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Since passive earth pressure coefficients, which are impacted by wall geometry and soil 

properties, have an impact on wall stability, their prediction is essential to the design of 

retaining structures. Furthermore, the analytical and experimental methods are 

frequently imprecise and complicated in the context of real life. Concerning this 

research, three various recurrent neural network configurations, such as Recurrent 

Neural Network (RNN), Long Short-Term Memory (LSTM), and Gated Recurrent Unit 

(GRU) models were developed and evaluated for the passive earth pressure coefficients 

(Kpγ, Kpq, and Kpc) prediction based on Gaussian augmented data sets consisting of 671 

data points. Those data sets comprised significant parameters such as the ratio of the 

backfill inclination angle to the internal friction angle (β/ϕ), the ratio of the friction 

angle of the soil-wall interface to the internal friction angle (δ/ϕ), and the angle of 

internal friction of the soil (ϕ). The findings demonstrate that our deep neural network 

models perform better than earlier methods in terms of accuracy and reliability. Thus, 

in terms of prediction accuracy and precision, the LSTM model performed better than 

the RNN and GRU models, showing the best MSE performance (Kpγ=0.00039, 

Kpq=0.0020, Kpc=0.0017). A sensitivity analysis shows that the wall dimensions are the 

most influential parameters across all models. In addition, the GRU model is the fastest 

in term of complexity (0.035). These results demonstrate the potential of deep learning 

models, particularly LSTM, to enhance geotechnical engineering design processes 

through improved prediction accuracy, reliability and cost-effective alternative to 

traditional methods. 
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1. INTRODUCTION

The prediction of passive earth pressure is a fundamental 

aspect of geotechnical engineering, playing a critical role in 

the design and construction of retaining walls, tunnels, and 

other earth-supported structures. Passive earth pressure refers 

to the lateral force exerted by soil against a structural surface, 

such as a retaining wall, when the wall moves toward the soil. 

These pressures are influenced by several factors, including 

the soil-wall interface friction angle, wall geometry, backfill 

slope and the internal soil friction angle. Accurate estimation 

of passive earth pressure coefficients is crucial: 

underestimations can lead to structural failures, while 

overestimations may result in overly conservative and cost-

intensive designs. Traditional methods for estimating these 

pressures namely analytical, experimental, and numerical 

approaches have significant limitations.  Analytical methods, 

though widely used, rely on rigid and idealized assumptions 

that fail to capture the inherent heterogeneity and complexity 

of real soil behavior. Experimental techniques, while valuable, 

are constrained by issues of scalability, high implementation 

costs, and variability in soil properties, which limit the 

generalizability of results. Numerical methods (such as finite 

element and finite difference techniques) offer greater 

flexibility, but their reliability is highly dependent on mesh 

quality, the selection of appropriate constitutive models, and 

the availability of robust validation data. Moreover, they often 

entail substantial computational demands [1-17].  

In response to these challenges, machine learning (ML) has 

gained traction in geotechnical engineering for its ability to 

model complex, nonlinear systems without relying on explicit 

assumptions. ML models, driven by data rather than 

predefined equations, can uncover intricate patterns and 

provide predictive insights across various engineering 

domains. Many researches have successfully applied ML 

techniques such as decision trees, Support Vector Machine 

(SVM), and ensemble methods to problems involving soil 

classification, slope stability, and foundation design [18-26]. 

More recently, deep learning has become as a 

transformative technology in the field, offering enhanced 

capabilities over traditional ML through its use of multilayered 

neural architectures. Deep learning (DL) models like Artificial 
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Neural Network (ANN), CNN, and Recurrent Neural Network 

(RNN) have demonstrated superior performance dealing with 

spatial and temporal complexities inherent in geotechnical 

systems. Applications range from tunnel deformation 

prediction [27-31] and landslide susceptibility mapping [32-

34] to soil property estimation [35-40], slope stability [41], and 

pile bearing capacity prediction [42-45]. 

In particular, RNN-based models such as Gated Recurrent 

Unit (GRU), Long Short-Term Memory (LSTM) networks are 

well-suited for modeling sequences and temporal data, yet 

remain underutilized in soil-structure interaction problems. 

Despite the proliferation of DL methods across geotechnical 

domains, there is a notable gap in their application to passive 

earth pressure prediction. While a few research explored the 

use of AI for retaining wall stability and design optimization 

[46-53], none have specifically addressed the use of RNN, 

LSTM, or GRU architectures for estimating passive earth 

pressure coefficients. 

Gao et al. [28] used three different methods: RNNs, LSTM 

networks, and GRU networks to determine the best model of 

a GRU in the prediction of earth pressure of tunnel boring 

machines (TBM) operating parameters based on TBM in-situ 

operating data. Gao et al. [29] proposed a deep learning-based 

framework to predict and automatically regulate earth pressure 

during shield tunneling. GRU models have also been 

integrated with genetic algorithms to develop real-time 

dynamic earth pressure regulation systems for shield 

tunneling. In the study conducted by Hsu et al. [46], an AI-

based methodology for accurately predicting displacements of 

retaining walls during deep excavation has been studied. When 

it comes to accurately predicting displacements at predefined 

observation points, peak wall displacements, and their 

corresponding positions, the multilayer functional-link 

network outperforms the conventional backpropagation neural 

network (BPNN). Nguyen et al. [47] developed a soft 

computing model to accurately estimate active pressure behind 

rigid retaining walls, including the effects of negative wall soil 

friction, which demonstrated strong alignment with measured 

values. This method offers a practical tool for retaining wall 

design and analysis. In reference [49], the researchers 

employed machine learning models including: Feed-Forward 

Neural Network Backpropagation (FFNN-BP), Long Short-

Term Memory (LSTM), Bidirectional LSTM (Bi-LSTM), and 

Support Vector Regression (SVR) using real-world data from 

a high-rise building's excavation site, they employed a walk-

forward validation technique to assess model performance. 

Among the models, Bi-LSTM demonstrated superior accuracy 

and robustness in predicting wall deflections, outperforming 

the others. 

In this paper, we propose a novel deep learning-based 

framework for passive earth pressure coefficients (𝐾𝑝𝛾 , 𝐾𝑝𝑞 

and 𝐾𝑝𝑐) prediction with improved accuracy and efficiency. 

We develop and evaluate three deep learning models (RNN, 

GRU, and LSTM) using a dataset composed of key 

geotechnical parameters, including the ratio of backfill 

inclination angle to the internal friction angle (𝛽 𝜙)⁄ , the soil-

wall interface friction angle to internal friction angle ratio 

( 𝛿 𝜙)⁄ , and the soil friction angle ( 𝜙) . Beyond standard 

training procedures, an innovative hyperparameter tuning 

algorithm is employed to optimize model performance. We 

assess the models using multiple metrics: mean squared error 

(MSE), coefficient of determination (R²), and score function. 

We also have introduced a novel ranking approach to compare 

model performance across the different coefficients. Finally, 

computational cost, model complexity, and sensitivity 

analyses have been performed to evaluate the practical 

applicability of each model. 

The structure of this article is as follows: The 

methodological basis of our inquiry is presented in Section II 

after the introduction. The formulation of the problem as well 

as the theoretical background of the three models have then 

been thoroughly explained. The experimental investigation is 

described in Section III, which also provides the hyper-

parameter configuration, performance assessment metrics, and 

data description. Section IV provides a full discussion of our 

investigation's findings along with sensitivity analysis and 

computational cost and complexity. In Section V, the 

conclusion and perspectives are finally presented. 

 

 

2. METHODOLOGICAL BACKGROUND 

 

The purpose of main study predicting the passive earth 

pressure coefficients of a vertical rough rigid retaining wall 

with an inclined ground surface (Figure 1). The passive earth 

pressure 𝑃𝑝 acting on this wall can be expressed in terms of 

earth pressure coefficients 𝐾𝑝𝛾, 𝐾𝑝𝑞  and 𝐾𝑝𝑐 according to Eq. 

(1). 

 

𝑃𝑝 =
𝛾ℎ2

2
𝑏𝐾𝑝𝛾 + 𝑞ℎ𝑏𝐾𝑝𝑞 + 𝑐ℎ𝑏𝐾𝑝𝑐  (1) 

 

where, ℎ is the height of retaining wall (ℎ = 1 m), 𝑏 is the 

breadth of the wall, 𝛾 is the unit weight of soil, 𝑐 is the soil 

cohesion, and 𝑞 is the surcharge on the ground surface. The 

coefficients of passive earth pressure resulting from soil 

weight, surcharge loading, and cohesion are denoted by 

𝐾𝑝𝛾, 𝐾𝑝𝑞  and 𝐾𝑝𝑐 , respectively. 

Based on collected data, this research uses machine learning 

techniques and suggests an efficient way to predict with 

accuracy the passive earth pressure coefficients. Figure 2 gives 

the synoptic schema of the proposed solution. An offline stage 

is proposed where the AI model is trained and validated, and 

then an online stage is introduced model for testing where the 

passive earth coefficients are predicted. The solution is built 

upon three phases: (1) Data preparation, (2) Data processing, 

and (3) Results. After collecting and structuring the raw data, 

we proceeded to visualize and analyze this data in the first 

phase in order to provide more insightful and representative 

data to the second phase for processing. 

 

 
 

Figure 1. Rigid retaining wall 
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Figure 2. Synoptic schema of the proposed solution 

 

Subsequently, in the third phase, three prediction models 

(RNN, LSTM, and GRU) were trained and verified to ensure 

that they possess the maximum degree of accuracy. The 

passive earth pressure coefficients can be predicted after the 

model has been validated and saved. In addition, the dataset is 

updated systematically with new values. We noticed that the 

online stage takes less time than the offline stage which is 

more time consuming to execute. 

 

2.1 Problem formulation 

 

Considering a predicting problem that have three 

parameters as an input and three coefficients as an output with 

𝑇𝑖  values. We can define the data as: 

 

𝐷𝑎𝑡𝑎𝑠𝑒𝑡 = (𝑋𝑖, 𝑌𝑖), 𝑖 = 1, 2, 3, … , 𝑁 (2) 

 

Thus, 𝑋𝑖 denotes the gathered measurements matrix of the 

rigid retaining wall in which 𝑌𝑖 corresponds to the passive 

earth pressure coefficients as shown in Eq. (3) and Eq. (4) 

respectively. 

 

𝑋𝑖 = [𝑥1, 𝑥2, … , 𝑥𝑇𝑖
 ]  ∈ 𝑅𝑚×𝑇𝑖  (3) 

 

𝑌𝑖 = [𝑦1, 𝑦2, … , 𝑦𝑇𝑖
 ]  ∈ 𝑅1×𝑇𝑖  (4) 

 

where, 𝑇𝑖  is the total instances number. 

The coefficients can be calculated using the current (𝑦𝑡
𝑖) as 

a target Eq. (5). 

 

𝑌𝑝𝑟𝑒𝑑 ≈ 𝑦𝑡
𝑖 , 𝑡 = 1, 2, … 𝑇𝑖 (5) 

 

To address the non-linearity function  (𝛷)  deep learning 

methods are proposed in this paper. 

Let 𝑋𝑖  denote the input of the function (𝛷) , and the 

observed 𝑌𝑝𝑟𝑒𝑑 is its output. Therefore, we have: 

 

𝑌𝑝𝑟𝑒𝑑 = 𝜱(𝑥𝑡 
𝑖 , 𝑦𝑡

𝑖) (6) 

 

The difference between the target coefficient that was 

observed and the predicted coefficient value at time 𝑡 has been 

minimized as shown in Eq. (7) 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∶ (𝑌𝑝𝑟𝑒𝑑 , 𝑦𝑡
𝑖) (7) 

 

2.2 Recurrent neural networks 

 

A well-known family of ANNs designed especially to 

process sequential data, including speech signals, text 

sequences, and time series data, are RNNs. RNNs include an 

internal memory system that allows them to remember 

information from prior inputs, in contrast to typical 

feedforward ANNs that analyze each input separately. 

Because of their inherent memory capacity, they perform in 

tasks like speech recognition, machine translation, signal 

analysis, and natural language processing. 

The main characteristic of an RNN is its feedback loop, 

which enables it to transfer data across time steps. This 

feedback loop, typically implemented by recurrent 

connections between the network's hidden layers, enables the 

accumulation of sequential information. This internal memory 

allows RNNs to model temporal dependencies, understanding 

the relationships between inputs across time. It contains an 

input layer, hidden layers, and an output layer as the most 

fundamental kind of neural network [54]. 

Depending on the network's depth, there may be one or 

more hidden layers. Each layer has a specific number of 

recurrent neurons that serve as processing units; each neuron 

is exclusively coupled to the neurons of the layer below and 

its last state as shown in Figure 3. 

The RNN family includes a number of different 

architectures, such as: 

• Vanilla RNNs: These fundamental RNNs are the 

simplest, yet also the most prone to limitations. They 

suffer from the vanishing gradient problem, 

hindering the ability to learn long-term dependencies 

embedded in sequential data. 

• LSTMs are designed to overcome the vanishing 

gradient issue, introduce specialized memory cells 

that maintain information over extended periods. 

This enhances their ability to model complex 

temporal patterns [55, 56]. 

• GRUs, akin to LSTM, offer a simplified yet effective 

alternative. They employ gating mechanisms to 

control information flow, enabling efficient learning 

of sequential dependencies 

 

 
 

Figure 3. Recurrent neural network architecture 

 

 

2.3 LSTM 

 

RNN is a form of ANNs that can be used for all sequential 

and time-series data such as video frames, text, music and 

others. Different from the standard neuron, an RNN is a 

structure composed of several recurrent neurons. The main 

issue with RNNs is that they contain a vanishing gradient 

problem. Therefore, LSTMs and GRU were established to 

avoid backpropagated errors from vanishing or exploding by 
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integrating their state dynamics with gating [57, 58]. The gates 

are implemented to avoid the long-term dependency problem 

and allow each recurrent unit to extract time-scale-

dependencies. LSTM and GRU cells are one of the main 

factors contributing to RNN's recent success. 
An LSTM unit is made up of four doors: 
• The input gate controls the amount of information 

that is added to the cell. 

• The output gate controls the amount of information 

that is transmitted to the cell output. 

• The forget gate controls the amount of information 

that is erased from the cell. 

• The cell state is the long-term memory of the cell. 

 
 

Figure 4. LSTM cell diagram 

 

A typical LSTM cell is depicted in Figure 4. Firstly, LSTMs 

make modifications to the cell state in which it is divided into 

two states, the long-term C(t) and the short-term H(t). Second, 

to control the cell states, three control gates: the forget gate, 

the input gate, and the output gate, are inserted along the state 

path. The calculation equations of LSTM are as follow: 

 

𝑓𝑡 = 𝛿(𝑊𝑡𝑥𝑡 + 𝐻𝑓ℎ𝑡−1 + 𝑏𝑓) (8) 

 

𝑖𝑡 = 𝛿(𝑊𝑖𝑥𝑡 + 𝐻𝑖ℎ𝑡−1 + 𝑏𝑖) (9) 

 

𝑔𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑔𝑥𝑡 + 𝐻𝑔ℎ𝑡−1 + 𝑏𝑔) (10) 

 

𝑜𝑡 = 𝛿(𝑊0𝑥𝑡 + 𝐻0ℎ𝑡−1 + 𝑏0) (11) 

 

𝐶𝑡 = (𝑓𝑡  ⊕ 𝐶𝑡−1) ⊕ (𝑖𝑡 ⊕ 𝑔𝑡) (12) 

 

ℎ𝑡 = 𝑡𝑎𝑛ℎ(𝐶𝑡 ⊕ 𝑂𝑡) (13) 

 

where, 𝑤∗, 𝐻∗ and 𝑏∗ denote respectively each gate's trainable 

weights and biases referred to as *. Moreover, 

• 𝛿: activation function, 

• 𝑥𝑡: current input, 

• 𝑖: input gate, 

• 𝑓: forget gate, 

• 𝑂: output gate, 

• ℎ𝑡−1: previous iteration's hidden state, 

• 𝐶𝑡 , 𝐶𝑡−1: hidden states. 

 

2.4 GRU 
 

Comparable to the LSTM unit, the GRU has emerged as an 

improved LSTM architecture network that merges cellular 

state and hidden state into one state and integrates forget and 

input gates into a single update gate as well [59]. Mainly, two 

gates, known as update and reset gates, substitute the four 

LSTM gates in the GRU. Figure 5 shows the GRUcell 

architecture, whereas, the state at each time of the GRU cell is 

computed by the following equations: 

 

𝑧𝑡 = 𝛿(𝑊𝑧𝑡𝑥𝑡 + 𝐻𝑧ℎ𝑡−1 + 𝑏𝑧) (14) 

 

𝑟𝑡 = 𝛿(𝑊𝑟𝑥𝑡 + 𝐻𝑟ℎ𝑡−1 + 𝑏𝑟) (15) 

 

𝑔𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑔𝑥𝑡 + 𝐻𝑔(𝑟𝑡 ⊕ ℎ𝑡−1) + 𝑏𝑔 (16) 

 

𝐶𝑡 = 𝑧𝑡 ⊕ ℎ𝑡−1 + (1−𝑧𝑡) ⊕ 𝑔𝑡 (17) 

 

where, 𝑊∗, 𝐻∗, and 𝑏∗ refer to the learnt weight matrices and 

biases for each gate that is designated with 𝑎∗, respectively. 

Moreover, the activation function is the 𝛿. The current input is 

𝑥𝑡, and the rest and update gates are 𝑟 and 𝑧, respectively. The 

hidden state of the previous iteration is indicated by ℎ𝑡−1 , 

while the hidden state of the current iteration is shown by ℎ𝑡. 

 

 
 

Figure 5. GRU cell diagram 

 

 

3. EXPERIMENTAL STUDY 

 

Three deep learning models RNN, GRU, and LSTM will be 

explored in this study. The several levels of interdependence 

(1) without, (2) short-term, and (3) long-term relationships 

have been taken into account in the material dataset. The 

performance of various models will be assessed and compared 

using the loss, val_loss, and Score S parameters. A 

comparative study will also be performed to determine which 

model is best for the passive earth pressure coefficients. The 

data preprocessing, hyper-parameter setup, and performance 

assessment metrics will be a dressed in this section. 

 

Table 1. Statistics of the dataset 

 

Parameters Symbol Min Max Mean Med 

Wall width to 

wall height ratio 
𝛽 𝜙⁄  -0.666 0 -0.333 -0.333 

Soil friction angle 𝜙 20 40 30 30 

Ratio of soil wall 𝛿 𝜙⁄  0 1 0.5 0.5 

PEP Coeff. 𝐾𝑝𝛾 2.04 2.06 3.05 3.05 

PEP Coeff. 𝐾𝑝𝑞  2.04 4.47 3.255 3.255 

PEP Coeff. 𝐾𝑝𝑐  2.86 6.77 4.815 4.815 

Note: PEP Coeff.: Passive Earth Pressure Coefficient. 

 

3.1 Data description 

 

Three numerical datasets with 671 instances and three 

1824



 

parameters, were used in our investigation. These data sets are 

structured and arranged according to reference [3]. They 

include the passive earth pressure coefficients that are 

determined by the rigid retaining wall's characteristics and 

soil. The main statistical features of our datasets are displayed 

in Table 1. The ratio of backfill inclinisation angle to the 

internal friction angle (𝛽 𝜙)⁄ , the soil friction angle (𝜙) and 

the Ratio of the soil wall interface friction angle to internal 

friction angle (𝛿 𝜙⁄ ), were considered as input parameters, 

while the output ones are the passive earth pressure 

coefficients (𝐾𝑝𝛾, 𝐾𝑝𝑞 , 𝐾𝑝𝑐 ). 

In order to handle these coefficients for monovariate and 

bivariate analysis, we have created three independent tables. 

 

3.2 Data pre-processing 

 

The first and most important stage in developing a machine 

learning mode is data preprocessing. In the field of data 

driven-systems, data preprocessing stage is essential to 

guaranteeing accurate and relevant analysis [60]. In this part, 

we give a thorough methodology for preprocessing our 

dataset, which includes a variety of variables (such as soil and 

wall factors in our case study). 

The used techniques for data cleaning, data normalization, 

and regularization are all part of our data preparation 

procedure as shown in Figure 6. 

 

 
 

Figure 6. Flowchart of the preprocessing pipeline 

 

3.2.1 Data cleaning 

Data cleaning is the first stage in our preparation procedure. 

The dataset is thoroughly examined, and any missing values, 

outliers, or discrepancies are noted and dealt with. By 

eliminating or imputing missing values and correcting 

incorrect entries, this stage keeps the dataset's integrity and 

reduces the possibility of bias in subsequent research. 

 

3.2.2 Data standardization 

It is essential to normalize the data when utilizing a dataset 

that can include variables measured on several scales. This 

may remove scale-related biases. To scale the variables to a 

common scale, we use data standardization techniques like 

min-max normalization. By ensuring that each variable 

contributes equally to the processing stage. This procedure 

makes it possible to compare variables fairly and accurately 

gauge how they affect the coefficients. 

 

3.2.3 Regularization 

We use regularization techniques to improve the analysis 

quality even further. Regularization enhances the 

generalizability of the models and reduces overfitting. By 

using regularization, we establish a penalty term that limits the 

complexity of the model and discourages excessive 

dependence on specific variables. This strategy increases the 

model's capacity to generalize new data and reduces the 

probability that it will fit noise, which improves the analysis 

resilience. 

The process of pre-processing pipeline is depicted in Figure 

6. Once the pre-processing is carried out, we will enhance the 

integrity, reliability, and interpretability of subsequent 

research by completing data cleaning, standardization, and 

regularization. This pre-processing pipeline provides a helpful 

framework for gaining insightful knowledge and 

understanding the connections between structure properties 

and passive earth pressure coefficients. Therefore, the 

outcomes of this phase will be more accurate and reliable for 

the prediction process. 

 

3.3 Hyper-parameters setting 

 

Although choosing the model hyper-parameters is a 

meticulous and expensive process, it is nevertheless crucial 

since it has a significant influence on the accuracy of the 

predictions. The hyper-parameters setting for deep models are 

done manually by the Error-And-Trial method in all 

experiments. In the following, we will set out the different 

hyper-parameters used in our study. 

• Timesteps: refers to the sequence length in the input 

data, 

 

Algorithm 1: Best Accuracy-Based Deep Model 

Data: Passive Earth Pressure Coefficients-Prediction 

Neural Network architecture A Dataset splitted in Xtr, Xte, 

ytr, yte Result: M∗ ; // Best Smart Deep Model 

1 timesteps ← Input Dataset timesteps 

2 features ← Input Dataset features 

3 loss functions ← ’mean squared error’ 

4 metrics ← ’accuracy’ 

5 layer numbers ← {1, 2, 3, 4} 

6 cells per layer ← {3, 6, 9, 12} 

7 epochs ← {50, 100, 150, 200} 

8 batch sizes ← {6, 12, 18, 24} 

9 activation functions ← 

{’sigmoid’, ’relu’, ’softmax’, ’tanh’} 

10 dropout rates ← {0.2, 0.4, 0.6, 0.8} 

11 dense layers ← {1, 5, 10, 12} 

12 optimizers ← {0.1, 0.01, 0.001, 0.0001} 

13 params ← [timesteps, features, loss functions, metrics, 

layer numbers,cells per layer, epochs, 

     batch sizes, activation functions, dropout rates, dense 

layers, optimizers]; 

        For p ∈ params do 

15.          model=Create DeepModel(params, A) 

16           // Compile model(params) 

17           Eval model(params) 

18           If isBest(model.loss) then 

19                       M∗← model; 

20           End 

21 End 

22 return M 

 

• We consider the 32 samples in our raw material dataset. 

• Features: Indicates the number of input distinct features 

measurements or attributes associated with each data 

point. The 12 material features were introduced as input 

variables for our shallow LSTM model. 

• Loss functions: This function measures the dissimilarity 

between the predicted values and the true values during 

training. 

• Metrics: Indicators for the evaluation of the model 

performance. 

1825



 

• Layer number: layers number in the neural network 

model. Instead of using a fixed number of layers, we have 

tested a scenario of four cases with layers number in [1, 

2, 3, 4] with a fixed #cells=3. We notice that the evolution 

of the training and test loss functions show a perfect 

downhill and smoothy in the case of a LSTM model with 

#layers=01 and #cells=3. 

• Cells by layers: The number of cells or units in the 

network. First of all, we have considered the parameters 

of a shallow LSTM model with #layers=01 and a 

minimum of #cells per layer. 

• Epochs: Number of iterations during the training to 

potentially improve the model performance. 

• Batch size: It describes how many samples or data points 

are handled during each training cycle. This batch size is 

used to compute the loss and update the model's weights 

during each training step. 

• Activation function: The function that behaves as a 

threshold to get outputs. In our experiments, we have 

tested four activation functions ['sigmoid', 'relu', 

'soft_max', 'tanh'] and some illustrations were done. 

• Dropout rates: Used during training for regularization, to 

avoid overfitting. For the regularization of our shallow 

LSTM model. 

• We have experienced four case of dropout rate in the set 

[0.2, 0.4, 0.6, 0.8]. 

• Dense layers: Standard layers where every single neuron 

in the preceding and next levels has connections to every 

other neuron. 

• For the last forward dense layer, we have tested the 

configurations using a variation of layers in the set 1, 5, 

10, 12. Here, we noticed that the adequate dense layer 

size is 12. 

• Optimizers: Used for the configuration of the learning 

rate. We have used the Adam optimiser with variable 

learning rate. 

 

Table 2. Hyperparameters configuration of the three models 

 
Model Loss_Func Time_Steps Layer_Num Cells_by_Layer Epochs Batch_Size Act_Func Dropout_Rates Optimizer 

LSTM MSE 160 6 (3,32,16,16,1) 400 20 Relu 0.1 0.0001 

GRU MSE 160 3 (3,64,1) 400 20 Relu 0.1 0.0001 

RNN MSE 160 5 (3,16,64,16,1) 400 20 Relu 0.1 0.0001 

We have generated experimentally using (Algorithm 1) the 

best configuration of the three AI used models RNN, LSTM, 

and GRU. Table 2 depicted the optimal values of the learning 

parameters. We noticed that these parameters will be used 

along the following experimentation section. Furthermore, to 

overcome the lack of the real experimental data, we have 

applied a Gaussian augmentation to the dataset. New mutant 

transactions set {𝑡𝑘
′ } of size 𝑘 has been generated for at each 

data transaction 𝑡 in the neighbour space. 

 

3.4 Evaluation of the model performance 

 

The evaluation of the models is a crucial stage in the process 

of developing and validating the model. Depending on the 

kind of tasks (classification, regression, etc.), we could find a 

variety of assessment metrics. In this subsection, we will 

present the different metrics used in our studies [61, 62]. 

Mean Absolute Error (MAE): The average of the 

discrepancies between the actual values and the predicted ones 

is known as the mean absolute error. It is expressed 

mathematically as follows in Eq. (18): 

 

𝑀𝐴𝐸 =
1

𝑁
∑ |𝑧𝑖

′ − 𝑧𝑖|
𝑁

𝑖=1
 (18) 

 

Mean Squared Error (MSE): MSE is undoubtedly the most 

often used statistic for regression problems. It calculates the 

mean of the squared difference between the target value and 

the predicted value of the regression model (Eq. (19)). 

 

𝑀𝑆𝐸 =
1

𝑁
∑ (𝑧𝑖

′ − 𝑧𝑖)
2

𝑁

𝑖=1
 (19) 

 

R-Squared (R2): is a regression metric also known as 

coefficient of determination. Eq. (20) provides this measure, it 

facilitates machine learning models comparison. The 

regression's ability to capture all of the variation in the target 

values is shown by how near 𝑅2 is to the unit. 

𝑅2 = 1 −
∑ (𝑧𝑖

′ − 𝑧𝑖)
2𝑁

𝑖=1

∑ (𝑧𝑖 − 𝑧̅)2𝑁
𝑖=1

 (20) 

 

Score function: The formula for the score S measurement in 

Eq. (21) monitors the learning's sensitivity and displays its 

smoothness. It is seen as a useful indication for understanding 

the learning process. 
 

𝑆 = {
∝∗ (

𝑒𝑥𝑝|𝑒𝑖|

10
− 1)          |𝑒𝑖| ≥ 𝜀

0                                       |𝑒𝑖|  < 𝜀

 (21) 

 

where, 

𝑁: sample number, 

𝑧: actual coefficient value, 

𝑧′: predicted coefficient value (testing dataset). 

Because they provide a thorough and precise analysis that 

makes it possible to determine which algorithm performs best 

in solving our issue. MSE, R2, and score function S have been 

chosen to evaluate our models. 
 

 

4. RESULTS 
 

In this section, we will provide and discuss in details our 

prediction results. In fact, a variety of statistical tools were 

used to analyze and evaluate the models generated models' 

accuracy. We maintained the coefficient of determination R2, 

the MSE, and the scoring function S. Each of these statistical 

metrics has been widely utilized to evaluate the precision of 

DL-based models [29, 61]. However, Figures 7-9 allow us to 

see two different stages of learning: 

⚫ A rapid learning period when the mean square error drops 

off fast. This stage is equivalent to identifying broad 

patterns in the data. 

⚫ A slower learning period, where there is a slower decline 

in mean square error. Learning the specifics of the data is 

associated with this phase. 
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These data also show how, as the number of learning 

iterations in the process grew, the loss function values for the 

models that were utilized quickly converged to almost zero. In 

the meantime, we have noticed that the RNN model's loss 

function stops decreasing much faster than the LSTM and 

GRU models. This suggests that the RNN model has reached 

the convergence point faster because of its simpler architecture 

and feedback mechanism (as shown by the score function). 

The models showed good convergence and were able to 

predict the test sets after an average of 300 iterations. 

 

 
(a) 

 
(b) 

 
(c) 

 

Figure 7. Kpγ loss, training loss and score vs. epochs: (a) 

LSTM, (b) GRU, (c) RNN 

 
(a) 

 
(b) 

 
(c) 

 

Figure 8. Kpq loss, training loss and score vs. epochs: (a) 

LSTM, (b) GRU, (c) RNN 

 

 
(a) 
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(b) 

 
(c) 

 

Figure 9. Kpc  loss, training loss and score vs. epochs: (a) 

LSTM, (b) GRU, (c) RNN 

Eqs. (20)-(22) provide a summary of all statistical indices. 

The evaluation of (R2, MSE, and S) for LSTM, GRU, and 

RNN models concerning the three earth pressure coefficients 

𝐾𝑝𝛾 ,  𝐾𝑝𝑞 , and 𝐾𝑝𝑐 respectively in the testing datasets are 

summarized in Table 3. 
According to the MSE value, the LSTM (0.00037, 0.00019, 

0.00017) provides the highest performance and outperforms 
RNN (0.00136, 0.00031, 0.00067), followed by the GRU 
(0.00144, 0.00037, 0.00012), which is still the poorest for 𝐾𝑝𝛾, 
and 𝐾𝑝𝑐 . RNN, however, still the worst for 𝐾𝑝𝑞 . Its is 
important to note that, in contrast to LSTM and GRU for 𝐾𝑝𝑞, 
the LSTM and RNN models may be regarded as reliable 
estimators in our case study for 𝐾𝑝𝛾 and 𝐾𝑝𝑐 . Regarding the 
three LSTM, GRU and RNN respectively, the coefficient of 
determination R2 value, which are near to 1 (0.97, 0.96, 0.94) 
for 𝐾𝑝𝛾  (0.96, 0.94, 0.89) for 𝐾𝑝𝑞  and (0.99, 0.99, 0.96) for 
𝐾𝑝𝑐 can explain this (Figures 10-12). In order to classify the 
performance of every model, we have additionally created the 
ranking technique (RT). The best accuracy (higher R2, lower 
MSE and Score S) determines the best rank and consequently 
total score. The ranking and total scores for 𝐾𝑝𝛾 , 𝐾𝑝𝑞  and 
𝐾𝑝𝑐 for the three models are shown in Tables 4-6, respectively. 
It demonstrates that the LSTM model is the best predictor for 
all three coefficients, ranking first. In second position, we find 
the GRU model and RNN in the third position. 

Finally, the three suggested models (LSTM, GRU, RNN) 

each offer a good estimator for the passive earth pressure 

coefficients as they have a great overall prediction (Figures 13-

15) and are able to predict these coefficients precisely in an 

intelligent and reliable approach. 
 

 

Table 3. Performance evaluation using different metrics 

 

Models 
𝑲𝒑𝜸 𝑲𝒑𝒒  𝑲𝒑𝒄  

MSE R2 S MSE R2 S MSE R2 S 

LSTM 0.00037. 0.97 0.00322 0.00019 0.99 0.00176 0.00017 0.99 0.00253 

GRU 0.00144 0.90 0.00237 0.00037 0.98 0.00107 0.00012 0.99 0.00188 

RNN 0.00136 0.90 0.0095 0.00031 0.98 0.00245 0.00067 0.96 0.0007 

 

Table 4. Ranking technique for 𝐾𝑝𝛾 

 

Models 
𝑲𝒑𝜸 𝑹𝑻 Total Score Ranking 

MSE R2 S MSE R2 S Order Order 

LSTM 37.10-5 0.97 0.032 3 3 1 7 1 

GRU 14.10-4 0.96 0.0023 1 2 2 5 3 

RNN 13.10-4 0.94 0.0009 2 1 3 6 2 

 

Table 5. Ranking technique for Kpq 

 

Models 
𝑲𝒑𝒒 𝑹𝑻 Total Score Ranking 

MSE R2 S MSE R2 S Order Order 

LSTM 19.10-5 0.96 17.10-4 3 3 2 7 1 

GRU 37.10-5 0.94 0.0010 1 2 3 6 2 

RNN 31.10-5 0.89 0.0024 2 1 1 4 3 

 

Table 6. Ranking technique for 𝐾𝑝𝑐 

 

Models 
𝑲𝒑𝒄 𝑹𝑻 Total Score Ranking 

MSE R2 S MSE R2 S Order Order 

LSTM 17.10-5 0.99 25.10-4 2 3 1 6 2 

GRU 12.10-5 0.99 18.10-4 3 3 2 8 1 

RNN 67.10-5 0.96 7.10-4 1 1 3 5 3 
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(a) 

 
(b) 

 
(c) 

 

Figure 10. R2 for Kpγ:  (a) LSTM, (b) GRU, (c) RNN 

 

 
(a) 

 
(b) 

 
(c) 

 

Figure 11. R2 for Kpq: (a) LSTM, (b) GRU, (c) RNN 

 

 
(a) 

 
(b) 
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(c) 

 

Figure 12. R2 for Kpc: (a) LSTM, (b) GRU, (c) RNN 

 

 
(a) 

 
(b) 

 
 

Figure 13. Kpγ truth vs. predicted values: (a) LSTM, (b) 

GRU, (c) RNN 

 
(a) 

 
(b) 

 
(c) 

 

Figure 14. Kpq truth vs. predicted values: (a) LSTM, (b) 

GRU, (c) RNN 

 

 
(a) 
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(b) 

 
(c) 

 

Figure 15. Kpc truth vs. predicted values: (a) LSTM, (b) 

GRU, (c) RNN 

 

The Tables 7-9 show the comparison between the predicted 

passive earth pressure coefficients 𝐾𝑝𝛾, 𝐾𝑝𝑞 and 𝐾𝑝𝑐  obtained 

from our best model (LSTM) and the corresponding results 

reported by reference [3] (Three-dimensional finite element 

limit analysis method) for various values of 𝛽 𝜙⁄ , 𝛿 𝜙 ⁄ and 𝜙. 

In this comparison, we introduced an evaluation metric gap 

that takes one of two values. 

The value 0, if the predicted coefficient is lower than the 

numerical and analytical values, or the difference between the 

𝑀𝑖𝑛 and the predicted coefficient, otherwise. 𝑀𝑖𝑛 represents 

the minimum value between numerical and analytical values. 

Let define the variables for the experimental estimates 

introduced respectively in references [3, 5] as b, s thus 𝑀𝑖𝑛 =
min (𝑏, 𝑠)  and then gap could be defined by the Eq. (22), 

where, the variable 𝑝  represents the predicted coefficient 

values using the proposed AI model. 

 

𝑔𝑎𝑝 = {
0              𝑖𝑓      𝑝 ≤ [𝑀𝑖𝑛 (𝑠, 𝑏)]

|𝑝 − 𝑀𝑖𝑛 (𝑠, 𝑏)|     𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (22) 

 

We can clearly observe that: 

• For 𝐾𝑝𝛾 , in Table 7, we notice that 82% of predicted 

value are consistently lower than the estimated ones in 

the literature [3] which reliably improves the outcomes 

from the analytical approaches. Again, the remaining 

18% transactions 𝑡𝑖,𝑖∈{3,5,6,8,16}  of our results have 

slightly exceed the minimal value [3]. In this latter case, 

the difference or the gap does not exceed an average of 

0.75 which can be considered in this case as 

insignificant. 

• Table 8 depicts the 𝐾𝑝𝑞 predicted coefficient, most of 

the forecasted 𝐾𝑝𝑞values are under the estimated ones 

considering the difference gaps for the transactions 

𝑡𝑖,𝑖∈{3,13,24} given in the references [3]. We notice that 

the predicted coefficient exceeds slightly and lays just 

around the zero. This means that our proposed AI model 

does best performance than the other approach in the 

literature. 

• For the 𝐾𝑝𝑐  coefficient (see the Table 9), all the 

predicted values are comparatively less than the 

figured-out ones [3] and the prediction of this 

coefficient has been right over all the transactions 

(≈100%). 

 

Table 7. Kpγ: Predicted values vs. analytical values 

 
𝑰𝒅 𝜷 𝝓⁄  𝜹 𝝓⁄  𝝓 Gap Pred vs. (*) Predicted (Pred) Kinematical Approach [3] 

1 0,000 0,000 20 0 1.74 2.04 

2 0,000 0,333 20 0 2.39 2.39 

3 0,000 0,667 20 0,162 2.91 2.75 

4 -0,500 1,000 20 0 2.14 2.16 

5 -0,667 1,000 20 0 1.83 1.83 

6 -0,500 0,000 25 0 1.68 1.71 

7 -0,667 0,500 25 0 1.86 1.75 

8 -0,333 0,667 25 0,108 2.87 2.77 

9 -0,667 1,000 25 0 2.10 2.17 

10 0,000 0,333 30 0 3.95 4.03 

11 -0,333 0,333 30 0,04 2.810 2.77 

12 -0,333 0,667 30 0 3.49 3.56 

13 -0,667 0,667 30 0,107 2.237 2.13 

14 -0,500 0,500 35 0,092 3.052 2.96 

15 -0,333 0,667 35 0 4.64 4.67 

16 0,000 1,000 35 1,497 12.797 11.30 

17 -0,333 1,000 35 0,032 6.562 6.53 

18 0,000 0,000 40 0 4.23 4.60 

19 -0,667 0,000 40 0 1.63 1.67 

20 -0,500 0,500 40 0,195 3.725 3.53 
Note: The gap is the distance to the results in the stat e of the art, with 95% confidence interval approximately [-0.17; 1.66]. 
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Table 8. Kpq: Predicted values vs. analytical values 

 
𝑰𝒅 𝜷 𝝓⁄  𝜹 𝝓⁄  𝝓 Gap Pred vs. (*) Predicted (Pred) Kinematical Approach [3] 

1 0,000 0,000 20 0 1.77 2.04 

2 0,000 0,333 20 1,398 3.778 2.38 

3 -0,333 0,333 20 0,378 2.338 1.96 

4 -0,500 0,500 20 0,023 1.873 1.85 

5 -0,500 1,000 20 0,027 2.207 2.18 

6 -0,667 1,000 20 0 1.69 1.87 

7 -0,500 0,000 25 0 1.69 1.75 

8 -0,500 0,500 25 0,022 2.20 2.18 

9 -0,667 0,500 25 0,019 1.84 1.83 

10 -0,333 0,667 25 0,035 2.825 2.79 

11 -0,667 1,000 25 0 2.09 2.26 

12 0,000 0,333 30 0 2.88 3.98 

13 -0,333 0,667 30 0 3.57 3.57 

14 -0,500 0,333 35 0,086 2.78 2.70 

15 -0,500 0,500 35 0,041 3.14 3.10 

16 -0,333 0,667 35 0 4.69 4.70 

17 0,000 1,000 35 0 9.62 9.82 

18 -0,333 1,000 35 0 6.33 6.31 

19 0,000 0,000 40 0 4.41 4.60 

20 -0,500 0,500 40 0,028 3.77 3.75 
Note: The gap is the distance to the results in the stat e of the art, with 95% confidence interval approximately [-0.17; 1.66]. 

 

Table 9. Kpc: Predicted values vs. analytical values 

 
𝑰𝒅 𝜷 𝝓⁄  𝜹 𝝓⁄  𝝓 Gap Pred vs. (*) Predicted (Pred) Kinematical Approach [3] 

1 0,000 0,000 20 0 3.10 2.86 

2 0,000 0,333 20 0 3.58 3.76 

3 -0,333 0,500 20 0 3.58 3.59 

4 -0,500 0,500 20 0 3.32 3.31 

5 0,000 0,667 20 0 4.35 4.59 

6 -0,500 1,000 20 0,02 4.25 4.23 

7 -0,500 0,000 25 0 2.15 2.26 

8 -0,667 0,500 25 0 3.19 3.20 

9 -0,333 0,667 25 0 4.48 4.52 

10 -0,667 1,000 25 0,601 4.99 4.39 

11 -0,500 0,000 30 0 2.15 2.26 

12 0,000 0,333 30 0 4.99 5.14 

13 -0,333 0,333 30 0,014 3.85 3.84 

14 -0,333 0,667 30 0 5.25 5.26 

15 -0,333 0,667 35 0 6.12 6.23 

16 0,000 1,000 35 0,624 12.90 12.28 

17 -0,333 1,000 35 0 8.26 8.50 

18 0,000 0,000 40 0,10 4.39 4.29 

19 -0,667 0,000 40 0 1.67 1.78 

20 -0,333 0,333 40 0 4.65 4.66 
Note: The gap is the distance to the result in the stat e of the art, with 95% confidence interval approximately [-0.17; 1.66]. 

 

4.1 Sensitivity analysis 

 

To get the sensitivity analysis of our LSTM, GRU, and 

RNN models, we have considered a holistic perturbation factor 

alpha applied to the testing dataset and we have computed the 

new predicted values. Thus, when stressing the input features 

for each testing timesteps, we will get a new predicted value 

for the coefficients 𝐾𝑝𝛾 , 𝐾𝑝𝑞 , and 𝐾𝑝𝑐  respectively. The 

sensitivity is considered as the mean of all prediction 

variations gaps modulo the factor alpha. The sensitivity 

analysis reveals that for predicting Kpc, the ratio of backfill 

inclination angle to the internal friction angle (𝛽 𝜙⁄ ) is the 

most influential parameter across all models, followed by the 

friction angle (𝜙) and the soil-wall interface friction angle 

(𝛿 𝜙⁄ ). The sensitivities are relatively consistent, with the 

LSTM (Figure 16(a)) showing slightly higher sensitivity to 

(𝛽 𝜙⁄ ) and (𝜙) compared to the RNN and GRU. For 𝐾𝑝𝛾, the 

(𝛽 𝜙⁄ ) parameter remains the most significant, though the 

RNN shows a higher sensitivity to (𝛽 𝜙⁄ ) than the LSTM and 

GRU (Figure 16(b)). Finally, for 𝐾𝑝𝑞 , (𝛽 𝜙⁄ ) is again the 

dominant factor, with LSTM and GRU models exhibiting 

lower sensitivity to (𝛽 𝜙⁄ ) compared to RNN (Figure 16(c)). 

 

 
(a) 
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(b) 

 
(c) 

 

Figure 16. Sensitivity analysis: (a) LSTM, (b) GRU, (c) 

RNN 

 

4.2 Computational cost and complexity 

 

We have conducted experiments and have measure the 

learning time-cost (#ltime) of the deep models by regard to the 

complexity of each model in terms of the number of variables 

(#nvars). We notice that for a hidden layer, the number of the 

parameters is defined by: 

 

#𝑛𝑣𝑎𝑟𝑠 = #𝑐𝑒𝑙𝑙𝑠(𝑖𝑛𝑝𝑢𝑡) ∗ (#𝑐𝑒𝑙𝑙𝑠(𝐿 − 1)
∗  #𝑐𝑒𝑙𝑙𝑠(𝐿𝑐) + #𝑐𝑒𝑙𝑙𝑠(𝐿𝑐)
∗ #𝑐𝑒𝑙𝑙𝑠(𝐿𝑐) + #𝑐𝑒𝑙𝑙𝑠(𝐿𝑐)) 

(23) 

 

In Table 10, we introduce the performance time results 

considering the criteria #navrs, #ltime, #ptime, and 

SpeedUp/RN which respectively define the number of the 

weight variables in the candidate neural network, the learning 

time, the prediction time for a given transaction or one 

timestep, and finally the speed up coefficient by regard to the 

RNN architecture considered as the baseline neural network 

structure deep model. We notice that LSTM like models is 

faster in predicting passive earth pressure coefficients with a 

high speed up 2.14 for GRU (e.g., 1.15 for LSTM model). 

Again, the LSTM learning time is speedy (i.e., LSTM learning 

percentage is equal to 73% of the baseline) to the RNN model 

considering that is less complex. 

 

Table 10. Learning and prediction time versus variable size 

complexity 

 
Deep Neural 

Architecture 

#nvar 

(int) 

#ltime 

(s) 

Learning 

(%) 

#ptime 

(s) 

Predicting 

Speed up 

LSTM 16209 35.79 73% 0.065 1.15 

GRU 17681 29.94 87% 0.035 2.14 

RNN 27281 26.04 
100% 

(baseline) 
0.075 

1.0 

(baseline) 

The LSTM-like models (GRU and LSTM) have worst times 

of learning and prediction by regard to the RNN baseline 

model. We notice that the LSTM architectures are complex 

than the RNN neural structures. Again, the GRU prediction is 

the fastest by regard to the proposed candidate’s models. 

 

 

5. CONCLUSIONS 

 

The use of deep learning techniques in civil engineering for 

parameters prediction has transformed the challenges of this 

field. Our research is part of these challenges. Furthermore, the 

primary goal of this study is to predict the passive earth 

pressure coefficients 𝐾𝑝𝛾, 𝐾𝑝𝑞  and 𝐾𝑝𝑐  using a new approach 

based on deep learning methods that greatly enhance the 

values of these coefficients. 

To improve the data quality as well as the prediction 

performance of the proposed models, an efficient data 

preprocessing techniques were first suggested. Following that, 

we built a new algorithm for hyperparameters configuration in 

order to maintain and improve our three recurrent deep 

learning models (LSTM, GRU, and RNN). These models were 

trained and tested on a specific dataset including the cross-

validation performance boosting technique. We later 

evaluated the model's performance using the metrics MSE, R2, 

and S in addition to a newly suggested ranking method in order 

to obtain an accurate evaluation of our models. 

Indeed, we find that the LSTM model performed 

significantly better than the RNN and GRU neural networks, 

with the best MSE performance tuple being equal to 

(𝐾𝑝𝛾 =0.00037, 𝐾𝑝𝑞 =0.00019,  𝐾𝑝𝑐 =0.00017). Also, For the 

three predicted coefficients, the R2 estimate was around one 

(R2_𝐾𝑝𝛾=0.97, R2_𝐾𝑝𝑞=0.99, and R2_𝐾𝑝𝑐 =0.99), confirming 

and demonstrating the best estimation and high performance 

of the deep predictor models. Furthermore, the RT ranking 

indicates that the GRU had the second-best performance, 

while the RNN performed the third performance. 

According to the sensitivity study, the GRU model 

represents the best time-cost ratio and the wall dimensions 

have the most impactful parameters on the three models. 

In conclusion, the proposed deep models for passive earth 

pressure coefficients prediction have shown strong 

performance and a high capacity to enhance the traditional 

approaches and get past their difficult and complex 

application. 

The proposed deep learning approach can be adapted to 

address other geotechnical engineering challenges, such as 

ground subsidence prediction, slope stability analysis, and 

foundation bearing capacity evaluation. We note that already 

several efforts are invested to meet these challenges and we 

will help to cover more aspect in engineering areas, in terms 

of estimation and prediction. We will then boost the potential 

to improve the design of retaining structures, enhance the 

safety of geotechnical infrastructure, and contribute to the 

development of more sustainable construction practices. 

The sensitivity analysis shows that the wall dimensions are 

the most influential parameters across all models and the GRU 

model is the fastest in term of time-cost. Finally, the proposed 

AI models for passive earth pressure coefficient prediction 

have demonstrated good performance and a high ability to 

boost the classical methods and overcome their complex and 

challenging use. Future research should focus on integrating 

physical constraints within neural networks to enhance 

interpretability and realism, expanding datasets with field-
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monitored or probabilistic data, and exploring the 

transferability of these models to other geotechnical problems 

such as retaining wall design, slope stability, and deep 

foundation behavior. Additionally, investigating hybrid 

models and uncertainty-aware architectures could further 

improve reliability and support practical decision-making. 
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