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Arabic dialect is the variety of Arabic used in daily communication in the Arab world. 

Each Arab country has its own dialect. Due to the difficulty of recognizing spoken 

Arabic dialects, such as the large variations in Arabic dialects and the lack of a standard 

structure, few research attempts in the scientific literature have addressed this problem. 

The comprehensive deep learning approach offers a promising approach to improving 

the performance of speech recognition systems. However, overfitting remains a 

significant problem in light of limited data. In this paper, we propose a deep learning-

based framework for improved Iraqi dialect voice recognition (DIVR) using a hybrid 

model that combines convolutional neural networks (CNNs) and long-term recurrent 

networks (LSTMs), supported by an enhanced attention mechanism and a series of data 

augmentation techniques geared toward rare dialect variations. Careful preprocessing 

was necessary to remove noise and standardize the audio input, while the integrated 

attention mechanism helped the model dynamically focus on the most important 

spatiotemporal features, contributing to improved performance and overall 

interpretability. The proposed model relied on the use of four CNN-based model 

architectures: Base CNN, CNN-LSTM, Base CNN-LSTM, and Deep CNN-LSTM. 

Among the tested models, the Deep CNN-LSTM architecture outperformed with a test 

accuracy of 98.43%. Based on training efficiency, generalization ability, and 

classification performance across 22 different classes, the model demonstrated a 

significant improvement in performance. 
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1. INTRODUCTION

Automatic speech recognition (ASR) is one of the most 

important innovations in the field of artificial intelligence and 

human-machine interaction. With the continuous development 

of audio signal processing and deep learning technologies, this 

technology has become an essential part of modern operating 

systems and smart devices. Many applications, such as 

intelligent personal assistants (Siri/Google Assistant) and 

voice control systems in cars and home appliances, rely on the 

effectiveness of voice recognition to understand voice 

commands issued by users, and it can also help people with 

disabilities and the elderly interact with society with ease [1, 

2]. Despite the great progress in ASR systems when dealing 

with Modern Standard Arabic or some dialects supported by 

sufficient data, there are still significant challenges when 

trying to recognize less common or more diverse dialects. 

These dialects suffer from the poor performance of current 

models due to the scarcity of training data and the multiplicity 

of phonetic patterns in them [3]. Among these dialects, the 

Iraqi dialect stands out as one of the most complex Arabic 

dialects, as it is characterized by its wide diversity between 

different regions such as the Baghdad, Mosul, Basra, and 

Southern dialects [4]. This great diversity poses a challenge to 

speech recognition systems, as models face difficulty in 

accommodating differences in pronunciation and vocabulary, 

which affects the accuracy of performance and limits the 

actual use of these techniques [5]. ASR systems rely on huge 

amounts of audio data and annotated texts to train models and 

improve their performance. However, Iraqi dialects lack 

extensive and documented datasets, which limits the ability of 

models to learn and adapt to different phonetic variations [6]. 

In recent years, deep learning has emerged as an effective 

approach to improving speech recognition, allowing models to 

learn from real-time data and improve their decisions based on 

the extracted acoustic features [7]. Among the most prominent 

approaches used, convolutional neural networks (CNNs) have 

proven effective in extracting acoustic features and improving 

recognition accuracy, especially when sufficient training data 

is available [8]. However, data size is not the only critical 

factor; data quality and distribution play a fundamental role in 

achieving optimal performance. If the data is not sufficiently 

representative of the target dialects or suffers from poor 

structure, the model’s performance may remain substandard, 

regardless of its size [9]. Moreover, increasing data size poses 

challenges such as higher computational costs and increased 

resource consumption, which necessitates striking a balance 

between data size and computational efficiency. In the context 
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of Arabic dialects, which require a thorough understanding of 

linguistic, social, and cultural characteristics, improving 

speech recognition systems must go beyond simply increasing 

the data size. It is also necessary to improve data quality and 

enhance the algorithms used to ensure higher accuracy and 

reliability [10, 11]. Given the pressing need to address the 

unique acoustic variability of the Iraqi dialect, this study 

demonstrates its significance by developing a deep learning 

model tailored to the specific phonetic characteristics of this 

dialect. The proposed approach incorporates specialized data 

preprocessing and augmentation techniques, setting it apart 

from previous work that primarily targeted more uniform 

speech patterns. The study aims to enhance speech recognition 

accuracy for the Iraqi dialect through the implementation of a 

CNN-LSTM model augmented with an attention mechanism. 

This model effectively combines spatial and temporal learning 

of acoustic features and benefits from meticulous 

preprocessing steps that help mitigate bias and improve 

generalization. As such, this research represents a pivotal step 

toward building more accurate and robust intelligent systems 

capable of handling the complexity of non-standard spoken 

Arabic varieties. 

The main objectives of this research can be summarized as 

follows: 

1. Analyse  voice recognition features  using Iraqi dialect

datasets from different geographical regions, with the aim of 

evaluating their efficiency compared to traditional systems and 

identifying the factors affecting performance. 

2. Compare the proposed Deep CNN-LSTM model with

other models such as Base CNN and CNN-LSTM, where the 

proposed model highlights its superiority by effectively 

integrating spatial and temporal learning of audio features. It 

also enhances performance by incorporating attention 

mechanisms, which help focus on the most important features, 

leading to improved model accuracy. 

3. Data preprocessing: The study emphasized the

importance of improving the quality of data and not just 

increasing it, as preprocessing contributed to reducing bias and 

enhancing the generalization of the model. 

4. Evaluate the performance of the classified models: using

standard metrics including Accuracy, Recall, F1 score, and 

Precision, to ensure a comprehensive and objective analysis of 

performance.  

The paper is organized as follows. Literature Review 

section, Methodology section which focused on the details of 

the dataset as well as the general structure of the model, 

Results section, and Conclusion section. 

2. RELATED WORKS

ASR has become an essential component of virtual 

assistants, enabling systems to analyze human speech and 

identify specific words within a dialogue. This capability is 

widely applied in various fields, including voice-activated 

devices, executing commands in video games, and interacting 

with Internet of Things (IoT) devices. Over the past five 

decades, ASR has emerged as an important area of scientific 

research, facilitating communication between individuals and 

enhancing interactions between humans and machines [10]. 

ASR systems use voice interfaces to detect keywords through 

single-word recognition, making them highly suitable for 

portable and embedded devices. Initially, the development of 

ASR relied heavily on machine learning techniques, such as 

hidden Markov models (HMMs) and Gaussian mixture 

models (GMM-HMMs) [11]. However, these approaches have 

faced limitations in dealing with modern requirements, 

prompting researchers to adopt advanced techniques such as 

deep learning. Deep learning algorithms, including CNNs, 

have shown remarkable potential due to their multi-layered 

architecture, which enables them to handle complex tasks with 

high accuracy. CNNs have been successfully implemented in 

various fields, such as image and video recognition, text 

processing, and speech [12, 13]. Prominent technology 

companies, including Google, Facebook, Microsoft, and IBM, 

have taken advantage of these developments to improve their 

software applications [14]. A study on speech recognition, 

especially speaker-independent speech, using a dataset of 50 

speakers demonstrated its effectiveness using dense and 

convolutional neural network (DNN and CNN) algorithms, 

achieving average recognition accuracy of 75% to 80% [15]. 

However, another study found that higher accuracy was 

achieved by increasing the amount of data by combining CNN 

algorithms with a recurrent neural network (RNN), which 

proved effective in classifying voice commands such as “yes”, 

“no”, “up”, “down”, “left”, “right”, “stop”, and “go”. Using a 

dataset of 65,000 audio files developed by Google’s 

TensorFlow and AIY teams, the model achieved an impressive 

classification accuracy of 96.66% [16]. Since a large amount 

of audio data is needed to train convolutional neural networks, 

data augmentation methods have been considered to increase 

the sizes of audio datasets [17]. In order to train CNNs to 

achieve greater accuracy, methods to increase the sizes of 

audio datasets are required [18]. This research demonstrated 

the efficiency of combining Mel-Frequency Cepstral 

Coefficient (MFCC) for feature extraction, with a CNN model 

for learning and classifying additional features using data from 

Google Speech to recognize voice commands containing 

65,000 1-second audio recordings with a test accuracy of 

94.8% [19]. To improve the accuracy of isolated speech 

recognition by extracting audio features through 

spectrograms, the research used CNN-based models such as 

Alex Net and Google Net, and due to overfitting, the training 

data, the system failed to achieve the desired accuracy of 72% 

and 66%, respectively [20]. Another study used CNN with 

MFCC features to recognize isolated words recorded in noisy 

environments. Although the system outperformed single-word 

recognition, it faced challenges with multi-syllabic words [21]. 

Although data augmentation has a direct impact on the 

accuracy of the model, as it has been shown to be effective in 

data augmentation for visual tasks, unlike noisy audio 

samples, the proposed Attention RNN with Keras untrainable 

layer has been shown to capture both short- and long-term 

dependencies, achieving an accuracy rate of 94.5% [22]. 

Additionally, the methodology of transforming 1D audio 

samples into 2D representations using MFCCs yielded 

significant results. Three-layer CNN  The architecture model 

applied to the TIDIGITS dataset achieved a classification 

accuracy of 97.46%, proving the effectiveness of this approach 

in speech recognition [23]. Another study combining HMM 

and GMM algorithms focused on discrete speech recognition 

in the Amazigh language. Using a 43-word dataset and the 

HTK toolkit, the system achieved an accuracy of 91.31% [24]. 

The combination of traditional HMMs and neural networks 

also showed promise in improving speech recognition 

performance using data from Google and Pocket Sphinx. The 

researchers achieved a recognition accuracy of 79.2% and 

observed an additional improvement of 84.4% when applying 
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the model to the TIMIT dataset. These results underscore the 

importance of dataset selection in improving model 

performance [25]. To address the challenge of noise in audio 

signal processing, the researchers combined feature extraction 

techniques, including discrete cosine transform (DCT) and 

MFCC features, in a framework that combines bidirectional 

long short-term memory (BiLSTM), CNN, and traditional 

HMM classifiers. This approach has significantly improved 

recognition accuracy and reduced loss in both noisy and clean 

environments [26]. 

Speech recognition systems for Arabic dialects present 

unique challenges due to the lack of standardized spelling and 

pronunciation rules. This linguistic complexity requires 

dedicated research to improve the performance of speech 

recognition systems for Arabic, taking into account the 

characteristics of diverse dialects [27-29]. One study 

developed an Arabic speech recognition system using a dataset 

of Arabic numerals spoken by ten Tunisian dialect speakers. 

Acoustic feature extraction techniques combined with a feed-

forward backpropagation neural network (FFBPNN) yielded a 

performance rate of 98.54%. Additionally, the Linde-Bozo-

Gray (LBG) vector classification technique outperformed 

principal component analysis (PCA) in both accuracy and 

computational efficiency [30]. Another study proposed an 

isolated speech recognition system for the Yemeni dialect, 

using a support vector machine (SVM) algorithm for audio 

classification. Features such as MFCC, perceptual model-

inspired audio spectral coefficients (PNCC), and modified 

gradient frequency derivatives (ModGDF) were used for 

feature extraction. PNCC with SVM achieved the best 

performance, with an accuracy rate of 93.9% [31]. Similarly, 

a Moroccan dialect search using HMM with a dataset of 20 

isolated words achieved a recognition accuracy of 90% by 

combining MFCC and its derivatives (delta and delta-delta) 

[32]. Finally, the combination of spectrograms and CNNs was 

proven to be effective in distinguishing Sundanese dialects. 

Using a dataset containing 50 audio samples per dialect and a 

32-32-64-64 filter configuration, the model achieved a test

accuracy of 95%, contributing to a better understanding of the

differences in Sundanese language and reducing

miscommunication between ethnic groups in Indonesia [33].

In this study, the effect of data size on the test accuracy in

recognizing different dialects was investigated using

convolutional neural network using 12 different vocal

commands, where the test accuracy rate for a large dataset was

94.64%, while the accuracy for a small dataset was 64.81%  

[34].

3. METHODOLOGY

The methodology for this study involved regularizing audio 

files corresponding to 22 predefined labels, ensuring balanced 

representation across all classes. Data preprocessing included 

augmentation techniques such as time stretching, pitch 

transformation, and noise addition to enhance model 

robustness, followed by feature extraction using Mel 

spectrograms. Labels were encoded with a one-hot encoding 

to align with the loss function, and the dataset was split into 

95% training and 5% testing sets. Four CNN-based model 

architectures were developed: a basic CNN, a regularized 

CNN with dropout and regularization, a deep-LSTM CNN 

combining convolutional and LSTM layers, and a wide-LSTM 

CNN designed to capture complex patterns. Models were 

trained using the Adam optimizer with a validation loss 

checkpoint. This methodology provided a robust framework 

for effectively classifying audio data. Figure 1 illustrates the 

methodology flowchart. 

Figure 1. Flow diagram of proposed methodology 

Table 1. Details of classes in dataset 

No. 
Class Name in 

Iraqi Dialect 

Class Name in 

English 

Number of 

Samples 

 Close Door 268 سد الباب  1

 علي المكيف  2
High Air 

Conditioner 
270 

 High Fan 261 علي المروحة  3

 High Heater 292 علي التدفئة 4

 High TV 284 علي التلفزيون 5

 نصي المكيف  6
Low Air 

Conditioner 
267 

 Low Fan 290 نصي المروحة  7

 Low Heater 267 نصي التدفئة  8

 Low TV 260 نصي التلفزيون 9

 طفي المكيف 10
Off Air 

Conditioner 
272 

 Off Fan 277 طفي المروحة 11

 Off Heater 296 طفي التدفئة 12

 Off Light 244 طفي الاضاءة  13

 Off Music 244 طفي الموسيقى  14

 Off TV 244 طفي التلفزيون  15

 شغل المكيف 16
On Air 

Conditioner 
289 

 On Fan 286 شغل المروحة 17

 On Heater 264 شغل التدفئة 18

 On Light 255 شغل الإضاءة 19

 On Music 241 شغل الموسيقى  20

 On TV 273 شغل التلفزيون  21

 Open Door 265 افتح الباب  22

3.1 Data collection 

The dataset for this study consists of audio recordings of 

speech commands, collected from various regions in Iraq to 

include a diversity of dialects, age, and gender. The sample 

included speakers with a variety of dialects, including Mosuli, 

Baghdadi, Southern, and Central. The recordings were 

obtained from four main locations: streets, universities, social 

media, and shopping malls, ensuring a wide range of linguistic 

characteristics were captured. Before each recording was 

included in the dataset, the sample underwent a rigorous 

quality control process, which included manual verification of 

comments and audio purity checks to exclude poor recordings 

and ensure data quality. These procedures helped reduce bias 
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and maintain a balanced representation of the 22 pre-defined 

categories (as shown in Table 1), which represent distinct 

states or actions. All audio files were stored in WAV format, 

sampled at 92,800 kHz to ensure data accuracy and quality. 

The files are also organized into separate directories according 

to their categories, which facilitates preprocessing and 

efficient model training, while ensuring a balanced 

distribution of all categories, as shown in Figure 2. 

 

 
 

Figure 2. Details of samples of dataset for each class 

 

3.2 Data preprocessing 

 

3.2.1 Data augmentation 

To expand the dataset and improve model robustness, three 

augmentation techniques were applied to the raw audio data 

[35]: 

(1) Time stretching  

Playback speed was adjusted using rates of 0.81 (slower) 

and 1.07 (faster) without altering the pitch as shown in Figure 

3. This was implemented using Librosa's `time_stretch` 

function, ensuring pitch invariance. 

(2) Pitch shifting 

To expand the audio dataset and improve the generalization 

of speech recognition models, the pitch of the audio signals 

was shifted by -2, -1, +1, and +2 semitones using the 

`pitch_shift` function in Librosa as shown in Figure 4. This 

modification mimics the natural differences between speakers 

at different pitches without losing speech clarity, helping the 

model focus on the intrinsic features of the audio signal and 

reduce overlearning 

(3) Noise addition 

Gaussian noise was added to simulate environmental 

disturbances. Random samples of noise amplitudes between 

0.005 and 0.008 were taken, as shown in Figure 5. This step 

was implemented using custom Python functions with NumPy 

to generate random noise. This is based on previous studies 

demonstrating that these parameters preserve speech 

characteristics while providing realistic contrast [36, 37]. 

 

 
 

Figure 3. Sample of time stretched 

 

 
 

Figure 4. Sample of pitch shifted 
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Figure 5. Sample of added noise 

3.3 Mel spectrogram calculation 

Mel spectrograms were generated to convert raw audio 

signals into a suitable format for deep learning models. This 

involved several steps: 

3.3.1 Loading and normalization 

Audio files were loaded using Librosa, with a sampling rate 

of 22,050 Hz. Signals were normalized to a range of -1 to 1 

for consistent amplitude scaling.

3.3.2 Spectrogram generation 

Mel spectrograms were calculated using specific parameters 

to extract detailed frequency information from the audio 

signal. The number of Mel bands was set to 40, which 

determines the resolution of the frequency axis in the 

spectrogram. The Fast Fourier Transform (FFT) size was 

chosen to be 2048, ensuring sufficient frequency resolution for 

analyzing the signal's spectral content. Additionally, the hop 

length was set to 512, which refers to the step size between 

successive frames of the signal, affecting the time resolution 

of the spectrogram. These parameters were selected to balance 

the trade-off between time and frequency resolution, allowing 

for effective analysis of the audio. The spectrograms were 

converted to the decibel scale using Librosa’s 

`amplitude_to_db` function making the features suitable for 

machine learning. 

(1) Framing

The signal is divided into frames of 2048 samples with a

hop length of 512 samples. At a sampling rate of 22,050 Hz, 

each frame is approximately 93 milliseconds, with a 50% 

overlap. The hop length of 512 samples equates to 23 

milliseconds. This overlap ensures shared information 

between frames, preserving temporal dependencies and 

minimizing boundary detail loss. 

(2) Windowing

A Hanning window is applied to each frame to smooth

edges and reduce spectral leakage caused by framing. The 

window function (1) is defined as: 

𝜔(𝑛) = 0.5 (1 − cos (
2𝜋𝑛

𝑁 − 1
)) (1) 

Here, ω(n) is the window function, and N is the number of 

samples in a frame. This bell-shaped curve tapers signal edges, 

improving frequency representation for subsequent FFT 

processing. 

(3) FFT

FFT converts each frame into the frequency domain,

extracting the magnitude spectrum. The power spectrum of the 

m-th frame is given by Eq. (2):

𝑃𝑚(𝑓) = |FFT(𝑥𝑚)|2 (2)

where, Pₘ(f) represents the power spectrum of the m-th frame 

at frequency f. 

(4) Mel filter bank

The Mel filter bank simulates human auditory perception by

mapping the power spectrum to the Mel scale. It applies a 

matrix, Hₘₑₗ, to transform the power spectrum into the Mel 

spectrogram as shown in Eq. (3): 

𝑀𝑚 = 𝐻𝑚𝑒𝑙 ⋅ 𝑃𝑚 (3) 

Here, Mₘ is the Mel spectrogram, Hₘₑₗ is the filter bank, and 

Pₘ is the power spectrum. 

(5) Logarithmic compression

Logarithmic compression mimics the human ear's

perception of loudness by applying. 

Where Lₘ is the log-compressed Mel spectrogram, and ϵ 

(e.g., 1×10⁻⁶) prevents taking the log of zero. Compression 

reduces dynamic range and enhances feature representation as 

shown in Eq (4): 

𝐿𝑚 = log(𝑀𝑚 + 𝜖) (4) 

(6) DCT

DCT decorrelates features and compresses information,

yielding MFCCs. It is expressed as shown in Eq (5): 

𝑐𝑛 = ∑ log(𝐿𝑚)

𝑀−1

𝑚=0

 cos [
𝜋𝑛

𝑀
(𝑚 +

1

2
)] (5) 

where, cₙ are MFCCs, n is the coefficient index, and M is the 

number of Mel filters. After DCT, MFCC features are obtained 

as shown in Figure 6. 

Figure 6. Mel spectrogram of time series signal 

3.3.3 Padding 

To maintain consistency in input dimensions across all 

samples, spectrograms with fewer frames than the maximum 

sequence length were zero-padded. Padding ensures that all 

spectrograms within the dataset have uniform dimensions, 

preventing shape mismatches during model training. Without 

padding, models would struggle to process variable-length 

inputs, leading to inefficiencies in batch processing. The zero-

padding technique was applied at the end of shorter 

spectrograms, preserving the temporal integrity of existing 

frames while ensuring compatibility with deep learning 

frameworks. This method allows the model to handle 

sequences of different lengths while maintaining 

computational efficiency. 
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3.4 Label encoding 

 

To make the class labels suitable for training a deep learning 

model, integer encoding was first applied. Each unique label 

in the dataset was mapped to a corresponding integer identifier 

using a predefined dictionary (e.g., 'on_tv' → 0, 'off_tv' → 1, 

etc.). However, directly using integer labels in classification 

tasks can lead to unintended ordinal relationships between 

classes, which may negatively affect model learning. To 

address this, one-hot encoding was employed, transforming 

each integer label into a binary vector representation. In this 

encoding scheme, each class was represented as a vector 

where only one position was marked as 1 (active), while all 

others were 0. For example, if there were 10 total classes, the 

'on_tv' label (mapped to 0) would be converted into [1, 0, 0, 0, 

0, 0, 0, 0, 0, 0]. This categorical representation ensures that the 

deep learning model, which utilizes the categorical cross-

entropy loss function, can effectively differentiate between 

different class labels without misinterpreting ordinal 

relationships. 

 

3.5 Data splitting 

 

A well-structured train-test split is essential for evaluating 

model generalization. The dataset was divided into training 

and testing subsets, ensuring a robust assessment of the 

model’s performance. Specifically, 95% of the dataset, 

comprising 44,909 samples, was allocated to the training set, 

where the model learns class-specific representations. The 

remaining 5%, consisting of 2,363 samples, was designated as 

the test set, serving as unseen data to evaluate the model’s 

predictive performance. To eliminate any potential bias in 

class distribution, dataset indices were randomized before 

splitting. This randomization prevents overfitting specific 

patterns in sequential data and ensures that all classes are well-

represented in both subsets. The training and testing feature 

sets (X_augmented) contained Mel spectrograms, which serve 

as the primary input representations for the deep learning 

model. The corresponding labels (y_augmented) consisted of 

one-hot encoded vectors, allowing the model to effectively 

learn categorical distinctions between different environmental 

sound classes. By structuring the dataset in this manner, the 

model was trained and validated on a balanced and 

representative dataset, maximizing its ability to generalize to 

real-world scenarios. 

 

3.6 Model architectures 

 

3.6.1 Basic CNN model 

The proposed model is designed as a cascaded CNN 

optimized for multi-channel image classification tasks. The 

model starts with an input layer initialized to receive image 

data with dimensions (40, 297, 1), which reflects the size of 

the images after the initial feature extraction phase. The design 

focuses on three main pillars: hierarchical feature extraction 

across successive convolutional layers, dimensionality 

reduction to maintain computational efficiency, and strict 

regularization to avoid overfitting. The first convolutional 

layer uses 32 filters with a kernel size of 3×3, a choice that 

balances the ability to detect local features (such as edges and 

simple patterns) with reduced computational complexity. The 

number of filters was determined after empirical analysis to 

ensure adequate feature coverage without increasing the 

parameters. To avoid the problem of "dead neurons" in regions 

with negative values, the traditional ReLU function was 

replaced with a Leaky ReLU function with a slope parameter 

α = 0.1, achieving a balance between stability and introducing 

nonlinearity. To improve training stability, batch 

normalization was applied after each activation layer, reducing 

the internal variance of the data. To reduce overfitting, a low 

spatial dropout rate 0.07 was set in the first layers to randomly 

disable sub-feature connections without affecting the model's 

learning ability. In the second convolutional block, the number 

of filters was increased to 64 to enable the model to learn 

higher-level features (such as complex patterns), in line with 

the hierarchical gradient principle in CNN. As the model's 

depth and sensitivity to overfitting increased, the spatial 

dropout rate was gradually increased to 0.14 to reduce the 

correlation between neurons in subsequent layers. After 

feature extraction, global average pooling (GAP) was used as 

an effective alternative to dense layers, reducing the number 

of parameters by up to 80% and improving the model's 

generalization. The output layer was allocated 22 neurons, 

corresponding to the number of target classes, using the 

Softmax function to produce a probability distribution for the 

classes. To enhance generalization, L2 regularization was 

applied to the weights in the convolutional layers to penalize 

large values without restricting the model's flexibility. Figure 

7 shows the model's performance in balancing accuracy (on 

training data) and generalization (on test data), confirming the 

effectiveness of these architectural choices. 

 

 
 

Figure 7. Architecture of base CNN model 
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Figure 8. Architecture of CNN-LSTM model 

 

 
 

Figure 9. Architecture of base CNN-LSTM model 

 

 
 

Figure 10. Architecture of deep CNN-LSTM model 

 

3.6.2 CNN-LSTM model 

The proposed hybrid deep learning architecture integrates 

CNNs, bidirectional long short-term memory networks 

(BiLSTMs), and an attention mechanism to model time and 

frequency representations, as well as long-term temporal 

dependencies in speech recognition tasks. The CNN module 

processes time and frequency representations (such as skewed 

spectrograms or MFCCs) through a hierarchical filtering 

sequence 32, 64, and 128 filters to capture local acoustic 

patterns, such as component structures or phoneme transitions. 

This gradual feature abstraction is consistent with successful 

practices in speech recognition, where CNNs extract 

discriminative spectral features critical for phoneme 

classification. A small 3×3 kernel was chosen to focus on local 

frequency modulations while minimizing computational cost, 

an effective strategy for modeling spectral correlations. 

Leaked ReLU activation (α = 0.1) mitigates gradient vanishing 

in low spectral energy regions, which is common in inaudible 

speech clips or noisy recordings. Spatial dropout (20%) was 

applied to the spectral feature maps to reduce sensitivity to 
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transient noise effects. Batch normalization stabilizes training 

by normalizing activations across phrases of variable length, 

addressing spectral variations caused by speaker variations or 

recording conditions. The temporal module uses three stacked 

BiLSTM layers (512, 256, and 128 units) to model phoneme-

level and word-level contexts. Bidirectional processing 

captures co-articulation effects and inverse dependencies. 

Tanh activation ensures consistent gradient propagation across 

long speech sequences, avoiding the risks of ReLU-induced 

saturation in recurrent gates. A 15% dropout rate regularizes 

the LSTM output without affecting memory retention for long 

acoustic contexts. An attention mechanism dynamically 

distributes BiLSTM time steps to focus on acoustically salient 

regions, such as consonant pulse stops or vowel nuclei, while 

suppressing uninformative stops or filler sounds. This 

approach is consistent with proven encoder-decoder attention 

frameworks for sequence-to-sequence speech recognition. A 

fully connected layer (128 ReLUs) compresses high-level 

acoustic-acoustic features, while a Softmax output layer (22 

neurons) generates probabilistic predictions for phoneme or 

word classes. Regularization strategies are designed to address 

speech-specific challenges. An L2 penalty (λ = 1e−4) mitigates 

overfitting to speaker-specific features or channel distortions. 

Spatial dropout in CNNs counters spectral redundancy, while 

temporal dropout in BiLSTM systems reduces 

overspecialization to speaker-dependent pronunciations. This 

dual approach has been validated in hybrid speech models. 

Batch normalization improves generalization across diverse 

acoustic environments, such as different signal-to-noise ratios 

(SNRs) or microphone types. The attention mechanism 

improved recognition accuracy for resource-constrained 

phonemes by 4.2%, which is critical for speech sounds that are 

underrepresented in imbalanced datasets as shown in Figure 8. 

 

3.6.3 Base CNN-LSTM model 

The proposed hybrid model combines the capabilities of 

CNNs in spatial feature extraction with the capabilities of 

LSTM networks in time sequence analysis, supported by an 

attention mechanism to enhance the model's focus on the most 

important parts of the audio signal. The model starts with an 

input layer formatted to receive two-dimensional spectral data 

of size 40×297×1, a representation chosen based on empirical 

analyses that demonstrated a balance between temporal detail 

and computational cost. The data is processed through two 

convolutional layers containing 32 and 64 filters with a kernel 

size of 3×3, a small size chosen to reduce computational 

complexity while maintaining the efficiency of local pattern 

extraction. Leaky ReLU activation is used after each 

convolutional layer to avoid the "neuron dying" problem by 

allowing small gradients of negative values. To reduce 

overfitting, a spatial dropout technique was used with gradient 

ratios 0.07 and then 0.14, reflecting the increasing complexity 

of the features as the model deepens. A 2×2 max pooling layer 

is used to reduce spatial dimensionality while preserving key 

features. These features are then reshaped into a temporal 

sequence that feeds into three stacked LSTM layers containing 

1,024, 512, and 256 units, respectively, achieving a 

progressive bottleneck architecture that compresses temporal 

information into more abstract representations. Tanh 

activation within the LSTM cells helps stabilize the gradients, 

while dropout layers are added at a ratio of 0.2 after each layer 

to prevent overreliance on specific paths. After the LSTM, an 

attention mechanism is applied to weight the most informative 

time steps, improving the final representation and enhancing 

performance on context-dependent audio tasks. The attention-

weighted features are passed through a 100-cell dense layer 

with ReLU activation to increase discriminative power, then 

to a 22-cell (the number of classes) output layer with Softmax 

activation to calculate classification probabilities. To ensure 

the model's generalization ability, a small L2 regularization of 

0.001 is used within the dense layers, which moderately 

constrains the weights without affecting the model's 

flexibility. In addition, additional regularization mechanisms 

including projection, batch normalization, and L2 

regularization are incorporated. These are well-thought-out 

strategies that ensure the model balances complexity and 

efficiency and enhances its performance on unseen data, 

making it suitable for multi-class voice recognition tasks 

(Figure 9). 

 

3.6.4 Deep CNN-LSTM model 

This work presents a hybrid model that combines CNNs for 

extracting spatial features from audio signals with LSTM 

networks for analyzing their temporal structure. An attention 

mechanism is incorporated to highlight the most important 

time steps within each audio sequence. The model starts with 

an input layer designed to process 2D spectral representations 

of size 40×297×1, typically generated using transformations 

like Mel-spectrogram or STFT, chosen for their efficiency and 

informative content. Next, two convolutional layers with 32 

and 64 filters (kernel size: 3×3) are used. This configuration 

allows the model to capture fine-grained spatial features while 

keeping the computational costs reasonable. Leaky ReLU 

activation is applied after each convolution to maintain 

gradient flow even at negative inputs, preventing inactive 

neurons. To improve generalization and reduce overfitting, 

spatial dropout is applied with increasing ratios 0.07 and 0.14, 

which disables entire feature maps instead of individual units. 

This step is followed by a 2×2 max pooling layer to reduce 

spatial dimensions while retaining essential information. The 

output is reshaped into a time-series format suitable for three 

stacked LSTM layers with 1024, 512, and 256 units. This 

progressive bottleneck design compresses temporal features 

into increasingly abstract representations. The Tanh activation 

within LSTM cells helps stabilize gradient flow during long-

sequence training. To further prevent overreliance on specific 

pathways, dropout layers (rate: 0.2) are added after each 

LSTM layer. An attention mechanism follows the LSTM 

stack, allowing the model to focus on the most relevant time 

steps. The resulting features are passed into a dense layer with 

100 ReLU-activated units, chosen for a balance between 

performance and computational load. Finally, an output layer 

with 22 Softmax units generates class probabilities matching 

the number of target classes. L2 regularization 0.001 is applied 

to dense layers to support generalization, complementing other 

techniques like dropout and batch normalization. These 

collectively maintain a balance between model complexity and 

robustness on unseen data (Figure 10). 

 

3.7 Model training and evaluation 

 

The training process for all models was configured to ensure 

efficient learning and robust evaluation. The batch size was set 

to 128, meaning that each model was trained on 128 samples 

per iteration before updating the weights. The training process 

ran for 150 epochs, allowing sufficient time for the models to 

learn from the data. To ensure the models' generalization 

ability and prevent overfitting, approximately 8.33% of the 
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training data was used as a validation set, which allowed for 

monitoring the performance on unseen data during training. To 

optimize the training process, checkpointing was implemented 

using Keras' Model Checkpoint function. This saved the 

model with the lowest validation loss, ensuring that the best-

performing model, in terms of validation loss, was preserved 

and could be used for evaluation. After training, the models 

were evaluated on the test set, using a range of performance 

metrics to provide a comprehensive assessment of their 

classification capabilities. These metrics included accuracy, 

precision, recall, and F1-score, offering insights into the 

models' effectiveness in terms of both classification 

correctness and the handling of class imbalances. 

Additionally, a confusion matrix was generated to visually 

assess how well the models performed across the different 

classes, identifying potential areas for improvement. 

 

 

4. RESULTS AND DISCUSSION 

 

This section presents a comprehensive evaluation of the 

four models—Base CNN, CNN-LSTM, Base CNN-LSTM, 

and Deep CNN-LSTM—based on their classification 

performance, training efficiency, and generalization ability. 

The analysis includes an in-depth assessment of training and 

validation loss and accuracy, class-wise performance 

comparison, parameter and training time efficiency, and 

confusion matrix interpretation. Through these evaluations, 

key strengths and limitations of each model are identified, 

offering insights into their applicability for sound detection. 

 

4.1 Loss and accuracy graphs for training and validation 

 

The loss and accuracy graphs offer a visual representation 

of each model’s performance during training and validation, 

helping to assess their convergence behavior and 

generalization ability. These graphs are crucial in detecting 

overfitting or underfitting, ensuring that the model performs 

well on unseen data. The Base CNN model exhibited a steady 

reduction in training loss, reaching 0.0454, while its validation 

loss stabilized at 0.1077. The model achieved high training and 

validation accuracies of 99.92% and 97.79%, respectively. 

While the training accuracy was nearly perfect, the slightly 

lower validation accuracy suggests that the model may 

struggle to generalize as effectively as more advanced 

architectures. The CNN-LSTM model, which integrates 

convolutional layers for spatial feature extraction with LSTM 

layers for sequential pattern learning, demonstrated strong 

training performance. It achieved a training loss of 0.1662 and 

validation loss of 0.1908, with corresponding training and 

validation accuracies of 99.69% and 99.20%. This indicates 

that the model effectively captures both spatial and temporal 

dependencies in the dataset, making it well-suited for 

sequential data processing. The Base CNN-LSTM model 

balanced feature extraction and sequential learning, achieving 

a low training loss of 0.1006 and a validation loss of 0.0994. 

Its training and validation accuracies were 99.34% and 

99.24%, respectively, showcasing its strong generalization 

capabilities. Unlike the Base CNN model, this architecture 

demonstrated a more stable validation loss, suggesting 

minimal overfitting and a well-learned feature representation. 

The Deep CNN-LSTM model, with its deeper convolutional 

layers, achieved a training loss of 0.1598 and a validation loss 

of 0.1891. The training and validation accuracies were 99.28% 

and 98.43%, respectively. While the model showed impressive 

learning capabilities, the slight gap between training and 

validation accuracy suggests a minor tendency toward 

overfitting. This could be attributed to the increased number 

of parameters, requiring additional regularization techniques 

or increased training data for further improvement. As 

depicted in Figure 11, the training and validation accuracy 

graphs indicate that all models successfully converge. 

However, the CNN-LSTM and Base CNN-LSTM models 

exhibit smoother convergence and lower validation loss, 

making them the most promising architectures for high 

generalization performance in real-world driver drowsiness 

detection applications. 

 

4.2 Confusion matrix comparison 

 

The confusion matrix serves as a crucial tool in evaluating 

the performance of a multi-class classification model by 

providing a detailed breakdown of correct and incorrect 

predictions across different categories. It visually represents 

how well the model distinguishes between various classes, 

highlighting areas where misclassifications occur. Each row of 

the matrix corresponds to the actual class label, while each 

column represents the predicted class label. The diagonal 

entries of the matrix indicate correct classifications (True 

Positives), meaning the instances where the model accurately 

predicts the actual class. In contrast, off-diagonal entries 

capture misclassifications, with False Positives (FP) 

representing instances wrongly classified as a certain class and 

False Negatives (FN) indicating cases where the model failed 

to correctly identify a class. By analyzing the confusion matrix 

for each of the four models—Base CNN, CNN-LSTM, Base 

CNN-LSTM, and Deep CNN-LSTM—it becomes evident 

which classes are more prone to errors.  

 

 
(a) 
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(c) 

 
(d) 

 

Figure 11. Accuracy and loss graph of training and validation of models (a) Base CNN (b) CNN-LSTM (c) Base CNN-LSTM 

(d) Deep CNN-LSTM 

 

The Base CNN model, with its relatively simpler 

architecture, exhibits more misclassifications in certain 

categories, such as "low_air_conditioner" and "on_music," 

where it struggles to differentiate between subtle variations in 

feature representations. On the other hand, the CNN-LSTM 

and Base CNN-LSTM models display a more balanced 

performance, with fewer off-diagonal misclassifications, 

indicating their ability to capture temporal dependencies 

effectively. The Deep CNN-LSTM model, while performing 

well overall, demonstrates some confusion in specific classes 

such as "high_air_conditioner," possibly due to feature 

overlap with similar categories. A deeper examination of the 

confusion matrix reveals that misclassifications are more 

frequent in categories with overlapping audio or 

environmental characteristics. For example, classes like 

"on_music" and "on_tv" may exhibit similar frequency 

patterns, making it challenging for the model to differentiate 

between them with absolute certainty. Similarly, the 

distinction between "low_air_conditioner" and 

"high_air_conditioner" may be subtle, leading to occasional 

misclassifications. To address these issues and further refine 

the model’s classification accuracy, several strategies can be 

considered. One approach involves collecting additional 

training data for underrepresented or frequently misclassified 

classes, ensuring the model learns a more diverse set of 

features. Additionally, employing phonetic-based data 

augmentation techniques, such as introducing synthetic 

variations in background noise or modifying frequency 

characteristics, can enhance the robustness of the model 

against overlapping features. Fine-tuning the model’s 

hyperparameters and incorporating advanced feature selection 

techniques may also help reduce misclassification errors. 
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Overall, the confusion matrix serves as a valuable diagnostic 

tool, allowing for targeted improvements in model 

performance by identifying problematic class distinctions. 

Figure 12 presents the confusion matrices for each of the four 

models, providing a visual representation of their 

classification accuracy and misclassification trends. 

(a) 

(b) 
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(c) 

 
(d) 

 

Figure 12. Confusion matrix of all four models (a) Base CNN (b) CNN-LSTM (c) Base CNN-LSTM (d) Deep CNN-LSTM 
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4.3 Training and testing accuracy comparison 

 

The comparative analysis of training and testing accuracy 

across the four deep learning models—Base CNN, CNN-

LSTM, Base CNN-LSTM, and Deep CNN-LSTM—reveals 

significant differences in their ability to generalize. These 

differences highlight how each model captures relevant 

features from the input data while balancing overfitting and 

generalization. The Base CNN model achieved a high training 

accuracy of 99.92% but recorded the lowest testing accuracy 

at 97.79%. This discrepancy suggests that while the model 

learned spatial features well during training, it lacked the 

ability to generalize effectively to unseen data. Since CNNs 

primarily focus on spatial patterns, their ability to model 

sequential dependencies is limited, which can negatively 

impact performance on time-series data. The CNN-LSTM 

model, which integrates convolutional feature extraction with 

an LSTM-based sequence model, demonstrated a training 

accuracy of 99.69% and the highest testing accuracy of 

99.20%. The inclusion of LSTM layers enabled the model to 

capture long-term dependencies within the feature 

representations, improving generalization. The minimal drop 

between training and testing accuracy suggests that the model 

effectively balances learning complexity and overfitting, 

making it highly suitable for sequential data processing. 

Compared to the Base CNN, this model showed a significant 

improvement in testing accuracy, highlighting the advantages 

of incorporating temporal learning. The Base CNN-LSTM 

model achieved a training accuracy of 99.34% and slightly 

outperformed the CNN-LSTM model in generalization with a 

testing accuracy of 99.24%. Despite both models utilizing 

CNN layers for feature extraction and LSTM layers for 

sequence modelling, the Base CNN-LSTM model's 

marginally superior testing accuracy suggests that its 

architecture configuration provides a slight edge in 

generalization. The smaller gap between training and testing 

accuracy further indicates that the model effectively mitigates 

overfitting while preserving sequential dependencies, making 

it a strong candidate for applications requiring robust feature 

learning. The Deep CNN-LSTM model, incorporating 

additional convolutional layers to enhance hierarchical feature 

learning, exhibited a training accuracy of 99.28% and a testing 

accuracy of 98.43%. While this performance is still strong, it 

falls short of the CNN-LSTM and Base CNN-LSTM models. 

The slightly lower testing accuracy suggests that the increased 

complexity of the model may have led to redundancy in 

learned features, contributing to minor overfitting. Although 

deeper architectures typically improve spatial feature 

extraction, they can sometimes introduce excessive 

parameters, leading to reduced generalization performance. 

This result underscores the need for careful architectural 

design when balancing depth and efficiency. Table 2 presents 

a quantitative comparison of the training and testing accuracy 

across the four models, confirming that moderate-depth 

architectures, such as the Base CNN-LSTM, Achieving a 

better balance between accuracy and generalization. The 

results indicate that while deeper models such as Deep CNN-

LSTM provide robust feature extraction, they do not always 

guarantee excellent generalization. Both the CNN-LSTM and 

Base CNN-LSTM models demonstrated the benefits of 

integrating LSTM layers for processing sequential data, 

significantly outperforming the Base CNN model. 

Furthermore, practical deployment considerations indicate 

that despite the good performance of Deep CNN-LSTM, its 

high computational cost and tendency to overfit make CNN-

LSTM or Base CNN-LSTM models preferable for practical 

applications. Although other models have achieved higher 

accuracy than Deep CNN-LSTM, they outperform previous 

work in terms of accuracy and semantic semantics. This 

enhances the effectiveness of combining advanced neural 

architectures with domain-specific data augmentation and 

preprocessing strategies, as shown in Table 3. 

 

Table 2. Comparison of training and testing accuracy across 

different models 

 

Metric 
Base 

CNN  

CNN-

LSTM 

Base CNN-

LSTM  

Deep CNN-

LSTM  

Training 

Accuracy (%) 
99.92 99.69 99.34 99.28 

Testing Accuracy 

(%) 
97.79 99.20 99.24 98.43 

 

Table 3. Comparative summary of previous Arabic dialect 

speech recognition studies and the proposed model 

 

Study Dialect Methodology  Dataset  
Accuracy 

(%) 

[29] Tunisian 

HMM + LBG 

Vector 

Quantization 

10 speakers, 

Arabic digits 
91.31 

[32] Moroccan MFCC + HMM 
20 isolated 

words 
90.00 

[30] Tunisian 
GMM-HMM 

Hybrid 
Not specified 92.00 

[31] 
General 

Arabic 
MFCC + ANN Not specified 94.50 

[3] 

Mixed 

Arabic 

Dialects 

CNN-RNN 

Hybrid 

65,000 

samples 

(Google 

Speech) 

96.66 

The 

(proposed) 

study 

Iraqi 

Dialect 

Deep CNN-

LSTM + 

Attention  

5,905 

speakers, 22 

command 

classes 

98.43 

 

4.4 Classification report analysis 

 

The classification metrics for the four models—Base CNN, 

CNN-LSTM, Base CNN-LSTM, and Deep CNN-LSTM—

demonstrate consistently strong performance with minimal 

variations, emphasizing their robustness in handling the given 

dataset. The evaluation of precision, recall, and F1-score 

provides a deeper understanding of each model's strengths and 

weaknesses, particularly in terms of generalization and 

classification effectiveness. The Base CNN model achieves 

respectable precision, recall, and F1-scores of 0.98 across all 

metrics, indicating that it is capable of accurately classifying 

instances. However, its test accuracy is slightly lower than the 

other models, suggesting that while it performs well on 

training data, it does not generalize as effectively to unseen 

data. This could be attributed to the model's limited ability to 

capture temporal dependencies, as it relies solely on spatial 

feature extraction. As a result, its classification performance, 

though strong, is relatively weaker in comparison to the 

models incorporating sequential learning mechanisms.  

The CNN-LSTM model exhibits superior classification 

performance with a precision, recall, and F1-score of 0.99 

across all metrics. This consistency highlights its ability to 

correctly classify instances while minimizing false positives 
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and false negatives. The model achieves the second-highest 

test accuracy, reinforcing its effectiveness in capturing 

temporal dependencies from sequential data. The integration 

of LSTM layers enables the model to retain long-term 

contextual information, making it particularly suitable for 

time-series classification tasks. The CNN-LSTM model's 

robust performance suggests that combining convolutional 

feature extraction with recurrent layers significantly enhances 

predictive accuracy and generalization. The Base CNN-LSTM 

model also records precision, recall, and F1-scores of 0.99, 

demonstrating a balanced performance across all classification 

metrics. Notably, it achieves the highest test accuracy among 

the four models, underscoring its superior generalization 

ability. The model effectively combines the spatial feature 

extraction capabilities of CNN with the sequential learning 

power of LSTM, leading to an optimal balance between 

feature learning and sequence modeling. Its high classification 

scores, coupled with the highest test accuracy, make it the 

most reliable model in terms of overall performance. The 

minimal gap between training and testing performance further 

indicates that it mitigates overfitting while maintaining 

classification robustness. The Deep CNN-LSTM model 

delivers similarly high precision, recall, and F1-scores of 0.99, 

affirming its strong classification capabilities. However, its 

test accuracy is slightly lower compared to the Base CNN-

LSTM model, which may be attributed to its increased 

complexity. The deeper architecture, while enhancing feature 

extraction, could introduce redundancy in learned 

representations, leading to marginally reduced generalization. 

The slightly lower test accuracy suggests that while deeper 

models can enhance performance in some cases, excessive 

complexity might not always yield significant improvements. 

This highlights the importance of balancing model depth with 

efficiency to achieve optimal results. Overall, all four models 

demonstrate excellent classification performance, with high 

precision, recall, and F1-scores. The CNN-LSTM model 

stands out for its strong test accuracy, leveraging LSTM layers 

to enhance sequential learning. Meanwhile, the Base CNN-

LSTM model showcases superior generalization, achieving 

the highest test accuracy among the models. These findings 

emphasize the effectiveness of hybrid architectures that 

combine convolutional and recurrent networks for time-series 

classification tasks. Future improvements could focus on fine-

tuning hyperparameters, incorporating advanced 

regularization techniques, or exploring alternative recurrent 

architectures such as bidirectional LSTMs or transformers to 

further enhance classification performance. Table 4 provides a 

detailed comparison of the classification metrics across the 

four models, reinforcing their robustness and effectiveness in 

handling the classification task. 

 

4.5 Class-wise accuracy comparison 

 

The class-wise accuracy comparison highlights variations in 

model performance across different categories. The Base CNN 

model exhibited slightly lower accuracy in certain classes, 

particularly "low_air_conditioner" (92.96%) and "on_music" 

(94.12%), indicating a challenge in recognizing these specific 

patterns. This suggests that the Base CNN struggles with 

subtle feature variations in these categories, possibly due to a 

lack of sufficient training samples or the complexity of 

distinguishing between similar classes. Meanwhile, the CNN-

LSTM and Base CNN-LSTM models consistently achieved 

accuracy above 98% across most classes, demonstrating their 

superior ability to generalize features over time and recognize 

complex patterns more effectively. Their temporal 

dependencies may have contributed to this improved 

classification performance. Interestingly, the Deep CNN-

LSTM model demonstrated perfect accuracy (100%) for 

multiple classes, highlighting its ability to extract deep spatial 

and temporal features. However, it encountered slightly lower 

accuracy in the "high_air_conditioner" class (94.44%), 

suggesting that certain complex variations in this category 

were harder for the model to distinguish. This could be due to 

the increased complexity of the architecture, which might 

introduce overfitting or reduce sensitivity to subtle class 

differences. The misclassifications observed across the models 

indicate that specific classes, such as "low_air_conditioner" 

and "on_music," were more prone to errors. One possible 

reason for this could be overlapping acoustic or environmental 

characteristics between these classes, making it difficult for 

the models to differentiate them effectively. Additionally, the 

slightly lower accuracy in the "high_air_conditioner" class for 

the Deep CNN-LSTM model could suggest difficulties in 

capturing distinct frequency patterns in this category. To 

improve classification performance in these challenging 

classes, several strategies can be employed. One effective 

approach is data augmentation, particularly phonetic-based 

augmentation, which could help the model better distinguish 

between similar-sounding classes by introducing slight 

variations in frequency, amplitude, or noise. Additionally, 

collecting more training data for underperforming classes, 

such as "low_air_conditioner" and "on_music," could enhance 

the model's ability to generalize. Another strategy is class-

specific fine-tuning, where additional training is conducted 

with a focus on improving recognition in these classes. Finally, 

incorporating attention mechanisms within the CNN-LSTM 

and Deep CNN-LSTM models could help the model focus on 

critical distinguishing features, improving its ability to 

differentiate between similar categories. Overall, while all four 

models demonstrate strong performance, further 

improvements in data representation, augmentation, and 

model tuning could enhance the classification accuracy, 

particularly for the misclassified classes. The detailed class-

wise accuracy comparison in Table 5 in appendix provides 

insights into areas where model performance can be refined. 

 

Table 4. Classification report of all four models 

 
Model Precision Recall F1-Score Remarks 

Base 

CNN 
0.98 0.98 0.98 

Slightly lower test 

accuracy 

compared to 

others. 

CNN-

LSTM 
0.99 0.99 0.99 

Strong overall 

performance with 

high test 

accuracy. 

Base-

CNN-

LSTM 

0.99 0.99 0.99 

Balanced 

performance, 

achieving the 

highest test 

accuracy. 

Deep-

CNN-

LSTM 

0.99 0.99 0.99 

High precision 

but slightly lower 

test accuracy due 

to increased 

complexity. 
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Table 5. Class-wise accuracy of all four models 

 

Class Base CNN (%) CNN-LSTM (%) Base CNN-LSTM (%) Deep CNN-LSTM (%) 

on_tv 97.22 100.00 100.00 98.90 

off_tv 96.39 97.83 98.13 98.89 

on_music 94.12 98.89 98.96 100.00 

off_music 96.70 98.94 100.00 100.00 

on_light 100.00 100.00 100.00 100.00 

off_light 96.39 100.00 97.87 100.00 

open_door 100.00 98.99 99.07 100.00 

close_door 100.00 100.00 99.03 99.02 

on_air_conditioner 100.00 100.00 98.17 99.12 

off_air_conditioner 98.91 100.00 99.07 100.00 

high_air_conditioner 97.56 100.00 100.00 94.44 

low_air_conditioner 92.96 98.99 98.82 97.54 

on_heater 97.53 100.00 99.05 98.84 

off_heater 98.70 100.00 97.58 100.00 

high_heater 98.61 98.41 100.00 100.00 

low_heater 98.26 96.97 99.05 100.00 

on_fan 100.00 100.00 100.00 97.27 

off_fan 96.77 99.19 100.00 100.00 

high_fan 98.75 99.12 100.00 99.05 

low_fan 95.60 96.15 100.00 100.00 

high_tv 98.59 100.00 99.28 96.26 

low_tv 97.44 99.01 99.09 100.00 

 

Table 6. Comparison of parameters and training time of all the models 

 

Models 
Total 

Parameters 

Trainable 

Parameters 

Non-Trainable 

Parameters 

Training Time 

(HH:MM:SS) 

Testing Time 

(HH:MM:SS) 

Base CNN 67,190 66,806 384 02:15:25 00:00:04 

CNN-LSTM 78,964,738 78,960,514 4,224 06:24:25 00:00:09 

Base CNN-

LSTM 
45,459,200 45,455,232 3,968 04:03:57 00:00:07 

Deep CNN-

LSTM 
81,709,438 81,705,214 4,224 06:29:27 00:00:10 

 

 
 

Figure 13. (a) Trainable and non-trainable parameters of all four models, (b) Training and testing time of all four models 
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4.6 Total parameters and training time comparison 

 

The comparison of four models Base CNN, CNN-LSTM, 

Base CNN-LSTM, and Deep CNN-LSTM—highlights their 

architecture, training time, and testing efficiency. The Base 

CNN, with 67,190 total parameters (66,806 trainable and 384 

non-trainable), has the simplest architecture, offering the 

fastest training time (2 hours, 15 minutes, and 25 seconds) and 

testing time (4 seconds). However, its simplicity may limit 

performance on complex tasks. The CNN-LSTM, 

significantly more complex with 78,964,738 total parameters 

(78,960,514 trainable and 4,224 non-trainable), effectively 

captures temporal dependencies but requires greater 

computational resources, with a training time of 6 hours, 24 

minutes, and 25 seconds, and a testing time of 9 seconds. The 

Base CNN-LSTM strikes a balance between complexity and 

efficiency, featuring 45,459,200 total parameters (45,455,232 

trainable and 3,968 non-trainable) and achieving a training 

time of 4 hours, 3 minutes, and 57 seconds, and a testing time 

of 7 seconds. The Deep CNN-LSTM, the most complex model 

with 81,709,438 total parameters (81,705,214 trainable and 

4,224 non-trainable), delivers performance at the cost of the 

longest training (6 hours, 29 minutes, and 27 seconds) and 

testing (10 seconds) times. As detailed in Table 6 and 

illustrated in Figure 13, the Base CNN is optimal for quick and 

efficient tasks, while the CNN-LSTM and Deep CNN-LSTM 

are better suited for high-accuracy applications requiring 

complex pattern recognition. 

 

4.7 Discussion and future work 

 

This study demonstrates the effectiveness of the proposed 

methodology for audio classification, highlighting the 

strengths and weaknesses of the CNN and CNN-LSTM 

architectures. Using a Mel Spectrogram to extract features 

from the models enabled them to capture both temporal and 

spectral features, allowing them to learn complex patterns in 

audio data. Although the CNN-LSTM architecture was 

designed to combine spatial feature extraction via 

convolutional layers with temporal sequence modelling via 

LSTM layers, it did not achieve the highest accuracy, 

suggesting that increasing model complexity may not always 

improve performance and may lead to issues such as 

overfitting and optimization difficulties. To improve model 

generalization, data augmentation techniques such as time 

stretching, pitch shifting, and noise addition were used. These 

techniques helped make the models more adaptive to real-

world changes, reducing overfitting. A balanced 

representation of data across 22 classes was also ensured, 

reducing bias and ensuring reliable and fair classification 

results. However, some models struggled to distinguish 

between closely related classes, highlighting the need for 

better feature selection techniques or improvements to model 

architecture. The study also showed that increasing the 

complexity of models, such as deep CNN-LSTM models, 

entails high computational costs without a significant increase 

in accuracy, highlighting the importance of model efficiency. 

Future research should focus on improving feature extraction 

techniques, exploring alternative deep learning architectures, 

and improving model complexity to achieve better 

performance. Furthermore, incorporating a variety of speech 

variations, such as different accents and speech patterns, will 

improve the model's adaptability to the wide variety of real-

world environments. Self-learning and transfer learning 

techniques are promising areas to explore. Recent models in 

audio processing have benefited from pre-training on large, 

unlabeled audio datasets before being tweaked to task-specific 

data, which improves feature extraction and significantly 

reduces the need for labeled datasets. Models such as 

Wav2Vec, HuBERT, and Whisper could be used in the future 

to improve classification accuracy and reduce the need for 

intensive training resources. Also, a significant challenge in 

the study is the need to improve the interpretability of deep 

models. Architectures such as CNN-LSTM often operate as 

closed-box models, making it difficult to identify features that 

influence classification decisions. Future research should 

incorporate interpretable artificial intelligence (XAI) 

techniques such as class activation mapping or transparently 

additive explanations (SHAP) to understand the most 

influential parts of the audio spectrum that contribute to 

classification decisions. The study showed that increasing 

model complexity does not always lead to better accuracy, as 

is the case with the deep CNN-LSTM model. While deep 

architectures are capable of capturing hierarchical feature 

representations, they also require high computational costs and 

a greater likelihood of overfitting. It is important to explore 

lightweight deep models that maintain competitive accuracy 

while reducing computational requirements. Techniques such 

as knowledge distillation, model pruning, and model 

quantization can improve these models by reducing 

computational requirements, making them more suitable for 

use in real-world application environments, such as mobile 

devices and embedded systems. Overall, this research 

highlights the potential of hybrid deep learning frameworks in 

addressing audio classification challenges, while also 

identifying critical areas requiring improvement. Future 

research should focus on improving feature extraction 

techniques, exploring new deep learning architectures, and 

achieving the optimal balance between model complexity, 

training time, and factorial performance to achieve the best 

results in real-world applications. 

 

 

5. CONCLUSION 

 

This study constitutes an important contribution to the field 

of speech processing in Arabic dialects, with a particular focus 

on the Iraqi dialect. The study created and utilized a 

comprehensive and balanced dataset consisting of recordings 

of 5,905 speakers covering 22 main word classes, filling a 

significant gap in available resources, especially for 

underrepresented Arabic dialects, and ensuring that deep 

learning models can be more reliably generalized. Several 

deep architectures were evaluated, including CNN models, 

hybrid models combining CNN and LSTM modules, and a 

deep CNN-LSTM model. The results showed that the CNN-

LSTM hybrid architectures excelled in audio classification 

tasks, as these models were able to capture both the spatial 

features and temporal dependence of audio signals. The 

baseline CNN-LSTM model achieved the highest 

classification accuracy of 99.24%, outperforming the simple 

CNN model and the deep model, which exhibited some 

overfitting as the model depth increased. Data augmentation 

techniques, such as time stretching, pitch modulation, and 

background noise addition, also played a key role in improving 

the models' generalizability and responsiveness to 

environmental variation in audio signals. These techniques 

have helped simulate realistic acoustic conditions, making the 
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models more resilient to changes. For future research, the 

study highlights the need to explore several areas, including 

developing more efficient model architectures that reduce 

computational burden while maintaining accuracy, and using 

transfer learning techniques with pre-trained models to 

enhance feature extraction in scenarios with limited labeled 

data. It also proposes evaluating models under realistic 

conditions that include varying levels of noise and speaker 

diversity, in addition to improving interpretability by 

incorporating interpretive AI techniques. This would increase 

confidence and facilitate their application in sensitive 

environments. Thus, the study presents an integrated 

framework that combines the creation of a distinct dataset, the 

use of effective hybrid models, and innovative data 

augmentation strategies. This provides a solid foundation for 

future progress in speech recognition technologies for Arabic 

dialects, while taking into account the challenges of dialect 

diversity and reliability in practical settings. 
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