimates due 

to discontinuities, and B-NET and E-NET share weights but 

are trained separately. A deep learning approach utilizing 

CNNs [19] to classify images into categories such as Gaussian 

blur and motion blur, achieving high accuracy in detecting and 

categorizing various image quality issues. Tiwari [20] 

presented a convolutional neural network model that classifies 

blurred images into four categories: motion, defocus, 

Gaussian, and box blur. The CNN model demonstrates 

improved accuracy in blur classification compared to 

traditional multi-layer perceptron (MLP) models. Chen et al. 

[21] focused on classifying flower images as either blurred or 

clear using a convolutional neural network, but it does not 

specifically address the classification of different types of 

blurs in blurred images. Defocus Blur Detection Generative 

Adversarial Network (DBDGAN) focuses on defocus blur 

[22] detection rather than classifying types of blurs. It 

proposes a deep network that estimates pixel probabilities of 

being focused or blurred, addressing challenges like 

background clutter and scale sensitivity in blurred images with 

High computational cost and memory requirements. 

Defocus blur detection using a deep neural network [23] that 

extracts multi-scale convolutional features from a single-scale 

image, rather than classifying various types of blurs. It 

specifically addresses challenges in detecting defocus blur 

regions. Fan et al. [24] focused on restoring motion-blurred 

images using a deep convolutional neural network, 

specifically improving the DeblurGAN model. However, it 

does not address the classification of types of blurs in blurred 

images using deep learning methods. 

This work introduces a new hybrid method for blur type 

classification in aerial imagery, integrating deep feature 

extraction with GAN-based refinement and a Radial Basis 

Function (RBF)-Support Vector Machine (SVM) classifier. In 

contrast to conventional methods based on handcrafted 

features or isolated deep learning models, our approach 

utilizes a multi-branch framework with pretrained feature 

extractors (ResNet101, VGG-16, EfficientNet-V2, and Vision 

Transformer (ViT). Each branch utilizes a GAN-based 

refinement module to refine feature quality, followed by RBF-

SVM classification for better blur type discrimination. 

Evaluated on the VisDrone2019-DET dataset, this method 

achieves improved classification accuracy under complicated 

aerial blur situations, and it is provided with a modular 
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architecture for comparative study and optimization. 

 

 

3. IMAGE BLUR MODEL 
 

Blur in images occurs due to factors such as camera motion, 

defocus, or atmospheric disturbances. Mathematically, it is 

modelled as a convolution operation in the spatial domain, 

where the observed blurred image results from the original 

sharp image being convolved with a blur kernel, known as the 

Point Spread Function (PSF) [25]. 

 

𝑔(𝑥, 𝑦) = ℎ(𝑥, 𝑦) ∗ 𝑓(𝑥, 𝑦) + 𝑛(𝑥, 𝑦) (1) 

 

The observed blurred image is represented by g(x, y) in the 

mathematical model of image blurring. This is the result of 

convolution between the original sharp image, represented by 

f(x, y), and a blur kernel called the Point Spread Function 

(PSF), represented by h(x, y). A loss of sharpness and detail 

results from the convolution procedure, represented by *, 

which distributes the crisp image's pixel values based on the 

PSF's properties. Furthermore, noise, which is represented by 

n(x, y), is frequently present in real-world photographs as 

shown in Figure 1, and can further deteriorate image quality. 

 

 
 

Figure 1. Blurred image formation with blur kernel and additive noise 

 

 

4. TYPES OF BLURS CONSIDERED IN THIS WORK 
 

4.1 Gaussian Blur 
 

The most common causes of Gaussian blur (Figure 2(a)) are 

atmospheric factors, processing mistakes, or optical flaws. It 

consistently softens the image, giving it a blurry or smooth 

appearance. Because of this blur, high-frequency information 

is lost, making edges less clear. The influence of Gaussian blur 

in aerial images is substantial since it may mask minute details, 

making it challenging to examine crucial elements like the 

condition of the vegetation, building structures, or topography. 

The PSF h(x, y) is given by: 
 

ℎ(𝑥, 𝑦) =
1

2𝜋𝜎2
𝑒

−𝑥2+𝑦2

2𝜎2  (2) 

 

where, σ is the standard deviation of the Gaussian distribution, 

controlling the spread (or "blur") of the filter. 

 

4.2 Motion blur 
 

Motion blur (Figure 2(b)) occurs when either the camera or 

the object in view moves during the image capture process. 

Aerial imagery is especially prone to this kind of blur since 

drones, airplanes, and satellites are constantly moving. 

Typically, motion blur causes a decrease in sharpness along a 

particular axis and manifests as streaks or trails in the direction 

of movement. Motion blur in aerial photos can warp things, 

making it difficult to recognize elements precisely. The overall 

quality of analysis is compromised by this distortion, which 

lowers the accuracy of measurements and classifications based 

on images. The PSF h(x, y) is given by 

 

ℎ(𝑥, 𝑦) =
1

𝐿
, for 0 ≤ 𝑥 ≤;  𝑦 = 0 (3) 

 

where, L is the length of the blur in pixels, which depends on 

the speed and duration of motion. This function describes 

uniform motion along the x-axis. For motion in other 

directions, a rotation matrix can be applied. 

 

4.3 Out of focus blur 

 

Out-of-focus blur occurs when the camera lens does not 

focus properly on the object or scene being captured. 

Vibrations, lens quality, and focus adjustments made during 

sudden altitude changes may all cause this kind of blur in aerial 

photography. Out-of-focus blur (Figure 2(c)) is characterized 

by a halo effect that surrounds objects, diminishing contrast 

and edge sharpness. Clear limits and edges are necessary for 

successful analysis in tasks like object recognition and land 

classification, but this blur can severely impair the appearance 

of key elements in aerial images. The PSF h(x, y) is typically 

modeled as: 

 

ℎ(𝑥, 𝑦) = {

1

𝜋𝑅2
, if 𝑥2 +  𝑦2  ≤ 𝑅2

0, otherwise 
 (4) 

 

where, R is the radius of the circle, which depends on the 

amount of defocus. 

 

 
 

Figure 2. Different types of blurs in image 
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5. PERFORMANCE METRICS

The model's performance in classifying different types of 

blurs is assessed using three primary metrics: precision, recall, 

and F1-score. These indicators assess the accuracy and 

dependability of the model while lowering categorization 

errors. 

5.1 Precision 

The model's precision measures how well it can identify 

blurs. It represents the ratio of accurately identified instances 

of a specific blur type, that is True Positives (TP) to the total 

number of predictions the model made for that type, True 

Positives + False Positives, (TP + FP). A model characterized 

by high precision categorizes an image according to a 

particular type of blur (for instance, A). In the majority of 

instances, it demonstrates accuracy in identifying Gaussian, 

motion, or out-of-focus blurs. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(5) 

5.2 Recall 

The recall of the model assesses its ability to recognize all 

relevant instances of a particular class. This is a function of the 

number of True-Positive (TP) instances to the total number of 

positively identified instances (TP+FN). A recall-heavy model 

is good at identifying most of the real-world cases of 

blurriness. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(6) 

5.3 F1-score 

F1-score is another machine learning evaluation metric 

which also evaluates the effectiveness of a model in making a 

prediction, but gives a detailed view of its performance based 

on classes rather than overall performance like accuracy. 

F1-score is made up of two competing metrics-precision 

and recall scores of a model. 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
(7) 

6. PROPOSED METHODOLOGY

Our proposed hybrid model integrates deep learning 

architectures (ResNet101, VGG-16, EfficientNet-V2, ViT) 

with a GAN and an RBF classifier to enhance performance. 

The method consists of three key components: a GAN for 

generating realistic blurred images to augment the dataset, 

deep feature extraction using advanced architectures, and an 

RBF classifier to map features into a high-dimensional space 

for improved classification accuracy. VisDrone2019-DET 

dataset inherently contains real-world blur (e.g., slight motion 

blur, out-of-focus regions) because of drone motion, focus 

drift, and camera motion. These natural imperfections provide 

a realistic basis for blur classification accuracy testing. 

To acquire a stronger and class-balanced training set for the 

blur classification, the dataset was artificially augmented by 

creating three types of blur Gaussian, motion, and out-of-focus 

blur on half of the original images. Gaussian blur was 

mimicked by employing 2D Gaussian kernels with various 

standard deviations, motion blur was mimicked by employing 

motion kernels of different lengths and angles, and out-of-

focus blur was mimicked by employing circular averaging 

filters. The above augmentations were carried out under 

control in order to facilitate easy labelling and sufficient 

variation in blur classes. 

Our suggested model combines a GAN-based Feature 

Refinement Module with deep feature extraction from pre-

trained ResNet101, VGG16, EfficientNet-V2, and ViT-B16, 

each of which was fine-tuned with the Adam optimizer 

(learning rate = 0.001, batch size = 32, epochs = 100). The 

generator and discriminator of the GAN were trained with 

feature matching and adversarial loss for 150 epochs with a 

learning rate of 0.0002. For blur classification, an SVM with 

RBF kernel was employed (C = 1.0, γ = 0.1, kernel scale = 

auto) to be trained on refined features. For computational 

resources, we employed an NVIDIA RTX 3090 GPU with 

32GB of RAM and SSD storage for fast data processing. 

6.1 Deep learning feature extraction 

A deep learning-based feature extraction approach is 

implemented using several state-of-the-art architectures, 

including ResNet101, VGG-16, EfficientNet-V2, and Vision 

Transformer (ViT) is trained on the large dataset to extract 

high-level features from blurred images. The model is trained 

to segregate images based on the blur type: Gaussian, motion, 

and out-of-focus blur. The deep residual learning of the 

ResNet101 network capture more complex features. Whereas 

VGG16 CNN uses its sequential convolution layers to obtains 

a high feature extract. Then EfficientNet-V2 aims at boosting 

the accuracy and efficiency with the scalable architecture, and 

ViT introduces the self-attention mechanisms for the global 

dependencies modeling in image. We fine-tune these 

architectures on the dataset to learn distinguishing between 

various types of blurs and make sure effective feature 

extraction and classification is achieved. These models are 

used together in the classification and reconstruction stage to 

improve robustness and classification accuracy in such 

conditions in aerial imagery. 

6.2 GAN-based feature refinement 

A GAN is trained to create realistic blurred images, 

expanding the size of the dataset and enhancing model 

generalization. The generator produces different blur artifacts, 

including Gaussian, motion, and out of focus, and the 

discriminator tries to determine the realness of these images. 

This type of adversarial training improves the quality and 

diversity of the generated images, so that the model learns 

more effectively on a variety of blur types. Incorporating these 

synthetic images into the training dataset, the GAN supports 

enhancing the robustness and accuracy of other models e.g., 

ResNet101, VGG-16, EfficientNet-V2, ViT for blur category 

in difficult settings, e.g., aerial images from the 

VisDrone2019-DET dataset. 

6.3 RBF classifier for final decision 

In this work, we replace the conventional SoftMax layer 

with a RBF classifier to learn the mapping from deep features 
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obtained from models such as ResNet101, VGG-16, 

EfficientNet-V2, ViT, etc. This improves the classification 

accuracy because it is able to manage complex decision 

boundaries that are typical in applications like blur detection. 

The kernel-based architecture of the RBF classifier helps it 

to determine the similarity between the feature vectors to give 

a better performance in distinguishing between Gaussian, 

motion and out of focus blurs as shown in Figure 3. With the 

feature space transformed by the RBF classifier, the model is 

better positioned to learn the fine-grained differences in the 

data to enhance the classification performance. This method 

helps when working with delicate datasets like VisDrone2019. 

Normal SoftMax layers might battle with muddled or 

nonlinear features. Adding RBF classifiers boosts the system's 

sturdiness and precision.   

Figure 4 illustrates a pipeline to categorize blur using deep 

learning and GANs, which starts with input images from the 

dataset, including both some sharp and blurry from things like 

motion or focus issues. To ensure that the images are clear, 

consistent, and appropriate for additional analysis, pre-

processing techniques like noise reduction, normalization, and 

resizing are applied to an input dataset that contains images 

that may display different kinds of blur, such as motion blur, 

Gaussian blur, or out-of-focus blur. 

 

 
 

Figure 3. General structure of RBF 

 

 
 

Figure 4. Architecture for proposed method for blur image classification 

 

6.4 Workflow of the proposed hybrid blur classification 

 

The model takes input images (Gaussian blur, motion blur, 

or out-of-focus blur) using a multi-stage pipeline. 

Preprocessing first carries out noise reduction, normalization 

([0,1] scaling), and resizing (224×224) to standardize. Four 

pre-trained CNNs next extract complementary features: 

ResNet101 (hierarchical patterns), VGG-16 (textural 

information), EfficientNet-V2 (lightweight encoding), and 

ViT (global dependencies). This is followed by a new GAN 

refinement module, in which a generator refines blur-damaged 

features with adversarial training against a discriminator to 

minimize feature-space ambiguities.  

The refined features are then passed into an RBF classifier 

that utilizes Gaussian kernels to create nonlinear decision 

boundaries among blur types and makes probabilistic 

predictions. Final classification into one of three blur 

categories is made using argmax selection, optionally with 
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confidence scores. This blended architecture is the first to 

synergistically integrate: (1) multi-CNN feature fusion for rich 

representation learning, (2) GAN-optimized blur artifact 

feature improvement, and (3) robust classification based on 

kernel-based approaches immune to feature distribution 

anomalies. Experimental results exhibit better performance 

compared to traditional CNN-alone methods, especially for 

fine-grained blur differences. 

Our GAN-RBF integration design brings forward a new 

model where GAN-based feature refinement is used as an 

ancestor to blur classification, which strengthens the 

discriminative nature of features derived from various deep 

models—such as ViT, which excels at capturing global 

context. In contrast to previous hybrid models that simply 

combined CNN features with SVM or RBF classifiers, our 

model utilizes a GAN to suppress feature-level noise and 

vagueness introduced by blurring, thus obtaining sharper, 

more class-specific representations. 

The most important innovation is the integration of ViT's 

global self-attention functionality with the RBF kernel's 

capability to represent sophisticated nonlinear boundaries. 

Such integration allows for better separation of refined blur 

types. We chose the RBF kernel instead of other kernel 

functions (e.g., linear, polynomial) because of its better 

performance in coping with the nonlinear separability of 

delicate features. In addition, RBF was shown to be more 

stable than attention-based classifiers in our experiments, 

especially under adverse conditions like mixed or partial blurs. 

Such integration not only enhances classification performance 

but also helps improve generalizability across differences in 

blur intensities and types. 

7. MATHEMATICAL MODEL FOR BLUR 

CLASSIFICATION

Pre-processing, deep feature extraction, feature refinement 

using a GAN, and classification with an RBF-SVM are the 

critical steps in the blur classification pipeline. The process 

begins with an input dataset,  

𝐷 = {𝐼1, 𝐼2,. . . , 𝐼𝑁} (8) 

Each image Ii contains one of three types of bubbles. 

Gaussian, movement, blurred out of attention. Various pre-

processed measurements are used for implementation, 

including noise reduction using double fnr filters to maintain 

uniformity as part of the set of data. 

𝐼𝑖
′ = 𝑓𝑛𝑟(𝐼𝑖) (9) 

where, fnr stands for a Gaussian filter. Pixel values are scaled 

between 0 and 1. 

𝐼′′ =
𝐼𝑖

′ − 𝑚𝑖𝑛(𝐼𝑖
′)

𝑚𝑎𝑥(𝐼𝑖
′) − 𝑚𝑖𝑛(𝐼𝑖

′)
(10) 

where, 𝑚𝑖𝑛(𝐼𝑖
′)  and 𝑚𝑎𝑥(𝐼𝑖

′)  represent the minimum and

maximum pixel intensities. And each image is resized to a 

fixed dimension, which can be done by the equation. 

𝐼𝑖
𝑝𝑟𝑜𝑐

= 𝑓𝑟𝑒𝑠𝑖𝑧𝑒(𝐼𝑖
′′) (11) 

where, 𝑓𝑟𝑒𝑠𝑖𝑧𝑒  is an interpolation function. The subsequent

step involves deep feature extraction using pretrained CNN-

based models such as ResNet101, VGG-16, EfficientNet-V2, 

or ViT. These models function as transformations F(I) 

mapping an input image I into a high-dimensional feature 

space, producing a feature vector Xi ∈ Rd. 

Mathematically, this transformation expressed as: 

𝐹(𝐼) = 𝑊𝐿 . 𝜎(𝑊𝐿−1 … 𝜎(𝑊𝑙𝐼 + 𝑏𝑙)+. . . +𝑏𝐿−𝑙) + 𝑏𝐿 (12) 

where, WL and bL are the weights and biases of the layer l, 𝜎 is 

the activation function and L is the total number of the layers 

in the deep model. 

In order to enhance or augment these features, a GAN is 

utilized. The GAN is composed of a generator G(z) and a 

discriminator D(x), where z∼p(z) denotes stochastic noise. The 

generator produces refined feature vectors: 

𝑋𝑖
𝐺𝐴𝑁 = 𝐺(𝑋𝑖) (13) 

While the discriminator ensure that the generated features 

resemble real extracted features. The objective function of the 

GAN is: 

min
𝐺

 max 𝔼
𝐷

𝑥 ~𝑝𝑑𝑎𝑡𝑎
[𝑙𝑜𝑔𝐷(𝑥)]

+𝔼𝑧−𝑝(𝑧) [log (1 − 𝐷(𝐺(𝑧)))]
(14) 

Upon the completion of feature refinement, classification is 

conducted utilizing an SVM that employs an RBF kernel. The 

RBF kernel is characterized as follows: 

𝐾(𝑋𝑖 , 𝑋𝑗) = 𝑒𝑥𝑝(−𝛾‖𝑋𝑖 − 𝑋𝑗‖
2

) (15) 

where, 𝛾 is a hyperparameter that controls the spread of the 

kernel. The SVM classifier then determines the class label yi 

by solving: 

𝑓(𝑋) = ∑ 𝛼𝑖𝑦𝑖𝐾(𝑋𝑖,, 𝑋) + 𝑏

𝑁

𝑖=1

(16) 

where, 𝛼𝑖  are Lagrange multipliers, yi ∈{-1,1} are the class

labels, and b is the bias term. The final predicted blur class is 

determined as: 

𝑦̂ = 𝑎𝑒𝑔𝑚𝑎𝑥𝑓(𝑋𝑖
𝐺𝐴𝑁) (17) 

This method enables the model to effectively categorize 

blurred images into their appropriate classes by utilizing deep 

learning for feature extraction alongside machine learning for 

classification. 

8. RESULTS AND DISCUSSION

The proposed GAN-RBF hybrid approach significantly 

enhances blur classification accuracy across various CNN 

architecture.  

Among the evaluated models as shown in Table 1, ViT + 

GAN-RBF achieves the highest accuracy at 95.5%, 

showcasing the power of self-attention mechanisms in 

distinguishing blur types. EfficientNet-V2 + GAN-RBF 

follows closely with 94.2%, leveraging its efficient and 

scalable design. ResNet101 + GAN-RBF delivers robust 
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performance at 92.5%, benefiting from its deep residual 

learning framework. In contrast, VGG-16 + GAN-RBF 

achieves 89.7%, reflecting the limitations of older 

architectures. A performance comparison graph of GAN-RBF 

enhanced models for the Blur Classification is shown in Figure 

5. Overall, the integration of GAN-RBF improves feature

discrimination and generalization, making it a highly effective

solution for real-world blur detection tasks.

The ViT + GAN-RBF clearly achieves the best 

classification results as seen in Figure 6 is evidenced by 

misclassification rates for Gaussian, Motion, and Out-of-

Focus blur types. It displays the least confusion between 

similar blur types, successfully obtaining an accuracy rate of 

95.5%. Although EfficientNet-V2 + GAN-RBF (94.2%) is 

also strong, he is afflicted with some slight misclassifications, 

especially with Gaussian and Out-of-Focus blur. ResNet101 + 

GAN-RBF (92.5%) performs decently, but has some trouble 

with motion blur classification. VGG-16 + GAN-RBF 

(89.7%) suffers from the most confusion, primarily with 

Motion and Out-of-Focus blurs, which leads to the lowest 

accuracy for the model. Overall, ViT and EfficientNet-V2 

surpass ResNet101 and VGG-16, demonstrating the 

dominance of transformers and optimized CNN architectures 

for complex blur classification problems. The hybrid approach 

GAN-RBF improves the ability to discriminate and generalize 

damages, which makes it a powerful approach for real-life blur 

detection problems.  

Table 1. Accuracy analysis of blur classification techniques 

Proposed Models Accuracy Precision Recall 
F1-

Score 

ResNet101+GAN-

RBF 
92.5% 91.8% 92.2% 92.0% 

VGG-16+GAN-

RBF 
89.7% 88.9% 89.5% 89.2% 

EfficientNet-

V2+GAN-RBF 
94.2% 93.8% 94.1% 94% 

ViT+GAN-RBF 95.5% 95.0% 95.3% 95.2% 

Figure 5. Accuracy analysis of blur classification techniques 

Figure 6. Confusion matrix of proposed methods for blur classification 
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Table 2. Quantitative assessment of CNN classifiers 

enhanced by SoftMax and GAN-RBF 

Model 

SoftMax GAN-RBF 

Accuracy 
F1-

Score 
Accuracy 

F1-

Score 

ResNet-101 92% 91% 94% 93% 

EfficientNet-

V2 
94% 93% 95% 94% 

VGG-16 90% 89% 91% 90% 

ViT 95% 94% 96% 95% 

Figure 7. Quantitative assessment of CNN classifiers 

enhanced by SoftMax and GAN-RBF 

The results of Table 2 show that integration of RBF 

classifiers constantly improves the performance of all models, 

but the degree of improvement varies. ViT is considered as the 

most efficient model for extracting blurred properties and 

exploiting its capabilities for global attention mechanisms. 

Efficient-V2 comes next, indicating a good trade-off between 

calculation accuracy and efficiency.  

With its residual learning framework, ResNet-101 provides 

mediocre performance, falling short of the transformer-based 

ViT. However, despite consistently seeing the RBF classifier's 

marginal growth, the VGG-16 architecture achieves the lowest 

precision. Generally speaking, the most successful method for 

classifying the various kinds of blurring in air images is the 

combination of the ViT and RBF. The performance 

comparison of models with SoftMax and GAN-RBF 

Classifiers is shown in Figure 7. 

9. CONCLUSION AND FUTURE WORK

In order to properly classify various forms of ambiguity, 

including Gaussian blur, motion ambiguity, off-cusp 

ambiguity, etc., the suggested pipeline utilizes deep learning 

models, GAN and RBF classifiers. The model offers 

trustworthy and very efficient blur classification by using 

sophisticated model function extraction techniques like 

ResNet101, Effice-V2, ViT, and GAN-based capabilities 

clarification. Adding the RBF classifier will be that much 

more precise when you accurately present fine features with 

the respective imprecise categories. This not only enhances the 

quality of ambiguity classes, but presents the degree of 

hybridization and generative models capable of addressing 

intricate image processing tasks. 

In particular, our suggested GAN-ViT-RBF architecture not 

only enhances blur classification accuracy but also provides an 

efficient and scalable solution for real-time aerial image 

processing. This holds high promise for the augmentation of 

UAV-based surveillance, smart farming, and environmental 

monitoring, where sharpness and rapid interpretation of aerial 

images are essential. Subsequent efforts will be directed 

towards constructing an integrated end-to-end system that 

simultaneously trains the GAN-based feature enhancement 

and RBF classification for enhanced efficiency. Further, we 

can seek to optimize real-time deployment on UAVs for 

agricultural and surveillance applications. Close collaboration 

with domain specialists will be critical to ensure that the model 

is validated in real-world scenarios. 
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