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A new model order reduction (MOR) algorithm is presented in the paper. By using the 

dominance index according to the H-norm, to evaluate the contribution of the poles to 

the output response of the system, the algorithm determines the important poles of the 

original system that need to be retained in the reduced-order system. The algorithm 

rearranges the poles on the main diagonal of matrix A so that the important poles are 

located at the leading positions of the main diagonal. Through the truncation technique, 

the less important poles will be eliminated and the reduced order system will have only 

the dominant poles. This algorithm is applied to simplify the 5th order robust controller 

(the original controller). Comparison and evaluation of the transient response and 

frequency response of the low-order controller and the fifth-order controller identify 

some controllers that can replace it. The determination of the most suitable controller 

to replace the original controller is determined through comparison and evaluation of 

the control system response. The simulation results have demonstrated the correctness 

and applicability of this algorithm to the problem of the controller order reduction. 
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H-norm, dominant pole, the main diagonal of 
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1. INTRODUCTION

The balanced truncation algorithm (BTA) was proposed by 

Moore in his research [1]. The algorithm is divided into two 

steps: The first step is to determine the transition matrix T and 

then use it to convert the system to an equivalent equilibrium 

state. When the system is in this state, the observed Gramian 

matrix is equal to the control Gramian matrix and has a 

diagonal form. The next step is to perform the truncation 

technique with the balanced equivalent system, that is, to 

delete the rows and columns of the balanced equivalent 

system. The system obtained after performing the truncation 

technique is the required order reduction system. Since 

Moore's initial research [1], many algorithms have been 

proposed in different directions based on the BTA [1-12], as 

well as applied to many different problems [13-19].  

The BTA is further developed in study [2], and the 

relationship with Hankel norms is determined in studies [3, 4]. 

In study [5], the Gramians as well as the Hankel values of the 

original system were generalized and their importance in the 

process of performing order reduction according to the 

balanced truncation algorithm was shown. Stykel [6] proposed 

the use of equilibrium truncation method for semi-discrete 

Stroke equation and demonstrated the correctness of the 

proposed method. In the study [7], the extended Gramian 

concept was proposed and used to determine the formula for 

calculating the order-reducing error and to prove the stability 

preservation of the BTA. The BTA using the extended 

Gramian concept was also constructed and demonstrated its 

correctness through illustrative examples. 

The stochastic equilibrium truncation method was used for 

stochastic systems in studies [2, 8, 9] and was generalized and 

proved to have an error bound in study [10]. According to the 

stochastic equilibrium truncation method, to determine the 

Gramians, it is necessary to solve one Lyapunov equation and 

one Ricati equation. Another equilibrium truncation method is 

the positive real equilibrium truncation method [9] which is 

built to reduce the order for positive real passive systems, this 

method requires solving two Ricati equations when 

determining two Gramians. For bounded real systems, we can 

apply the bounded real equilibrium truncation method, this 

method also requires solving two Ricati equations [11]. When 

designing the order reduction controller, we can apply the 

LQG equilibrium truncation method [12], which is considered 

as the first closed-loop equilibrium method. In the study [13], 

a scheme for designing a reduced model for continuous T-S 

fuzzy systems with noise in the FF domain was proposed and 

the effectiveness of the proposal was demonstrated through a 

simulation example. In the study [14], it is proposed to use a 

whole vehicle suspension system model that has been reduced 
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to the minimum step by the minimum step reduction 

technique, the selection of the minimum step is done through 

evaluating the response of the original system and the reduced 

step system. In the study [15], the method of eliminating less 

important states was applied to determine the reduced-order 

models of the electronic wedge brake (EWB) model. 

In the research [16], through the design problem of 

controlling the angle of attack of FOXTROT aircraft, the 

author has built a 6th order optimal controller. By applying the 

balanced chopping algorithm, the author obtained the 4th order 

reduced model of the original controller. In the study [17], the 

authors applied three different order reduction methods to 

determine the low-order controller to replace the controller of 

the FOXTROT aircraft angle-of-attack control system. The 

fourth-order reduced controller was also determined to be the 

most suitable low-order controller to replace the original 

controller. Dehkordi and Aghdam [18] proposed to use 

balanced truncation algorithm to determine low-order IRR 

filter instead of high-order IRR filter model. The paper results 

show that balanced truncation algorithm is very effective for 

high-order IIR systems, where Gramians may not be easily 

computed for direct order reduction. Hai [19] proposed using 

the LGQ balanced truncation algorithm to simplify the 30th 

order IRR filter model and select a 3rd order filter while still 

ensuring the filter quality. 

However, the BTA and algorithms based on this algorithm 

all use the Hankel singular value as the basis for determining 

the order-reduced system (with the criterion of eliminating 

states with small Hankel singular values) without caring about 

preserving the poles of the original system. 

With the approach of preserving the important poles of the 

original system, many algorithms have been proposed [8, 20-

25], this group of algorithms is also called modal truncation. 

The basic feature of the algorithms belonging to the group of 

methods preserving the important poles is to help maintain the 

stability of the reduced-order system when the original system 

is stable. However, the most fundamental problem of this 

group of methods is how to choose the important poles? Aoki 

[20] proposed that the poles that contribute the most to the total 

output pulse response energy are the important poles. In the 

study [21], it is proposed to use unit pulses to determine the 

influence of each pole of the original system, the poles with 

the most influence are the important poles. The most popular 

order reduction algorithm in this group today is the dominant 

poles method [22-25]. Accordingly, the importance of the 

poles is determined by the contribution of the poles to the 

output impulse response. To identify and classify the poles, 

many mathematical techniques have been used such as the 

Arnoldi and Jacobi-Davidson methods, Krylov subspaces [25, 

26]. However, in our opinion, the methods in studies [25, 26] 

still have high computational complexity. 

In this paper, we introduce a method to evaluate the 

contribution of the poles to the output impulse response based 

on the H criterion [27]. From the evaluation and 

classification of the poles, we use Schur analysis to rearrange 

the positions of the poles on the main diagonal of the system. 

Then, we apply the truncation technique to remove the less 

important poles and obtain a reduced-order system consisting 

of the important poles of the original system. To demonstrate 

the effectiveness and correctness of the algorithm, Section 3 

details its application to this reduction order algorithm in the 

problem of designing a low-order robust controller. We further 

conduct a comparative evaluation of the effectiveness of the 

control system when using low-order controllers to provide 

more solid evidence for the decision to choose a low-order 

controller instead of a high-order control system. From the 

results presented in the paper, we see that the evaluation of the 

choice of the reduced-order system based on the reduction 

error, the step response error and the bode response error is 

completely correct. Consequently, researchers will now have 

access to an additional reliable reduction method to use when 

solving the model reduction problem. 

 

 

2. METHOD 

 

Both the BTA [1-3] and the modal truncation algorithm [20-

25] have their own distinct features. Low computational cost, 

simplicity, and preservation of poles are the main advantages 

of the modal truncation technique. This algorithm will 

preserve the stability and some of the original physical 

properties of the original system. Modal truncation technique 

also provides an error bound formula, however, this error 

bound cannot be pre-estimated. The BTA can preserve the 

maximum Hankel values of the original system, however, this 

algorithm is quite computationally expensive. This algorithm 

preserves the stability and minimization of the original system 

in the order-reduced system. Furthermore, the error constraint 

of the balanced truncation technique can be estimated based 

on the Hankel singularity. 

In this part of the paper, we introduce a MOR algorithm 

based on the preservation of dominant poles that can combine 

the two truncation algorithms above. Combining two 

algorithms is to promote the advantages and overcome the 

disadvantages of the two algorithms. 

The new MOR algorithm is as follows:  

Input: The stable linear system is described as follows 

 

𝑥̇ = 𝑨𝑥 + 𝑩𝑢 (1) 

 

𝑦 = 𝑪𝑥 (2) 

 

In which, 𝑥 ∈ 𝑹𝑛, 𝑢 ∈ 𝑹𝑝, 𝑦 ∈ 𝑹𝑞 , 𝑨 ∈ 𝑹𝑛×𝑛, 𝑩 ∈
𝑹𝑛×𝑝, 𝑪 ∈ 𝑹𝑞×𝑛. 

With x is state vector, u the input excitation vector, and y 

the output measurement vector. A is the system matrix; B and 

C are the input matrix, the output matrix, respectively. 

The algorithm is divided into 3 parts. 

Part 1: The first part of the algorithm will convert the 

original system into a balanced equivalent system with the 

matrix A of the equivalent system having the upper triangular 

form using the balanced truncation method (steps 1 to 5). In 

which, the values on the main diagonal of matrix A will be the 

poles of the system. The detailed steps of part 1 are as follows: 

Step 1: Solve the following Lyapunov equation: 
 

𝑨∗𝑸 + 𝑸𝑨 + 𝑪∗𝑪 = 0 (3) 
 

The result of solving Eq. (3) we find the observed Gramian 

matrix 𝑸. 

Step 2: Cholesky analysis of matrix 𝑸 in Eq. (4), we find 

matrix 𝑹. 
 

𝑸 = 𝑹∗𝑹 (4) 
 

Step 3: Perform Schur analysis of 𝑹𝑨𝑹−𝟏 matrix in Eq. (5), 

as follows 
 

𝑹𝑨𝑹−𝟏 = 𝑼∆𝑼∗ (5) 
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Step 4: Determine the state transition matrix 𝑻 in Eq. (6), as 

follows 
 

𝑻 = 𝑹−𝟏𝑼 (6) 
 

Step 5: Determine the equilibrium equivalent system 

through the Eqs. (7)-(9) as follows 
 

𝑨𝑏 = 𝑻−1𝑨𝑻 (7) 
 

𝑩𝑏 = 𝑻−1𝑩 (8) 
 

𝑪𝑏 = 𝑪𝑻 (9) 
 

In which the matrix 𝑨𝑏 has the form of an upper triangle 

with the poles lying on the main diagonal. 

Part 2: The second part of the algorithm (steps 6 to 10) will 

evaluate and classify the poles of the system, then rearrange 

the positions of the poles on the main diagonal of the upper 

triangular matrix A based on the importance of the poles. At 

the end of the second part, the important poles are moved to 

the first positions on the main diagonal of the matrix A of the 

original system. The detailed steps of part 2 are as follows: 

Step 6: Calculate the dominance index according to the 

standard H of the poles i, i = 1 … n of the system according 

to the Eq. (10) [22-24] as follows 
 

𝑹𝑖 =
‖𝑪𝑏𝑖𝑩𝑏𝑖‖

|𝑅𝑒𝜆𝑖|
 (10) 

 

The pole dominance index evaluates the contribution of the 

pole to the output impulse response of the system [22-24]. A 

pole with a large dominance index is a pole that has a large 

contribution to the output impulse response of the system. 

Step 7: Find the pole with the largest dominant index 

according to the H standard 𝜆𝑖1 (or conjugate 𝜆̅𝑖1). 

Step 8: Move the pole with the largest dominant index 𝜆𝑖1 

(or conjugate 𝜆̅𝑖1) to the first position on the main diagonal of 

the 𝑨𝑏 using the matrix 𝑲1, as follows 

 

𝑲𝟏
∗𝑨𝑏𝑲1 =

[
 
 
 
𝜆𝑖1 ∗ ∗ ∗ ∗
.
0
0

∗
.
0

∗ ∗ ∗
∗ ∗ ∗
. ⋱ ⋮

0 0 0 . ∗]
 
 
 

 (11) 

 

Eigenvalue migration is detailed in references [24, 25]. 

Step 9: Convert the equilibrium system to the new form 

𝑲1
∗𝑨𝑏𝑲1, 𝑲1

∗𝑩𝑏 , 𝑪𝑏𝑲1 . Delete the first row and column of 

matrix 𝑲1
∗𝑨𝑏𝑲1, delete the first row of matrix 𝑲1

∗𝑩𝑏; delete 

the first column of matrix 𝑪𝑏𝑲1, from here we get a small size 

system n-1 (𝑨̃, 𝑩̃, 𝑪̃). 

Step 10: Repeat the process of moving the largest dominant 

point of the system (𝑨̃, 𝑩̃, 𝑪̃) from steps 7 to 9 to obtain a small 

system of size n-2. Continue repeating steps 7 to 9 for the new 

subsystem until all the poles are arranged at their respective 

positions on the main diagonal according to the H-norm 

dominance index magnitude values. 

The output after step 10 is the new system (𝑨̂, 𝑩̂, 𝑪̂). 

Part 3: The third part of the algorithm (steps 11 to 13) will 

apply the truncation technique to remove the less important 

poles of the original system to obtain the reduced-order 

system. The detailed steps of part 3 are as follows: 

Step 11: Choose the order r of the reduced-order system. 

Step 12: Divide the new system in block matrix form as 

follows 

 

𝑨̂ = [
𝑨𝒓 𝑨𝟏𝟐

𝟎 𝑨𝟐𝟐
] , 𝑩̂ = [

𝑩𝒓

𝑩𝟐
] , 𝑪̂ = [𝑪𝒓 𝑪𝟐] 

 

In which 𝑨𝒓 ∈ 𝑹𝑟×𝑟 ,  𝑩𝒓 ∈ 𝑹𝑟×𝑝, 𝑪𝒓 ∈ 𝑹𝑞×𝑟 . 

Step 13: Use truncation technique to retain 𝑨𝒓  matrix of 

matrix 𝑨𝒓, 𝑩𝒓 matrix in matrix 𝑩̂, 𝑪𝒓 matrix of matrix 𝑪̂. 

Output: The reduced-order system (𝑨𝒓, 𝑩𝒓, 𝑪𝒓) is formed 

by the combination of matrices 𝑨𝒓, 𝑩𝒓, 𝑪𝒓  according to the 

state Eqs. (12) and (13) as follows 

 

𝑥̇𝑟 = 𝑨𝒓𝑥𝑟 + 𝑩𝒓𝑢 (12) 

 

𝑦𝑟 = 𝑪𝒓𝑥𝑟  (13) 

 

 

3. RESULTS AND DISCUSSION 

 

3.1 Results 

 

Order reduction algorithms are used in various applications 

[8-15, 26-28]. In this study, we choose to apply the algorithm 

in section 2 to solve the problem: Finding a low-order 

controller from a high-order controller. 

Consider the inverted pendulum model as follows 

 

𝑾(𝑠) =
10

𝑠2 − 2.055
 (14) 

 

The robust controller designed to control the inverted 

pendulum model [27, 28] has the following form 

 

𝑾(𝑠) =

303.3𝑠4 + 1.08. 105𝑠3 + 1.18. 106𝑠2

+4.42.106𝑠 + 2.92. 106

𝑠5 + 471.7𝑠4 + 4.78. 104𝑠3

+1.52. 106𝑠2 + 1.37.107𝑠 + 1.009. 107

 (15) 

 

Since model (14) is a second-order model, using a fifth-

order controller would have many disadvantages. The 

controller (15) needs to be downgraded for simplicity. 

The poles of the model (15) are: -345.692; -75.548; -

37.4281; -12.183; -0.847. 

Applying the algorithm in section 2 to model (15), the 

results are as follows: The h(t) response and the bode response 

of the controllers are shown in the Figures 1 and 2. 

 

3.2 Discussion 

 

As mentioned in section 2, the algorithm is capable of 

classifying and ordering the poles of the system based on the 

value of the dominance index H, specifically the decreasing 

order of the dominant poles is as follows: -37.428; -75.548; -

12.183; -0.847; -345.692. 

From the results of Table 1, it can be seen that when 

removing the less dominant poles (-0.847; -345.692), the order 

reduction error is very small. The order reduction error of the 

4th order controller and the 3rd order controller is very small. 

When removing the more dominant poles (-75.54; -12.183), 

the order reduction error increases very much. Specifically, 

when removing the dominant pole (-12.183) of the 3rd order 

system to obtain the 2nd order controller, the error of this 

controller increased by 68.6 times (0.789/0.0115) compared to 

the error of the 3rd order controller. Continuing to remove the 
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dominant pole (-75.548) of the 2nd order controller to obtain 

the 1st order controller, the error of this controller increased 

by 20.7 times (16.343/0.789) compared to the error of the 2nd 

order controller. 

From the results and Figure 1, we see the order of the 

important extreme points is arranged in decreasing order as 

follows: -37.4281; -75.5484; -12.1837; -0.8472; -345.6925. 

The h(t) response of the original controller, the 4th order 

controller and the 3rd order controller are completely identical. 

The h(t) response of the original controller and the 2nd order 

controller has a deviation in the steady-state region. 

The response h(t) of the first-order controller deviates 

greatly from the response h(t) of the original controller. 

Thus, the response error h(t) of the reduced order systems 

with the original system in Figure 1 is similar to the reduced 

order error results in Table 1. 

The results of Figure 2 show that: 

The bode response of the 4th order controller, the 3rd order 

controller and the original controller are completely identical. 

The frequency amplitude response (FAR) of the original 

controller and the 2nd order controller are almost identical in 

the region w>49.8 rad/s, from the region w<49.8 rad/s, the 

FAR of the 2nd order controller is different from the FAR of 

the original controller, the lower the frequency w, the greater 

the difference between the two responses. 

The frequency phase response (FPR) of the original 

controller and the 2nd order controller is almost identical in 

the region w>16.8 rad/s, from the region w<16.8 rad/s, the 

FPR of the 2nd order controller is different from the FPR of 

the original controller, the lower the frequency w, the greater 

the difference between the two responses. 

The FAR of the first-order controller and the 5th order 

controller are completely different. 

The FPR of the first-order controller and the original 

controller are almost identical in the region w<0.081 rad/s and 

w>6.103 rand/s, in the region w<0.081 rad/s<w <6.103 rand/s, 

the FPR of the first-order controller and the 5th order 

controller has a large deviation. 

 

 
(a) Bode response results of the 4th order controller and 3rd order controller 

 
(b) Bode response results of the 2nd order controller and 1st order controller 

 

Figure 1. Response results h(t) of the controllers 
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(a) Bode response results of the controllers 4th order controller and 3rd order controller 

 
(b) Bode response results of the controllers 2nd order controller and 1st order controller 

 

Figure 2. Bode response results of the controllers 
 

Table 1. The order reduction result of the controller (15) 
 

Order 𝑹𝒓(𝒔) Error‖𝑹(𝒔) − 𝑹𝒓(𝒔)‖𝑯∞
 The Poles 

4 
303𝑠3 + 3387𝑠2 + 1.279.104𝑠 + 8422

𝑠4 + 126𝑠3 + 4310𝑠2 + 3.801.104𝑠 + 2.919. 104 0.0110 

-75.548 

-37.428 

-12.183 

-.847 

3 
303𝑠2 + 3131𝑠 + 1.012. 104

𝑠3 + 125.2𝑠2 + 4204𝑠 + 3.445. 104
 0.0115 

-75.548 

-37.428 

-12.183 

2 
299.1𝑠 − 73.15

𝑠2 + 113𝑠 + 2828
 0.7891 

-75.548 

-37.428 

1 
98.45

𝑠 + 37.43
 16.3439 -37.428 

 

Table 2. The control system response quality index 

 
Quality Index Original Controller 4th Order Controller 3rd Order Controller 

Number of oscillations 5 5 5 

Overcorrection amount (maximum value) 35.2% (4.664) 34.4% (4.6692) 38.7% (4.6167) 

Transition time 8.35 8.333 10.96 

Established value 3.45 3.475 3.328 
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Figure 3. Simulation diagram of inverted pendulum model control system 

 

 
 

Figure 4. Control system output results 

 

From the above results, it can be seen that the results in 

Figure 2 are similar to the reduced-order error results in Table 

1. 

Therefore, the original controller can be replaced by a 4th 

order controller or a third-order controller. The original 

controller can be replaced by a second-order controller if small 

deviations of the h(t) response and the bode response are 

acceptable. 

To clearly see the quality of the control system when using 

the controllers, a simulation model of the robust control 

system for the inverted pendulum is built in MATLAB-

Simulink software, specifically as Figure 3. 

The simulation results are shown in Figure 4. 

The comparison of the control system outputs is shown in 

Table 2. 

From the results in Figure 4 and Table 2, it can be seen that: 

Using the 4th order controller and the 5th order controller, the 

control system has almost similar output response and output 

response quality indexes. 

The response of the control system using the 3rd order 

controller is much different from the response of the control 

system using the 5th order controller. The response quality 

indexes of the control system using the 3rd-order controller are 

much different from the quality indexes of the control system 

using the 5th order controller. Specifically, the control system 

using the 3rd-order controller has a large amount of overshoot, 

a large transition time, and a lower steady-state value than the 

control system using the 5th order controller. 

The Matlab-Simulink is used to simulate the control system 

using the second-order controller in Table 1 as shown in 

Figure 5 below: 

 

 
 

Figure 5. Simulation diagram of the control system using a second-order controller 
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Figure 6. Output results of the control system using the 2nd order controller 

 

The simulation results in Figure 6 show that the control 

system using the 2nd order controller is not capable of 

stabilizing the inverted pendulum model. 

Thus, using a 4th order controller in the control system will 

ensure that the quality of the control system is maintained as 

when using the original controller. The 3rd, 2nd and 1st order 

controllers are not suitable to replace the original controller. 

The above results show that the order reduction algorithm 

preserving the dominant pole has the ability to effectively 

reduce the order in the problem of reducing the order of high-

order robust controllers. Combining the robust controller 

design method with the order reduction algorithm based on the 

preservation of dominant poles is an effective method for 

designing low-order robust controllers. The greatest advantage 

of the order reduction algorithm based on the preservation of 

dominant poles is the ability to easily and conveniently 

classify and arrange the poles on the main diagonal of the 

system matrix A. 

 

 

4. CONCLUSION 

 

The paper introduced the algorithm for reducing the order 

preserving the dominant poles based on the H-norm. 

Applying the algorithm to find a suitable controller to replace 

the original controller in the inverted pendulum model 

sustainable control problem shows that the 4th-order 

controller is a suitable controller. The simulation results of the 

control system using the 4th-order controller have 

demonstrated the theoretical and simulation correctness of the 

algorithm for reducing the order preserving the dominant poles 

based on the H-norm. However, our study only verifies the 

effectiveness of this algorithm on the simulation model. To 

confirm the feasibility of this algorithm, in future studies, we 

will conduct experiments applying the algorithm on real 

models or real systems. 
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